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Abstract—We consider the capacity region of a three receiver
broadcast channel with some message cognition at two receivers.
The problem generalizes the bi-directional broadcast channel to
include a third receiver, a common message, and (partial) message
cognition. We characterize the capacity region for several classes
of less noisy, more capable, and deterministic broadcast channels.

I. INTRODUCTION

A canonical cooperative-communications problem is the bi-
directional broadcast channel (BC) [1], which is a special case
of the almost lossless joint source-channel coding problem
in [2]. In this paper we generalize the bi-directional BC to
the problem in Fig. 1, i.e., to include a third receiver and a
common message. Unlike the bi-directional BC [1], our setup
of Fig. 1 is not a special case of [2], but rather closely related
to the lossy joint source-channel coding problem in [3].

We will also extend the setup in Fig. 1 to a setup where
Receivers 1 and 2 have only partial cognition of each other’s
messages. The capacity region for the two-user BC with
degraded message sets and partial message cognition was first
studied in [4].

Our goal is to determine the capacity region of the setup
in Fig. 1 as well as the capacity region of the extended setup
with partial message cognition.

In Fig. 1, the Transmitter wishes to send three messages,
M0, M1, and M2, to the receivers. Receiver 1 requires the
private message M1 and the common message M0; Receiver 2
requires the private message M2 and M0; and Receiver 3
requires only M0. The messages are modelled as independent
random variables, where each Mk is uniformly distributed over
the set Mk , {1, 2, . . . , b2nRkc}, for k ∈ {0, 1, 2}. Here Rk

denotes the transmission rate of message Mk, and n denotes
the blocklength.

The BC is discrete and memoryless. Denoting by X the
channel input alphabet and by Yk the channel output alphabet
at Receiver k, the channel input Xn , (X1, . . . , Xn) takes
value in Xn and Receiver k’s outputs Y n

k , (Yk,1, . . . , Yk,n)
take value in Yn

k , for k ∈ {1, 2, 3}. We consider a memoryless
BC so that the conditional distribution of (Y n

1 , Y
n
2 , Y

n
3 ) given

Xn is defined by PY1,Y2,Y3|X(y1, y2, y3|x).
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Fig. 1. Broadcast channel with three receivers and message cognition.

partial message cognition; i.e., Receiver 1 (resp. 2) knows only
part of the message M2 (resp. M1).

II. FULL COGNITION AT RECEIVERS 1 AND 2

Throughout this section we assume full cognition at Re-
ceivers 1 and 2, i.e., that Receiver 1 is cognizant of the entire
message M2 and Receiver 2 of the entire message M1.

A code consists of four maps: An encoder at the Transmitter,

f :M0 ×M1 ×M2 → Xn

and a decoder at each receiver,

g1 : Yn
1 ×M2 →M0 ×M1

g2 : Yn
2 ×M1 →M0 ×M2

g3 : Yn
3 →M0.

The Transmitter sends Xn = f(M0,M1,M2); Receiver 1 de-
codes (M̂0,1, M̂1) = g1(Y

n
1 ,M2); Receiver 2 decodes (M̂0,2,

M̂2) = g2(Y
n
2 ,M1); and Receiver 3 decodes M̂0,3 = g3(Y

n
3 ).

The average joint probability of error is

Pe , P
[
M̂0,3 6=M0 or (M̂0,1, M̂1) 6= (M0,M1)

or (M̂0,2, M̂2) 6= (M0,M2)
]
.

The rates (R0, R1, R2) are said to be achievable if for each
ε > 0 there exists a code (f, g1, g2, g3) with Pe ≤ ε for some
sufficiently large blocklength n. The capacity region C is the
closure of the set of all achievable rates.



We first give an inner bound for C. This bound is achieved
using a combination of superposition coding, rate-splitting,
and bi-directional coding. Roughly, the superposition cloud-
centers carry the common message M0 and the satellites
simultaneously carry the bi-directional messages (M1,M2).
Rate-splitting is used to transfer rate from the satellites to the
cloud-centers.

