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Extrinsic Jensen–Shannon Divergence:

Applications to Variable-Length Coding

Mohammad Naghshvar, Tara Javidi, and Michèle Wigger

Abstract

This paper considers the problem of variable-length coding over a discrete memoryless channel

(DMC) with noiseless feedback. The paper provides a stochastic control view of the problem whose

solution is analyzed via a newly proposed symmetrized divergence, termed extrinsic Jensen–Shannon

(EJS) divergence. It is shown that strictly positive lower bounds on EJS divergence provide non-

asymptotic upper bounds on the expected code length. Strictly positive lower bound on EJS divergence,

and hence non-asymptotic upper bounds on the expected code length, are obtained for the following

two sequential coding schemes: posterior matching and MaxEJS coding scheme which is based on a

greedy maximization of the EJS divergence.

As an asymptotic corollary of the main results, this paper also provides a rate–reliability test.

Variable-length coding schemes that satisfy the condition(s) of the test, are guaranteed to achieve the

capacity (and the optimal error exponent). The results are specialized for posterior matching and MaxEJS

to obtain a deterministic one-phase coding scheme achieving the capacity and the optimal reliability.

For the special case of symmetric binary-input channels, simpler deterministic schemes are proposed

and analyzed.

Index Terms

Discrete memoryless channel, variable-length coding, sequential analysis, feedback gain, reliability

function.
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I. INTRODUCTION

In his seminal paper [1], Burnashev provided upper and lower bounds on the minimum

expected number of channel uses E[τ ∗ǫ ] that are needed to convey a message (from a fixed

message set of size M) with average probability of error smaller than some ǫ over a discrete

memoryless channel (DMC) with feedback. For all code rates below the capacity of the DMC,

the ratio between the upper and lower bounds approaches 1 as ǫ → 0. Therefore, the bounds

yield the optimal reliability function

E(R) := lim
ǫ→0

− log ǫ

E[τ ∗ǫ ]
= C1

(

1−
R

C

)

(1)

where C denotes the capacity of the channel, R ∈ [0, C] is the expected rate of the code, and C1

is the maximum Kullback–Leibler (KL) divergence between the conditional output distributions

given any two inputs.

Burnashev proved the upper bound using a two-phase coding scheme. In the first phase,

referred to as the communication phase, the transmitter tries to increase the decoder’s belief about

the true message. At the end of this phase, the message with the highest posterior probability is

selected as a candidate. The second phase, referred to as the confirmation phase, serves to verify

the correctness of the output of phase one. Subsequently, in [2], [3] alternative two-phase coding

schemes attaining the optimal reliability function were provided, while it was shown in [4] that

Burnashev’s communication phase can be replaced with any capacity achieving block code. In

[5], Burnashev’s reliability function was shown to be attainable using a two-phase scheme for a

binary symmetric channel (BSC) with an unknown crossover probability.

In [6], [7], see also [8], a sequential, one-phase scheme for transmission over a BSC with

noiseless feedback was proposed. This scheme, first proposed in [6], is briefly explained next.

Each message is represented as a subinterval of size 1
M

of the unit interval. After each trans-

mission and given the channel output, the posterior probability of all subintervals are updated.

In the next time slot, the transmitter sends 0 if the true message’s corresponding subinterval is

below the current median, or 1 if it is above. If the current median lies within the true message’s

subinterval, then the transmitter sends 0 and 1 randomly according to weights determined by

the length of the portions of the subinterval above and below the median. As the rounds of

transmission proceed, the posterior probability of the true message’s subinterval most likely

grows larger than 1
2
, which pushes the median within the message’s subinterval and thus leads
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to a randomized encoding. This simple one-phase scheme is known to achieve the capacity of a

BSC [7], and its posterior matching extension has recently been shown to achieve the capacity

of general DMCs [8]. However, its corresponding error exponent is not studied and not known.

These previous results raise the question whether having two separate phases of operation

and randomized encoding are necessary to achieve the optimal reliability function or not. In this

paper we show that this is not the case. More generally, the main contributions of our paper are:

• This paper provides a stochastic control view of the problem of variable-length coding with

feedback. This stochastic control problem, a discrete version of that suggested in [9], is

analyzed via a newly proposed symmetrized divergence.

• Drawing parallels between mutual information and symmetrized L divergence [10], the

extrinsic Jensen–Shannon (EJS) divergence of the conditional output distributions with

respect to the receiver’s posterior probability is proposed as the key performance measure

of any given coding scheme.

• It is shown that strictly positive lower bounds on the EJS divergence provide a non-

asymptotic upper bound on the expected number of channel uses necessary for a coding

scheme to obtain a given (arbitrarily small) error probability. Specific (strictly positive)

lower bounds on the EJS divergence are derived for a variable-length version of the posterior

matching scheme and for the newly proposed MaxEJS coding scheme.

• As a corollary, a rate–reliability test for variable-length coding schemes is proposed. This

test is utilized to provide an alternative (simple and concise) proof that the variable-length

version of posterior matching achieves capacity when C1 < ∞. Furthermore, for the first

time, an achievable error exponent (reliability) is obtained for posterior matching.

• A deterministic one-phase coding scheme is proposed and it is proved that this scheme

achieves the optimal reliability function of the DMC with noiseless feedback.

The remainder of this paper is organized as follows. In Section II, we introduce the EJS

divergence and discuss some of its properties. In Section III, we formulate the problem of

channel coding with noiseless feedback. Section IV provides the main results of the paper for

general DMCs: i) an EJS-divergence based non-asymptotic analysis of variable-length coding, ii)

a specialization of this analysis to variable-length posterior matching, and iii) a specialization to

a new deterministic one-phase coding scheme that is based on greedy maximization of the EJS
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divergence. In Section V, we consider the special case of symmetric binary-input channels and

propose simple deterministic schemes. Finally, in Section VI, we analyze the achievable rates

and error exponents (reliability) of the coding schemes presented in the previous two sections.

We finish this section with some notation.

Notation: Let [x]+ = max{x, 0}. The indicator function 1{A} takes the value 1 whenever event

A occurs, and 0 otherwise. The ith element of vector v is denoted by vi. For any set S, |S|

denotes the cardinality of S. All logarithms are in base 2. The entropy function on a vector

ρ = [ρ1, ρ2, . . . , ρM ] ∈ [0, 1]M is defined as H(ρ) :=
∑M

i=1 ρi log
1
ρi

, with the convention that

0 log 1
0
= 0. We denote the conditional probability P (Y |X = x) by Px.

