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Noisy Broadcast Networks with Receiver Caching
Shirin Saeedi Bidokhti, Michèle Wigger and Roy Timo

Abstract

The paper studies an erasure broadcast network with two disjoint sets of receivers: a set of weak receivers with all-equal
erasure probabilities and equal cache sizes and a set of strong receivers with all-equal erasure probabilities and no cache memories.
Lower and upper bounds are presented on the capacity-memory tradeoff of this network (the largest rate at which messages can
be reliably communicated for given cache sizes). The bounds match when there is a single weak receiver (and any number of
strong receivers) and the cache size does not exceed a given threshold. Improved bounds are presented for the special case with
a single weak receiver, a single strong receiver, and two files; these new bounds match over a larger regime of cache sizes than
the previous bounds. The lower bound is achieved by a new joint cache-channel coding scheme and significantly improves over
traditional schemes based on separate cache-channel coding. The upper bound holds for all stochastically degraded broadcast
channels.

The derived upper and lower bounds on the capacity-memory tradeoff are also converted to lower and upper bounds on the
delivery rate-memory tradeoff.

I. INTRODUCTION

We address a one-to-many broadcast communications problem where many users demand files from a single server during
peak-traffic times (periods of high network congestion). To improve network performance, the server can pre-place information
in local cache memories near users at the network edge during off-peak times when the communications rate is not a limiting
network resource. The server typically does not know in advance which files the users will demand, so it will try to place
information that is likely to be useful for many users during periods of peak-traffic. Machine learning techniques can be used
to predict user behaviour and identify files that are popular in peak-traffic [1].

The above caching problem is particularly relevant to video-streaming services in mobile networks. Here network operators
pre-place information in clients’ caches (or, on servers near the clients) to improve latency and throughput during peak-traffic
times. The network operator does not know in advance which movies the clients will request, and thus the cached information
cannot depend on the clients’ specific demands. It is now widely expected that there will be a nine-fold increase in mobile data
traffic by 2020, and around 60 percent of this traffic will be mobile video [2]. Smart data caching strategies, new bandwidth
allocations, reduced cell sizes and new radio-access technologies will all be needed to meet these growing demands [3].

The information-theoretic aspects of cache-aided communications have received significant attention in recent years [4]–[46].
Maddah-Ali and Niesen [4] considered a one-to-many communications problem where the receivers have independent caches
of equal sizes and the delivery phase (the peak-traffic communication) takes place over a perfect, noise-free broadcast channel
(BC) where each receiver directly observes the inputs. They showed that a smart design of the cache contents enables the
server to send coded (XOR-ed) data during the delivery phase that can simultaneously meet the demands of multiple receivers.
This coded caching scheme allows the server to reduce the delivery rate beyond the obvious local caching gain, i.e., the
data rate that each receiver can locally retrieve from its cache. Intuitively, the performance improvement occurs because the
receivers can profit from other receivers’ caches, and was thus termed [4] global caching gain. Several recent works [4]–[18]
have presented upper and lower bounds on the minimum delivery rate as a function of the cache sizes. The works in [19]–[22]
considered related scenarios but where the various files can be correlated.

In this paper we assume that the delivery phase takes place over a noisy BC, and we will see that further global caching
gains can be achieved by joint cache-channel coding. In joint cache-channel coding, cache contents not only determine what
to transmit but also how to transmit it. Previous works have adopteda separate cache-channel coding architectures with
encoder/decoders consisting of a cache encoder/decoder and a channel encoder/decoder that only depend on the cache contents
or only on the BC statistics, respectively. Notice that by recasting the cache-contents as sources available at the receiver,
joint cache-channel coding becomes an instance of joint source-channel coding. Joint source-channel coding schemes for BCs
without cache memories but with receiver-side information have previously been presented in [50]–[60]. Tuncel [50], for
example, provided sufficient and necessary conditions when a memoryless source can be transmitted losslessly over a BC with
receiver side-information. Particularly related to the caching model here is the scenario where the receivers’ side-information
is also available at the transmitter [59], [60], a scenario that also relates to the BC with feedback because the fed back channel
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outputs can be viewed as such a side-information. The schemes in [57], [61]–[70] exactly exploit this side-information to
improve over the nofeedback capacity region of the considered BCs. Joint source-channel coding is however only used in [57],
[61].

The importance of including a noisy channel model for the delivery phase was also observed in [23]–[30], [32]–[35]. For
example, [29]–[32] illustrate interesting interplays between feedback, channel state information, and massive MIMO with
caching; [36]–[38] show that in Gaussian interference networks caches at the transmitter-side and receiver-side allow for load-
balancing and interference mitigation in noisy interference networks; and [38]–[46] focus on cellular networks where caching
allows to cancel inter-cell interference [39].

The main interest of this paper is on the fundamental capacity-memory tradeoff —i.e., the largest rate at which messages
can be reliably communicated for given cache sizes—of the K-receiver erasure BC illustrated in Figure 1. In this BC the K
receivers are partitioned into two sets:
• A set of Kw weak receivers with equal “large” BC erasure probabilities δw ≥ 0. These receivers are each equipped with

an individual cache of size M .
• A set of Ks := K−Kw strong receivers with equal “small” BC erasure probabilities δs ≥ 0 with δs ≤ δw. These receivers

are not provided with caches.
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Fig. 1: K user packet-erasure BC with Kw weak and Ks strong receivers and where the weak receivers have cache memories.

This scenario is motivated by previous studies [23], [24] that showed the benefit of prioritizing cache placements near weaker
receivers. In practical systems, this means that telecommunications operators with a limited number of caches might first place
caches at houses that are further away from an optical fiber access point. Or, they might place caches at pico or femto base
stations in heterogenous networks that are located in areas with notoriously bad throughput.

A lower bound on the capacity-memory tradeoff C(M) is presented for the network in Figure 1, as well as an upper bound
for general degraded BCs with arbitrary receiver cache memories. The bounds match for the network in Figure 1 when there
is only a single weak receiver with a small cache memory:

Kw = 1

and
M ≤ D (1− δs)(δw − δs)

Ks(1− δw) + (1− δs)
, (1)

where D denotes the number of files in the system.
For the special case Kw = Ks = 1 and D = 2, a second, improved, set of lower and upper bounds on C(M) is presented.

They coincide when the cache memory is either small as in (1) or large:

M ≥ ((1− δs) + (δw − δs)),

and for general cache memories M ≥ 0 when both receivers are equally strong:

δw = δs.

The proposed lower bounds are based on joint cache-channel coding building on the piggyback coding idea in [23], [61].
The basic idea of piggyback coding is to carry messages to strong receivers on the back of messages to the weak receivers.
These messages can be carried for “free” if the server pre-places appropriate message side information in the weak receivers’
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caches. Notice that (after recasting the cached contents as message side-information) Tuncel-coding [50] could be used instead
of piggyback coding. The former is however more complicated and includes binning etc. The new lower bounds substantially
improve over the obvious separate cache-channel coding scheme that combines coded caching [4] with a capacity-achieving
scheme for the erasure BC. For example, when M is smaller than a given threshold that depends on the problem parameters,
the joint cache-channel coding scheme achieves the following lower bound on the capacity-memory tradeoff:

C(M) ≥ R0 +
Kw(1− δs)

Kw(1− δs) +Ks(1− δw)
· 1 +Kw

2
· γjoint ·

M

D
. (2)

Here, D denotes the number of files in the system; R0 represents the largest symmetric rate that is achievable over the erasure
BC in Figure 1 when neither strong nor weak receivers have cache memories; and the constant

γjoint := 1 +
2Kw

1 +Kw
· Ks(1− δw)

Kw(1− δs)
≥ 1 (3)

describes this scheme’s gain over separate cache-channel coding. That means, separate cache-channel coding achieves the lower
bound in (2) but when γjoint is replaced by 1. Inequalities (2) and (3) show that the improvement of our joint cache-channel
coding schemes over the separate cache-channel coding scheme is not bounded for small cache sizes. In particular, it is strictly
increasing in the number of strong receivers Ks when the other problem parameters δw, δs, and Kw are fixed. On a more
intuitive level, the benefit of joint cache-channel coding is that it can provide global caching gains also to the strong receivers.
That means, the effective communication rate to the strong receivers can be decreased in function of the cache memories
available at the weak receivers.

To facilitate comparison with previous works, the lower and upper bounds on the capacity-memory tradeoff C(M) are also
translated into equivalent bounds on the minimum delivery rate-memory tradeoff, as considered in [4].

A. Paper Organization

In Section II we state the problem setup. Section III presents a separate-cache channel coding scheme based on coded caching
and Section IV a new joint cache-channel coding scheme. Section V gives a fundamental converse result (upper bound) for the
capacity-memory tradeoff of general degraded BCs with receiver cache-memories. Section VI states lower and upper bounds
on the capacity memory tradeoff of the erasure BC in Figure 1. Section VII restates the obtained general upper and lower
bounds on the capacity-memory tradeoff as lower and upper bounds on the delivery rate-memory tradeoff. Finally, Section VIII
concludes the paper.

II. PROBLEM DEFINITION

A. Notation

Random variables are identified by uppercase letters, e.g. A, their alphabets by matching calligraphic font, e.g. A, and
elements of an alphabet by lowercase letters, e.g. a ∈ A. We also use uppercase letters for deterministic quantities like rate
R, capacity C, number of users K, cache size M , and number of files in the library D. The Cartesian product of A and A′
is A×A′, and the n-fold Cartesian product of A is An. The shorthand notation An is used for the tuple (A1, . . . , An).

LHS and RHS stand for left-hand side and right-hand side, and IID stands for idependentely and identically distributed.
Finally, the notation W1 ⊕W2 is used for the bitwise XOR over the binary strings corresponding to the messages W1 and

W2, where these strings are assumed to be of equal length.

B. Message and Channel Models

Consider a broadcast channel (BC) with a single transmitter and K receivers as depicted in Figure 1. We have two sets of
receivers: Kw weak receivers that statistically have a bad channel and Ks = K −Kw strong receivers that statistically have
a good channel. (The meaning of good and bad channels will be explained shortly.) For convenience of notation, we assume
that the first Kw receivers are weak and the subsequent Ks receivers are strong, and we define the sets

Kw := {1, . . . ,Kw}
and

Ks := {Kw + 1, . . . ,K}.
We model the channel from the transmitter to the receivers by a memoryless erasure BC1 with input alphabet

X := {0, 1}
1The results in this paper extend readily to packet-erasure BCs. It suffices to scale the message rate R and the cache size M defined in the following by

this packet size.
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and equal output alphabet at all receivers
Y := X ∪ {∆}.

