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Abstract—This paper considers the problem of variable-length
coding over a binary-input channel with noiseless feedback. A
deterministic sequential coding scheme is proposed and shown to
attain the optimal error exponent for any binary-input channel
whose capacity is achieved by the uniform input distribution.
The proposed scheme is deterministic and has only one phase
of operation, in contrast to all previous coding schemes that
achieve the optimal error exponent.

Index Terms—Binary-input channel, reliability function, op-
timal error exponent, variable-length coding.

I. INTRODUCTION

In his seminal paper [1], Burnashev provided upper and
lower bounds on the minimum number of expected channel
uses τ∗ that are needed to convey a message (from a fixed
message set of size M ) with average probability of error
smaller than some ε over a discrete memoryless channel
(DMC) with feedback. The gap between the upper and lower
bounds grows at a rate much slower than the lower bound (in
terms of logM and log 1

ε ). Therefore, the bounds yield the
optimal reliability function (also known as the error exponent)

E(R) := lim
ε→0

− log ε
E[τ∗]

= C1

(

1−
R
C

)

, (1)

where C denotes the capacity of the channel, R ∈ [0, C],
is the expected rate of the code, and C1 is the maximum
Kullback–Leibler (KL) divergence between the conditional
output distributions given any two inputs.

Burnashev proved the upper bound using a two-phase
coding scheme. In the first phase, referred to as the commu-
nication phase, the transmitter tries to increase the decoder’s
belief about the true message. At the end of this phase, the
message with the highest posterior probability is selected as a
candidate. The second phase, referred to as the confirmation
phase, serves to verify the correctness of the output of phase
one. Subsequently, in [2], [3], [4], alternative two-phase
coding schemes attaining the optimal error exponent were
provided. In [5], Burnashev’s error exponent was shown to be
attainable using a two-phase scheme for a binary symmetric
channel (BSC) with an unknown crossover probability.
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In [6], [7], see also [8], a sequential, one-phase scheme for
transmission over a BSC with noiseless feedback was pro-
posed. This scheme is briefly explained next. Each message
is represented as a subinterval of size 1

M of the unit interval.
After each transmission and given the channel output, the
posterior probability of all subintervals are updated. In the
next time slot, the transmitter sends 0 if the true message’s
corresponding subinterval is below the current median, or 1
if it is above. If the current median lies within the true
message’s subinterval, then the transmitter sends 0 with prob-
ability equal to the fraction of the interval above the median
and 1 otherwise. As the rounds of transmission proceed, the
posterior probability of the true message’s subinterval most
likely grows larger than 1

2 , which pushes the median within
the message’s subinterval and thus leads to a randomized
encoding. Although this simple one-phase scheme achieves
the capacity of a BSC, it is unclear whether it attains the
optimal error exponent.

These previous results raise the question whether having
two separate phases of operation and randomized encoding
are necessary to achieve the optimal error exponent or not.
The main contribution of this paper is to propose a determin-
istic one-phase coding scheme that achieves the optimal error
exponent of any binary-input channel with noiseless feedback
whose capacity is achieved by the uniform input distribution.
The proposed coding scheme uses, in each transmission
round, the posterior probability of the messages to partition
them into two sets in a way that the probability of the presence
of the true message in each set is as close as possible to 0.5.
The transmitter then sends 0 or 1 depending on which set
includes the true message. Our proposed coding technique
differs from the sequential schemes in [6], [7], [8] in that
here the encoding is deterministic and the channel inputs
are not distributed according to the capacity-achieving input
distribution (0.5, 0.5). Nonetheless, we show that this scheme
achieves both the capacity and the optimal error exponent.

The remainder of this paper is organized as follows. In
Section II, we formulate the variable-length coding problem
with noiseless feedback. Section III focuses on binary-input
channels with noiseless feedback, explains the proposed cod-
ing scheme, and provides the main result of the paper. Finally,
we conclude the paper with a discussion of the future work
in Section IV.

Notation: A random variable is denoted by an upper case
letter (e.g. X) and its realization is denoted by a lower case
letter (e.g. x). Similarly, a random vector and its realization
are denoted by bold face symbols (e.g. X and x). The entropy
function on a vector ρ = (ρ1, ρ2, . . . , ρM ) ∈ [0, 1]M is de-



fined as H(ρ) :=
∑M

i=1 ρi log(1/ρi), with the convention that
0 log 1

0 = 0. Finally, the Kullback–Leibler (KL) divergence
between two probability distributions PZ and P ′

Z over a finite
set Z is defined as D(PZ ||P ′

Z) :=
∑

z∈Z PZ(z) log
PZ(z)
P ′

Z(z)

with the convention 0 log a
0 = 0 and b log b

0 = ∞ for
a, b ∈ [0, 1] with b 6= 0.