II. PRELIMINARIES

A. Known Symmetric Divergences and Mutual Information

We first recall some well known divergences. The Kullback–Leibler (KL) divergence be-

tween two probability distributions PY and P ′
Y over a finite set Y is defined as D(PY ‖P

′
Y ) :=

∑

y∈Y PY (y) log
PY (y)
P ′

Y
(y)

with the convention 0 log a
0
= 0 and b log b

0
= ∞ for a, b ∈ [0, 1] with

b 6= 0. The KL divergence satisfies the following lemma.

Lemma 1. For any two distributions P and Q on a set Y and α ∈ [0, 1], D(P‖αP +(1−α)Q)

is decreasing in α.

Proof: Let β ∈ [0, 1] satisfy β ≤ α. Then,

αP + (1− α)Q = γ (βP + (1− β)Q) + (1− γ)P

where γ = 1−α
1−β

≤ 1. By Jensen’s inequality and the convexity of the KL divergence:

D
(

P‖αP + (1− α)Q
)

≤ γD
(

P‖βP + (1− β)Q
)

+ (1− γ)D
(

P‖P
)

≤ D
(

P‖βP + (1− β)Q
)

(2)

where the last inequality follows because D
(

P‖P
)

= 0 and γ ≤ 1.

The KL divergence is not symmetric, i.e., in general D(PY ‖P
′
Y ) 6= D(P ′

Y ‖PY ). The J diver-

gence [11] and L divergence [10] symmetrize the KL divergence:

J(P1, P2) := D(P1‖P2) +D(P2‖P1), (3)

L(P1, P2) := D
(

P1‖
1

2
P1 +

1

2
P2

)

+D
(

P2‖
1

2
P1 +

1

2
P2

)

. (4)
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The L divergence can also be related to the Jensen difference with respect to the Shannon entropy

function [12]:

1

2
L(P1, P2) = H

(

1

2
P1 +

1

2
P2

)

−

(

1

2
H(P1) +

1

2
H(P2)

)

. (5)

The Jensen–Shannon (JS) divergence [10], [12] is defined similarly to the L divergence but for

general M ≥ 2 probability distributions. Given M probability distributions P1, P2 . . . , PM over a

set Y and a vector of a priori weights ρ = [ρ1, ρ2, . . . , ρM ], where ρ ∈ [0, 1]M and
∑M

i=1 ρi = 1,

the JS divergence is defined as [10], [12]:

JS(ρ;P1, . . . , PM) :=

M
∑

i=1

ρiD

(

Pi‖
M
∑

j=1

ρjPj

)

= H

( M
∑

i=1

ρiPi

)

−
M
∑

i=1

ρiH(Pi). (6)

Let θ be a random variable that takes values in {1, 2, . . . ,M} and has probability mass function

ρ and Y ∼ Pθ (which implies that Pr(Y = y) =
∑M

i=1 ρiPi(y)). From (6),

JS(ρ;P1, . . . , PM) = H(Y )−H(Y |θ) = I(θ; Y ) (7)

where I(θ; Y ) is the mutual information between θ and Y .

B. A New Divergence: Extrinsic Jensen–Shannon Divergence

We introduce the extrinsic Jensen–Shannon (EJS) divergence which extends the J divergence

for general M ≥ 2 probability distributions P1, . . . , PM and for an M-dimensional weight

vector ρ:

EJS(ρ;P1, . . . , PM) :=
M
∑

i=1

ρiD

(

Pi‖
∑

j 6=i

ρj
1− ρi

Pj

)

(8a)

when ρi < 1 for all i ∈ {1, . . . ,M}, and as

EJS(ρ;P1, . . . , PM) := max
j 6=i

D(Pi‖Pj) (8b)

when ρi = 1 for some i ∈ {1, . . . ,M}.

Let U(·) denote the average log-likelihood function:

U(ρ) :=

M
∑

i=1

ρi log
1− ρi
ρi

. (9)
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Lemma 2 (Properties of EJS Divergence). The EJS divergence EJS(ρ;P1, . . . , PM) as defined

in (8) satisfies the following three properties.

1) It is lower bounded by the JS divergence:

EJS(ρ;P1, . . . , PM) ≥ JS(ρ;P1, . . . , PM). (10)

2) It can be expressed as

EJS(ρ;P1, . . . , PM) = U(ρ)−
∑

y∈Y

Pρ(y)U
([ρ1P1(y)

Pρ(y)
, . . . ,

ρMPM(y)

Pρ(y)

])

(11)

where Pρ(y) =
∑M

i=1 ρiPi(y).

3) It is convex in the distributions P1, . . . , PM .

The proof of Lemma 2 is given in Appendix I.

Remark 1. The EJS divergence defined in this paper is not the unique generalization of the

J divergence. There exist other M-dimensional generalizations of the J divergence such as
∑M

i=1 ρi
∑M

j=1 ρjJ(Pi, Pj) which was studied in [13]. However, as will be discussed in details

later in the paper, properties of EJS such as the one provided by (11) above makes it a suitable

measure of information for our applications of interest.

Remark 2. The EJS divergence is equivalent to the full anthropic correction proposed in the

context of mutual information estimation [14]. In particular, the authors in [14] used the notion

of anthropic correction as an estimator of the mutual information between signals acquired in

neurophysiological experiments where only a small number of stimuli can be tested.

III. CODING OVER DMC WITH NOISELESS FEEDBACK

A. The Problem Setup

Consider the problem of coding over a discrete memoryless channel (DMC) with noiseless

feedback as depicted in Fig. 1. The DMC is described by finite input and output sets X and Y ,

and a collection of conditional probabilities P (Y |X). To simplify notation, and without loss of

generality, we assume that

X = {0, 1, . . . , |X | − 1}, (12)

Y = {0, 1, . . . , |Y| − 1}. (13)
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Encoder DecoderChannel
θ Xt Yt

Y t−1

θ̂

Fig. 1. A noisy memoryless channel with a noiseless causal feedback link.

Let C denote the Shannon capacity of the DMC P (Y |X) [15, p. 184]:

C = max
PX

I(X ; Y ), (14)

and let (π⋆
0 , π

⋆
1, . . . , π

⋆
|X |−1) be the maximizer of (14), the so-called capacity-achieving input

distribution. The operational meaning of the Shannon capacity is discussed in Section VI.

The following result will be used in our proofs.

Fact 1 (Theorem 4.5.1 in [16]). Consider a DMC with capacity-achieving input distribution

π⋆
0, π

⋆
1, . . . , π

⋆
|X |−1. For each k ∈ {0, 1, . . . , |X | − 1}, if π⋆

k > 0,

D

(

P (Y |X = k)

∥

∥

∥

∥

|X |−1
∑

l=0

π⋆
l P (Y |X = l)

)

= C.