The output erasure symbol ∆ models loss of a bit at a given receiver. Receiver k ∈ K := {1, . . . ,K} observes the erasure
symbol ∆ with a given probability δk ≥ 0, and it observes an output yk equal to the input, yk = x, with probability 1− δk.
The marginal transition laws2 of the memoryless BC are thus described by

P[Yk = yk|X = x] =





1− δk if yk = x
δk if yk = ∆
0 otherwise

∀ k ∈ K. (4)

We will assume throughout that

δi =

{
δw if i ∈ Kw
δs if i ∈ Ks

(5)

for fixed erasure probabilities3

0 ≤ δs ≤ δw < 1. (6)

Since δs ≤ δw, the weak receivers have statistically worse channels than the strong receivers, hence the distinction between
good and bad channels. In the sequel, we will assume that each weak receiver is provided with a cache memory of size nM
bits. The strong receivers are not provided with cache memories. We explain shortly how the cache memory at the weak
receivers can be exploited.

C. Message Library and Receiver Demands

The transmitter has access to a library with D ≥ K messages

W1, . . . ,WD. (7)

These messages are all independent of each other, each being uniformly distributed over the message set {1, . . . , b2nRc}, where
R ≥ 0 is the rate of each message and n the blocklength of transmission.

Each receiver will demand (i.e., request and download) exactly one of these messages.Let

D := {1, . . . , D}.
We denote the demand of Receiver 1 by d1 ∈ D, the demand of Receiver 2 by d2 ∈ D, etc., to indicate that Receiver 1 desires
message Wd1 , Receiver 2 desires message Wd2 , and so on. We assume throughout that the demand vector

d := (d1, . . . , dK) (8)

can take on any value in DK .
Communication takes place in two phases: A first placement phase where information is stored in the weak receivers’ cache

memories and a subsequent delivery phase where the demanded messages are delivered to all the receivers. The next two
subsections detail these two communication phases.

D. Placement Phase

During the first communication phase the transmitter sends caching information Vi to each weak receiver i ∈ Kw, which
then stores this information in its cache memory. The strong receivers do not take part in the placement phase.

The demand vector d is unknown to the transmitter and receivers during the placement phase, and, therefore, the cached
information Vi cannot depend on the users’ specific demands d. Instead, Vi is a function of the entire library only:

Vi := gi(W1, . . . ,WD), i ∈ Kw,

for some function
gi :
{

1, . . . , b2nRc
}D → V, i ∈ Kw, (9)

where
V := {1, . . . , b2nMc}.

The placement phase occurs during a low-congestion period. We therefore assume that any transmission errors are corrected
using, for example, retransmissions. Each weak receiver i ∈ Kw can thus store Vi in its cache memory.

2As will become clear in the following, for our problem setup only this marginal transition law is relevant, but not the joint transition law.
3Although we are technically allowing δs = δw , our main interest will be δs < δw.
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E. Delivery Phase

The transmitter is provided with the demand vector d, and it communicates the corresponding messages Wd1 , . . . ,WdK over
the packet-erasure BC. The entire demand vector d is assumed to be known to the transmitter and all receivers4.

The transmitter chooses the encoding function that corresponds to the specific demand vector d:

fd : {1, . . . , b2nRc}D → Xn, (10)

and it sends
Xn = fd(W1, . . . ,WD), (11)

over the packet-erasure BC.
Each Receiver k ∈ K observes Y nk according to the memoryless transition law in (4). Each weak receiver attempts to

reconstruct its desired message from it channel output, cache contents and demand vector d. Similarly, each strong receiver
attempts to reconstruct its desired message from its channel output and the demand vector d. More formally,

Ŵi :=

{
ϕi,d(Y ni , Vi) if i ∈ Kw

ϕi,d(Y ni ) if i ∈ Ks,
(12a)

where
ϕi,d : Yn × V → {1, . . . , b2nRc}, i ∈ Kw, (12b)

and
ϕi,d : Yn → {1, . . . , b2nRc}, i ∈ Ks. (12c)

F. Capacity-Memory Tradeoff

An error occurs whenever
Ŵk 6= Wdk for some k ∈ K. (13)

For a given demand vector d the probability of error is

Pe(d) := P
[ K⋃

k=1

Ŵk 6= Wdk

]
. (14)

We consider a worst-case probability of error over all feasible demand vectors:

Pe
worst := max

d∈DK
Pe(d). (15)

In Definitions (9)–(15), we sometimes add a superscript (n) to emphasise the dependency on the blocklength n.
We say that a rate-memory pair (R,M) is achievable if for every ε > 0 there exists a sufficiently large blocklength n and

placement, encoding and decoding functions as in (9), (10) and (12) such that Pe
worst < ε. The main problem of interest in this

paper is to determine the following capacity versus cache-memory tradeoff.
Definition 1: Given cache memory size M , we define the capacity-memory tradeoff C(M) as the supremum of all rates R

such that the rate-memory pair (R,M) is achievable.

G. Trivial and Non-Trivial Cache Sizes

When the cache size M = 0, the capacity-memory tradeoff equals the symmetric capacity R0 to all K receivers [71]:

C(M = 0) = R0, (16)

where

R0 :=

(
Kw

1− δw
+

Ks

1− δs

)−1

. (17)

Since the strong receivers do not have cache memories, the capacity-memory tradeoff cannot exceed the capacity to these
strong receivers, irrespective of the cache size at the weak receivers. Thus,

C(M) ≤ 1− δs

Ks
, ∀ M ≥ 0. (18)

4It takes only dlog(D)e bits to describe the demand vector d. The demand vector can thus be revealed to all terminals using zero transmission rate.
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When M ≥ D(1− δs)/Ks, the weak receivers can store the entire library in their caches and the transmitter thus needs to
only serve the strong receivers during the delivery phase. Therefore,

C(M) =
1− δs

Ks
, ∀ M ≥ D · 1− δs

Ks
. (19)

We henceforth restrict attention to nontrivial cache memories

M ∈
(

0, D · 1− δs

Ks

)
.

III. A SEPARATE CACHE-CHANNEL CODING SCHEME

As first step, consider the following separate cache-channel coding scheme that is built on capacity-achieving codes for the
erasure BC and Maddah-Ali and Niesen’s coded caching scheme [4]. The scheme is described in detail using the following
coded-caching methods, which will serve also in later sections:
• Method Ca describes the placement operations.
• Method En describes the delivery-phase encoding.
• Methods {Dei; i = 1, 2, . . . ,Kw} describe the delivery-phase decodings.

1) Preliminaries: The scheme has parameter
t̃ ∈ {0, . . . ,Kw}.

If t̃ 6= 0, let
G1, . . . ,G(Kw

t̃ )

denote the
(Kw
t̃

)
subsets of Kw of size t̃, and split each message Wd into

(Kw
t̃

)
independent submessages

Wd =

{
Wd,G` : ` = 1, . . . ,

(
Kw

t̃

)}
,

each being of equal rate

Rsub := R

(
Kw

t̃

)−1

. (20)

2) Placement: For t̃ = 0, no content is stored in the caches. For t̃ 6= 0, cache placement is performed using the following
Method Ca:

Method Ca: Takes as input the entire library W1, . . . ,WD and outputs the cache contents

Vi =
{
Wd,G` : d ∈ {1, . . . , D} and i ∈ G`

}
, i ∈ Kw. (21)

In other words, when t̃ 6= 0, then during the placement phase, the tuple
(
W1,G` , W2,G` , . . . , WD,G`

)

is stored in the cache memory of every Receiver i in G`.
3) Delivery-Encoding: If t̃ = 0, no contents have been stored in the cache memories, and the transmitter simply sends

messages
Wd1 ,Wd2 , . . . ,WdK

to the intended receivers using a capacity-achieving scheme for the erasure BC.
If t̃ = Kw, the weak receivers can directly retrieve their desired messages from their cache memories. The transmitter thus

only needs to send Messages
WdKw+1

, WdKw+2
, . . . , WdK (22)

to the strong receivers using a capacity-achieving code.
If 0 < t̃ < Kw, the transmitter first applies the following Method En:
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Method En: Takes as inputs the library W1, . . . ,WD and the reduced demand vector dw := (d1, . . . , dKw). It
produces the outputs {

WXOR,S : S ⊆ Kw and |S| = t̃+ 1
}
, (23)

where
WXOR,S :=

⊕

k∈S
Wdk,S\{k}. (24)

The transmitter then uses a capacity-achieving scheme for erasure BCs to send the messages in (24) to all5 weak receivers Kw
and the messages in (22) to all strong receivers Ks.

4) Delivery-Decoding: The strong receivers decode their intended messages in (22) using a capacity-achieving decoder for
the erasure BC.

If t̃ = 0, the weak receivers decode in the same way as the strong receivers.
If t̃ = Kw, the weak receivers can directly retrieve their desired messages from their cache memories.
If 1 ≤ t̃ ≤ Kw − 1, the weak receivers first decode the XOR-messages in (24) using a capacity-achieving decoder for the

erasure BC. Each Receiver i ∈ Kw then applies the following Method Dei:

Method Dei: Takes as inputs the demand vector dw, the decoded messages {WXOR,S : i ∈ S}, and the cache
content Vi. It outputs the reconstruction

Ŵi :=
(
Ŵdi,G1 , . . . , Ŵdi,G(Kw

t̃ )

)
, (25)

where

Ŵdi,G` =

{
Wdi,G` if i ∈ G`(⊕

s∈G` Wds,G`∪{i}\{s}
)
⊕WXOR,G`∪{i} if i /∈ G`.

(26)

5) Analysis: For given parameter t̃ ∈ Kw, the described separate cache-channel coding scheme allows for vanishing
probability of error whenever the rate does not exceed

Rt̃,sep :=

(
Kw − t̃

(t̃+ 1)(1− δw)
+

Ks

(1− δs)

)−1

, (27a)

and it requires the weak receivers to have cache memories of size

Mt̃,sep := D
t̃

Kw
Rt̃,sep. (27b)

By time- and memory-sharing arguments, the following proposition holds.

Proposition 1: The upper convex hull of the rate-memory pairs in (27) is achievable:

C(M) ≥ upp hull
({

(Rt̃,sep,Mt̃,sep); t̃ ∈ {0, . . . ,Kw}
})
. (28)

IV. A JOINT CACHE-CHANNEL CODING SCHEME

We now describe a joint cache-channel coding scheme for the scenario in Figure 2 with Kw = 3 weak receivers and Ks = 1
strong receivers. The general scheme is parameterized by a positive integer t ∈ Kw. The example here corresponds to t = 2.

A. A Simple Example

1) Scheme: Define

R(1) :=
1− δw

1− δs
R, (29a)

R(2) :=
δw − δs

1− δs
R, (29b)

where we notice that
R(1)

R(2)
=

1− δw

δw − δs
. (30)

5Since they have equal channel statistics, all weak receivers can decode the same messages. A similar observation applies for the strong receivers.
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Fig. 2: An example network with 3 weak and a single strong receiver. The figure illustrates the contents cached in the proposed
joint cache-channel coding scheme when t = 2.

