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Abstract—We consider the capacity region of a three receiver
broadcast channel with some message cognition at two receivers.
The problem generalizes the bi-directional broadcast channel to
include a third receiver, a common message, and (partial) message
cognition. We characterize the capacity region for several classes
of less noisy, more capable, and deterministic broadcast channels.

I. INTRODUCTION

A canonical cooperative-communications problem is the bi-
directional broadcast channel (BC) [1]], which is a special case
of the almost lossless joint source-channel coding problem
in [2f]. In this paper we generalize the bi-directional BC to
the problem in Fig. [I] i.e., to include a third receiver and a
common message. Unlike the bi-directional BC [1f], our setup
of Fig.[I]is not a special case of [2]], but rather closely related
to the lossy joint source-channel coding problem in [3].

We will also extend the setup in Fig. 1 to a setup where
Receivers 1 and 2 have only partial cognition of each other’s
messages. The capacity region for the two-user BC with
degraded message sets and partial message cognition was first
studied in [4].

Our goal is to determine the capacity region of the setup
in Fig. [[] as well as the capacity region of the extended setup
with partial message cognition.

In Fig. |1} the Transmitter wishes to send three messages,
My, My, and Ms, to the receivers. Receiver 1 requires the
private message M, and the common message Mj; Receiver 2
requires the private message M, and Mj; and Receiver 3
requires only Mj. The messages are modelled as independent
random variables, where each M, is uniformly distributed over
the set My, = {1,2,...,|2"%# |}, for k € {0,1,2}. Here Ry,
denotes the transmission rate of message My, and n denotes
the blocklength.

The BC is discrete and memoryless. Denoting by X the
channel input alphabet and by ) the channel output alphabet
at Receiver k, the channel input X" £ (X1, .. ., X,,) takes
value in X™ and Receiver k’s outputs Y;* = (Yi1,..., Vi)
take value in Y}, for k € {1,2,3}. We consider a memoryless
BC so that the conditional distribution of (Y7, Y3", Y3") given
X" is defined by Py, v, vy x (y1, 92, ys|z).

Paper Outline: In Section[[l, we consider the setup in Fig. [T}
where Receiver 1 (resp. 2) is fully cognizant of Message M,
(resp. My). In Section[[TI] we consider the extended setup with
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Fig. 1. Broadcast channel with three receivers and message cognition.

partial message cognition; i.e., Receiver 1 (resp. 2) knows only
part of the message My (resp. My).

II. FULL COGNITION AT RECEIVERS 1 AND 2

Throughout this section we assume full cognition at Re-
ceivers 1 and 2, i.e., that Receiver 1 is cognizant of the entire
message M, and Receiver 2 of the entire message M.

A code consists of four maps: An encoder at the Transmitter,

fZM()XMlXMQ—}Xn
and a decoder at each receiver,

g1: Y X Ma — Mo x My

ggtygx./\/ll—)/\/lox./\/lg

g3 : Vi — M.
The Transmitter sends X" = f(Mo, M1, Mz); Receiver 1 de-
codes (Mo 1, My1) = g1 (Y7", M2); Receiver 2 decodes (M 2,
Ms) = g2(Y3", M1); and Receiver 3 decodes My 3 = g3(Y3").
The average joint probability of error is

P = IEJ’[]\2"0,3 # My or (Mo, My) # (Mo, M)
or (Mo,2, M) # (Mo, My)].

The rates (Ro, R, Ro) are said to be achievable if for each
€ > 0 there exists a code (f, g1, 92,93) with P, < € for some

sufficiently large blocklength n. The capacity region C is the
closure of the set of all achievable rates.



We first give an inner bound for C. This bound is achieved
using a combination of superposition coding, rate-splitting,
and bi-directional coding. Roughly, the superposition cloud-
centers carry the common message M, and the satellites
simultaneously carry the bi-directional messages (M, Ms).
Rate-splitting is used to transfer rate from the satellites to the
cloud-centers.