Let C1 be the KL divergence between the two most distinguishable inputs of the DMC:

C1 = max
x,x′∈X

D(P (Y |X = x)‖P (Y |X = x′)). (15)

We also denote

C2 = max
y∈Y

maxx∈X P (Y = y|X = x)

minx∈X P (Y = y|X = x)
. (16)

In this paper, we assume C, C1, C2 are positive and finite.1

Let τ denote the total transmission time (or equivalently the total length of the code). The

transmitter wishes to communicate a message θ to the receiver, where the message is uniformly

distributed over a message set

Ω := {1, 2, . . . ,M}. (17)

1It can be easily shown that C ≤ C1 ≤ logC2 ≤ C2. Furthermore, if C1 < ∞, then the transition probability P (Y = y|X =

x) is positive for all x ∈ X and y ∈ Y , which implies that C2 < ∞ as well. Therefore, C > 0 and C1 < ∞ are sufficient to

ensure that C, C1, C2 are positive and finite.
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To this end, the transmitter produces channel inputs Xt for t = 0, 1, . . . , τ − 1, which it can

compute as a function of the message θ and (thanks to the feedback) also of the past channel

outputs Y t−1 := (Y0, Y1, . . . , Yt−1):

Xt = et(θ, Y
t−1), t = 0, 1, . . . , τ − 1, (18)

for some encoding function et : Ω× Y t → X .

After observing the τ channel outputs Y0, Y1, . . . , Yτ−1, the receiver guesses the message θ as

θ̂ = d
(

Y τ−1
)

, (19)

for some decoding function d : Yτ → Ω. The probability of error of the scheme is thus

Pe := Pr(θ̂ 6= θ).

In contrast to fixed-length coding where the total transmission time τ is deterministic and

known before the transmission starts, in this paper, our focus is on variable-length coding, i.e.,

the case where τ is a random stopping time decided at the receiver as a function of the observed

channel outputs. Thanks to the noiseless feedback, the transmitter is also informed of the channel

outputs and hence of the stopping time.

For a fixed DMC and for a given ǫ > 0, the goal is to find encoding and decoding rules as

in (18) and (19), and a stopping time τǫ such that the probability of error satisfies Pe ≤ ǫ and

the expected number of channel uses E[τǫ] is minimized. Let E[τ ∗ǫ ] be the minimum expected

number of channel uses that can be achieved by coding schemes with the stopping rule τǫ.

We shall often use the functions {γyt−1} for yt−1 ∈ Y t and t ∈ {0, 1, . . . , τ − 1} where

γyt−1 : Ω → X (20a)

i 7→ et(i, y
t−1) (20b)

to describe the encoding process. To simplify notation and where it is clear from the context,

we shall often omit the subscript yt−1 and simply write γ.

In some examples we also allow for randomized encoding rules. In this case the encoding is

described by the random encoding functions {Γyt−1} whose realizations γyt−1 are of the form

in (20). Again, for notational convenience we shall omit the subscript yt−1 where it is clear from

the context.
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Note that a variable-length code is more than a single encoding function but instead is an

adaptive and sequential rule that dictates the choice of (random) encoding functions depending

on the past channel observations and past selected encoding functions prior to the stopping time.

In this paper, we refer to this adaptive and sequential rule as an encoding scheme, c, which

together with the particular realization of channel outputs y0, y1, . . . , yτ−2, dictates the encoding

functions Γc

y0
Γc

y1
, . . . ,Γc

yτ−2 .

B. Asymptotic Bounds on Minimum Expected Length

In [1], Burnashev provided the following lower and upper bounds on the minimum expected

number of channel uses, E[τ ∗ǫ ], for a large class of DMCs and arbitrary ǫ > 0.

Fact 2 (Theorems 1 and 2 in [1]). For any DMC with C > 0 and C1 < ∞:

E[τ ∗ǫ ] ≥

(

logM

C
+

log 1
ǫ

C1

)

(1− o(1)), (21)

and

E[τ ∗ǫ ] ≤

(

logM

C
+

log 1
ǫ

C1

)

(1 + o(1)) (22)

where o(1) → 0 as ǫ → 0.2

Inequality (21) was proved in [1] using a Martingale argument, and it was reproved in

alternative ways in [17], [18].

Burnashev proved the upper bound (22) using the following two-phase scheme [1]. While

in the first phase (communication phase) the transmitter iteratively refines the receiver’s belief

about the true message, in the second phase (confirmation phase) it simply confirms whether the

receiver’s highest belief after the first phase corresponds to the true message. As shown in [2],

[4] the specific sequential scheme in the first phase can be exchanged by any capacity achieving

block coding schemes.

C. Stochastic Control View

The problem of variable-length coding with noiseless feedback is a decentralized team problem

with two agents (the encoder and the decoder) and non-classical information structure [19].

2If ǫ → 0, then o(1) → 0 regardless of M being fixed or M → ∞. For fixed ǫ, E[τ∗

ǫ ] ≈
(1−ǫ) logM

C
and hence, the positive

term o(1) 6→ 0 even if M → ∞ (see [17] for more details).
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DecoderChannel

Agent 1 Agent 2

Fictitious 

Agent

γ

Xt = γ(θ)
θ Xt Yt

Y t−1

θ̂

Fig. 2. Two-agent problem with common and private observations from the point of view of the fictitious agent.

Appealing to [20], the problem can be interpreted as a special case of active hypothesis testing

[21] in which a (fictitious) Bayesian decision maker is responsible to enhance his information

about the correct message in a speedy manner by sequentially sampling from conditionally

independent observations at the output of the channel (given the input). Here the (fictitious)

decision maker has access to the channel output symbols causally (common observations) and

is responsible to control the conditional distribution of the observations given the true message

(private observation) by selecting encoding functions for the encoder which map the message θ

to the input symbols of the channel. In other words, as also observed in [9], the problem can be

viewed as a (centralized) partially observable Markov decision problem (POMDP) with (static)

state space Ω and the observation space Y . Let E := {γ(·) : Ω → X} be the set of all mappings

from Ω to X . The action space (for the fictitious agent) becomes E ∪ {T} where T denotes the

termination of the transmission phase, hence the realization of the stopping time τ .

