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Abstract—A cache-aided broadcast erasure network is studied
with a set of receivers that have access to individual cache
memories and a set of receivers that have no cache memory. The
erasure statistics of the channel are assumed to be symmetric
with respect to all receivers in each set and users with no cache
memory are assumed to have better channels, statistically.

Lower and upper bounds are derived on the capacity of
the network. The lower bounds are achieved by joint cache-
channel coding schemes and are shown to be significantly larger
than the bounds achievable by naive separate cache-channel
coding schemes. For the case of two receivers, the capacity is
characterized for interesting ranges of cache memory sizes.

I. INTRODUCTION AND PROBLEM DEFINITION

A. Source & Channel Model

We consider a broadcast channel (BC) with a single trans-
mitter and K receivers as depicted in Figure 1. The channel
from the transmitter to the receivers is a memoryless packet-
erasure BC with input alphabet

X = {0,1}"
and common receiver output alphabets
Y :=XU{A}

Here F' > 0 is a fixed positive integer, and each input symbol
xr € X is an F-bit packet. The output erasure symbol A
models loss of a packet at a given receiver, for example
because of router buffers overload. The marginal transition
laws' of the memoryless BC are described by

1-9, ifyp==x
P[Yy = yp|X = 2] = Ok ifye =A , VEk (1)
0 otherwise

Let us assume that the receivers can be partitioned into a

set of weak receivers Ky, := {1,..., Ky} and a set of strong
receivers Ks := {Ky +1,...,K}. Let K, = K — K,, and
61‘ = 5W7 i€ ]Cwa
5] = 557 j € ’Csv (2)
where
0<d<dy <1 3)

Let us also assume that the receivers in ICy, are provided with
cache memories of size nM bits, see Figure 1. This problem
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It turns out that only the marginal transition law is relevant in our
problem [18]
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Fig. 1: K user packet-erasure BC with K, weak receivers that
have cache memories.

setup is motivated by [2], which illustrated the benefits of
allocating caches to the weak receivers.

The transmitter has a library of D independent messages
Wy, ...,Wp, where each W; is independent and uniformly
distributed on {1, ..., |2"%]|}. Here, R > 0 is the rate of each
message and n is the blocklength of transmission. We assume
D > K, so there are more messages than receivers. Suppose
that each receiver will demand (that is, request and download)
exactly one message from the library. We denote the message
demanded by receiver k by W, , where dj, € {1,...,D}. Let

d:=(dy,...,dg)

denote the receivers’ demand vector. The communications
process takes place in two phases: a caching phase and a
delivery phase.

B. Caching Phase

During a period of low network-congestion and before the
receivers’ demand vector d is known, the transmitter sends an
individual cache message V; € {17 R LZ"MJ }, 1 € Ky, to
each of the weak receivers. Since d is unknown at this time,
the cache messages will be functions of the entire library:

V% = gi(Wh ey WD),
C. Delivery Phase

Transmitter: The transmitter is given the receivers’ demands
d, and it sends the corresponding messages Wy, ,..., Wq,
over the BC to the appropriate receivers. We also assume that
d is known to all receivers (e.g., d can be communicated to
the receivers with zero transmission rate). For a given d, let

X" = faWy,...,Wp), fa: {1,..., PnRJ}D - &,

i € Ky.



denote the channel input at the transmitter. Each receiver
k € {1,...,K} observes Y} according to the memoryless
transition law (1).

Weak receivers: Each receiver ¢ € K, outputs

wia: V' x Z — {1,..., LQ"RJ}.
Strong receivers: Each receiver j € ICg outputs
WJ = gpj’d(Yj”)7 Soj,d: y” — {1,..., LQ”RJ}

Communications error: An error is declared for d if

Wi := ia(Y", Vi),

Wk;&de for some k € {1,...,K}. 4

We consider a worst-case probability of error over all feasible
demand vectors:

K
Pt = P[ U Wi # de].

k=1

A rate-memory pair (R, M) is said to be achievable if for
every € > 0 and sufficiently large blocklength n there exist
encoding and decoding functions such that P8 < e. The
main focus of this paper is on the capacity-memory tradeoff.