II. VARIABLE-LENGTH CODING WITH NOISELESS

FEEDBACK

Consider the problem of variable-length coding over a
discrete memoryless channel (DMC) with noiseless feedback
as depicted in Fig. 1. The DMC is described by finite input
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Fig. 1. A noisy memoryless channel with a noiseless causal feedback link.

and output sets X and Y , and a collection of conditional
probabilities P (Y |X). Let C denote the Shannon capacity of
this DMC:

C = max
PX

I(X ;Y ),

and C1 the Kullback–Leibler (KL) divergence between its two
most distinguishable inputs:

C1 = max
x,x′∈X

D(P (Y |X = x)||P (Y |X = x′)).

In variable-length coding, as opposed to fixed-length cod-
ing, the total transmission time τ is not known before the
transmission starts but instead is a random stopping time that
is decided at the receiver as a function of the observed channel
outputs. Thanks to the noiseless feedback, the transmitter
is also informed of the channel outputs and hence of the
stopping time.

The transmitter wishes to communicate a message θ to the
receiver, where θ is uniformly distributed over the message set
Ω = {1, 2, . . . ,M}. To this end, it produces channel inputs
Xt for t = 1, . . . , τ , which it can compute as a function of
the message θ and (thanks to the noiseless causal feedback)
also of the past channel outputs Y1, . . . , Yt−1:

Xt = et(θ, Y1, . . . , Yt−1), t = 1, . . . , τ, (2)

for some encoding function et : Ω× Yt−1 → X .
After observing the τ channel outputs Y1, . . . , Yτ , the

receiver guesses the message θ as

θ̂ = d(Y1, . . . , Yτ ), (3)

for some decoding function d : Yτ → Ω. The probability of
error of the scheme is thus

Pe := Pr(θ̂ 6= θ).

For a fixed DMC and for a given ε > 0, the goal is to find
encoding and decoding rules as in (2) and (3), and a stopping

time τ such that the probability of error satisfies Pe ≤ ε
and the expected number of channel uses E[τ ] is minimized.
Let τ∗ denote the random stopping time that achieves this
minimum.

In his seminal paper [1], Burnashev provided upper and
lower bounds on the minimum expected number of channel
uses E[τ∗] for a large class of DMCs and arbitrary ε > 0.

Fact 1 (Theorems 1 and 2 of [1]). For any DMC with 0 <
C1 < ∞ and positive capacity C > 0:

E[τ∗] ≥
(

logM
C

+
log 1

ε

C1

)

(1− o(1)), (4)

and

E[τ∗] ≤
(

logM
C

+
log 1

ε

C1

)

(1 + o(1)), (5)

where o(1) → 0 as ε/M → 0.

Defining the rate as

R :=
logM
E[τ∗]

,

we obtain from these bounds the optimal variable-length
coding error exponent:

Fact 2 (Theorem 3 of [1]). In the presence of noiseless
feedback, the optimal variable-length error exponent of a
DMC with 0 < C1 < ∞ is:

E(R) := lim
ε→0

− log ε
E[τ∗]

= C1

(

1−
R
C

)

. (6)

Burnashev proved the upper bound (5) using the following
two-phase scheme [1]. While in the first phase (communica-
tion phase) the transmitter iteratively refines the receiver’s be-
lief about the true message, in the second phase (confirmation
phase) it simply communicates whether the receiver’s highest
belief after the first phase corresponds to the true message.
In [2], [4], it was shown that the sequential scheme in the
first phase can be exchanged by any capacity achieving block
coding scheme.

Inequality (4) was proved in [1] using a Martingale argu-
ment, and it was reproved in an alternative way in [9], [10]
that parallels the two-phase coding scheme in [2]. In [11], us-
ing the dynamic programming representation of the problem,
a concise and more intuitive proof of lower bound (4) was
provided.

III. BINARY-INPUT CHANNELS WITH SYMMETRIC

CAPACITY-ACHIEVING INPUT DISTRIBUTION

We focus on channels with binary inputs, i.e., |X | = 2,
with finite and positive C,C1, and with a uniform capacity-
achieving input distribution. This is a general class of chan-
nels which includes the binary symmetric channel (BSC)
with cross-over probability p ∈ (0, 1), as well as the non-
symmetric channel in Fig. 2 for η ∈ (0, 1). For ease of
notation, in the following we let X = {0, 1}, and assume
that C1 = D(P (Y |X = 0)||P (Y |X = 1)).