Casting the problem as a POMDP allows for the structural characterization of the information

state, also known as sufficient statistics: Let the decision maker’s belief about each possible

message i ∈ Ω, updated after each channel use (observation) for t = 0, 1, . . . , τ − 1, be

ρi(t) := Pr(θ = i|Y t−1). (23)

The decision maker’s posteriors about the messages collectively,

ρ(t) := [ρ1(t), ρ2(t), . . . , ρM(t)], (24)

form a sufficient statistics for our (fictitious) Bayesian decision maker. Furthermore, this (ficti-

tious) decision maker’s posterior at any time t coincides with the receiver’s posterior and, thanks
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to the perfect feedback, is available to the transmitter. (Notice that ρi(0) = Pr(θ = i) = 1
M

denotes the receiver’s initial belief of θ = i before the transmission starts.) In other words, the

selection of encoding and decoding rules as a function of this posterior does not incur any loss

of optimality [22]. In particular, the optimal receiver produces as its guess the message with the

highest posterior at time τ , i.e.,

θ̂ = argmax
i∈Ω

ρi(τ). (25)

We also note that the dynamics of the information state, i.e. the posterior, follows Bayes’

rule. More specifically, given an encoding function γ at time t and an information state ρ,

the conditional distribution of the next channel output Yt, given the past observation Y t−1, is

Pρ(y) =

M
∑

i=1

ρiP (Y = y|X = γ(i)).

Similarly, given also the output symbol Yt = y, according to Bayes’ rule, the posterior at time

t+ 1 is:

ρ(t+ 1) =
[ρ1Pγ(1)(y)

Pρ(y)
, . . . ,

ρMPM(y)

Pρ(y)

]

,

Taking cue from the seminal work of DeGroot on statistical decision theory [23], the above

stochastic control view of the variable-length coding has been used in [24], to characterize the

performance of any given coding scheme using the information utility provided by the channel

output. Information utility, here, generalizes the Shannon theoretic notion of mutual information

[23], [24]. More specifically, consider any given measure of the uncertainty of the posterior

vector; information utility is defined as the expected reduction in the uncertainty of the posterior

at time t+1 relative to that at time t. The result in [24], as also manifested in Lemma 2, implies

a characterization of the performance of a given coding scheme in terms of the symmetric

divergences JS and EJS between the conditional output distributions of the channel induced by

the encoding function.

In the sections that follow, we utilize this connection and analytical tool in our achievability

analysis. In particular, in Section IV we particularize the approach in [24] with respect to the EJS

divergence induced by the encoding mapping. This allows us to provide achievability analysis

for two sequential one-phase coding schemes, namely posterior matching and MaxEJS. These
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schemes are based on the suboptimal stopping rule described in the next section. Furthermore,

we show that MaxEJS coding scheme provably achieves Burnashev’s asymptotic optimal per-

formance given by (22).

D. A Suboptimal Stopping Rule

In this paper we focus on the following (possibly suboptimal) stopping rule. For any given

coding scheme c, the transmission is only stopped when one of the posteriors becomes larger

than 1− ǫ, where ǫ > 0 is the desired probability of error:

τ̃ǫ := min{t : max
i∈Ω

ρi(t) ≥ 1− ǫ}. (26)

Let E[τ̃ ∗ǫ ] denote the optimal expected length of the code with the stopping rule as given in

(26).

Lemma 3. Consider stopping times defined earlier with scalars ι ≥ ǫ > 0. We have

E[τ̃ ∗ι ] (1−
ǫ

ι
) ≤ E[τ ∗ǫ ] ≤ E[τ̃ ∗ǫ ]. (27)

The proof of Lemma 3 is given in Appendix IV-A.

Furthermore,

Lemma 4. For any ι ∈ (0, 1), and for any δ ∈ (0, 1/2),

E[τ̃ ∗ι ] ≥

[

logM − FM(δ)− FM(ι)

C
+

log 1−ι
ι

− log 1−δ
δ

− logC2 − 1

C1

]+

(28)

where FM(z) := H([z, 1− z]) + z log(M − 1) for 0 ≤ z ≤ 1.

The proof of Lemma 4 utilizes the dynamic programming characterization of the above

stochastic control problem and is given in Appendix IV-B.

Note that combining (27) with (28) when ι = ǫ
2
log 4

ǫ
and δ = 1

log 4
ǫ

provides an alternative

proof for Burnashev’s converse (21). In fact, by some algebraic manipulations and simple upper

bounds, we obtain the inequalities (29), as shown below.

E[τ ∗ǫ ] ≥

(

1−
2

log 4
ǫ

)

[

(1− 1
log 4

ǫ

− ǫ
2
log 4

ǫ
) logM − 2

C
+

log
1− ǫ

2
log 4

ǫ
ǫ
2
log 4

ǫ

− log log 2
ǫ
− logC2 − 1

C1

]+

≥

[

(

1− 2
log 4

ǫ

)

(1− ǫ
2
log 4

ǫ
) logM − logM

log 4
ǫ

− 2

C
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+

(

1− 2
log 4

ǫ

)

log 1
ǫ
2
log 4

ǫ

− log 1
1− ǫ

2
log 4

ǫ

− log log 2
ǫ
− logC2 − 1

C1

]+

≥

[

(

1− 2
log 4

ǫ

− ǫ
2
log 1

ǫ

)

logM − logM

log 4
ǫ

− 2

C

+
log 1−ǫ

ǫ
− log log 4

ǫ
− 1− log 1−ǫ

1− ǫ
2
log 4

ǫ

− log log 2
ǫ
− logC2 − 1

C1

]+

≥

[

(

1− 3
log 4

ǫ

− ǫ
2
log 1

ǫ

)

logM − 2

C
+

log 1−ǫ
ǫ

− 2 log log 4
ǫ
− logC2 − 4

C1

]+

≥

(

logM

C
+

log 1
ǫ

C1

)(

1−
ǫ

2
log

1

ǫ
+

log 1
1−ǫ

+ 2 log log 4
ǫ
+ logC2 + 4 + 2C1

C

log 1
ǫ

)

. (29)

IV. MAIN RESULT AND APPLICATIONS

In this section, we first characterize the performance of an encoding scheme in terms of its

corresponding extrinsic Jensen–Shannon (EJS) divergence obtained. To make this precise we

first introduce some further notation.

Given a DMC P (Y |X) and a (deterministic) encoding function γ : Ω → X together with a

set of time-t posteriors ρ(t), we use the short hand notation

EJS(ρ(t), γ) := EJS
(

ρ(t);Pγ(1), . . . , Pγ(M)

)

. (30)

For a (possibly) randomized encoding function Γ, we use

EJS(ρ(t),Γ) :=
∑

γ∈E

Pr(Γ = γ|Y t−1 = yt−1)EJS(ρ(t), γ) (31)

where recall that E denotes the set of all possible encoding functions.