Let R∗in denote the set of rate tuples (R0, R1, R2) satisfying

R0 ≤ I(U ;Y3) (1a)

R0 +R1 ≤ min
{
I(X;Y1), I(U ;Y3) + I(X;Y1|U)

}
(1b)

R0 +R2 ≤ min
{
I(X;Y2), I(U ;Y3) + I(X;Y2|U)

}
, (1c)

for some (U,X) with U (−− X (−−(Y1, Y2, Y3).
Proposition 1: C ⊇ R∗in, and R∗in is convex.

Proof: The proposition is a corollary of Theorem 2, which
is given later in Section III. See Remark 3.

Remark 1: The capacity region in [1, Thm. 2.5] can be
recovered from Proposition 1 by setting U to be constant.

The next theorem gives five non-trivial settings for which
the inclusion in Proposition 1 is an equality. We first need
two definitions from [5, p. 121]. A channel output Yi is said
to be less noisy than another output Yj (abbreviated Yi �
Yj) if I(U ;Yi) ≥ I(U ;Yj) holds for every auxiliary random
variable U with U (−−X (−− (Yi, Yj). A channel output Yi is
said to be more capable than another output Yj if I(X;Yi) ≥
I(X;Yj) holds for every X .

Theorem 1: R∗in = C in each of the following settings.

(i) If Y1 � Y3 and Y2 � Y3, then C is equal to the set of
rate tuples (R0, R1, R2) satisfying

R1 ≤ I(X;Y1|U)

R2 ≤ I(X;Y2|U)

R0 ≤ I(U ;Y3)

for some (U,X) with U(−−X(−−(Y1, Y2, Y3).
(ii) If Y3 is more capable than Y1 and Y2, then C is equal to

the set of all rate tuples (R0, R1, R2) satisfying

R0 +R1 ≤ I(X;Y1)

R0 +R2 ≤ I(X;Y2)

for some X .
(iii) If Y3 � Y1, then C is equal to the set of rate tuples

(R0, R1, R2) satisfying

R0 +R1 ≤ I(X;Y1)

R0 +R2 ≤ I(X;Y2)

R0 +R2 ≤ I(U ;Y3) + I(X;Y2|U)

R0 ≤ I(U ;Y3)

for some (U,X) with U(−−X(−−(Y1, Y2, Y3).
(iv) If the marginal conditional distributions pY1|X and pY2|X

are the same, then C is equal to the set of rate tuples
(R0, R1, R2) satisfying

R0 +R1 ≤ I(X;Y1)

R0 +R2 ≤ I(X;Y2)

R0 +R1 ≤ I(U ;Y3) + I(X;Y1|U)

R0 +R2 ≤ I(U ;Y3) + I(X;Y2|U)

R0 ≤ I(U ;Y3)

for some (U,X) with U(−−X(−−(Y1, Y2, Y3).
(v) If Y3 is a deterministic function of X , then C is equal to

the set of all rate tuples (R0, R1, R2) satisfying

R0 ≤ H(Y3)

R0 +R1 ≤ I(X;Y1)

R0 +R2 ≤ I(X;Y2)

for some X .

Proof: The proof for (i), (iii), and (iv) are omitted due
to space constraints. A sketch of the proof for case (v) can
be found in Section IV. The direct part for (ii) follows by
setting U = X in (1) and using the more capable condition.
The converse to (ii) is trivial.