Split each message Wd into 2 submessages
Wd =

(
W

(1)
d , W

(2)
d

)

of rates R(1) and R(2). Further split each message W (1)
d into 3 submessages:

W
(1)
d =

(
W

(1)
d,{1},W

(1)
d,{2},W

(1)
d,{3}

)

of equal rates R(1)/3, and each message W (2)
d into 3 submessages

W
(2)
d =

(
W

(2)
d,{1,2},W

(2)
d,{1,3},W

(2)
d,{2,3}

)

of equal rates R(2)/3.

Placement Phase: Cache all messages
{
W

(1)
d,{i}

}D
d=1

at Receiver i, for i ∈ {1, 2, 3}, and all messages
{
W

(2)
d,{i,j}

}D
d=1

at
Receivers i and j, for i, j ∈ {1, 2, 3} with i 6= j. The cache contents are shown in Figure 2.

The placement phase is a two-fold application of the coded-caching method Ca given in the previous Section III: First
apply method Ca with parameter t̃ = 1 to messages W (1)

1 , . . . ,W
(1)
D , and then apply the same method with parameter t̃ = 2

to messages W (2)
1 , . . . ,W

(2)
D .

Delivery Phase: Delivery transmission takes place in Subphases 1–3 of lengths n1, n2, n3 ≥ 0 that sum up to the entire
blocklength n. Table I shows the messages transmitted in the various subphases. Notice that given the cache contents in
Figure 2, each receiver can recover its desired message without errors, if the submessages in Table I are correctly decoded by
the appropriate receivers.

Subphase 1 Subphase 2 Subphase 3

Messages W
(2)
d3,{1,2} ⊕W

(2)
d2,{1,3} ⊕W

(2)
d1,{2,3} W

(1)
d1,{2} ⊕W

(1)
d2,{1}

for Rxs 1, 2, 3 W
(1)
d1,{3} ⊕W

(1)
d3,{1}

W
(1)
d2,{3} ⊕W

(1)
d3,{2}

Messages for Rx 4 W
(2)
d4

W
(1)
d4

TABLE I: Table indicating the messages sent in the three subphases of the delivery phase.

We now explain the transmissions in the three subphases in detail.
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W
(2)
d4,{i,j}

W
(2)
d4,{i,j} = 4

WXOR,{i,j}

Fig. 3: Codebook used for piggyback coding in Period {i, j} of Subphase 2.

Subphase 1: Is dedicated solely to the weak receivers. The transmitter sends the XOR-message

WXOR,{1,2,3} := W
(2)
d3,{1,2} ⊕W

(2)
d2,{1,3} ⊕W

(2)
d1,{2,3}

to Receivers 1–3 using a capacity-achieving scheme for the erasure BC to these three receivers. At the end of this first subphase,
Receiver 1 decodes the XOR-message WXOR,{1,2,3} as ŴXOR,{1,2,3}, then it retrieves messages W (2)

d3,{1,2} and W (2)
d2,{1,3} from

its cache memory and produces:

Ŵ
(2)
d1,{2,3} := W

(2)
d3,{1,2} ⊕W

(2)
d2,{1,3} ⊕ ŴXOR,{1,2,3}. (31)

Receivers 2 and 3 produce Ŵ (2)
d2,{1,3} and Ŵ (2)

d3,{1,2}, following similar steps.

Subphase 2: The second subphase is the most interesting one, and is the only one using joint cache-channel coding (namely
in the decoding at the weak receivers). It is divided into three length-bn2/3c periods, which we index by {1, 2}, {1, 3}, {2, 3}.
(I.e. by the subsets of {1, 2, 3} of size 2.)

In Period {i, j}, the XOR-message
WXOR,{i,j} := W

(1)
dj ,{i} ⊕W

(1)
di,{j} (32a)

is sent as a common message to the weak receivers i and j, and at the same time Message

W
(2)
d4,{i,j} (32b)

is sent to the only strong receiver 4. Notice that this latter message W (2)
d4,{i,j} is stored in the cache memories of both weak

receivers i and j.
For the transmission of the messages in (32), a codebook Ci,j with b2nR(2)/3c × b2nR(1)/3c codewords of length

n2,per := bn2/3c is generated by randomly and independently drawing each entry according to a Bernoulli-1/2 distribution.
The codewords of Ci,j are arranged in an array with b2nR(2)/3c rows and b2nR(1)/3c columns, as depicted in Figure 3, where
each dot illustrates a codeword. We refer to the codeword in row wrow and column wcolumn as xn2,per

i,j (wrow, wcolumn). The
codebook Ci,j is revealed to all parties.

The transmitter sends the codeword
x
n2,per
i,j

(
W

(2)
d4,{i,j}, WXOR,{i,j}

)

over the channel.
The strong receiver 4 decodes both messages WXOR,{i,j} and W

(2)
d4,{i,j} using a standard decoder. It will further use only

the guess Ŵ (2)
d4,{i,j}.
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The weak receiver i decodes in three steps. It first retrieves Message W (2)
d4,{i,j} from its cache memory and extracts the

row-codebook Ci,j,row
(
W

(2)
d4,{i,j}

)
from Ci,j :

Ci,j,row

(
W

(2)
d4,{i,j}

)
:=
{
x
n2,per
i,j

(
W

(2)
d4,{i,j}, w

)}⌊2nR(1)/3
⌋

w=1
. (33)

(For example, the blue row in Figure 3 indicates the row-codebook Ci,j,row
(
W

(2)
d4,{i,j}

)
to consider when W

(2)
d4,{i,j} = 4.)

Receiver i then decodes the XOR-message WXOR,{i,j} by restricting attention to the codewords in Ci,j,row
(
W

(2)
d4,{i,j}

)
, and uses

its guess ŴXOR,{i,j} to form
Ŵ

(1)
di,{j} := W

(1)
dj ,{i} ⊕ ŴXOR,{i,j}.

Receiver j produces Ŵ (1)
dj ,{i} following similar steps.

Subphase 3: Message W
(1)
d4

is sent to Receiver 4 using a capacity-achieving scheme to this receiver. At the end of
Subphase 3, Receiver 4 applies a standard decoder and produces the guess Ŵ (1)

d4
.

Final decoding: Receivers 1–4 finally declare, respectively:

Ŵ1 :=
(
W

(1)
d1,{1}, Ŵ

(1)
d1,{2}, Ŵ

(1)
d1,{3},W

(2)
d1,{1,2},W

(2)
d1,{1,3}, Ŵ

(2)
d1,{2,3}

)
; (34)

Ŵ2 :=
(
Ŵ

(1)
d2,{1},W

(1)
d2,{2}, Ŵ

(1)
d2,{3},W

(2)
d2,{1,2}, Ŵ

(2)
d2,{1,3},W

(2)
d2,{2,3}

)
; (35)

Ŵ3 :=
(
Ŵ

(1)
d3,{1}, Ŵ

(1)
d3,{2},W

(1)
d3,{3}, Ŵ

(2)
d3,{1,2},W

(2)
d3,{1,3},W

(2)
d3,{2,3}

)
; (36)

Ŵ4 :=
(
Ŵ

(1)
d4
, Ŵ

(2)
d4,{1,2}, Ŵ

(2)
d4,{1,3}, Ŵ

(2)
d4,{2,3}

)
. (37)

2) Analysis: The cache memory required for this scheme is:

M = D

(
1

3
R(1) +

2

3
R(2)

)
= D · 1− δs + δw − δs

3(1− δs)
R (38)

The probability of error in Subphase 1 tends to 0 as n→∞, if

lim
n→∞

n

n1
· 1

3
R(2) < 1− δw. (39)

The probability of error of each period in Subphase 2 tends to 0 as n→∞, if

lim
n→∞

n

n2/3
· 1

3
R(1) < 1− δw, (40)

and if
lim
n→∞

n

n2/3
· 1

3

(
R(1) +R(2)

)
< 1− δs. (41)

Here, Condition (40) ensures that the probability of decoding error at the weak receivers vanishes, because they decode their
desired messages based on a row-codebook containing only b2nR(1)/3c codewords. Condition (41) ensures that the probability
of decoding error at the strong receiver vanishes. By (30), Conditions (40) and (41) are equivalent, and we drop (41) in the
following.

The probability of error in Subphase 3 tends to 0 as n→∞, if

lim
n→∞

n

n3
R(1) < 1− δs. (42)

In summary, since n1 + n2 + n3 = n, whenever

R(2)

3(1− δw)
+

R(1)

1− δw
+

R(1)

1− δs
≤ 1, (43)

there exist appropriate choices of the lengths n1, n2, n3 (as a function of the total blocklength n) so that the probability of
error tends to 0 as n→∞.

Notice finally that by (29), Condition (43) is equivalent to

R ≤ (1− δs)

(
δw − δs

3(1− δw)
+ 1 +

1− δw

1− δs

)−1

, (44)

and the described scheme achieves any rate R > 0 satisfying (44).
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3) Discussion: Thanks to the weak receivers’ cache information, in Subphase 2, Messages

W
(2)
d4,{1,2},W

(2)
d4,{1,3},W

(2)
d4,{2,3} (45)

can be piggybacked on the communications of the XOR messages

W
(2)
XOR,{1,2},W

(2)
XOR,{1,3},W

(2)
XOR,{2,3} (46)

without harming the performance of this latter. In fact, by our choice (30), the probability of error in Subphase 2 vanishes
whenever Condition (40) holds, which coincides with the required condition when solely Messages (46) are transmitted but
not Messages (45).

If in Subphase 2 the weak receivers applied separate cache-channel decoding, the performance of the scheme would be
degraded. Specifically, the additional summand

R(2)

1− δs

would appear on the LHS of (43), or equivalently, the additional summand

δw − δs

1− δs

would appear on the RHS of (44). In other words, joint cache-channel coding allows reducing the communicated message rate
to the strong receiver 4 from R

1−δs
to R(2)

1−δs
. In this sense, joint cache-channel coding can provide global caching gains also to

receivers without cache memories.

B. General Scheme

The general scheme is parameterised by a positive integer

t ∈ Kw. (47)

We show in Appendix A that, for a given parameter t, this scheme achieves the rate-memory pair

Rt :=

(1− δw)

(
1 +

Kw − t+ 1

tKs

δw − δs

1− δw

)

Kw − t+ 1

t

(
1 +

Kw − t
(t+ 1)Ks

δw − δs

1− δw

)
+Ks

1− δw
1− δs

, (48a)

Mt := Rt
D

Kw

(
t−
(

1+
Kw−t+1

tKs

δw−δs

1− δw

)−1
)
. (48b)

1) Preliminaries: For each d ∈ D, split message Wd into two parts:

Wd =
(
W

(t−1)
d , W

(t)
d

)
(49)

of rates

R(t−1) = R · tKs(1− δw)

(Kw − t+ 1)(δw − δs) + tKs(1− δw)
, (50a)

R(t) = R · (Kw − t+ 1)(δw − δs)

(Kw − t+ 1)(δw − δs) + tKs(1− δw)
. (50b)

Notice that R(t−1) +R(t) = R.