Definition 1: Given the cache memory size M, we define
the capacity-memory tradeoff C(M) as the supremum of all
rates R such that the rate-memory pair (R, M) is achievable.

D. Previous Works and New Contributions

The first information-theoretic work on cache-aided com-
munication systems by Maddah-Ali and Niesen [1] considered
the scenario where all receivers have equal cache sizes and
the delivery phase takes place over noise-free bit-pipes. This
is a special case of our setup when Ky = 0 and ¢, = 0.
They show that a smart design of the cached messages {V;}
creates possibilities for sending coded (XOR-ed) data during
the delivery phase that can simultaneously serve multiple
receivers. This way, the delivery rate is reduced beyond the
obvious local caching gain of % bits, i.e., beyond the rate of
the data that each receiver can retrieve from its local cache.
The additional reduction is due to the fact that other receivers
also have caches, and was thus termed [1] global caching gain.

In this work, we present two new coding ideas that permit
further global caching gains for erasure BCs.

Our first idea applies to general parameters K, Ky > 1
and D > 2, but requires that ; < dy,. The main novelty is
to use a joint cache-channel coding scheme for the delivery
phase. This means that the contents in the receivers’ caches do
not only determine what to transmit in the delivery phase, but
also how to transmit. Specifically, we propose a scheme where
information that is intended for strong receivers and cached at
weak receivers can be freely piggybacked on messages sent to
the weak receivers. Numerical simulations show that our new
joint cache-channel coding scheme significantly outperforms
naive separate cache-channel coding schemes.

Our second idea concerns a small network with K, =
K, =1 and D = 2, and is interesting also for equal erasure
probabilities dy, = Js. The idea is to cache XOR data similar

to [1, Appendix] and to deliver uncoded information using our
new piggyback coding idea.

We conclude that modelling the delivery phase communica-
tion by a noisy channel is important because it facilitates joint
cache-channel coding schemes. The importance of a noisy
channel model for the delivery phase was also observed in [2]-
[11]. For example, [7] and [8] illustrate interesting interplays
between feedback or channel state information with the idea
of caching, and [9] shows that caches at the transmitter-side
allows for load-balancing and interference mitigation in noisy
interference networks.

We also present converse results, i.e., upper bounds on
the capacity-memory tradeoff. The upper bounds match our
obtained lower bounds in the following three cases:

J— J— (176.&)(6\»755) .
. W—Ks—landMSFDm,
e Ky, =K,=1,D =2 and 6y, = 6;
e Ky=K;=1,D=2and M > F((1—6)+ (6w — s)).
Converse results for the Maddah-Ali & Niesen noise-free bit-
pipe model were presented in [1], [12]-[15].

II. MAIN RESULTS

Our main results are in the form of a general lower bound
and a general upper bound on the capacity-memory tradeoff
C(M). Furthermore, we show the tightness of the bounds in
certain regimes of M in the special case of Ky, = K, = 1.

A. Lower bound

Define Ky, + 2 rate-memory pairs {(R:, M;); t = 0,1,
.., Ky + 1} as follows:

()

Ky n K
1—90y 1—0
(ii) Foreach t € {1,..., Ky}:

-1
RO:F( ) L My=0: (5

Ky—t+1 6y — 6

. F(1—5w)(1+ e 1—6W)
TRy —t+1 O T A N
t (t+1)K, 1—06 "1 -0

D Ky—t4+1 6,—0\""\
M, .RtKw<t—(1+th 71_%) > (6)

(iii)
R —pl=o M — pp L=% 0
Ky+1 = K, ) Ky+1 :— K. .

Theorem 1 (Direct Part): The upper convex hull of the K, +
2 rate-memory pairs {(R¢, My); t =0,1,..., Ky+1} in (5)-
(7) forms a lower bound on the capacity-memory tradeoff:

C(M) > upper hull{(R;, M;): t=0,...,Ky+1}. (8

Proof Outline: The pair (Ry, My = 0) corresponds to
the case without caches, and the achievability of Ry follows
from the usual capacity result for packet-erasure BCs [16].