Let R}, denote the set of rate tuples (R, R1, R2) satisfying
Ry < I(U;Ys) (1a)
Ro+ Ry <min {I(X;Y1),[(U;Y3) + I(X; Y1|U)}  (1b)
Ry + Ry < min {I(X;Ya), [(U;Y3) + I[(X;Y2|U)}, (lc)
for some (U, X) with U —o— X —o—(Y1,Y5,Y53).
Proposition 1: C 2 R}, and R} is convex.
Proof: The proposition is a corollary of Theorem 2} which
is given later in Section [[TI] See Remark [3] [
Remark 1: The capacity region in [I, Thm. 2.5] can be
recovered from Proposition [T| by setting U to be constant.
The next theorem gives five non-trivial settings for which
the inclusion in Proposition [1| is an equality. We first need
two definitions from [5, p. 121]. A channel output Y; is said
to be less noisy than another output Y; (abbreviated Y; >
Y;) if I(U;Y;) > I(U;Y;) holds for every auxiliary random
variable U with U —— X —o— (Y7,Y;). A channel output Y; is
said to be more capable than another output Y; if I(X;Y;) >
I(X;Y;) holds for every X.
Theorem 1: Ri, = C in each of the following settings.
(i) If Y7 > Y3 and Y5 > Y3, then C is equal to the set of
rate tuples (Rp, R1, Ro) satisfying
R1 S I(X,Y1|U)
Ry < I(X;Y2|U)
Ry < I(U;Y3)
for some (U, X) with U——X——(Y7, Y, Y3).
(ii) If Y3 is more capable than Y7 and Y5, then C is equal to
the set of all rate tuples (Ro, Ry, R2) satisfying
Ry + Ry < I(X;Y1)
Ro+ Ry < I(X;Y2)

for some X.

@iii) If Y3 = Y3, then C is equal to the set of rate tuples
(Ro, Ry, RQ) satisfying
Ro+ Ry < I(X: Y1)
Ry + Ry < I(X;Y3)
Ro+ Ry < I(U;Y3) + I(X;Y2|U)
Ry < I(U;Y3)
for some (U, X) with U——X——(Y7,Y2,Y3).
(iv) If the marginal conditional distributions py,|x and py,|x

are the same, then C is equal to the set of rate tuples
(Ro, R1, R2) satisfying

Ro+ Ry < I(X;Y7)
Ry + R, SI(X;YQ)

Ro+ Ry <I(U;Y3)+
Ro+ Ry < I(U;Y3) +
Ry < I(U;Y3)
for some (U, X) with U——X——(Y7,Y2,Y3).

(v) If Y5 is a deterministic function of X, then C is equal to
the set of all rate tuples (R, R1, R2) satisfying

Ry < H(Y3)
Ry + Ry < I(X:;Y1)
Ry+ Ry < I(X;Ys)

I(X;Y1|U)
I(X;Y5|0)

for some X.

Proof: The proof for (i), (iii), and (iv) are omitted due
to space constraints. A sketch of the proof for case (v) can
be found in Section The direct part for (ii) follows by
setting U = X in and using the more capable condition.
The converse to (ii) is trivial. |

III. PARTIAL COGNITION AT RECEIVERS 1 AND 2

A natural generalization of the setup in Fig. [T] is to vary
the quantity of side information at Receivers 1 and 2, as it
was done for the two-receiver BC setup in [4]]. Specifically,
suppose that the bi-directional messages take the form

Mk = (Mk,ka‘,p)a k= 172a

where Mj, . and My, are independent and uniformly dis-
tributed on {1,2,...,[2"f%¢ |} and {1,2,...,[2"F%¢ |}, re-
spectively. Receiver 1 is now cognizant of message M; . —
instead of M, — and is ignorant of M5 ,. Similarly, Re-
ceiver 2 is cognizant of M; . and ignorant of M ,. The
capacity region for the setup with partial cognition is defined
analogously to C; i.e., it is the set of all achievable rates
(Ro, Ric, Rip, Rac, Rap). We let Cpar denote this region. For
brevity, we retain Ry = Ry ¢+ R1p and Ry = Ry + Rap.