2) Placement phase: First, apply the coded-caching Method Ca (from the previous Section III-2) with parameter t̃ = t to
messages W (t)

1 , . . . ,W
(t)
D to produce the cache contents

V
(t)
i =

{
W

(t)

d,G(t)
`

: d ∈ D and i ∈ G(t)
`

}
, i ∈ Kw.

Here, G(t)
1 , . . . ,G(t)

(Kw
t )

denote the
(
K
t

)
subsets of Kw of size t, and each message W (t)

d,G(t)
`

is of equal rate

R
(t)
sub = R(t) ·

(
Kw

t

)−1

. (51a)
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Then, apply Method Ca with parameter t̃ = t− 1 to messages W (t−1)
1 , . . . ,W

(t−1)
D to produce the cache contents

V
(t)
i =

{
W

(t−1)

d,G(t−1)
`

: d ∈ D and i ∈ G(t−1)
`

}
, i ∈ Kw.

Here, G(t−1)
1 , . . . ,G(t−1)

(Kw
t−1)

denote the
(
Kw
t−1

)
subsets of Kw of size t− 1, and messages W (t−1)

d,G(t−1)
`

are of rate

R
(t−1)
sub = R(t−1) ·

(
Kw

t− 1

)−1

. (51b)

For each i ∈ Kw, the transmitter stores the content

Vi = V
(t)
i ∪ V (t−1)

i (52)

in the cache memory of Receiver i.

3) Delivery Phase: The delivery phase takes place in three subphases of lengths n1, n2, n3 ≥ 0 that sum up to the entire
blocklength n.

Delivery Subphase 1: This subphase exists only if t < Kw. In the first subphase, the “t parts”

W
(t)
d1
, W

(t)
d2
, . . . ,W

(t)
dKw

, (53)

are communicated using the separate cache-channel coding scheme described in the previous Section III, but assuming that
there are no strong receivers. In fact, the strong receivers are completely ignored in this first subphase. Let Ŵ (t)

i denote the
guess produced by weak Receiver i ∈ Kw at the end of Subphase 1.

Delivery Subphase 2: In Subphase 2, the “t parts”

W
(t)
dKw+1

, W
(t)
dKw+2

, . . . ,W
(t)
dK
, (54)

are sent to the strong receivers, and the “t− 1 parts”

W
(t−1)
d1

, W
(t−1)
d2

, . . . ,W
(t−1)
dKw

, (55)

to the weak receivers. Both communications will be done simultaneously by means of piggyback-coding. Details are as follows.
The transmitter first applies the coded-caching Method En (see Section III-3) with parameter t̃ = t−1 to the restricted demand
vector dw = (d1, . . . , dw) and to the messages {

W
(t−1)
di

: i ∈ Kw

}
.

This produces the XOR-messages {
W

(t−1)

XOR,G(t)
`

: ` = 1, . . . ,

(
Kw

t

)}
, (56)

which are of rate R(t−1)
sub given in (51b).

Transmission takes place over
(
Kw
t

)
equally-long periods. Consider Period ` ∈

{
1, . . . ,

(
Kw
t

)}
; the other periods are similar.

In Period `, the XOR message

W
(t−1)

XOR,G(t)
`

(57a)

is conveyed to all weak receivers in G(t)
` and the message tuple

W
(t)
`,strong :=

(
W

(t)

dKw+1,G(t)
`

, . . . , W
(t)

dK ,G(t)
`

)
(57b)

(which consists of Ks messages of rate R(t)
sub) is conveyed to all strong receivers Ks. For this purpose, we generate a codebook C`

with b2nR(t−1)
sub c × b2nKsR

(t)
sub c codewords of length n2,per := bn2/

(
Kw
t

)
c by randomly and independently drawing each entry

according to a Bernoulli-1/2 distribution. Arrange the codewords in an array with b2nKsR
(t)
sub c rows and b2nR(t−1)

sub c columns,
and denote the codeword in row wrow and column wcolumn by

x
n2,per

` (wrow, wcolumn). (58)

Reveal the codebook C` to all parties.
The transmitter sends the codeword

x
n2,per

`

(
W

(t)
`,strong,W

(t−1)

XOR,G(t)
`

)

over the channel.
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Xn

Library: W1, W2, . . . , WD

Rx 1

Y n
1
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. . .
Rx K�1 Rx K

Y n
K

CacheK

nMK bits

Rx 2

Y n
2

. . .

Cache2

nM2 bits

Y n
K�1

Degraded DMBC PY1Y2...YK |X

Fig. 4: Degraded K-user BC PY1Y2···YK |X where each Receiver k ∈ K has cache memory of size nMk bits.

Each strong receiver j ∈ Ks decodes the message tuple W
(t)
`,strong as well as the message W (t−1)

XOR,G(t)
`

, but it will further use

only the guess Ŵ (t)

dj ,G(t)
`

, i.e., the j −Kw-th component of its guess Ŵ
(t)
`,strong. At the end of the last period

(
Kw
t

)
, the strong

receiver j ∈ Ks produces
Ŵ

(t)
j :=

(
Ŵ

(t)

dj ,G(t)
1

, . . . , Ŵ
(t)

dj ,G(t)

(Kw
t )

)
. (59)

Each weak receiver i ∈ G(t)
` retrieves the message tuple W

(t)
`,strong from its cache memory and constructs the corresponding

row-codebook C`,row
(
W

(t)
`,strong

)
from C`:

C`,row

(
W

(t)
`,strong

)
:=

{
x
n2,per

`

(
W

(t)
`,strong,W

(t−1)

XOR,G(t)
`

)}
⌊

2nR
(t−1)
sub

⌋

w=1

. (60)

It then decodes the XOR-message W (t−1)

XOR,G(t)
`

from its Period-` outputs using an optimal decoder for C`,row
(
W

(t)
`,strong

)
.

After the last period
(
Kw
t

)
, each Receiver i ∈ Kw applies the coded-caching method Dei (see Section III-4) to the demand

vector dw, the decoded messages {
W

(t−1)

XOR,G(t)
`

: i ∈ G(t)
` , ` = 1, . . . ,

(
Kw

t

)}
,

and the cache content V (t−1)
i . This method outputs the desired reconstruction Ŵ (t−1)

i .

Delivery Subphase 3: The transmitter sends the “(t− 1) parts”

W
(t−1)
dKw+1

, W
(t−1)
dKw+2

, . . . ,W
(t−1)
dK

, (61)

to the strong receivers using a capacity-achieving code for the erasure BC. The receivers produce the guesses

Ŵ
(t−1)
j , j ∈ Ks. (62)

Final Decoding: At the end of the entire transmission, each Receiver k ∈ K declares the following message:

Ŵk =
(
Ŵ

(t−1)
k , Ŵ

(t)
k

)
. (63)

V. A CONVERSE FOR GENERAL DEGRADED BCS

In this section, we present an upper bound on the capacity-memory tradeoff of a more general broadcast network where
each Receiver i has a cache of size Mi and the BC is discrete and memoryless with input alphabet X , output alphabets
Y1, . . . ,YK , and channel transition law PY1Y2···YK |X(y1, . . . , yK |x). Let us first assume that the BC is physically degraded,
i.e., the transition law satisfies the Markov chain

X → YK → YK−1 → · · · → Y1. (64)

(The extension to general degraded BCs will trivially follow later.)
The library and the probability of worst-case error Pe

worst are defined as before. A rate-memory tuple (R, M1, . . . ,MK)
is said achievable if for every ε > 0 there exists a sufficiently large blocklength n and placement, encoding and decoding
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functions as in (9)–(12) such that Pe
worst < ε. The capacity-memory tradeoff C(M1, . . . ,MK) is defined as the supremum over

all rates R > 0 such that (R,M1, . . . ,MK) are achievable.
For each ordered subset S = {j1, . . . , j|S|} ⊆ K, where

j1 ≤ j2 ≤ . . . ≤ j|S|, (65)

define

Rsym,S := max min
{
I(U1;Yj1), I(U2;Yj2 |U1), . . . , I

(
U|S|;Yj|S|−1

∣∣U|S|−2

)
, I
(
X;Yj|S|

∣∣U|S|−1

)}
, (66)

where the maximization is over all choices of the auxiliary random variables U1, . . . , U|S|−1, X forming the Markov chain

U1 → U2 → · · · → U|S|−1 → X →
(
Yj1 , . . . , Yj|S|

)
. (67)

Notice that Rsym,S is the largest symmetric rate that is achievable over the BC to receivers in S when there are no cache
memories [72].

Theorem 2: The capacity-memory tradeoff C(M1, . . . ,MK) of a degraded BC is upper bounded as:

C(M1, . . . ,MK) ≤ min
S⊆K

(
Rsym,S +

MS
D

)
,

where MS is the total cache size at receivers in S:

MS =
∑

k∈S
Mk. (68)

Proof: See Appendix B.
Remark 1: Theorem 2 also holds for stochastically degraded BCs because the capacity-memory tradeoff only depends on

the marginal channel laws. Note that the erasure BC is stochastically degraded.

VI. MAIN RESULTS FOR THE ERASURE NETWORK IN FIGURE 1
A. General Lower Bound on C(M)

Let

R0 =

(
Kw

1− δw
+

Ks

1− δs

)−1

, M0 := 0; (69)

and

RKw+1 :=
1− δs

Ks
, MKw+1 := D

1− δs

Ks
; (70)

and recall the rate-memory pairs (R1,M1), . . . , (RKw ,MKw) in (48):

Rt =

(1− δw)

(
1 +

Kw − t+ 1

tKs

δw − δs

1− δw

)

Kw − t+ 1

t

(
1 +

Kw − t
(t+ 1)Ks

δw − δs

1− δw

)
+Ks

1− δw
1− δs

, t ∈ Kw, (71a)

Mt = Rt
D

Kw

(
t−
(

1+
Kw−t+1

tKs

δw−δs

1− δw

)−1
)
, t ∈ Kw. (71b)

Theorem 3: The upper convex hull of the Kw+2 rate-memory pairs in (69)–(70) forms a lower bound on the capacity-memory
tradeoff:

C(M) ≥ upper hull
{

(Rt,Mt) : t = 0, . . . ,Kw + 1
}
. (72)

Proof outline: The pair (R0, M0 = 0) corresponds to the case without caches, and achievability follows from (16).
Achievability of the pair (RKw+1, MKw+1) follows from (19). The pairs (R1,M1), . . . , (RKw ,MKw) are achieved by the joint
cache-channel coding scheme in Section IV.

The upper convex hull of {(Rt,Mt); t = 0, 1, . . . ,Kw + 1}, finally, is achieved by time- and memory-sharing.