III. PARTIAL COGNITION AT RECEIVERS 1 AND 2

A natural generalization of the setup in Fig. 1 is to vary
the quantity of side information at Receivers 1 and 2, as it
was done for the two-receiver BC setup in [4]. Specifically,
suppose that the bi-directional messages take the form

Mk = (Mk,c,Mk,p), k = 1, 2,

where Mk,c and Mk,p are independent and uniformly dis-
tributed on {1, 2, . . . , b2nRk,cc} and {1, 2, . . . , b2nRk,pc}, re-
spectively. Receiver 1 is now cognizant of message M2,c –
instead of M2 – and is ignorant of M2,p. Similarly, Re-
ceiver 2 is cognizant of M1,c and ignorant of M1,p. The
capacity region for the setup with partial cognition is defined
analogously to C; i.e., it is the set of all achievable rates
(R0, R1,c, R1,p, R2,c, R2,p). We let Cpart denote this region. For
brevity, we retain R1 = R1,c +R1,p and R2 = R2,c +R2,p.

Remark 2: The partial-cognition setup includes the general
two-receiver BC [5, Sect. 8] as a special case. Hence, we do
not expect to completely characterise Cpart.

The next theorem is proved using a combination of super-
position coding, rate-splitting, and bi-directional coding. Let
R(1)

in,part denote the set of all rates (R0, R1,c, R1,p, R2,c, R2,p)
satisfying

R0 ≤ I(U ;Y3) (7a)
R1,p ≤ I(X;Y1|V ) (7b)

R0 +R2 ≤ min{I(V ;Y2), I(U ;Y3) + I(V ;Y2|U)} (7c)
R0 +R1 +R2,p ≤ min{I(X;Y1),

I(U ;Y3) + I(X;Y1|U)} (7d)

for some (U, V,X) with U(−−V(−−X(−−(Y1, Y2, Y3). Let
R(2)

in,part denote the set of all rates (R0, R1,c, R1,p, R2,c, R2,p)
satisfying (7) with indices 1 and 2 interchanged. Let

Rin,part , convex hull
(
R(1)

in,part ∪R
(2)

in,part

)
. (8)

Theorem 2: Cpart ⊇ Rin,part.



Remark 3: The inner bound of Proposition 1 follows di-
rectly from Theorem 2 by setting V = X .

Proof of Theorem 2: We now sketch the coding theorem.
Code Construction: Split the messages M1,c,M2,c,M2,p as

M1,c = (M(1)

1,c,M
(2)

1,c), M2,c = (M(1)

2,c,M
(2)

2,c),

and M2,p = (M(1)

2,p,M
(2)

2,p)

with rates R(k)

1,c, R(k)

2,c, and R(k)

2,p, k ∈ {1, 2}. Construct two new
messages M(1)

⊕ and M(2)

⊕ as follows

M(k)

⊕ =
(
M(k)

1,c +M(k)

2,c

)
modulo 2nmax{R(k)

1,c,R
(k)
2,c}.

We use a three-layer superposition coding scheme. The
cloud-center encodes M0, M(1)

⊕ , M(1)

2,p, the first satellite encodes
M(2)

⊕ ,M
(2)

2,p, and the top-most satellite encodes M1,p. For the
random code construction we use the law PU to generate the
cloud centers, the conditional law PV |U for the first satellites,
and the conditional law PX|V for the top-most satellites.

Decoding: Receiver 3 decodes the cloud center, Receiver 2
decodes the cloud center and the first satellite, and Receiver 1
decodes the cloud center and both satellites. Arbitrary small
probability of error is achieved if

R0 +R(1)

1,c +R(1)

2,p ≤ I(U ;Y3) (9a)

R0 +R(1)

2,c +R(1)

2,p ≤ I(U ;Y3) (9b)
R0 +R2 ≤ I(V ;Y2) (9c)

R(2)

2,c +R(2)

2,p ≤ I(V ;Y2|U) (9d)
R0 +R1 +R2,p ≤ I(X;Y1) (9e)

R(2)

1,c +R1,p +R(2)

2,p ≤ I(X;Y1|U) (9f)
R1,p ≤ I(X;Y1|V ). (9g)

Applying the Fourier-Motzkin elimination algorithm results in
the rate constraints in (7).

Remark 4: For the region defined in (7), it can be shown
following [5, Appendix C] that it suffices to consider auxiliary
random variables (U, V ) ∈ U×V with cardinality |U| ≤ |X |+
4 and |V| ≤ (|X | + 4)(|X | + 1). Tighter constraints can be
obtained for some special cases.