Fig. 2. Binary-input ternary-output channel with capacity-achieving input
distribution (0.5, 0.5).

Before describing and analyzing our scheme in Sec-
tions III-A and III-B, we give some definitions. For each
t = 0, 1, . . . , τ and each possible message i ∈ Ω, let ρi(t) be
the receiver’s posterior (or belief) about θ = i after observing
Y t := (Y1, . . . , Yt):

ρi(t) := Pr(θ = i|Y t), (7)

where Y 0 = ∅, and thus ρi(0) = Pr(θ = i) denotes the
receiver’s initial belief of θ = i before the transmission starts.
(In our communication setup described in Section II we have
ρi(0) = 1

M for all i ∈ Ω. The scheme and its analysis however
also hold for general initial beliefs.) Let further

ρ(t) := (ρ1(t), . . . , ρM (t)), t = 0, 1, . . . , τ.

For shortness we will also write ρ for ρ(0) and ρi for ρi(0).

A. Variable-Length Coding Scheme

The encoder applies a sequential encoding rule that at
each time t = 1, . . . , τ depends only on the message θ and
the current belief state ρ(t − 1). (Notice that thanks to the
noiseless feedback, before producing the time-t input, also the
encoder can compute ρ(t − 1).) The encoder first partitions
the set of messages Ω into two non-empty sets S0(t− 1) and
S1(t− 1) such that

∑

i∈S0(t−1)

ρi(t− 1) ≥
∑

j∈S1(t−1)

ρj(t− 1), (8)

and for any other partition {Ŝ0, Ŝ1}
∑

i∈S0(t−1)

ρi(t− 1)−
∑

j∈S1(t−1)

ρj(t− 1)

≤
∣

∣

∣

∣

∑

i∈Ŝ0

ρi(t− 1)−
∑

j∈Ŝ1

ρj(t− 1)
∣

∣

∣

∣

. (9)

In other words, it partitions Ω into sets S0(t−1) and S1(t−1)
such that the a posteriori probability that message θ lies in
each of the two sets given Y t−1 is as close as possible to
(0.5, 0.5), the capacity-achieving distribution. Then, it sends
Xt = 0 if θ ∈ S0(t− 1) and Xt = 1 otherwise.

The transmission is stopped as soon as one of the posteriors
becomes larger than 1 − ε, where ε > 0 is the desired
probability of error. Thus,

τ := min
{

t : max
i∈Ω

ρi(t) ≥ 1− ε
}

. (10)

The receiver produces as its guess the message with the
highest posterior:

θ̂ = argmax
i∈Ω

ρi(τ).

Remark 1. Our scheme differs from the previous one-phase
sequential schemes in [6], [7], [8] in that here the encoding
process is completely deterministic. By insisting on a deter-
ministic encoding, we can match our scheme’s inputs only
approximately to the capacity-achieving input distribution of
(0.5, 0.5). On the other hand, the proposed deterministic
encoding is such that once a particular message’s posterior
passes a certain threshold, the transmitter assigns this message
exclusively to one of the two inputs. This is critical for
achieving the optimal error exponent.

B. Performance Analysis

By construction, our scheme satisfies the constraint on the
probability of error:

Pe = E[1−max
j∈Ω

ρj(τ)] ≤ ε.

Next we show that the expected stopping time E[τ ] satisfies
the following proposition.

Proposition 1. There exists a K ′ independent of the number
of messages M and the error probability ε such that for an
initial belief ρ the scheme in Section III-A satisfies

E[τ ] ≤
H(ρ)
C

+
log 1

ε

C1
+K ′.

Corollary 1. When the initial belief ρ is uniform as assumed
in Section II, our scheme satisfies

E[τ ] ≤
logM
C

+
log 1

ε

C1
+K ′.

Remark 2. Corollary 1 implies that our coding scheme
achieves the optimal error exponent in (6) for binary-input
channels with symmetric capacity-achieving input distribu-
tion. The proposed scheme is deterministic and has only one
phase of operation, in contrast to all previous coding schemes
known to achieve the optimal error exponent.

Proof of Proposition 1: Let τi, i ∈ Ω, be Markov
stopping times defined as follows:1

τi = min {t : ρi(t) ≥ 1− ε} .