The lower bound is piece-wise linear, where the slope of the lower bound decreases from one interval to the other. The caching
gain achieved by our joint cache-channel coding scheme is thus largest in the regime of small cache memories M ∈ [0,M1],
where M1 is defined through (71b) and equals

M1 = D · (δw − δs)K
−1
s

Kw + Kw−1
2 · Kw(δw−δs)

Ks(1−δw) +Ks
1−δw
1−δs

. (73)
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In this regime, Theorem 3 specializes as:

C(M) ≥ R0 +
M

D
· Kw(1− δs)

Kw(1− δs) +Ks(1− δw)
· 1 +Kw

2
· γjoint, M ≤M1, (74)

where

γjoint := 1 +
2Kw

1 +Kw
· Ks(1− δw)

Kw(1− δs)
. (75)

Replacing in lower bound (74) the factor γjoint by 1 recovers the lower bound of Proposition 1. The factor γjoint thus
represents the gain of our joint cache-channel coding scheme compared to the simple separate cache-channel coding scheme
of Section III. Notice that γjoint is unbounded when one increases the number of strong receivers Ks while keeping Kw and
the erasure probabilities δs and δw constant. More generally, γjoint is increasing in the ratio Ks(1−δw)

Kw(1−δs)
when Kw ≥ 1.

B. General Upper Bound on C(M)

Define for each kw ∈ {0, . . . ,Kw}

Rkw(M) :=

(
kw

1− δw
+

Ks

1− δs

)−1

+
kwM

D
·

Theorem 4: The capacity-memory tradeoff C(M) is upper bounded as

C(M) ≤ min
kw∈{0,...,Kw}

Rkw(M). (76)

Proof: Specialize the upper bound in Theorem 2 to the erasure BC. Since strong receivers do not have cache memories
and since the symmetric capacity Rsym,S decreases as the receiver set S increases, in Theorem 2 it suffices to consider the
bounds that correspond to subsets S ⊆ K containing all indices Kw + 1, . . . ,K, i.e., all strong receivers.

The choice of kw in (76) that leads to the tightest upper bound depends on the cache size M . For small values of M ,
choosing kw = Kw leads to the tightest bound, and for increasing cache sizes smaller values of kw lead to tighter bounds.

The upper and lower bounds on C(M) in Theorems 3 and 4 are illustrated in Figures 5 and 6.
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Fig. 5: Bounds on the capacity-memory tradeoff C(M) for Kw = 4, Ks = 16, D = 50, δw = 0.8, δs = 0.2.
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Fig. 6: Bounds on capacity-memory tradeoff C(M) for Kw = Ks = 10, D = 50, δw = 0.8, δs = 0.2.

C. Special Case of Kw = 1

We evaluate our bounds for a setup with a single weak receiver and any number of strong receivers. Let

Γ1 :=
(1− δs)

Ks
· (δw − δs)

(Ks(1− δw) + (1− δs))
, (77)

Γ2 :=
(1− δs)

Ks
· (1− δs)

(Ks(1− δw) + (1− δs))
, (78)

Γ3 :=
(1− δs)

Ks
. (79)

Notice that 0 ≤ Γ1 ≤ Γ2 ≤ Γ3. From Theorems 3 and 4 we obtain the following corollary.

Corollary 4.1: If Kw = 1 the capacity-memory tradeoff is lower bounded by:

C(M) ≥
{

(1−δw)(1−δs)
Ks(1−δw)+(1−δs)

+ M
D , if M

D ∈ [0,Γ1]
(1−δs)
1+Ks

+ M
(1+Ks)D

, if M
D ∈ (Γ1,Γ3],

(80)

and upper bounded by:

C(M) ≤
{

(1−δw)(1−δs)
Ks(1−δw)+(1−δs)

+ M
D , if M

D ∈ [0,Γ2]
(1−δs)
Ks

if M
D ∈ (Γ2,Γ3].

(81)

Figure 7 shows these two bounds and the bound in Proposition 1 for Kw = 1, Ks = 10, D = 22, D = 10, δw = 0.8, δs = 0.2.

We identify two regimes. In the first regime 0 ≤ M
D ≤ Γ1, the joint cache-channel coding scheme allows to increase the

rate R by M
D . This is the same performance as if all the Ks strong receivers could directly access Receiver 1’s cache contents.

This is the highest possible caching gain, and here the upper and lower bounds match.
In the second regime Γ1 <

M
D ≤ Γ3, the joint cache-channel coding scheme still profits from an increasing cache size, but

the gain is less significant: the rate only increases as 1−δs
Ks
· MD .

D. Special Case Kw = Ks = 1 and D = 2

For this special case we present tighter upper and lower bounds on C(M). These new bounds meet for a larger range of
cache sizes M . Let

Γ̃1 :=
(1− δs)

2 − (1− δw)(δw − δs)

(1− δw) + (1− δs)
, (82)
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Fig. 7: Bounds on the capacity-memory tradeoff for Kw = 1, Ks = 10, D = 22, δw = 0.8, δs = 0.2.

Γ̃2 :=
1

2
((1− δs) + (δw − δs)) . (83)

Notice that 0 ≤ Γ̃1 ≤ Γ̃2 < Γ3.
Theorem 5: If Kw = Ks = 1 and D = 2, the capacity-memory tradeoff is upper bounded as:

C(M) ≤





(1−δw)(1−δs)
(1−δw)+(1−δs)

+ M
2 , if M

2 ∈ [0, Γ̃1]
1
3 (2− δs − δw) + M

3 , if M
2 ∈ (Γ̃1, Γ̃2]

1− δs if M
2 ∈ (Γ̃2,Γ3].

(84)

and lower bounded as:

C(M) ≥



(1− δw)(1− δs)

(1− δw) + (1− δs)
+
M

2
,

M

2
∈ [0,Γ1]

(1− δs)

3(1− δs)− (1− δw)
((1−δs) +M) ,

M

2
∈ (Γ1, Γ̃2]

1− δs
M

2
∈ (Γ̃2,Γ3].

(85)

Proof: Lower bound (85) coincides with the upper convex hull of the three rate-memory pairs: (R0, M0) in (69); (R1, M1)
in (48); and ((1 − δs), 2Γ̃3). Achievability of the former two pairs follows from Theorem 3. Achievability of the last pair
follows from the joint cache-channel coding scheme in Appendix F. The upper bound is proved in Appendix G.

Figure 8 shows the bounds of Theorem 5 for δw = 0.8 and δs = 0.2. The upper and lower bounds of Theorem 5 coincide
in general for 0 ≤ M ≤ Γ1 and for M ≥ Γ̃2. The theorem allows to conclude that the minimum cache size M for which
communication is possible at the maximum rate (1 − δs) is M = 2Γ̃2. When δw = δs, then the upper and lower bounds in
Theorem 5 coincide for all values of M .

VII. EQUIVALENT RESULTS ON MINIMUM DELIVERY RATE

The capacity-memory tradeoff considered thus far was formulated and presented using the typical nomenclature of multi-user
information theory. This presentation, however, differs slightly to many previous works on caching (e.g., [4]). In this section we
will connect the two setups. Let us temporarily suppose that Messages W1, . . . ,WD are F -bit packets and the weak receivers
have mF -bit cache memories, for some positive integer F and some positive real number m ∈ [0, D). Additionally, suppose
that the delivery-phase communication takes place over ρF uses of the BC, where ρ > 0 is called the delivery rate.

A delivery rate-memory pair (ρ,m) is achievable in this new setup, if there exist placement, encoding, and decoding functions
such that the probability of decoding error vanishes as the packet size F →∞. The minimum delivery rate ρ for given cache
size m for which (ρ,m) is achievable, is called the delivery rate-memory tradeoff and is called ρ?(m).

There is a simple relation between the delivery rate-memory pairs (ρ,m) that are achievable in this new setup and the
(message) rate-memory pairs (R,M) achievable in our original setup:

(R, M) achievable in original setup
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Fig. 8: Bounds on the capacity-memory tradeoff for Kw = 1, Ks = 1, D = 2, δw = 0.8, δs = 0.2.

⇐⇒
(
ρ =

1

R
, m =

M

R

)
achievable in new setup.

Using this relation, we can now restate the rate-memory pairs achieved by the separate and the joint cache-channel coding
schemes in terms of the delivery-rate ρ and the normalized cache memory m. The separate-cache channel coding scheme in
Section III achieves for each t̃ ∈ {0, 1, . . . ,Kw} the delivery-rate memory pair

ρt̃,sep :=
Kw − t̃

(t̃+ 1)(1− δw)
+

Ks

(1− δs)
, (86a)

mt̃,sep := D
t̃

Kw
. (86b)

The joint cache-channel coding scheme in Section IV-B achieves for each t ∈ Kw the delivery rate-memory pair:

ρt := νt
Kw − t

(t+ 1)(1− δw)
+ (1− νt)

Kw − t+ 1

t(1− δw)
+ (1− νt)

Ks

1− δs
, (87a)

mt := νtD
t

Kw
+ (1− νt)D

t− 1

Kw
, (87b)

where

νt :=
(Kw − t+ 1)(δw − δs))

(Kw − t+ 1)(δw − δs) + tKs(1− δw)
. (88)

The lower convex hull of the delivery rate-memory pairs in (86) and (87) upper bounds the delivery rate-memory tradeoff
ρ?(m).

The upper bound on C(M) in Theorem 4 leads to the following lower bound on ρ?(m):

ρ?(m) ≥ max
kw∈{0,1,...,Kw}

[(
kw

1− δw
+

Ks

1− δs

)(
1− kwm

D

)]
. (89)

Figures 9 and 10 present upper and lower bounds on ρ?(m) when Kw = Ks = 10, D = 50, δw = 0.8, δs = 0.2 and when
Kw = 10, Ks = 1000, D = 5000, δw = 0.8, δs = 0.2. The lower bound is given by (89) and the upper bounds depict the convex
hulls of rate-memory pairs {(ρt̃,sep,mt̃,sep)}Kw

t̃=0
and rate-memory pairs

{
(ρ0,sep,m0,sep), {(ρt,mt)}Kw

t=1, (ρKw,sep,mKw,sep)
}

.
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VIII. SUMMARY AND CONCLUDING REMARKS

In this paper we consider an erasure broadcast network with a set of weak receivers with equal cache size M and a set of
strong receivers with no cache memories. Upper and lower bounds on the capacity-memory tradeoff are derived. These bounds
are generally close, and they match when there is only a single weak receiver and its cache size is small. In practice a small
cache size corresponds to a receiving device with limited storage space.

The derived upper bound holds more generally for any stochastically degraded BC. The lower bound is obtained by means
of joint cache-channel coding and significantly improves over a separate cache-channel coding scheme that combines coded
caching with a capacity-achieving scheme for erasure BCs. In the regime of small cache memories, the improvement is even
unbounded in the number of strong receivers. In this regime the

To facilitate comparison with previous works that mostly focused on the delivery-rate memory tradeoff, we express our main
results also in terms of this related quantity. When specialized to the network with no strong receivers and with zero erasure
probability at the weak receivers, the bounds presented in this paper coincide with the results by Maddah-Ali and Niesen [4].

For the setup with only one weak receiver and one strong receiver, we propose improved upper and lower bounds that match
over a wide regime of channel parameters and memory sizes. The lower bound is achieved by preplacing coded contents and
again using joint cache-channel coding for the delivery phase.