The pair (R, +1, Mk, +1) corresponds to the case where
M is large enough so that each receiver in K, can store



the entire library in its cache memory. The delivery phase
thus only needs to serve receivers in K and achievability of
(Ri,+1, Mk, +1) follows again from the usual capacity of
packet-erasure BCs (where we only consider strong receivers).

The remaining pairs (Ry, My), t = 1,..., Ky, are more
interesting and are achieved by the joint cache-channel coding
scheme in section III. The upper convex hull of {(Ry, M;);t =
0,1,..., Ky + 1}, finally, is achieved by time-sharing. ]

Remark 1: Consider the following naive separate cache-
channel coding scheme. Step 1: Apply Maddah-Ali & Niesen
coded caching [1, Algorithm 1] to the messages that are
demanded by receivers K. Step 2: Send the XOR mes-
sages from step 1 together with the messages that are de-
manded by receivers in K5 using a capacity-achieving scheme
for the packet-erasure BC. This scheme achieves the upper
convex hull of the rate-memory pairs {(Rysep, Mt sep);t =

0,1,..., Ky}, where
K, —t K, \ !
Rigep = F + ; 9
o= F (Gmn e o) o
D
Mt,sep = Rt,sep t Kiw (9b)
B. Upper bound
For each pair of integers (ky, ks) satisfying
0<ky<Ky; 0<k <K and 1<ky+ks (10)
define
Ko ke \ 7!
R M):=F
kwM
D
(ks + kw) L{W i kJ

Theorem 2 (Converse): The capacity-memory tradeoff
C(M) is upper bounded as

C(M) < lower hull {Ry, . (M): ky, ks satisfying (10)}.

The proof of Theorem 2 is deferred to [18]. Figures 2 and 3
illustrate the upper bound from Theorem 2 together with the
two lower bounds on C(M) from Theorem 1 and Remark 1
for two setups.

C. Special case of Ky, =1 and K; =1

We evaluate our bounds for a setup with a single weak
receiver and a single strong receiver and we assume for
simplicity of exposition that D is even. Let

o (1 =06) (6w — 05)
A e WEa T o) v
Ty = (1-4,)F, (12)
Ry
= p 10 (13)

(1 —08y)+(1—46)

Notice that 0 < I'y < T'3 < I's. From Theorems 1 and 2 we
obtain the following corollary.

Capacity C'(M)

0.1 |-—e—Joint Cache-Channel Coding (Theorem 1)
Upper Bound of Theorem 3

-+ - Separate Cache-Channel Coding (Remark 1)

0 I I I I

0 5 10 15 20 25

Memory M

Fig. 2: Bounds on capacity-memory tradeoff C'(M) for K, =
4, K, =16, D =50, 6y, = 0.8, 6 = 0.2, and F = 50.
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Fig. 3: Bounds on capacity-memory tradeoff C'(M) for K, =
K, =10, D =50, 6y, = 0.8, 6 = 0.2, and F = 50.

Corollary 2.1: If K, = 1 and K = 1, the capacity-memory
tradeoff is lower bounded by:

1-6,)(1=8) | M ¢ M
Fasyrmey 0 i 5 €[0,1]
C(M) 2\ F3(1-6) + 35, if 2L e (I, Ty] (14)
F(1— ) if 451,
and upper bounded by:
(1-6)(1-8) | M e M
C(M) < Fassyra—sy t o if 5 €[0.T5 15)
a F(l - 65) if % > F3.

Figure 4 shows these two bounds and the bound in Remark 1
for D = 10, é,, = 0.8, 6, = 0.2, and F' = 10.