Remark 2: The partial-cognition setup includes the general
two-receiver BC [5) Sect. 8] as a special case. Hence, we do
not expect to completely characterise Cpar.

The next theorem is proved using a combination of super-
position coding, rate-splitting, and bi-directional coding. Let

Rﬁ:pan denote the set of all rates (Ro, Ri.c, Rip, Rac,Rap)
satisfying

Ry < I(U;Y3) (72)

Rip < I(X5YA|V) (7b)

Ry + Re <min{I(V;Y2),I[(U;Ys) + I(V;Y>|U)}  (7c)

Ro+ Ry + R27p < min{I(X; Yl),
I(U;Ys) + I(X; YA |U)} (7d)
for some (U,V, X) with U——V——X——(Y7,Y2,Y3). Let
R denote the set of all rates (R, Ric, Rip, Roc, Rop)

in,part

satisfying with indices 1 and 2 interchanged. Let
Rinpar = convex hull(R{) UR®? ). ®

n,part n,part

Theorem 2: Cpart 2 Rinpart-



Remark 3: The inner bound of Proposition [I] follows di-
rectly from Theorem [2] by setting V' = X.
Proof of Theorem 2 'We now sketch the coding theorem.
Code Construction: Split the messages M ¢, Mo ., M, as

Mye = (M{, My), Mae = (M, M3%),

and My, = (M), My),)

with rates R}, Ry, and Ry, k € {1,2}. Construct two new

messages Mg and Mg) as follows

(k) pk)
ME = (MY, + ML) modulo 2" ™t Frefd,

We use a three-layer superposition coding scheme. The
cloud-center encodes M, Mg, Mg)p, the first satellite encodes
Mg, My, and the top-most satellite encodes M . For the
random code construction we use the law Py to generate the
cloud centers, the conditional law PV|U for the first satellites,

and the conditional law Py for the top-most satellites.

Decoding: Receiver 3 decodes the cloud center, Receiver 2
decodes the cloud center and the first satellite, and Receiver 1
decodes the cloud center and both satellites. Arbitrary small
probability of error is achieved if

Ro+ Ry, + Ry, < I(U;Y3) (9a)

Ro + R(“ “> < I(U;Y3) (9b)

R0+R2 < I(V;Y3) (9¢)

RS+ RY, < I(V; Ya|U) (9d)
RO+R1+R2P<I(X;Y1) (96)

R‘z’ +Rip+ R(” I1(X;Y1|U) (91)

Applying the Fourier-Motzkin elimination algorithm results in
the rate constraints in (7). [ |

Remark 4: For the region defined in (7)), it can be shown
following [5, Appendix C] that it suffices to consider auxiliary
random variables (U, V') € U x V with cardinality || < |X|+
4 and |V| < (|X] + 4)(|X] + 1). Tighter constraints can be
obtained for some special cases.

Theorem 3: Cpax = Rinpare in each of the following settings.

() If Y7 = Yo > Y, then Cpq is the set of rates
(Ro, R1c; Rip, Rayc, Rop) satisfying

Ry < I(U;Y3) (10a)

Rip < I(X;A|V) (10b)

Ry < I(V3Ya|U) (10c)

Ry + Ry, < I(X;11|U) (10d)

for some (U, V, X) with U——V—o—X——(Y7,Y5,Y3).

() If Y1 = Y3 = Ya, then Cpn is the set of rates
(Ro, R1 ¢, R1p, Rac, Rap) satisfying

Ry < I(U;Y>) (11a)

Ryp < I(X511|V) (11b)

Ry < I(V;Y2|U) (11¢)

Ri+ Ry, < I(X; Y3 |U) (11d)

for some (U, V, X) with U—o—V——X——(Y7,Y5,Y3).