A. Main Theorem

Let

ρ̃ := 1−
1

1 + max{logM, log 1
ǫ
}
. (32)

Theorem 1. Consider a (possibly randomized) encoding scheme c under which at each time

t = 0, 1, . . . , τ̃ǫ − 1 and for each yt−1 the encoding function Γc satisfies

EJS(ρ(t),Γc) ≥ Rmin, (33a)
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and furthermore,

EJS(ρ(t),Γc) ≥ ρ̃Emin if max
i∈Ω

ρi(t) ≥ ρ̃, (33b)

for some Emin ≥ Rmin > 0. Then,

Ec[τ̃ǫ] ≤
logM + log log M

ǫ

Rmin

+
log 1

ǫ
+ 1

Emin

+
6(4C2)

2

RminEmin

(34)

where C2 is defined in (16).

Corollary 1. Under the assumptions of Theorem 1,

Ec[τ̃ǫ] ≤

(

logM

Rmin
+

log 1
ǫ

Emin

)

(1 + o(1)) (35)

where o(1) → 0 as ǫ → 0 or M → ∞.

The proof of Theorem 1 is given in Appendix II. Here we provide a brief sketch of the proof.

Let F(t) denote the history of the receiver’s knowledge up to time t, i.e., F(t) = σ{Y t−1}, and

let

Ũ(t) :=
M
∑

i=1

ρi(t) log
ρi(t)

1− ρi(t)
− log

ρ̃

1− ρ̃
.

Since,

Ec

[

Ũ(t+ 1)|F(t)
]

= Ũ(t) + EJS(ρ(t),Γc), (36)

the sequence {Ũ(t)} forms a submartingale. The assertion of the theorem directly results from

the following fact about submartingales: For any submartingale {ξ(t)}, t = 0, 1, 2, . . ., if there

exist positive constants K1 and K2 such that

E[ξ(t+ 1)|F(t)] ≥ ξ(t) +K1 if ξ(t) < 0,

E[ξ(t+ 1)|F(t)] ≥ ξ(t) +K2 if ξ(t) ≥ 0,

then, under certain technical conditions, the stopping time υ = min{t : ξ(t) ≥ B}, B > 0 can

be approximately upper bounded as

E[υ] .
B − ξ(0)

K2
+ ξ(0)1{ξ(0)<0}

(

1

K2
−

1

K1

)

.
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B. Application I: Variable-Length Posterior Matching

We consider a variable-length version of the coding schemes in [6]–[8]. At each time t =

0, 1, . . . , τ̃ǫ − 1, if θ = i and given the posterior vector ρ(t), the input X(t) takes value in the

set

Xi(t) :=

{

x ∈ X :

i−1
∑

i′=1

ρi′(t) <
∑

x′≤x

π⋆
x′ and

∑

x′<x

π⋆
x′ ≤

i
∑

i′=1

ρi′(t)

}

;

where each value x ∈ Xi(t) is taken with probability

Pr
(

X(t) = x|θ = i, Y t−1 = yt−1
)

=

min
{ i
∑

i′=1

ρi′(t),
∑

x′≤x

π⋆
x′

}

−max
{ i−1
∑

i′=1

ρi′(t),
∑

x′<x

π⋆
x′

}

ρi(t)
.

Proposition 1. Under the above variable-length posterior matching encoding, and for each

t = 0, 1, . . . , τ̃ǫ − 1 and all possible output sequences yt−1,

EJS(ρ(t),ΓPM) ≥ C.

The proof of Proposition 1 is given in Appendix III-A.

Remark 3. By Theorem 1 and Proposition 1, under the variable-length posterior matching

encoding

EΓPM [τ̃ǫ] ≤
logM + log 1

ǫ
+ 1 + log log M

ǫ

C
+

6(4C2)
2

C2
. (37)

C. Application II: MaxEJS Coding

We present a new coding scheme based on the greedy maximization of EJS divergence. At

each time t = 0, 1, . . . , τ̃ǫ − 1 and given the posterior vector ρ(t), MaxEJS chooses the γ∗ that

maximizes the EJS divergence:

γ∗ := argmax
γ∈E

EJS(ρ(t), γ). (38)

Proposition 2. For every t = 0, 1, . . . , τ̃ǫ − 1 and all possible output sequences yt−1, MaxEJS

encoding satisfies

EJS(ρ(t), γ∗) ≥ C, (39a)

and furthermore,

EJS(ρ(t), γ∗) ≥ ρ̃C1 if max
i∈Ω

ρi(t) ≥ ρ̃. (39b)
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The proof of Proposition 2 is given in Appendix III-B.

Remark 4. By Theorem 1 and Proposition 2,

EΓMaxEJS [τ̃ǫ] ≤
logM + log log M

ǫ

C
+

log 1
ǫ
+ 1

C1

+
6(4C2)

2

CC1

, (40)

and thus MaxEJS encoding together with the decoding and stopping rules described in (25) and

(26) achieves Burnashev’s optimal asymptotic performance in (22), see Corollary 1.

Remark 5. The presented deterministic one-phase sequential scheme differs from the previous

schemes achieving Burnashev’s optimal asymptotic performance, which are randomized and have

two phases [1]–[4].

The computational complexity of the MaxEJS coding scheme could be prohibitive. In Sec-

tion V-B, we propose simpler coding schemes for a class of binary-input channels that achieve

Burnashev’s optimal asymptotic performance in (22).

V. CODING FOR SYMMETRIC BINARY-INPUT CHANNELS

In this subsection, we focus on channels with binary inputs X = {0, 1} and with the following

property

P (Y = y|X = 0) = P (Y = z − y|X = 1), ∀y ∈ Y (41)

for some z ∈ R.

The first attempt to address the problem of coding over a symmetric binary-input channel goes

back to Horstein’s coding scheme [6] over a binary symmetric channel (BSC) with a crossover

probability p ∈ (0, 1/2). Horstein considered the message to be a point in the interval [0, 1] and

suggested that to achieve the capacity of the channel, at any given time the transmitter selects

the input of the channel such as to signal to the receiver whether the message is smaller than

the median of the posterior or larger. Later, Burnashev and Zigangirov [7], presented a similar

(randomized) coding scheme for discrete message sets as in (17) and proved that this scheme

achieves capacity.