We identify three regimes. In the first regime 0 < % <TIy,
the cache memory allows reducing the rate R to each receiver
by %. This is the same performance as when a naive uncoded
caching strategy is used in a setup where both receivers have
cache memories of rate M. The single cache at the weak
receiver thus seems to serve all receivers in the network. In
this sense, in the first regime, our joint cache-channel coding
scheme enables the best possible global caching gain. In the
second regime I'; < % < T’y the gains are not as significant
as in the first regime, but increasing the cache sizes still
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Fig. 4: Bounds on the capacity-memory tradeoff for K, = 1,
K,=1,D =10,y =0.8, 6 =0.2, and F = 10.

results in an improved performance. Finally, in the last regime
% > I'5 the weak receivers have all relevant information in
their caches and thus the communication is only restricted by
the communication to the stronger receivers. In this regime
the performance is independent of the cache sizes.

In the first and last regime, 0 < % <T'y and % > I's, our
joint cache-channel coding scheme of section III achieves the
capacity-memory tradeoff C'(M).

D. Special Case Ky, = Ks=1and D =2

For this special case we present tighter upper and lower
bounds on C'(M). These new bounds meet in some special
cases. Let

~ (1 —0w)%+ (1= 68)% = (1 —dy)(1 = &)

[ :=F , (16
L 16w +(1-0) (16)
N 1
Py:= SF ((1=8) + (6w — 6)). (17)
Theorem 3: If Ky, = Kg=1and D = 2:
1—84)(1—6s . =
F(gfsw)ﬁ(pa?) +4,  ifie [Q7F1J
C(M) < Fi(2—6,—0y)+ &, if & € (I, Ty] (18)
F(1— &) if & >T,.
and lower bounded as:
(1 =46w)(1—0s) M M
0—dn+—06y 2 5 €l
C(M)= (1=9.) (F(1=6,) + M) %e(rl Iy]
T 3(1—66) — (1 —6w) : T2 ’
F(1—46) % > Ty.
(19

Proof: Upper bound (18) is proved in [18].

Lower bound (19) coincides with the upper convex hull
of the three rate-memory pairs: (Ro, My) in (5); (Ry, M)
in (6); and (F(1—0,), 2T'5). Achievability of the former two
pairs follows from Theorem 1. Achievability of the last pair
follows from the following scheme. Store the XOR message
W1 @ W>? and the first F(§,, — d,) bits of Wy in the weak

2P always means XOR on the binary representations.

receiver’s cache. Use the piggyback coding idea described in
section III for phase 2 (see also Figure 6 and [2], [17]), to
deliver the first nF'(dy, — d;) bits of Wy, to the strong receiver
only and the remaining n(R — F(dy — d5)) bits of Wy, to
both receivers. The weak receiver reconstructs W, from its
decoded bits of Wy, and the content in its cache. ]

Figure 5 shows the bounds of Theorem 3 for d,, = 0.8,
ds = 0.2, and F' = 10. Upper and lower bounds of Theorem 3
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Fig. 5: Bounds on the capacity-memory tradeoff for K, =1,
K,=1,D=2,6,=08, 6 =0.2, and F' = 10.

coincide in the case of equal erasure probabilities dy, = d:
Corollary 3.1: If Ky, = K;=1, D =2 and §,, = §s = 9:

Rl o)+ X4,
C(M)_{F(215) :

if 2Le(0,3F(1-6)]

20
if &>1F(1-0). 20

_ Proof: Follows from Theorem 3 because for 4y, = d:
I'h=TIy= %F(l —0), and in the regime % € (I'y, o] lower
bound (19) specialises to C(M) > F3(1 —0)+2L. [

III. JOINT CACHE-CHANNEL CODING

The new joint cache-channel scheme outlined in this section
will extensively use Maddah-Ali and Niesen’s scheme from [1,
Algorithm 1]. This scheme has two parameters: The number
of receivers K , and an index ¢ that varies from 0 to K. It
consists of three methods:

Ca: Split each message W, into (Itg) submessages, and store
each of them in a different subset of ¢ receivers.

En: The delivery encoder sends XORs of submessages (see
footnote 2), where each XOR is a common message
intended to a group of £ + 1 receivers.