The considered scenario with two sets of receivers and cache memories only at weak receivers is motivated by previous works
showing that in networks where some receivers have stronger channel conditions than others—e.g., because they are closer
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to a fiber optical access point or a helper basestation—this asymmetric cache configuration allows for significantly improved
performance compared to a more traditional uniform cache configuration. The present work illustrates that by applying joint
cache-channel coding in such an asymmetric cache-assignment allows obtaining further caching gains, which can even be
unbounded in the network parameters. The benefit of joint cache-channel coding is that it can provide global caching gains
also to the strong receivers which have no cache memories. In the considered separate cache-channel coding scheme this is
not the case.

The described asymmetric cache configuration arises also as part of a more complex system model in which every receiver
is equipped with a cache. Suppose, for example, that the stronger receivers want to decode additional data that will never be
demanded by the weak receivers. This additional data might represent, for example, a higher resolution of a video. A practical
solution in this case is to separate transmission of files from the two libraries [47]–[49]: A first transmission sends the files that
are of interest to all receivers, and a second transmission sends only files from the additional library to the strong receivers. The
question is now how to divide the cache memory between the two transmissions. Based on the results we obtain in this paper,
we propose to assign all the cache memory at the strong receivers to the second transmission, because through a careful design
of the first transmission scheme, the strong receivers can already benefit from the weak receivers’ caches without accessing
their own cache memories.
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APPENDIX A
ANALYSIS OF JOINT CACHE-CHANNEL CODING SCHEME IN SECTION IV

Fix t ∈ Kw, and
βı :=

nı

n
, ı ∈ {1, 2, 3}.

1) Placement Phase: By Proposition 1, the applied placement strategy requires a cache size of

M = R(t) ·D t

Kw
+R(t−1) ·Dt− 1

Kw

= R · D
Kw

(
t−
(

1 +
Kw − t+ 1

tKs
· δw − δs

1− δw

)−1
)
. (90)

2) Delivery Subphase 1: Notice that in Subphase 1 the separate cache-channel coding scheme of Section III is applied
without strong receivers. Thus, by Proposition 1, the probability of decoding error vanishes as n→∞, whenever

R(t) · Kw−t
t+1

1− δw
< β1. (91)

3) Delivery Subphase 2: Consider Period ` with the transmission of messages in (57). The probability that the strong
receivers make a decoding error vanishes as n→∞, whenever

R
(t−1)
sub +KsR

(t)
sub

1− δs
<

β2(
Kw
t

) . (92)

Weak receivers restrict their decoding to a row-codebook containing only b2nR(t−1)
sub c codewords. The probability that the weak

receivers produce a wrong XOR message thus vanishes as n→∞, whenever

R
(t−1)
sub

(1− δw)
<

β2(
Kw
t

) . (93)

Notice that when the weak receivers decode their desired XOR messages correctly, then they also produce the correct guesses
of messages W (t−1)

d1
, . . . ,W

(t−1)
dKw

.
By our choice of the rates R(t−1) and R(t) in (50) the two Constraints (92) and (93) coincide. We ignore (92) in the

following.

4) Delivery Subphase 3: The probability that the strong receivers err in their decoding vanishes as n→∞, whenever

KsR
(t−1)

(1− δs)
< β3. (94)
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5) Overall Scheme: Combining (91), (93), and (94) and using the definitions of R(t−1)
sub and R

(t−1)
sub in (51), we conclude

that the probability of decoding error vanishes as n→∞, if

R(t)Kw−t
t+1

1− δw
+
R(t−1) · Kw−t+1

t

1− δw
+
KsR

(t−1)

1− δs
< 1. (95)

Using the definitions of R(t−1) and R(t) in (50), one obtains that the probability of decoding error vanishes, if the total rate
R satisfies

R < (1− δw) ·
1 + Kw−t+1

tKs
· δw−δs

1−δw

Kw−t+1
t

(
1 + Kw−t

(t+1)Ks
· δw−δs

1−δw

)
+Ks

1−δw
1−δs

.

Together with (90), this proves achievability of the rate-memory pair (Rt, Mt) in (48).

APPENDIX B
PROOF OF THEOREM 2

For ease of exposition, we only prove the bound corresponding to S = K:

C(M1, . . . ,MK) ≤ Rsym,K +
1

D

K∑

k=1

Mk. (96)

The bounds corresponding to other subsets S can be proved in a similar way.
We start the proof of (96). Fix the rate of communication

R < C(M1, . . . ,MK).

Since R is achievable, for each sufficiently large blocklength n and for each demand vector d, there exist K placement
functions

{
g

(n)
i

}
, an encoding function {f (n)

d }, and K decoding functions
{
ϕ

(n)
i,d

}
so that the probability of worst-case error

Pe
(n)(d) tends to 0 as n→∞. For each n let

V
(n)
k = g

(n)
k (W1, . . . ,WD), k ∈ K,

denote the cache contents for the chosen placement functions.
Lemma 6: For any ε > 0, any demand vector d = (d1, . . . , dK) with all different entries, and any blocklength n that is

sufficiently large (depending on ε), there exist random variables (U1,d, . . . , UK−1,d, Xd, Y1,d, . . . , YK,d) such that

U1,d − U2,d − · · · − UK−1,d −Xd − YK,d − YK−1,d · · · − Y1,d (97a)

forms a Markov chain, such that given Xd = x ∈ X :

(Y1,d, Y2,d, . . . , YK,d) ∼ PY1···YK |X(· · · |x), (97b)

and such that the following K inequalities hold:

R− ε ≤ 1

n
I
(
Wd1 ;V

(n)
1 , . . . , V

(n)
K

)
+ I
(
U1,d;Y1,d

)
, (98a)

R− ε ≤ 1

n
I
(
Wdk ;V

(n)
1 , . . . , V

(n)
K |Wd1 , . . . ,Wdk−1

)

+ I
(
Uk,d;Yk,d|Uk−1,d), ∀k ∈ {2, . . . ,K − 1},

R− ε ≤ 1

n
I
(
WdK ;V

(n)
1 , . . . , V

(n)
K |Wd1 , . . . ,WdK−1

)

+ I
(
Xd;YK,d|UK−1,d). (98b)

Proof: The proof is similar to the converse proof of the capacity of degraded BCs without caching [73, Theorem 5.2]. It
is deferred to Appendix C.

Fix ε > 0 and a blocklength n (depending on this ε) so that Lemma 6 holds for all demand vectors d that have all different
entries. We average the bound obtained in (98) over different demand vectors. Let Q be the set of all

(
D
K

)
K! demand vectors

whose K entries are all different. Also, let Q be a uniform random variable over the elements of Q and independent of
all previously defined random variables. Define: U1 := (U1,Q, Q); Uk := Uk,Q, for k ∈ {2, . . . ,K − 1}; Xk := XQ; and
Yk := Yk,Q for k ∈ K. Notice that they form the Markov chain

U1 → U2 → · · · → UK−1 → X → (Y1, . . . , YK), (99)



22

and given X = x ∈ X satisfy
(Y1, Y2, . . . , YK) ∼ PY1···YK |X(· · · |x). (100)

Averaging inequalities (98) over the demand vectors in Q and using standard arguments to take care of the time-sharing random
variable Q, we obtain:

R− ε ≤α1 + I
(
U1;Y1

)
, (101a)

R− ε ≤αk + I
(
Uk;Yk|Uk−1), ∀k ∈ {2, . . . ,K − 1}, (101b)

R− ε ≤αk + I
(
X;YK |UK−1), (101c)

where α1, . . . , αK are defined as

α1 :=
1(

D
K

)
K!

∑

d∈Q

1

n
I(Wd1 ;V

(n)
1 , . . . , V

(n)
K ), (102a)

αk :=
1(

D
K

)
K!

∑

d∈Q

1

n
I(Wdk ;V

(n)
1 , . . . , V

(n)
K |Wd1 , . . . ,Wdk−1

), k ∈ {2, . . . ,K}. (102b)

Lemma 7: Parameters α1, . . . , αK , defined in (102), satisfy the following constraints:

αk ≥ 0, k ∈ K, (103a)
αk′ ≤ αk, k, k′ ∈ K, k′ ≤ k, (103b)

∑

k∈K
αk ≤

K

D

∑

k∈K
Mk. (103c)

Proof: See Appendix D.
Taking ε→ 0, by (101) and (102) and by Lemma 7, we conclude that the capacity-memory tradeoff C(M1, . . . ,MK) is upper
bounded by the following K inequalities:

C(M1, . . . ,MK) ≤ α1 + I
(
U1;Y1

)
, (104a)

C(M1, . . . ,MK) ≤ αk + I
(
Uk;Yk

∣∣Uk−1), ∀k ∈ {2, . . . ,K − 1}, (104b)

C(M1, . . . ,MK) ≤ αK + I
(
X;YK

∣∣UK−1), (104c)

for some α1, . . . , αK satisfying (103) and some U1, . . . , UK−1, X, Y1, . . . , YK satisfying (99) and (100).
Lemma 8: Replacing each and every real number α1, . . . , αK in (104) by 1

D

∑
k∈KMk does not change the upper bound

on C(M1, . . . ,MK).
Proof: See Appendix E.

Thus,

C(M1, . . . ,MK)−
∑
k∈KMk

D
≤ I
(
U1;Y1

)
, (105a)

C(M1, . . . ,MK)−
∑
k∈KMk

D
≤ I
(
Uk;Yk

∣∣Uk−1), ∀k ∈ {2, . . . ,K − 1}, (105b)

C(M1, . . . ,MK)−
∑
k∈KMk

D
≤ I
(
X;YK

∣∣UK−1), (105c)

for some U1, . . . , UK , X, Y1, . . . , YK satisfying (99) and (100).
All K constraints in (105) have the same LHS, and their RHSs coincide with the rate-constraints determining the capacity

region of a degraded BC without caches. Therefore, the choice of the random variables (U1, . . . , UK−1, X) that leads to the
most relaxed constraint on C(M1, . . . ,MK) coincides with the choice of auxiliaries that determines the largest symmetric
rate-point in the capacity region of a degraded BC without caches. This establishes the equivalence of (105) with the desired
bound in (96), and thus concludes the proof.

APPENDIX C
PROOF OF LEMMA 6

Fix a small ε > 0 and a demand vector d with all different entries. Then, let the blocklength n be sufficiently large as will
be come clear in the following. Also, let

V
(n)
k = g

(n)
k (W1, . . . ,WD), k ∈ K, (106)

Xn
d = f

(n)
d (W1, . . . ,WD) (107)
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denote cache contents and the input of the degraded BC for demand vector d ∈ DK and for above chosen placement and
encoding functions. We denote by Y nk,d the corresponding channel outputs at Receiver k ∈ K.