Theorem 3: Cpart = Rin,part in each of the following settings.

(i) If Y1 � Y2 � Y3, then Cpart is the set of rates
(R0, R1,c, R1,p, R2,c, R2,p) satisfying

R0 ≤ I(U ;Y3) (10a)
R1,p ≤ I(X;Y1|V ) (10b)
R2 ≤ I(V ;Y2|U) (10c)

R1 +R2,p ≤ I(X;Y1|U) (10d)

for some (U, V,X) with U(−−V(−−X(−−(Y1, Y2, Y3).
(ii) If Y1 � Y3 � Y2, then Cpart is the set of rates

(R0, R1,c, R1,p, R2,c, R2,p) satisfying

R0 ≤ I(U ;Y2) (11a)
R1,p ≤ I(X;Y1|V ) (11b)
R2 ≤ I(V ;Y2|U) (11c)

R1 +R2,p ≤ I(X;Y1|U) (11d)

for some (U, V,X) with U(−−V(−−X(−−(Y1, Y2, Y3).

(iii) If Y3 � Y1 � Y2, then Cpart is the set of rates
(R0, R1,c, R1,p, R2,c, R2,p) satisfying

R1,p ≤ I(X;Y1|U) (12a)
R0 +R2 ≤ I(U ;Y2) (12b)

R0 +R1 +R2,p ≤ I(X;Y1) (12c)

for some (U,X) with U(−−X(−−(Y1, Y2, Y3).

Proof: See Section IV.
When Y1 � Y3 � Y2 or Y3 � Y1 � Y2, the capacity region
depends on the channel law PY3|X to Receiver 3 only through
the fact that it must satisfy the less-noisy conditions.

We observe that when Y3 � Y1 � Y2, a two-layer superpo-
sition coding scheme suffices to achieve capacity. Moreover,
in this case, the result remains valid also when Y3 is more
capable than Y1, but not less noisy.

Proposition 2: If Y3 is more capable than Y1 and Y3, Y1 �
Y2, then Cpart is the set of rates (R0, R1,c, R1,p, R2,c, R2,p)
satisfying (12) for some (U,X) with U(−−X(−−(Y1, Y2, Y3).

Proof: The converse follows by noting that our converse
in Section IV-B for case (iii) only requires that Y1 � Y2,
and thus remains valid in this slightly weaker setup. The
achievability follows by modifying our scheme achieving
R(1)

in,part so that Receiver 3 also decodes the two satellites, in
addition to the cloud center.

Corollary 3.1: The capacity regions for the cases Y2 �
Y1 � Y3, Y2 � Y3 � Y1, and Y3 � Y2 � Y1 directly follow
from the previous theorem. The regions are given by (10),
(11), and (12) where we have to exchange the indices 1 and
2. Similarly, the capacity region for the case Y3 more capable
than Y2 and Y1, Y3 � Y2 is given by (12) where again the
indices 1 and 2 have to be exchanged.

In the usual way, Theorem 3 can be adapted to the Gaussian
BC, where Yk = X +Zk with Zk ∼ N

(
0, σ2

k

)
. For Gaussian

BCs the capacity region takes on a particularly simple form.
This can be proved with the entropy-power inequality and the
maximal entropy property for a fixed second moment.

Corollary 3.2: Depending on the variances σ2
1 , σ

2
2 , σ

2
3 > 0,

the capacity Cpart for Gaussian channels is given as follows.