In Section V-A, we present and analyze a deterministic scheme for arbitrary symmetric

binary-input channels satisfying (41), which resembles the Burnashev-Zigangirov scheme, when

specialized to the BSC. In Section V-B, we then improve our scheme so that it achieves
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Burnashev’s optimal asymptotic performance in (22) over this class of symmetric binary-input

channels.

A. Generalized Horstein-Burnashev-Zigangirov Scheme

Our generalization of the Horstein-Burnashev-Zigangirov scheme is deterministic. For each

time t = 0, 1, . . . , τ̃ǫ − 1 and given the posterior vector ρ(t), we choose the encoding function:

γGHBZ(i) =











0 1 ≤ i ≤ k∗

1 k∗ < i ≤ M
(42)

where

k∗ := argmin
k∈Ω

∣

∣

∣

k
∑

i=1

ρi(t)−
1

2

∣

∣

∣
. (43)

Proposition 3. Consider the deterministic scheme proposed above over a binary-input DMC

that satisfies (41). For every t = 0, 1, . . . , τ̃ǫ − 1 and all possible output sequences yt−1,

EJS(ρ(t), γGHBZ) ≥ C. (44)

The proof is given in Appendix III-C.

Remark 6. By Theorem 1 and Proposition 3, the described encoding satisfies

EγGHBZ [τ̃ǫ] ≤
logM + log 1

ǫ
+ 1 + log log M

ǫ

C
+

6(4C2)
2

C2
. (45)

Notice that, when specialized to a binary-input channel, the variable-length posterior matching

scheme of Section IV-B, at each time t = 0, 1, . . . , τ̃ǫ − 1 and given the posterior vector ρ(t),

chooses encoding function γGHBZ with probability

λγGHBZ =
δ2(t)

δ1(t) + δ2(t)
(46)

where

δ1(t) :=

∣

∣

∣

∣

k∗
∑

i=1

ρi(t)−
1

2

∣

∣

∣

∣

, δ2(t) :=

∣

∣

∣

∣

k∗2
∑

i=1

ρi(t)−
1

2

∣

∣

∣

∣

, (47)

and

k∗
2 := k∗ − sign

( k∗
∑

i=1

ρi(t)−
1

2

)

; (48)
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and it chooses the encoding function

γ̄GHBZ(i) =











0 1 ≤ i ≤ k∗
2

1 k∗
2 < i ≤ M

(49)

with probability λ̄γGHBZ = 1− λγGHBZ .

Combining Proposition 3 with Proposition 1, we have that there exists a class (a continuum)

of randomized schemes that satisfy (44):

Corollary 2. Every (randomized) encoding function Γ that selects γGHBZ with probability λ ≥

λγGHBZ in (46) and selects γ̄GHBZ with probability λ̄ = 1−λ, satisfies (33) with Rmin = Emin = C.

This corollary provides an alternative proof that Burnashev and Zigangirov’s variable-length

coding scheme [7] satisfies (45) over the BSC with crossover probability p ∈ (0, 1/2). In fact,

their scheme selects γGHBZ and γ̄GHBZ with probabilities λ = ν(δ2(t))
ν(δ1(t))+ν(δ2(t))

and λ̄ = 1 − λ,

respectively, where ν(x) = log 0.5+(1−2p)x
0.5−(1−2p)x

. We next prove that
ν(δ2(t))

ν(δ1(t))+ν(δ2(t))
≥ δ2(t)

δ1(t)+δ2(t)
,

which by Corollary 2 establishes that the Burnashev-Zigangirov scheme indeed satisfies (45).

Notice that ν(x) = log
(

−1 + 1
0.5−(1−2p)x

)

is convex for all x because p ∈ (0, 1/2). Since also

f : x 7→ ν(x)
ν(δ2(t))

is convex and since f(0) = 0 and f(δ2(t)) = 1, we conclude that
ν(x)

ν(δ2(t))
≤ x

δ2(t)
,

for all x ∈ [0, δ2(t)]. By (47) and (48), 0 ≤ δ1(t) ≤ δ2(t) and hence
ν(δ1(t))
ν(δ2(t))

≤ δ1(t)
δ2(t)

. This

immediately establishes the desired inequality
ν(δ2(t))

ν(δ1(t))+ν(δ2(t))
≥ δ2(t)

δ1(t)+δ2(t)
.

B. Optimal Binary Variable-Length Codes

Motivated by the analysis above, we strive to simplify our deterministic one-phase MaxEJS

scheme for the simpler symmetric binary-input channels. We propose the following encoding

scheme. At each time t = 0, 1, . . . , τ̃ǫ − 1 and each sequence of observations Y t−1 = yt−1, we

choose the encoding function γ in a way that for all i ∈ {j ∈ Ω: γ(j) = 0},

0 ≤
∑

j∈Ω: γ(j)=0

ρj(t)−
∑

j∈Ω: γ(j)=1

ρj(t) < ρi(t). (50)

By condition (50), at each time t, the probabilities of sending a 0 or a 1 are approximately

(1/2, 1/2) when all posteriors {ρi(t)}i∈Ω are small, and they are (maxi∈Ω ρi(t), 1−maxi∈Ω ρi(t))

when maxi∈Ω ρi(t) is larger than 1/2.
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Proposition 4. If for every t = 0, 1, . . . , τ̃ǫ − 1 and every sequence of observations Y t−1 = yt−1

the encoding function γ satisfies (50), then

EJS(ρ(t), γ) ≥ C, (51a)

and

EJS(ρ(t), γ) ≥ ρ̃C1 if max
i∈Ω

ρi(t) ≥ ρ̃. (51b)

Remark 7. By Theorem 1 and Proposition 2,

E[τ̃ǫ] ≤
logM + log log M

ǫ

C
+

log 1
ǫ
+ 1

C1

+
6(4C2)

2

CC1

, (52)

and thus the encoding rule described above together with the decoding and stopping rules

described in (25) and (26) achieves Burnashev’s optimal asymptotic performance in (22), see

Corollary 1.

In the following we present two algorithms that at each time t = 0, 1, . . . , τ̃ǫ−1 and for given

posterior vector ρ(t) implement encoding functions γ satisfying (50).

Algorithm 1:

1 δ = 1.

2 for n = 1, . . . , 2M do

3 v = dec2bin(n,M) % binary representation of n with M digits.

4 z = (2v − 1)× [ρ1(t), ρ2(t), . . . , ρM(t)]⊺.

5 if z > 0 && z < δ then

6 δ = z.

7 v̂ = v.

8 end

9 end

10 for i = 1, . . . ,M do

11 γ(i) = v̂i % v̂i denotes i-th bit of v̂.