By Fano’s inequality, by the independence of the messages W1, . . . ,WD, and because the placement, encoding, and decoding
functions have been chosen so that the worst case probability of error tends to 0 as n→∞, we obtain that that for all sufficiently
large n the following K inequalities hold:

R−ε ≤ 1

n
I
(
Wd1 ;Y n1,d, V

(n)
1 , . . . , V

(n)
K

)

=
1

n
I
(
Wd1 ;V

(n)
1 , . . . , V

(n)
K

)
+

1

n
I
(
Wd1 ;Y n1,d

∣∣V (n)
1 , . . . , V

(n)
K

)
, (108a)

and for k ∈ {2, . . . ,K}:

R−εn ≤
1

n
I
(
Wdk ;Y nk,d, V

(n)
1 , . . . , V

(n)
K

∣∣Wd1 , . . . ,Wdk−1

)

=
1

n
I
(
Wdk ;V

(n)
1 , . . . , V

(n)
K

∣∣Wd1 , . . . ,Wdk−1

)

+
1

n
I
(
Wdk ;Y nk,d

∣∣V (n)
1 , . . . , V

(n)
K ,Wd1 , . . . ,Wdk−1

)
(108b)

We further develop the second summands in (108a) and (108b). For the second summand in (108a) we obtain

1

n
I
(
Wd1 ;Y n1,d

∣∣V (n)
1 , . . . , V

(n)
K

)

=
1

n

n∑

t=1

I
(
Wd1 ;Y1,d,t

∣∣V (n)
1 , . . . , V

(n)
K , Y t−1

1,d

)

≤ 1

n

n∑

t=1

I
(
Wd1 , V

(n)
1 , . . . , V

(n)
K , Y t−1

1,d ;Y1,d,t

)

= I
(
U1,d,T ;Y1,d,T

∣∣T
)

≤ I(U1,d;Y1,d), (109)

where T denotes a random variable that is uniformly distributed over {1, . . . , n} and independent of all previously defined
random variables, and where we defined

U1,d,T :=
(
Wd1 , V

(n)
1 . . . , V

(n)
K , Y T−1

1,d

)
,

U1,d := (U1,d,T , T ),

Y1,d := Y1,d,T .

We also define for k ∈ {2, . . . ,K − 1}:

Uk,d,T := (V
(n)
1 . . . , V

(n)
K ,Wd1 ,Wd2 , . . . ,Wdk , Y

T−1
1,d , . . . , Y T−1

k,d ),

Uk,d := (Uk,d,T , T ),

Yk,d := Yk,d,T ,

in order to expand the second summand in (108b) as follows:

1

n
I
(
Wdk ;Y nk,d

∣∣V (n)
1 , . . . , V

(n)
K ,Wd1 , . . . ,Wdk−1

)

=
1

n

n∑

t=1

I
(
Wdk ;Yk,d,t

∣∣V (n)
1 , . . . , V

(n)
K ,Wd1 , . . . ,Wdk−1

, Y t−1
k,d

)

=
1

n

n∑

t=1

I
(
Wdk ;Yk,d,t

∣∣V (n)
1 , . . . , V

(n)
K ,Wd1 , . . . ,Wdk−1

, Y t−1
1,d , . . . , Y t−1

k−1,d, Y
t−1
k,d

)

≤ 1

n

n∑

t=1

I
(
Wdk , Y

t−1
k,d ; Yk,d,t

∣∣V (n)
1 , . . . , V

(n)
K ,Wd1 , . . . ,Wdk−1

, Y t−1
1,d , . . . , Y t−1

k−1,d

)

= I
(
Uk,d,T ;Yk,d,T

∣∣Uk−1,d,T , T )

= I
(
Uk,d;Yk,d

∣∣Uk−1,d) (110)

where the second equality follows from the degradedness of the outputs, see (64).
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Similarly, for k = K:

1

n
I
(
WdK ;Y nK,d

∣∣V (n)
1 , . . . , V

(n)
K ,Wd1 , . . . ,WdK−1

)

≤ I(X;Yk,d|UK−1,d), (111)

where
Xd := Xd,T .

Since the defined random variables satisfy (97), Inequalities (108)–(111) conclude the proof.

APPENDIX D
PROOF OF LEMMA 7

Constraint (103a) follows by the nonnegativity of mutual information. To prove Constraint (103b), we fix a demand vector d ∈
Q, and consider the cyclic shifts of this vector. For ` ∈ {0, . . . ,K − 1}, let

−→
d (`) be the vector obtained from

−→
d when the

elements are cyclically shifted ` positions to the right. (E.g., if d = (1, 2, 3) then
−→
d (2) = (2, 3, 1).) For each ` ∈ {0, . . . ,K−1}

and k ∈ K, let
−→
d

(`)
k denote the k-th index of demand vector

−→
d (`). Thus,

−→
d

(`)
k = d(k−`) mod K (112)

where for each positive integer ξ the term (ξ mod K) takes value in K so that

ξ mod K = ξ − bK for some positive integer b. (113)

For each ` ∈ {1, . . . ,K−1} and k, k′ ∈ {2, . . . ,K} with k′ < k:

I(Wd1 ;V
(n)
1 , . . . , V

(n)
K )

(a)
= I(W−→

d
(k′−1)

k′
;V

(n)
1 , . . . , V

(n)
K )

(b)

≤I(W−→
d

(k′−1)

k′
;V

(n)
1 , . . . , V

(n)
K |W−→

d
(k′−1)
1

, . . . ,W−→
d

(k′−1)

k′−1

)

(a)
= I(W−→

d
(k−1)
k

;V
(n)
1 , . . . , V

(n)
K |W−→

d
(k−1)

k−k′+1

, . . . ,W−→
d

(k−1)
k−1

)

(b)

≤I(W−→
d

(k−1)
k

;V
(n)
1 , . . . , V

(n)
K |W−→

d
(k−1)
1

, . . . ,W−→
d

(k−1)
k−1

), (114)

where (a) follows by (112), and (b) follows by the independence of the messages and because k − k′ + 1 ≥ 2.
Fix a demand vector d ∈ Q and sum up the above inequality (114) over all K cyclic shifts d(0),d(1), . . . , d(K−1) of d to

obtain:
K−1∑

`=0

I(W−→
d

(`)
1

;V
(n)
1 , . . . , V

(n)
K )

≤
K−1∑

`=0

I(W−→
d

(`)

k′
;V

(n)
1 , . . . , V

(n)
K |W−→

d
(`)
1

, . . . ,W−→
d

(`)

k′−1

)

≤
K−1∑

`=0

I(W−→
d

(`)
k

;V
(n)
1 , . . . , V

(n)
K |W−→

d
(`)
1

, . . . ,W−→
d

(`)
k−1

). (115)

Since the set Q can be partitioned into subsets of demand vectors that are cyclic shifts of each others and all cyclic shifts of
a demand vector in Q are also in Q, we conclude from (115):

∑

d∈Q
I(Wd1 ;V

(n)
1 , . . . , V

(n)
K )

≤
∑

d∈Q
I(Wdk′ ;V

(n)
1 , . . . , V

(n)
K |Wd1 , . . . ,Wdk′−1

)

≤
∑

d∈Q
I(Wdk ;V

(n)
1 , . . . , V

(n)
K |Wd1 , . . . ,Wdk−1

). (116)

This proves (103b).
We proceed to prove Constraint (103c). For each d ∈ Q:

I(Wd1 ;V
(n)
1 , . . . , V

(n)
K )
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+

K∑

k=2

I(Wdk ;V
(n)
1 , . . . , V

(n)
K |Wd1 ,Wd2 , . . . ,Wdk−1

)

= I(Wd1 ,Wd2 , . . . ,WdK ;V
(n)
1 , . . . , V

(n)
K ). (117)

Thus,
∑

d∈Q

[
I(Wd1 ;V

(n)
1 , . . . , V

(n)
K )

+

K∑

k=2

I(Wdk ;V
(n)
1 , . . . , V

(n)
K |Wd1 ,Wd2 , . . . ,Wdk−1

)

]

=
∑

d∈Q
I(Wd1 ,Wd2 , . . . ,WdK ;V

(n)
1 , . . . , V

(n)
K )

(a)
=
∑

d∈Q

[
H(Wd1) +H(Wd2) + . . .+H(WdK )

−H(Wd1 , . . . ,WdK |V (n)
1 , . . . , V

(n)
K )

]

(b)
=
K

D
|Q|H(W1, . . . ,WD)

−
∑

d∈Q
H(Wd1 , . . . ,WdK |V (n)

1 , . . . , V
(n)
K )

(c)

≤K
D
K!

(
D

K

)
H(W1, . . . ,WD)

− K

D
K!

(
D

K

)
H(W1, . . . ,WD|V (n)

1 , . . . , V
(n)
K )

(b)
=
K

D
K!

(
D

K

)
I(W1, . . . ,WD;V

(n)
1 , . . . , V

(n)
K )

≤K
D
K!

(
D

K

)
n

K∑

k=1

Mk,

where (a) holds by the chain rule of mutual information, (b) by the independence and uniform rate of messages W1, . . . ,WD

and the definition of the set Q, which is of size
(
D
K

)
K!, and (c) by the generalized Han-Inequality (the following Proposition 9).

Proposition 9: Let L be a positive integer and A1, . . . , AL be a finite random L-tuple. Denote by AS the subset {A`, ` ∈ S}.
For every ` ∈ {1, . . . , L}:

1(
L
`

)
∑

S⊆{1,...,L}:|S|=`

H(AS)

`
≥ 1

L
H(A1, . . . , AL). (118)

Proof: See [74, Theorem 17.6.1].

APPENDIX E
PROOF OF LEMMA 8

Fix random variables U1, U2, . . . , UK−1, X satisfying the Markov chain (99) and real numbers α1, . . . , αK satisfying (103).
We will show that if αk̃ 6= αk̃+1 for some k̃ ∈ {1, . . . ,K − 1}, then we can find new random variables Ū1, Ū2, . . . , ŪK−1

satisfying the Markov chain
Ū1 → Ū2 → . . .→ ŪK−1 → X → (Y1, . . . , YK), (119)

and real numbers ᾱ1, . . . , ᾱK satisfying (103) so that the upper bound on C(M1, . . . ,MK) in (104) is relaxed if we replace

(U1, U2, . . . , UK−1) and (α1, . . . , αK)

by
(Ū1, Ū2, . . . , ŪK−1) and (ᾱ1, . . . , ᾱK).

This proves that the upper bound on C(M1, . . . ,MK) in (104) remains unchanged if we replace all numbers α1, . . . , αK by
the same number α. By (103c) this number α ≤ 1

D

∑
k∈KMk, and by the monotonicity of the RHSs of (104) in α1, . . . , αK

the choice α = 1
D

∑
k∈KMk leads to the most relaxed upper bound. This will conclude the proof.
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Assume that αk̃ 6= αk̃+1 for some k̃ ∈ {1, . . . ,K − 1}. By (103b), the strict inequality

αk̃ < αk̃+1 (120)

must hold. Choose

ᾱk = αk, k ∈ K, k /∈ {k̃, k̃ + 1}, (121)

ᾱk̃ = ᾱk̃+1 =
1

2
(αk̃ + αk̃+1), (122)

Ūk = Uk, k ∈ {1, . . . ,K − 1}, k 6= k̃. (123)

For convenience, define
ŪK := UK := X. (124)

The choice of Ūk̃ depends on whether.