(i) If σ2
3 ≥ σ2

2 ≥ σ2
1 , then Cpart is the set of all rates

(R0, R1,c, R1,p, R2,c, R2,p) satisfying

R0 ≤
1

2
log

(
1 +

αP

(1− α)P + σ2
3

)
(13a)

R1 ≤
1

2
log

(
1 +

(1− α− β)P
σ2
1

)
+R1,c (13b)

R2 ≤
1

2
log

(
1 +

βP

(1− α− β)P + σ2
2

)
(13c)

R1 +R2 ≤
1

2
log

(
1 +

(1− α)P
σ2
1

)
+R2,c (13d)

for some α, β ∈ [0, 1] such that α+ β ≤ 1.
(ii) If σ2

2 ≥ σ2
3 ≥ σ2

1 , then Cpart is the set of rates



(R0, R1,c, R1,p, R2,c, R2,p) satisfying

R0 ≤
1

2
log

(
1 +

αP

(1− α)P + σ2
2

)
(14a)

R1 ≤
1

2
log

(
1 +

(1− α− β)P
σ2
1

)
+R1,c (14b)

R2 ≤
1

2
log

(
1 +

βP

(1− α− β)P + σ2
2

)
(14c)

R1 +R2 ≤
1

2
log

(
1 +

(1− α)P
σ2
1

)
+R2,c (14d)

for some α, β ∈ [0, 1] such that α+ β ≤ 1.
(iii) If σ2

2 ≥ σ2
1 ≥ σ2

3 , then Cpart is the set of rates
(R0, R1,c, R1,p, R2,c, R2,p) satisfying

R1 ≤
1

2
log

(
1 +

(1− α)P
σ2
1

)
+R1,c (15a)

R0 +R2 ≤
1

2
log

(
1 +

αP

(1− α)P + σ2
2

)
(15b)

R0 +R1 +R2 ≤
1

2
log

(
1 +

P

σ2
1

)
+R2,c. (15c)

for some α ∈ [0, 1].

Remark 5: From the above capacity expressions we notice
the following. In the above setups, when R1,c = 0, i.e., Re-
ceiver 2 does not have any knowledge about Message M1, then
providing M2,c (even when M2,c = M2) to Receiver 1 does
not increase capacity. In fact, providing M2,c to Receiver 1
only increases the capacity when R1,c is above a certain
threshold that depends on the channel parameters. In contrast,
providing M1,c to Receiver 2 is always beneficial.

IV. PROOFS

A. Proof of Deterministic Part of Theorem 1

We have Y3 = φ(X) for some deterministic φ : X → U .
Recall Proposition 1 and (1). Choose U = Y3 = φ(X), so that

R0 ≤ H(Y3)

R0 +R1 ≤ min{I(X;Y1), H(Y3) + I(X;Y1|Y3)}
R0 +R2 ≤ min{I(X;Y2), H(Y3) + I(X;Y2|Y3)}.

The first term in each min is larger because
Y3(−−X(−−(Y1, Y2), and so we have R0 ≤ H(Y3),
R0 +R1 ≤ I(X;Y1) and R0 +R2 ≤ I(X;Y2). The converse
is obvious.

B. Proof of Theorem 3

We only present the essential parts of the proof. Standard
arguments finalize the converses. In what follows, inequali-
ties (a) are justified by Fano’s inequality, equalities (b) by
Csiszár’s sum identity, and inequalities (c) by [6, Lemma 1].
(i) Y1 � Y2 � Y3.
Converse: For any achievable rate tuple we have

nR0 − nεn
(a)

≤ I(M0;Y
n
3 ) ≤

n∑
i=1

I(M0, Y
i−1
3 ;Y3,i)

=

n∑
i=1

I(M0;Y3,i) + I(Y i−1
3 ;Y3,i|M0)

(c)

≤
n∑

i=1

I(M0;Y3,i) + I(Y i−1
2 ;Y3,i|M0)

=

n∑
i=1

I(M0, Y
i−1
2 ;Y3,i) =

n∑
i=1

I(Ui;Y3,i)

with Ui = (M0, Y
i−1
2 ). In (c) we can apply [6, Lemma 1]

because Y2 � Y3 and (Y n
2 , Y

n
3 )(−−Xn(−−M0.