The expected stopping time of our scheme satisfies:

E[τ ] =
M
∑

i=1

ρiE[τ |θ = i]

≤
M
∑

i=1

ρiE[τi|θ = i], (11)

where the last inequality follows because τ ≤ τi for all i ∈ Ω.

1For this definition to make sense (and which we only need in the analysis)
we assume that the transmitter continues to transmit even after time τ using
the same encoding rule as before.



Now, let Ft denote the history of the receiver’s knowledge
up to time t, i.e., Ft = σ{Y t}. Moreover, for each i ∈ Ω and
each time t = 0, 1, . . . , τi, define

Ui(t) := log
ρi(t)

1− ρi(t)
.

In Appendix A, we show that for t = 0, 1, . . . , τi − 1:

E [Ui(t+ 1)|Ft, θ = i] ≥

{

Ui(t) + C if Ui(t) < 0
Ui(t) + C1 if Ui(t) ≥ 0

.

(12)

Since C and C1 are both positive, conditioned on θ = i, the
sequence {Ui(t)}τit=0 forms a submartingale with respect to
the filtration {Ft}. Furthermore, C1 ≥ C and (as shown in
Appendix B)

|Ui(t+ 1)− Ui(t)| ≤ max
y∈Y

log
maxx∈X P (Y = y|X = x)
minx∈X P (Y = y|X = x)

,

(13)

which is finite because C1 < ∞ implies that for all x ∈ X
and y ∈ Y , the transition probability P (Y = y|X = x) is
positive. Denoting the right-hand side of (13) by C2, we can
apply Lemma 1 (at the end of this section) to obtain:

E[τi|θ = i]

≤
log 1−ε

ε − log ρi
1−ρi

C1
+ log

ρi
1− ρi

1{ρi<0.5}

(

1
C1

−
1
C

)

+ F (C,C1, C2)

=
log 1−ε

ε

C1
+

log 1−ρi
ρi

C1
1{ρi≥0.5} +

log 1−ρi
ρi

C
1{ρi<0.5}

+ F (C,C1, C2)

≤
log 1−ε

ε

C1
+

log 1−ρi
ρi

C
1{ρi<0.5} + F (C,C1, C2)

≤
log 1

ε

C1
+

log 1
ρi

C
+K ′

i, (14)

where K ′
i is independent of ε and the size of the message set

M . Combining (11) and (14) and defining K ′ :=
∑

i ρiK
′
i

proves the proposition.

Lemma 1 (A slight modification of Lemma 1 in [12]). As-
sume that the sequence {ξt}, t = 0, 1, . . . forms a submartin-
gale with respect to a filtration {Ft}. Furthermore, assume
there exist positive constants K1, K2, K3, K1 ≤ K2 ≤ K3,
such that

E[ξt+1|Ft] ≥ ξt +K1 if ξt < 0,
E[ξt+1|Ft] ≥ ξt +K2 if ξt ≥ 0,
|ξt+1 − ξt| ≤ K3.

For the stopping time υ = min{t : ξt ≥ B}, B > 0, we have:

E[υ] ≤
B − ξ0
K2

+ξ01{ξ0<0}

(

1
K2

−
1
K1

)

+F (K1,K2,K3),

where the function F depends only on K1,K2,K3.

IV. DISCUSSION AND FUTURE WORK

We proposed a deterministic one-phase coding scheme for
a class of binary-input memoryless channels that achieves the
optimal error exponent of the channel.

The proposed coding scheme requires finding a partitioning
of the message set into S0(t − 1) and S1(t − 1) such that
∑

j∈S0(t−1) ρj(t− 1)−
∑

j∈S1(t−1) ρj(t− 1) is positive and
minimized. This is the optimization version of the partition
problem and has a complexity of order O(2M ). Our proof of
optimality remains valid so long as the set of messages is par-
titioned such that

∑

j∈S0(t−1) ρj(t−1)−
∑

j∈S1(t−1) ρj(t−1)
is positive and less than ρi(t − 1) for every i ∈ S0(t − 1).
It is possible, fortunately, to construct an algorithm which
partitions the message set with this less stringent condition
via sorting the beliefs and then a maximum of M2 rounds of
operations, resulting in an encoding scheme with complex-
ity O(M2).

Extending the result to general binary and k-ary symmetric
channels is the topic of ongoing research.