I(Uk̃;Yk̃|Uk̃−1) ≤ I(Uk̃+1;Yk̃+1|Uk̃), (125a)

or
I(Uk̃;Yk̃|Uk̃−1) > I(Uk̃+1;Yk̃+1|Uk̃), (125b)

where for k̃ = 1 the random variable Uk̃−1 is defined as a constant.
If (125a) holds, choose

Ūk̃ = Uk̃. (126)

If (125b) holds, let E ∈ {0, 1} be a Bernoulli-β random variable independent of everything else, where

β :=
1

2
+

1

2

I(Uk̃+1;Yk̃+1|Uk̃)

I(Uk̃;Yk̃|Uk̃−1)
, (127)

and choose

Ūk̃ =

{
(Uk̃, E), if E = 1

(Uk̃−1, E), if E = 0.
(128)

The proposed choice satisfies the Markov chain (119).
Trivially, for k /∈ {k̃, k̃ + 1}, Constraint (104) is unchanged if we replace (U1, U2, . . . , UK−1) by (Ū1, Ū2, . . . , ŪK−1) and

(α1, . . . , αK) by (ᾱ1, . . . , ᾱK).
If (125a) holds, then the proposed replacement relaxes Constraint (104) for k = k̃ and it tightens it for k = k̃+ 1. However,

the new constraint for k = k̃ + 1 is less stringent than the original constraint for k = k̃. We conclude that when (125a)
holds, the upper bound on C(M1, . . . ,MK) in (104) remains unchanged if everywhere one replaces (U1, U2, . . . , UK−1) and
(α1, . . . , αK) by (Ū1, Ū2, . . . , ŪK−1) and (ᾱ1, . . . , ᾱK).

Assume now that (125b) holds. Then, by (127) and (128), because Ūk̃−1 = Uk̃−1, and because E is independent of the
pair (Yk̃, Ūk̃−1):

I(Ūk̃;Yk̃|Ūk̃−1)

= I(Ūk̃;Yk̃|Ūk̃−1, E)

= β · I(Uk̃;Yk̃|Uk̃−1, E = 1)

=
1

2

(
I(Uk̃;Yk̃|Uk̃−1) + I(Uk̃+1;Yk̃+1|Uk̃)

)
. (129)

By (122) and (129), the new constraint obtained for k = k̃ coincides with the average of the two original constraints for k = k̃
and for k = k̃ + 1. This average constraint cannot be more stringent than the most stringent of the two original constraints.
The new constraint obtained for k = k̃ + 1 is more relaxed than the new constraint obtained for k = k̃, because of (122) and
because

I(Ūk̃+1;Yk̃+1|Ūk̃)

(a)
= βI(Uk̃+1;Yk̃+1|Uk̃) + (1− β)I(Uk̃+1;Yk̃+1|Uk̃−1)

(b)
= βI(Uk̃+1;Yk̃+1|Uk̃) + (1− β)I(Uk̃+1, Uk̃;Yk̃+1|Uk̃−1)

(c)
= I(Uk̃+1;Yk̃+1|Uk̃) + (1− β)I(Uk̃;Yk̃+1|Uk̃−1)

(d)

≥ I(Uk̃+1;Yk̃+1|Uk̃) + (1− β)I(Uk̃;Yk̃|Uk̃−1)
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(e)
=

1

2
I(Uk̃+1;Yk̃+1|Uk̃) +

1

2
I(Uk̃;Yk̃|Uk̃−1)

(f)
= I(Ūk̃;Yk̃|Uk̃−1), (130)

where (a) follows by the definition of Ūk̃ and Ūk̃+1; (b) by the Markov chain (99); (c) by the chain rule of mutual information
and the Markov chain (99); (d) by the degradedness of the channel (64); (e) by the definition of β in (127); and (f) by (129).

We can thus conclude that also when (125b) holds, the upper bound on C(M1, . . . ,MK) in (104) remains unchanged if one
replaces (U1, U2, . . . , UK−1) and (α1, . . . , αK) by (Ū1, Ū2, . . . , ŪK−1) and (ᾱ1, . . . , ᾱK).

APPENDIX F
ACHIEVABILITY PROOF FOR RATE-MEMORY PAIR (F (1− δs), 2Γ̃2)

Assume Kw = Ks = 1. The following scheme achieves the rate-memory pair

R = F (1− δs) and M = 2Γ̃2. (131)

Split messages W1 and W2 into two independent submessages

Wd = (W
(1)
d ,W

(2)
d ), d ∈ {1, 2},

of rates

R(1) := F (δw − δs), (132a)
R(2) := F (1− δw)− ε, (132b)

for an arbitrarily small ε > 0.
Placement Phase: Cache the triple

V1 :=
(
W

(1)
1 ,W

(1)
2 ,W

(2)
1 ⊕W (2)

2

)
(133)

in the weak receiver’s cache.
Delivery Phase: The strong receiver has to learn W

(1)
d2

and W
(2)
d2

. The weak receiver only needs to learn W
(2)
d2

, because it
has already stored W

(1)
d1

in its cache memory. We use the piggyback coding idea from Section IV to send W
(1)
d2

—which is
cached at the weak receiver—to the strong receiver and W (2)

d2
to both receivers. For this purpose, construct a random codebook

with b2nR(2)c×b2nR(2)c length-n codewords by randomly and independently drawing each entry according to a Bernoulli-1/2
distribution. Arrange the codewords in an array with b2nR(2)c rows and b2nR(2)c columns. The transmitter sends the codeword
that lies in the column corresponding to Message W (2)

d2
and in the row corresponding to Message W (1)

d2
.

The strong receiver decodes both messages. The weak receiver retrieves Message W (1)
d2

from its cache memory and decodes
W

(2)
d2

using an optimal decoding rule for the row-codebook corresponding to W (1)
d2

. If d1 6= d2, it XORs W (2)
d2

with the XOR
W

(2)
1 ⊕W (2)

2 stored in its cache memory.
Analysis: Due to the choice of rates R(1) and R(2) in (132), the probability of decoding error tends to 0 as the blocklength
n tends to infinity. Since ε > 0 can be chosen arbitrarily close to 0, we have proved achievability of the rate-memory pair in
(131).

APPENDIX G
PROOF OF UPPER BOUND IN THEOREM 5

The first and last terms in (84) are special cases of Theorem 4 for kw = 1 and kw = 0, respectively. Here, we prove the
second term by showing that for every achievable rate-memory pair (R, M),

3R ≤M + (1− δw) + (1− δs). (134)

Since the capacity-memory tradeoff only depends on the conditional marginal distributions of the channel law (4), we will
assume that the packet-erasure BC is physically degraded. So, for each t ∈ {1, . . . , n},

Xt → Y2,t → Y1,t. (135)

For all sufficiently large blocklengths n, choose placement functions {g(n)
i } as in (9), encoding functions f (n)

d as in (10), and
decoding functions {ϕ(n)

i,d} as in (12) so that the probability of worst-case error Pworst
e tends to 0 as the blocklength n→∞.

Consider now a fixed blocklength n that is sufficiently large for the purposes that we describe in the following. Let

V
(n)
1 = g

(n)
1 (W1,W2), (136)

Xn
d = f

(n)
d (W1,W2), (137)
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denote cache contents and the input of the packet-erasure BC for a given demand vector d ∈ D2 and for above chosen
placement and encoding functions. Also, let Y n1,d and Y n2,d denote the corresponding channel outputs at the weak and strong
receivers.

We focus on the two demand vectors

d1 := (1, 2) and d2 := (2, 1).

So, W1 should be decodable from (Y n1,d1
, V

(n)
1 ) and from Y n2,d2

, and W2 should be decodable from (Y n1,d2
, V

(n)
1 ). Thus, by

Fano’s inequality, for all ε1, ε2, ε3 > 0 and sufficiently large blocklength n, we have

nR ≤ I(W1;V
(n)
1 , Y n1,d1

) + nε1, (138a)
nR ≤ I(W1;Y n2,d2

) + nε2, (138b)

nR = I(W2;V
(n)
1 , Y n1,d1

, Y n1,d2
|W1) + nε3, (138c)

where for the last inequality we also used the independence of messages W1 and W2.
We first develop the second constraint using the chain rule of mutual information:

nR ≤
n∑

t=1

I(W1;Yd2,t|Y t−1
2,d2

) + nε2

≤ (1− δs)

n∑

t=1

I(W1;Xd2,t|Y t−1
2,d2

) + nε2. (139)

We then jointly develop the first and the third constraints, where we also define ε′ := ε1 + ε3:

2nR

≤I(W1,W2;V
(n)
1 , Y n1,d1

) + I(W2;Y n1,d2
|W1, V

(n)
1 , Y n1,d1

) + nε′

(a)

≤ I(W1,W2;V
(n)
1 ) + I(W1,W2;Y n1,d1

|V (n)
1 )

+ I(W2;Y n2,d2
|W1, V

(n)
1 , Y n1,d1

) + nε′

= I(W1,W2;V
(n)
1 ) +

n∑

t=1

I(W1,W2;Y1,d1,t|V (n)
1 , Y t−1

1,d1
)

+

n∑

t=1

I(W2;Y2,d2,t|W1, V
(n)
1 , Y n1,d1

, Y t−1
2,d2

) + nε′

= I(W1,W2;V
(n)
1 ) + (1− δw)

n∑

t=1

I(W1,W2;Xd1,t|V (n)
1 , Y t−1

1,d1
)

+ (1− δs)

n∑

t=1

I(W2;Xd2,t|W1, V
(n)
1 , Y n1,d1

, Y t−1
2,d2

) + nε′

≤ I(W1,W2;V
(n)
1 ) + (1− δw)

n∑

t=1

I(W1,W2;Xd1,i|V (n)
1 , Y t−1

1,d1
)

+ (1− δs)

n∑

t=1

I(W2, V
(n)
1 , Y n1,d1

;Xd2,t|W1, Y
t−1
2,d2

) + nε′

≤ nM + n(1− δw)

+ (1− δs)

n∑

t=1

I(W2, V
(n)
1 , Y n1,d1

;Xd2,t|W1, Y
t−1
2,d2

) + nε′. (140)

In (a), we used that the physically degradedness of the channel in (135) implies the Markov chain

(W1,W2, V
(n)
1 , Y n1,d1

)→ Y n2,d2
→ Y n1,d2

.

Adding up (139) and (140) and letting ε1, ε2, ε3 tend to 0, we obtain the missing converse bound in (134), because

I(W2, V
(n)
1 , Y n1,d1

;Xd2,t|W1, Y
t−1
2,d2

) + I(W1;Xd2,t|Y t−1
2,d2

)

= I(W1,W2, V
(n)
1 , Y n1,d1

;Xd2,t|Y t−1
2,d2

)

≤ H(Xd2,t) ≤ 1. (141)
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