De: Each receiver k reconstructs the (Itf ) submessages of W,
by XOR-ing the received XOR messages with appropriate
submessages in its cache.

We now describe a scheme, parameterised by ¢t &
{1,...,Ky},’ that achieves rate-memory pairs {(R;, M;)}
in (6).

For each d € {1, ..., D}, split message Wy into two parts:

Wa= W, wi )

3For Kw = K = 1, the scheme is described with more details in [2].



with respective rates R*) = R — R(*~1) and

Ky—t+1 6y—0\ "
(t_l): w L ow S
R R (1 + K, 1 _5W> . 21)

1) Caching phase' Apply the cache placement method Ca,
with K = K,, and f = t, to cache W(t) W .. Wg) at
the weak receivers. Reapply method Ca, now w1th t =t—1,
to cache W(t 2 W(t V. ,WDf b,

2) Delivery phase: Dehvery takes place in three phases.
Phase 1: The transmitter applies method En, with K = K,
and £ = t, to messages

{Wéf): i€ Ky},

(22)

which are demanded by the weak receivers. It then uses a
capacity-achieving code for the packet-erasure BC to send the
produced XORs to their intended weak receivers.

Each weak receiver i € ICy, applies a good channel decoder
for the BC to decode the XORs and subsequently reconstructs
W(t) by means of method De.

Phase 2: The transmitter conveys submessages

(Wil ie k), (23)
to the weak receivers, and submessages
(Wi jekd, (24)
to the strong receivers.
Communication in Phase 2 is split into 7 := (%) sub-

phases, where each subphase is associated with a different set

SCKy with [S| =t (25)

The transmitter first applies method En, with K = K,, and
t =t — 1, to messages in (23). Let Wét_l) denote the XOR
produced for group S.
In subphase S the transmitter sends
(t=1) (t),S (t),s
x(Ws ™, W, e W)

drcy+1’

(26)

where W(g) for 5 € ICs, is the submessage of W( ) cached
at each receiver in S, and where x(--- ) is a codeword from the
codebook Cg illustrated in Figure 6. Codewords of codebook

\é
([ BE BRE N BE B BN J
[ B A BE BE BE BN J
([ BE BRE N BE B BN J
o|oj|jo|jo |0 |0 |0
([ BE BRE N BE B BN J
([ BE BRE N BE B BN J
(B A BE BE BE BN J
[ B A BE BE BE BN J
(B A BE BE BE BN J
(B A BE BE BE BN J
([ BE BRE N BE B BN J
(B A BE BE BE BN J
o|o|o|o|o o]
[ B A B BE BE BN J

T

()8 (),8
Wy, s Wy —_—

Fig. 6: Codebook Cs where dots represent codewords.

Cs are arranged in an array: the vertical dimension encodes

Wg*l) and the horizontal dimension (Wég IERE W(t) )

Each strong receiver decodes the entire tuple (Wé 2
W(t) ‘il sy W(xz S) for which it has to consider the full
codebook Cs. It then reconstructs its desired message in (24).

)

Each weak receiver in S decodes W(t Y \where it can
restrict to the column of codebook Cs that corresponds to the
realisations of Wégil, cee Wég’s stored in its cache.

Weak receivers in S decode W(tfl)

with the same proba-
bility of error as if submessages Wég ‘il, ceey Wég’s had not

been sent at all. Since we chose the rates R~ and R®
in (21) so that the decodings at the weak receivers and at
the strong receivers yield the same constraints on the rate R,
our piggybacking of submessages Wét)’s ceey Wlx{)’s on the

Ky+1’
XOR W(t Y is free (unchanged constraints on R).

As opposed to phases 1 and 3, in this phase 2 joint source-
channel coding is used: the weak receivers’ decodings depend
on the content stored in their caches.

Phase 3: The transmitter uses a capacity-achieving code for
the packet-erasure BC to send

—1y
{Wéf ). j e K},

to the strong receivers.
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