REFERENCES

[1] M. V. Burnashev, “Data Transmission Over a Discrete Channel
with Feedback. Random Transmission Time,” Problemy Peredachi
Informatsii, vol. 12, no. 4, pp. 10–30, 1975.

[2] H. Yamamoto and K. Itoh, “Asymptotic Performance of a Modified
Schalkwijk-Barron Scheme for Channels with Noiseless Feedback,”
IEEE Transactions on Information Theory, vol. 25, pp. 729–733, 1979.

[3] J. M. Ooi and G. W. Wornell, “Fast Iterative Coding Techniques for
Feedback Channels,” IEEE Transactions on Information Theory, vol.
44, no. 7, pp. 2960–2976, November 1998.

[4] G. Caire, S. Shamai, and S. Verdu, “Propagation, Feedback and
Belief,” 4th International Symposium on Turbo Codes & Related
Topics; 6th International ITG-Conference on Source and Channel
Coding (TURBOCODING), pp. 1–6, April 2006.

[5] A. Tchamkerten and E. Telatar, “Variable Length Coding Over an
Unknown Channel,” IEEE Transactions on Information Theory, vol.
52, pp. 2126–2145, May 2006.

[6] M. Horstein, “Sequential Transmission Using Noiseless Feedback,”
IEEE Transactions on Information Theory, vol. 9, no. 3, pp. 136–143,
July 1963.

[7] M. V. Burnashev and K. Sh. Zigangirov, “An Interval Estimation
Problem for Controlled Observations,” Problemy Peredachi Informatsii,
vol. 10, no. 3, pp. 51–61, 1974.

[8] O. Shayevitz and M. Feder, “Optimal Feedback Communication via
Posterior Matching,” IEEE Transactions on Information Theory, vol.
57, no. 3, pp. 1186–1222, March 2011.

[9] P. Berlin, B. Nakiboglu, B. Rimoldi, and E. Telatar, “A Simple
Converse of Burnashev’s Reliability Function,” IEEE Transactions on
Information Theory, vol. 55, pp. 3074–3080, July 2009.

[10] Y. Polyanskiy, H. V. Poor, and S. Verdu, “Feedback in the Non-
Asymptotic Regime,” IEEE Transactions on Information Theory, vol.
57, no. 8, pp. 4903–4925, August 2011.

[11] M. Naghshvar and T. Javidi, “Active Sequential Hypothesis Testing,”
2012, available on arXiv:1203.4626.

[12] M. V. Burnashev and K. Sh. Zigangirov, “On One Problem of
Observation Control,” Problemy Peredachi Informatsii, vol. 11, no.
3, pp. 44–52, 1975.

APPENDIX A
PROOF OF INEQUALITY (12)

We first state some definitions and lemmas.

A1. Auxiliary Lemmas and Definitions

For t = 0, 1, . . . , τ − 1, define

δ(t) :=
∑

i∈S0(t)

ρi(t)−
∑

j∈S1(t)

ρj(t). (15)



Lemma 2. For any t = 0, 1, . . . , τ − 1 and any i ∈ S0(t)
(the “larger” of the two sets), ρi(t) ≥ δ(t).

Proof: Consider the sets

Ŝ0 = S0(t)− {i} and Ŝ1 = S1(t) ∪ {i}.

If ρi(t) < δ(t), then the sets Ŝ0 and Ŝ1 are more balanced
than the sets S0(t) and S1(t), i.e., assumption (9) is violated.

Lemma 3. Let P (Y |X) be a binary-input channel of positive
capacity C > 0. Let P (X∗) be the capacity-achieving input
distribution and P (X) be an arbitrary input distribution
for this channel. Also, let P (Y ∗) and P (Y ) be the output
distributions induced by P (X∗) and P (X), respectively.
Then, for any x ∈ X such that P (X = x) ≤ P (X∗ = x):

D(P (Y |X = x)||P (Y )) ≥ D(P (Y |X = x)||P (Y ∗)) = C.