(i) If Y3 = Y7 = Y, then Cuyn is the set of rates
(Ro, R, Ry p, Roc, Rap) satisfying

R, < I(X;Y1|U) (12a)
Ro+ Ry < I(U;Ys) (12b)
R0+R1 +R2’p S I(X,Yl) (120)

for some (U, X) with U——X——(Y7,Y2,Y3).

Proof: See Section u
When Y] »= Y3 = Y5 or Y3 > Y > Y5, the capacity region
depends on the channel law Py, x to Receiver 3 only through
the fact that it must satisfy the less-noisy conditions.

We observe that when Y3 >~ Y; >~ Y5, a two-layer superpo-
sition coding scheme suffices to achieve capacity. Moreover,
in this case, the result remains valid also when Y3 is more
capable than Y7, but not less noisy.

Proposition 2: If Y3 is more capable than Y7 and Y3, Y; =
Ys, then Cpay is the set of rates (Ro, Ric, Rip, Roc, Rop)
satisfying (12) for some (U, X') with U—o—X —o—(Y7, Y, Y3).

Proof: The converse follows by noting that our converse
in Section for case (iii) only requires that Y; > Y3,
and thus remains valid in this slightly weaker setup. The
achievability follows by modifying our scheme achieving

Rl(nl l))an so that Receiver 3 also decodes the two satellites, in
addition to the cloud center. u

Corollary 3.1: The capacity regions for the cases Yo >
Y1 = Y3, Yo = Y; > Yy, and Y5 = Y, = Y directly follow
from the previous theorem. The regions are given by (I0),
(T1), and (I2) where we have to exchange the indices 1 and
2. Similarly, the capacity region for the case Y3 more capable
than Y5 and Y;7,Ys; > Y5 is given by where again the
indices 1 and 2 have to be exchanged.

In the usual way, Theorem [3|can be adapted to the Gaussian
BC, where Y, = X + Z;, with Z, ~ N(O, J,%). For Gaussian
BCs the capacity region takes on a particularly simple form.
This can be proved with the entropy-power inequality and the
maximal entropy property for a fixed second moment.

Corollary 3.2: Depending on the variances 07,03,03 > 0,
the capacity Cp, for Gaussian channels is given as follows.

() If 03 > 03 > 0%, then Cpy is the set of all rates
(Ro, R1 ¢, R1p, Rac, Rap) satisfying

Rogél <1+1_;‘)};+U$) (13a)
Ri< o < Qo )P)+Rl,c<13b>
R2§110g<1+ > (13¢)
2 1—a— )P+
Rl—i—RQS;log(l (1-2) )+R2c (13d)
for some «, 5 € [0, 1] such that a—i—ﬁ <1

(i) If 03 > o3 2 0%, then Cpu is the set of rates



(Ro, R1c, R1p, Rac, Rap) satisfying

Ro < 3 log (1+ 1_51];02) (14a)
Ri< o ( (-c-p >P)+R1,c (14b)
Ry < 1log <1 + ) (14c¢)

2 1—a— )P—|—
R1+R2§;10g<1+ 1_0‘ ) YRy (14d)

for some a, 5 € [0, 1] such that a+ﬁ <1.
(i) If 03 > o7 > o3, then Cpy is the set of rates
(Ro, Ric, Ry p, Roc, Rap) satisfying

1 1—a)P
Ry < - log <1 + (20‘)) + Ry (150)
2 o
1 aP
< -1 14— 15b
R0+R220g< +(1—a)P+o—§) (15b)
1 P
RO + Rl + R2 § 5 log 1+ ? + RQ,C' (ISC)
i

for some a € [0, 1].

Remark 5: From the above capacity expressions we notice
the following. In the above setups, when R;. = 0, i.e., Re-
ceiver 2 does not have any knowledge about Message M7, then
providing M . (even when M, . = M>) to Receiver 1 does
not increase capacity. In fact, providing M to Receiver 1
only increases the capacity when R;. is above a certain
threshold that depends on the channel parameters. In contrast,
providing M; . to Receiver 2 is always beneficial.