12 end
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Algorithm 2:

1 S0 = {1, 2, ...,M} and S1 = ∅.

2 r0 = 1, r1 = 0, ρmin = 0, and δ = 1.

3 while ρmin < δ do

4 k = argmini∈S0
ρi(t).

5 S0 = S0 − {k} and S1 = S1 ∪ {k}.

6 r0 = r0 − ρk(t) and r1 = r1 + ρk(t).

7 if r0 < r1 then

8 Swap S0 and S1.

9 Swap r0 and r1.

10 end

11 δ = r0 − r1.

12 ρmin = mini∈S0 ρi(t).

13 end

14 for i = 1, . . . ,M do

15 γ(i) =











0 if i ∈ S0

1 if i ∈ S1

.

16 end

Proposition 5. Both Algorithms 1 and 2 satisfy condition (50). Algorithm 1 has computational

complexity of order O(2M) for each encoding step while Algorithm 2 has complexity of or-

der O(M2).3

The proof is given in Appendix III-E.

Remark 8. In contrast to the previous one-phase sequential schemes in [6]–[8], the encoding

3The computational complexity of Algorithm 1 is of the same order as that of MaxEJS which in each step requires to find an

encoding function (among 2M choices) that maximizes the EJS divergence between the conditional output distributions. However,

implementation of Algorithm 1 is simpler since it only requires linear operations instead of computing the EJS divergence (which

can be computationally intensive, especially for channels with large output alphabet set).
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processes described by Algorithms 1 and 2 here are completely deterministic. By insisting on a

deterministic encoding, we can match our scheme’s inputs only approximately to the capacity-

achieving input distribution of (1/2, 1/2). On the other hand, the proposed deterministic schemes

are such that once a particular message’s posterior passes a certain threshold, the transmitter

assigns this message exclusively to one of the two inputs. This is critical to achieve the optimal

Emin = C1.

Remark 9. The proofs of Propositions 4 and 5 continue to hold for those binary-input channels

with uniform capacity-achieving input distribution π⋆
0 = π⋆

1 = 1/2 where for ease of notation we

assume that C1 = D(P0‖P1). This class of channels includes the class of channels for which (41)

holds, for example the binary symmetric channel (BSC) with cross-over probability p ∈ (0, 1/2),

as well as the non-symmetric channel in Fig. 3 for η ∈ (0, 1/2).

Fig. 3. Example of a non-symmetric (binary-input ternary-output) channel with capacity-achieving input distribution π⋆
0 =

π⋆
1 = 1/2.

Remark 10. The results in Proposition 4 and Remark 7 above can also be extended to the

case of K-ary symmetric channel with alphabet sets X = Y = {0, 1, . . . , K − 1} and transition

probabilities of the form

P (Y = y|X = x) =











1− p if x = y

p

K−1
if x 6= y

where p ∈ (0, K−1
K

). Consider a coding scheme that at each time t prior to the stopping time
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chooses the encoding function γ in a way that if for any x, x′ ∈ X ,

∑

j∈Ω: γ(j)=x

ρj(t) ≥ max

{

1

K
,

∑

j∈Ω: γ(j)=x′

ρj(t)

}

,

then for all i ∈ {j ∈ Ω: γ(j) = x},

∑

j∈Ω: γ(j)=x

ρj(t)−
∑

j∈Ω: γ(j)=x′

ρj(t) ≤ ρi(t).

This coding scheme together with the decoding and stopping rules described in (25) and (26)

achieves Burnashev’s optimal asymptotic performance in (22) for the K-ary symmetric channel.

VI. RELIABILITY FUNCTION

Let a variable-length coding scheme c be given that for each positive integer ℓ can transmit

one out of Mcℓ
equiprobable messages at a probability Pecℓ and with an expected stopping time

Ecℓ
[τ ]. If for any small numbers δ > 0, 0 ≤ ǫ < 1 and all sufficiently large ℓ the following three

conditions

Pecℓ ≤ ǫ (53a)

Mcℓ
≥ 2ℓ(R−δ) (53b)

Ecℓ
[τ ] ≤ ℓ, (53c)

hold for some positive real number R, then we say that the scheme c achieves (information) rate

R.4

If c satisfies (53b) and (53c) but instead of (53a) it satisfies a stronger condition on exponential

decay

Pecℓ ≤ 2−ℓ(E−δ) (54)

for some positive real number E, then we say that the scheme c achieves reliability E at rate R.

The capacity of a DMC is defined as the largest rate R that is achievable over this channel;

it is equal to the Shannon capacity C as defined in (14) [15, p. 184]. For a given rate R below

capacity, the reliability function E(R) is defined as the maximum achievable error exponent at

rate R. By Burnashev’s lower bound in (21), we have the following lemma:

4It would be more precise to talk about sequence of schemes {cℓ}ℓ∈Z+ , where each cℓ is the general scheme c specialized to

the message size Mcℓ
. However, this would make the notation overcomplicated.
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Lemma 5. No coding scheme can achieve diminishing error probability at rates higher than C.

Furthermore,

E(R) ≤ C1

(

1−
R

C

)

, R ∈ (0, C). (55)

Proof of Lemma 5: Let c be a coding scheme that for each ℓ ∈ Z
+ and for a message size

Mcℓ
satisfies (53) for a rate R > 0.

By (21) and (53), for each sufficiently large integer ℓ:

ℓ ≥ Ecℓ
[τ ] ≥

(

logMcℓ

C
+

log(1/Pecℓ)

C1

)

(1− o(1))

≥

(

Rℓ

C
+

log(1/Pecℓ)

C1

)

(1− o(1)). (56)

In other words,

C ≥

(

R +
C

C1

·
log(1/Pecℓ)

ℓ

)

(1− o(1))

≥ R(1− o(1)) (57)

where the last inequality holds because log 1
Pecℓ

≥ 0. Since o(1) → 0 as Pecℓ → 0, we obtain from

(57) that R ≤ C. This implies that no coding scheme can achieve diminishing error probability

at rates higher than C.