We also have

nR2 − nεn
(a)

≤ I(M2;Y
n
2 |M0,M1c)

≤
n∑

i=1

I(M0,M1,c,M2, Y
i−1
2 ;Y2,i|M0, Y

i−1
2 )

=

n∑
i=1

I(Vi;Y2,i|Ui) (16)

with Vi = (M0,M1,c,M2, Y
i−1
2 ) ≡ (Ui,M1,c,M2) which

satisfies Ui(−−Vi(−−Xi(−−(Y1,i, Y2,i, Y3,i).
Next,

nR1,p − nεn
(a)

≤ I(M1,p;Y
n
1 |M0,M1,c,M2)

=

n∑
i=1

I(Xi;Y1,i|M0,M1,c,M2, Y
i−1
1 )

=

n∑
i=1

I(Xi;Y1,i|M0,M1,c,M2)

−I(Y i−1
1 ;Y1,i|M0,M1,c,M2)

(c)

≤
n∑

i=1

I(Xi;Y1,i|M0,M1,c,M2)

−I(Y i−1
2 ;Y1,i|M0,M1,c,M2)

=

n∑
i=1

I(Xi;Y1,i|Vi) (17)

where in (c) we can apply [6, Lemma 1] because Y1 � Y2
and (Y n

1 , Y
n
2 )(−−Xn(−−(M0,M1,c,M2). Finally,

n(R1+R2,p)− nεn
(a)

≤ I(M1;Y
n
1 |M0,M2,c) + I(M2,p;Y

n
2 |M0,M1,M2,c)

≤
n∑

i=1

I(M1, Y
n
2,i+1;Y1,i|M0,M2,c, Y

i−1
1 )

−I(Y n
2,i+1;Y1,i|M0,M1,M2,c, Y

i−1
1 )

+I(M2,p;Y2,i|M0,M1,M2,c, Y
n
2,i+1, Y

i−1
1 )

+I(Y i−1
1 ;Y2,i|M0,M1,M2,c, Y

n
2,i+1)

(b)
=

n∑
i=1

I(M1,M2,c, Y
n
2,i+1;Y1,i|M0, Y

i−1
1 )

+I(Xi;Y2,i|M0,M1,M2,c, Y
n
2,i+1, Y

i−1
1 )

(d)

≤
n∑

i=1

I(M1,M2,c, Y
n
2,i+1;Y1,i|M0, Y

i−1
1 )



+I(Xi;Y1,i|M0,M1,M2,c, Y
n
2,i+1, Y

i−1
1 )

=

n∑
i=1

I(Xi;Y1,i|M0, Y
i−1
1 )

=

n∑
i=1

I(Xi;Y1,i|M0)− I(Y1,i;Y i−1
1 |M0)

(c)

≤
n∑

i=1

I(Xi;Y1,i|M0)− I(Y1,i;Y i−1
2 |M0)

=

n∑
i=1

I(Xi;Y1,i|Y i−1
2 ,M0) =

n∑
i=1

I(Xi;Y1,i|Ui) (18)

where in (c) and (d) we used that Y1 � Y2 and the Markov
chains (Y1,i, Y2,i)(−−Xi(−−(M0,M1,M2, Y

i−1
1 , Y n

2,i+1) and
(Y n

1 , Y
n
2 )(−−Xn(−−M0.

Direct part: Follows from (7) and from

I(V ;Y2)≥ I(U ;Y3) + I(V ;Y2|U)

I(X;Y1)≥ I(U ;Y3) + I(X;Y1|U),

where the latter inequalities hold because Y1 � Y2 �
Y3 implies I(U ;Y3) ≤ min{I(U ;Y1), I(U ;Y2)} for any
U(−−V(−−X(−−(Y1, Y2, Y3).
(ii) Y1 � Y3 � Y2.
Converse: For any achievable rate tuple we have

nR0 − nεn
(a)

≤ I(M0;Y
n
2 )