IV. PROOFS

A. Proof of Deterministic Part of Theorem

We have Y3 = ¢(X) for some deterministic ¢ : X — U.
Recall Proposition[I]and (I). Choose U = Y3 = ¢(X), so that
Ro < H(Y3)
Ro+ Ry <min{I(X;Y1),H(Y3) + I(X;Y1]|Y3)}
Ro + Ry < min{I(X;Ys), H(Y3) + I(X;Ya|Y3)}.
The first term in each min 1is larger because
Y3——X——(Y1,Ys), and so we have Ry < H(Y3),
Ro+ Ry < I(X;Y7) and Ry + Ry < I(X;Y3). The converse
is obvious.

B. Proof of Theorem

We only present the essential parts of the proof. Standard
arguments finalize the converses. In what follows, inequali-
ties (a) are justified by Fano’s inequality, equalities (b) by
Csiszdr’s sum identity, and inequalities (c¢) by [6, Lemma 1].
Y1 =Yy = Vs
Converse: For any achievable rate tuple we have

(a) i )
nRy —ne, < I(Mo; Y3') <> T1(Mo, Y3 ™ Ys,)

i=1

Z (Mo; Ys,i) + 1(Y5 ™13 Ya,4 Mo)

Z (Mo; Ya,i) + 1(Ys ™5 Ys | Mo)
Z (Mo, Y35 Y3:) = > I(Uy; Vs;)
i=1 i=1
with U; = (Mo, Yy ™). In (¢) we can apply [6, Lemma 1]
because Y3 = Y3 and (Y5, YJ')——X"——M.

We also have
(a)
nRy — ne, < I(Ma; Yy | Mo, M)

< ZI(MO» My, Mo, Yy ™ Yo 4| Mo, Yy ™)

i=1
= I(Vi; YaulU3)
i=1
Wlth ‘/2 = (Mo,Ml’c,Mg,Yziil) = (UiaMl,CaMQ) Wthh
satisfies UZ—O—V;—O—XZ—O—(YL“ Ygﬂ', Yg’i).

Next,

(16)

(a)
nRLP — nep < I(Ml,p; Yln‘MO, Ml,ca M2)

n
=" I(Xi; Y14 Mo, M e, M, YY)
1

-
Il

[
NE

I(X3; Y15 Mo, My o, M)

.
Il
_

—I(Y{™ Y14 Mo, My ¢, M)

—~
3]
~

NIE

I(X; Y1, Mo, M ¢, Ma)
1

.
I

—I(Yy 7' Ya 4| Mo, My ¢, Mo)

|

(X3 Y14 V3) a7)

=1

where in (¢) we can apply [[6, Lemma 1] because Y7 > Y5
and (Y}, V") ——X"—o—(My, My o, Ms). Finally,

n(R1+R2,p) — NEnp

(a)
S I(Mla Y1n|MOa MQ,C) + I(MZ,p; }f2n|M07 Mla MQ,C)

< ZI(M17Y2T)LZ»+1;Y1’Z' M2,C7Y1i71)
=1

—I(Y3' 15 Yri| Mo, My, My e, Y1)
+1(Map; Ya,i| Mo, My, Ma e, Y51, Y ™)
+I(Y{ ™Y Y| Mo, My, Mo, Y1)

b i—
S I(My, Mae, V3 Vil Mo, Yi—h)

i=1
+I1(X;; Y | Mo, My, Mo, Y51 Yf_l)
@) & -
< ZI(Ml,MQ,mYzT,lHﬁ v
i=1



+I(X4; Y1, Mo, My, Ma e, Y514, Vi

(X Y14 Mo, Yi7h)

Il

s
I
—

I(X3; Y14 Mo) — I(Y1,:; Yy [ Mo)

I

s
Il
—

—~
o
~

NE

I(X3; Y14 | Mo) — I(Y1,:; Yy | Mo)
1

.
Il

n
I(X3; Y1V~ Mo) = D I(X3;Ya|Us) (18)
i=1
where in (¢) and (d) we used that Y; = Y3 and the Markov
chains (Y1, Ya,;)—o—X;—o—(Mo, My, My, Yy ™", V], |) and
(Y1n7y’2n)4o-Xn4°-MO~
Direct part: Follows from (7) and from
I(V;Y2)> I(U; Ys) + 1(V; Y2 |U)
I(X;Y1)> I(U; Y3) + I(X; YA |U),

I

s
Il
-

—~

where the latter inequalities hold because Y; > Yo >
Ys implies I(U;Y3) < min{l(U;Y1),I(U;Y2)} for any
U—O—V—O—X—O—(Yl, YQ, Yj)

(i) Y1 = Y5 = Ya.