Proof: Let x ∈ X satisfy P (X = x) ≤ P (X∗ = x).
Choose λ ∈ [0, 1] such that

P (X∗ = x′) = λP (X = x′) + (1− λ)1{x′=x}, x′ ∈ X ,

and consequently P (Y ∗) = λP (Y ) + (1 − λ)P (Y |X = x).
By the convexity of the KL divergence:

D(P (Y |X = x)||P (Y ∗))
≤ λD(P (Y |X = x)||P (Y ))
+ (1 − λ)D(P (Y |X = x)||P (Y |X = x))

= λD(P (Y |X = x)||P (Y ))
≤ D(P (Y |X = x)||P (Y )). (16)

Moreover, by the Karush–Kuhn–Tucker conditions and be-
cause C > 0 and |X | = 2 imply that P (X∗ = x) > 0:

D(P (Y |X = x)||P (Y ∗)) = C. (17)

Combining (16) and (17) establishes the lemma.
Define the input probabilities

πx(t+ 1) :=
∑

j∈Sx(t)

ρj(t), x ∈ X , (18)

and for each i ∈ Ω, the extrinsic probabilities

π̃i
x(t+ 1) :=







πx(t+1)
1−ρi(t)

, i /∈ Sx(t)
πx(t+1)−ρi(t)

1−ρi(t)
, i ∈ Sx(t)

x ∈ X . (19)

A2. Inequality (12)

We fix i ∈ Ω. If Yt+1 = yt+1, the belief state evolves as

ρi(t+ 1) =
ρi(t)P (Y = yt+1|X = et+1(i, Y t))

∑M
j=1 ρj(t)P (Y = yt+1|X = et+1(j, Y t))

.

Moreover, if θ = i and i ∈ Sxi(t), then Yt+1 is distributed
according to the law P (Y |X = xi). Combining these two

observations, we have

E [Ui(t+ 1)− Ui(t)|Ft, θ = i]

= E

[

log
ρi(t+ 1)

1− ρi(t+ 1)
− log

ρi(t)
1− ρi(t)

∣

∣

∣

∣

Ft, θ = i
]

=
∑

y∈Y

P (Y = y|X = xi)

·



log
ρi(t)P (Y=y|X=xi)∑

x∈X πx(t+1)P (Y=y|X=x)

1− ρi(t)P (Y =y|X=xi)∑
x∈X πx(t+1)P (Y =y|X=x)

− log
ρi(t)

1− ρi(t)





=
∑

y∈Y

P (Y = y|X = xi)

· log
P (Y = y|X = xi)

∑

x∈X π̃i
x(t+ 1)P (Y = y|X = x)

= D(P (Y |X = xi)||P (Ỹ )), (20)

where Ỹ is the output induced by the channel P (Y |X) for
the input X̃ ∼ P (X̃ = x) = π̃i

x(t+ 1).
When Ui(t) < 0, we distinguish two cases. If i ∈ S1(t)

and xi = 1:

π̃i
1(t+ 1) < 0.5 = P (X∗ = 1),

because, by definition, π1(t + 1) ≤ 0.5 and π̃i
1(t + 1) <

π1(t+ 1). Thus, by (20) and Lemma 3:

E [Ui(t+ 1)− Ui(t)|Ft, θ = i] ≥ C. (21)

If i ∈ S0(t) and xi = 0:

π̃i
0(t+ 1) ≤ 0.5 = P (X∗ = 0),

because by Lemma 2, ρi(t) ≥ δ(t), and thus π̃i
0(t + 1) ≤

π̃i
1(t+ 1). By (20) and Lemma 3, we again conclude (21).
When Ui(t) ≥ 0, then ρi(t) ≥ 0.5 and in our coding

scheme S0(t) = {i}. Thus, xi = 0, π̃i
0(t + 1) = 0, and

Ỹ ∼ P (Y |X = 1), and by (20):

E [Ui(t+ 1)− Ui(t)|Ft, θ = i]
= D(P (Y |X = 0)||P (Y |X = 1)) = C1. (22)

APPENDIX B
PROOF OF INEQUALITY (13)

To prove (13), we note that when Yt+1 = y:

|Ui(t+ 1)− Ui(t)|

=
∣

∣

∣

∣

log
ρi(t+ 1)

1− ρi(t+ 1)
− log

ρi(t)
1− ρi(t)

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

log
ρi(t)P (Y = y|X = et+1(i, Y t))

∑

j 6=i ρj(t)P (Y = y|X = et+1(j, Y t))
·
1− ρi(t)
ρi(t)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

log
P (Y = y|X = et+1(i, Y t))

∑

j 6=i
ρj(t)

1−ρi(t)
P (Y = y|X = et+1(j, Y t))

∣

∣

∣

∣

∣

∣

≤ log
maxx∈X P (Y = y|X = x)
minx∈X P (Y = y|X = x)

.

Thus, we have

|Ui(t+ 1)− Ui(t)| ≤ max
y∈Y

log
maxx∈X P (Y = y|X = x)
minx∈X P (Y = y|X = x)

.