≤
n∑

i=1

I(M0, Y
i−1
2 ;Y2,i) =

n∑
i=1

I(Ui;Y2,i)

with Ui = (M0, Y
i−1
2 ). In the same way as before, we can

prove bounds (16), (17), and (18) with Vi = (Ui,M1,c,M2),
which satisfies Ui(−−Vi(−−Xi(−−(Y1,i, Y2,i, Y3,i).
Direct part: Follows from (7) and from

I(V ;Y2)≤ I(U ;Y3) + I(V ;Y2|U)

I(X;Y1)≥ I(U ;Y3) + I(X;Y1|U),

which hold because Y1 � Y3 � Y2 implies I(U ;Y1) ≥
I(U ;Y3) ≥ I(U ;Y2) for any U(−−V(−−X(−−(Y1, Y2, Y3).
(iii) Y3 � Y1 � Y2.
Converse: For any achievable rate tuple we have

n(R0+R2)− nεn
(a)

≤ I(M0,M2;Y
n
2 |M1,c)

≤
n∑

i=1

I(M0,M1,c,M2, Y
i−1
2 ;Y2,i)

(e)

≤
n∑

i=1

I(M0,M1,c,M2, Y
i−1
2 ;Y1,i)

=

n∑
i=1

I(M0,M1,c,M2;Y1,i)

+I(Y i−1
2 ;Y1,i|M0,M1,c,M2; )

(c)

≤
n∑

i=1

I(M0,M1,c,M2, Y
i−1
1 ;Y1,i) =

n∑
i=1

I(Ui;Y1,i)

with Ui = (M0,M1,c,M2, Y
i−1
1 ). Here, (e) and (c) use that

Y1 � Y2 and that (Y1,i, Y2,i)(−−Xi(−−(M0,M1,c,M2, Y
i−1
2 )

and (Y n
1 , Y

n
2 )(−−Xn(−−(M0,M1,c,M2). Moreover,

nR1,p − nεn
(a)

≤ I(M1,p;Y
n
1 |M0,M1,c,M2)

=

n∑
i=1

I(M1,p;Y1,i|M0,M1,c,M2, Y
i−1
1 )

=

n∑
i=1

I(Xi;Y1,i|Ui),

and

n(R0+R1 +R2,p)− nεn
(a)

≤ I(M0,M1,M2,c;Y
n
1 ) + I(M2,p;Y

n
2 |M0,M1,M2,c)

≤
n∑

i=1

I(M0,M1,M2,c, Y
i−1
1 , Y n

2,i+1;Y1,i)

−I(Y n
2,i+1;Y1,i|M0,M1,M2,c, Y

i−1
1 )

+I(M2,p;Y2,i|M0,M1,M2c, Y
n
2,i+1, Y

i−1
1 )

+I(Y i−1
1 ;Y2,i|M0,M1,M2,c, Y

n
2,i+1)

(b)
=

n∑
i=1

I(M0,M1,M2,c, Y
i−1
1 , Y n

2,i+1;Y1,i)

+I(Xi;Y2,i|M0,M1,M2,c, Y
i−1
1 , Y n

2,i+1)

(f)

≤
n∑

i=1

I(M0,M1,M2,c, Y
i−1
1 , Y n

2,i+1;Y1,i)

+I(Xi;Y1,i|M0,M1,M2,c, Y
i−1
1 , Y n

2,i+1)

=

n∑
i=1

I(Xi, Y1,i)

where in (f) we used Y1 � Y2 and the Markov chain
(Y1,i, Y2,i)(−−Xi(−−(M0,M1,M2,c, Y

i−1
1 , Y n

2,i+1).
Direct part: Follows from (7) by setting V = U and from

I(U ;Y2)≤ I(U ;Y3) + I(U ;Y2|U) = I(U ;Y3)

I(X;Y1)≤ I(U ;Y3) + I(X;Y1|U),

which hold because Y3 � Y1 � Y2 implies I(U ;Y3) ≥
max{I(U ;Y1), I(U ;Y2)} for any U(−−X(−−(Y1, Y2, Y3).
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