Converse: For any achievable rate tuple we have

(a)
nRy —ne, < I(Mo; Yy")
< (Mo, Y5 Ya,) = Y I(Us Yay)
i=1 =1

with U; = (MO,YQi_l). In the same way as before, we can
prove bounds (T6), (I7), and (I8) with V; = (U;, M ¢, M>),

which satisfies Ui—O—V;‘—O—Xi—O—(YLi, 5/2,7;7 Yg,i).
Direct part: Follows from (/) and from

I(V;Y2)< I(U; Ys) + I(V; Yo|U)

I(X;Y1)> I(U; Y3) + I(X; Y1 |U),
which hold because Y; = Y3 > Y, implies I(U;Y1) >
I(U;Y3) > I(U; Ya) for any U—o—V —o—X ——(¥, Y2, Y3).
(iii) Y3 = Y1 = Ya.
Converse: For any achievable rate tuple we have

n(Ro+Rz) — ney,
(a)
< I(Mo, M Y5 My )

< ZI(MO,MLC,MQ,Y;_%Yz,i)
=1
() & i—1
<Y I(My, My e, Ma, Y375 Y1 )
=1
n
= ZI(MQ,Ml,uMQ;YLi)
=1

+I(Yy ™Y Y| Mo, My o, My;)

(0) & ,
< ZI(M(]7M1,07M27Y1171; Yii) = ZI(Ui§Y1,i)
i—1 =1

with U; = (Mo, My, Ma,Y{ ™). Here, (e) and (c) use that
Y1 = Ys and that (Y1, Yz ;) ——X;—o—(Mo, My ¢, Mo, Y5~ )
and (Y7, Y5")—o—X"—o—(My, M; ¢, M3). Moreover,

(a)
nRyp —ne, < T(Myp; Yy |Mo, My ¢, Mo)

= ZI(Ml,p; Y14 Mo, My ¢, My, Y ™)

i=1

= Z[(Xi;yl,iwi)a
i=1
and

TL(R0+R1 + ngp) — NEp

(a)
< I(Mo, My, My o YT') + I(Map; Yo' | Mo, My, Mo )

<Y I(My, My, My, Y™ Y515 Y)
i=1
—I(Y3' 13 Vil Mo, My, My e, YY)
+1(Map; Yo il Mo, My, Mo, Y3' 1, Y7 Y)
+I(Y{ ™ Yo i | Mo, My, M, Y1)

b - i— n
® ZI(MO,Mth,mY1 17Y2,i+1§Y1,i)
i=1
+I(Xi§1/2,i|MOaM17M2,07Y1i_17Y27,Li+1)
N & -
< ZI(M(),Ml,MQ,C7Y11_17Y27,1i+1;Yl,i)
i=1

+I(X;; Y15\ Mo, My, My, Yffly Y3'ii1)
= I(Xi, Y1)
i—1

where in (f) we used Y; = Y2 and the Markov chain
(Y15, Ya,s)—o—Xi—o—(Mo, My, Ma o, Y{ ™1 Y3 ).
Direct part: Follows from by setting V' = U and from

I(U;Y2) < I(U;Y3) + 1(U; Y2|U) = I(U; Y3)
I(X;Y1)< I(U; Ys) + I(X; Y1|0),

which hold because Y3 = Y; > Y, implies I(U;Y3) >
max{I(U;Y1),I(U;Ys)} for any U——X——(Y7, Y5, Y3).
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