Next we characterize an upper bound on the optimal reliability function E(R). Let c be a

coding scheme that for each ℓ ∈ Z
+ and for a message size Mcℓ

satisfies (53b), (53c), and (54)

for E,R > 0. By (21), (53b), and (54), for each sufficiently large integer ℓ:

ℓ ≥ Ecℓ
[τ ] ≥

(

logMcℓ

C
+

log(1/Pecℓ)

C1

)

(1− o(1))

≥

(

Rℓ

C
+

Eℓ

C1

)

(1− o(1)). (58)

In other words,

1 ≥

(

R

C
+

E

C1

)

(1− o(1)). (59)

Since o(1) → 0 as ℓ → ∞, we obtain that R
C
+ E

C1
≤ 1. The desired inequality follows:

E ≤ C1

(

1−
R

C

)

. (60)
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On the other hand, we have the following achievable bound on rate–reliability function:

Lemma 6. Suppose that we have a coding scheme c that for each message size M > 0 and

each positive ǫ > 0, satisfies Pec ≤ ǫ with expected stopping time

Ec[τ ] ≤

(

logM

Rmin
+

log 1
ǫ

Emin

)

(1 + o(1)) (61)

for some positive integers Emin and Rmin. Then, the scheme c can achieve any rate R ∈ [0, Rmin]

with reliability E, if

E ≤ Emin

(

1−
R

Rmin

)

. (62)

Thus, if a scheme c satisfies (61) for Rmin = C and Emin = C1, then this scheme achieves

Burnashev’s optimal reliability function.

Proof of Lemma 6: Fix a small δ > 0, a positive rate R < Rmin and a positive error

exponent E satisfying (62). Define for each ℓ ∈ Z
+, the small number ǫℓ , 2−ℓ(E−δ) and the

message size Mℓ , 2ℓ(R−δ). By assumption, for each ℓ ∈ Z
+, our coding scheme c attains a

probability of error Pecℓ ≤ ǫℓ at an expected stopping time Ecℓ
[τǫℓ ] that is upper bounded as:

Ecℓ
[τǫℓ ] ≤ ℓ

(

R− δ

Rmin
+

E − δ

Emin

)

(1 + o(1))

≤ ℓ

(

1−
δ

Rmin

−
δ

Emin

)

(1 + o(1)). (63)

Since δ > 0 and since o(1) → 0 as ℓ → ∞, we obtain that for sufficiently large ℓ,

Ecℓ
[τǫℓ ] ≤ ℓ. (64)

Combined with our assumptions that Pecℓ ≤ 2−ℓ(E−δ) and Mℓ , 2ℓ(R−δ), this concludes the

proof.

Corollary 1 combined with Lemma 6 provides the following:

Corollary 3 (Rate–Reliability Test). Consider a DMC with C > 0 and C1 < ∞ and a variable-

length coding scheme c. If—irrespective of the size of the message set M—for any time t prior

to the stopping time and for any posterior vector ρ(t) over the messages, the scheme selects (a

possibly random) encoding function Γc such that

EJS(ρ(t),Γc) ≥ C, (65a)
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then it achieves the capacity C of the channel. Furthermore, if also,

EJS(ρ(t),Γc) ≥ ρ̃C1 if max
i∈Ω

ρi(t) ≥ ρ̃, (65b)

then the scheme also achieves the optimal reliability function E(R) of the channel.

The above corollary implies that all coding schemes described in Sections IV and V achieve

the capacity C of the corresponding channels. Furthermore, the MaxEJS coding scheme and the

simple coding scheme for the symmetric binary-input channel discussed in Section V-B achieve

the reliability function E(R).
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APPENDIX I

PROOF OF LEMMA 2

Property 1 is proved as follows:

JS(ρ;P1, . . . , PM) =
M
∑

i=1

ρiD

(

Pi‖
M
∑

j=1

ρjPj

)

=
M
∑

i=1

ρiD

(

Pi‖ρiPi + (1− ρi)
∑

j 6=i

ρj
1− ρi

Pj

)

(a)

≤
M
∑

i=1

[

ρ2iD(Pi‖Pi) + ρi(1− ρi)D

(

Pi‖
∑

j 6=i

ρj
1− ρi

Pj

)]

= EJS(ρ;P1, . . . , PM)−
M
∑

i=1

ρ2iD

(

Pi‖
∑

j 6=i

ρj
1− ρi

Pj

)

(b)

≤ EJS(ρ;P1, . . . , PM)

where (a) and (b) follow respectively because KL divergence is convex (in both arguments) and

nonnegative.
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The proof of property 2 is provided next.

EJS(ρ;P1, . . . , PM) =
M
∑

i=1

ρiD

(

Pi‖
∑

j 6=i

ρj
1− ρi

Pj

)

=

M
∑

i=1

ρi
∑

y∈Y

Pi(y) log
Pi(y)

∑

j 6=i

ρj
1−ρi

Pj(y)

=

M
∑

i=1

ρi log
1− ρi
ρi

+

M
∑

i=1

∑

y∈Y

ρiPi(y) log
ρiPi(y)

∑

j 6=i ρjPj(y)

= U(ρ) +
∑

y∈Y

Pρ(y)
M
∑

i=1

ρiPi(y)

Pρ(y)
log

ρiPi(y)
Pρ(y)

1− ρiPi(y)
Pρ(y)

= U(ρ)−
∑

y∈Y

Pρ(y)U
([ρ1P1(y)

Pρ(y)
, . . . ,

ρMPM(y)

Pρ(y)

])

.

Property 3 is proved as follows.

Let P1, P2, . . . , PM and Q1, Q2, . . . , QM be two set of distributions. For any λ ∈ [0, 1] and

λ̄ = 1− λ,

EJS(ρ;λP1 + λ̄Q1, . . . , λPM + λ̄QM)

=

M
∑

i=1

ρiD
(

λPi + λ̄Qi‖
∑

j 6=i

ρj
1− ρi

λPj +
∑

j 6=i

ρj
1− ρi

λ̄Qj

)

(a)

≤
M
∑

i=1

ρi

[

λD
(

Pi‖
∑

j 6=i

ρj
1− ρi

Pj

)

+ λ̄D
(

Qi‖
∑

j 6=i

ρj
1− ρi

Qj

)]

= λEJS(ρ;P1, . . . , PM) + λ̄EJS(ρ;Q1, . . . , QM)

where (a) follows because KL divergence is convex in both arguments.

APPENDIX II

PROOF OF THEOREM 1

Let F(t) denote the history of the receiver’s knowledge up to time t, i.e., F(t) = σ{Y t−1}.

Moreover, for each time t = 0, 1, . . . , τ , define

Ũ(t) :=
M
∑

i=1

ρi(t) log
ρi(t)

1− ρi(t)
− log

ρ̃

1− ρ̃

where recall that we defined ρ̃ = 1 − 1
1+max{logM,log 1

ǫ
}
. (For M ≥ 2 and ǫ ≤ 1 which is the

region of interest for these parameters, ρ̃ ≥ 1
2
.)

Page 26 of 42

http://mc.manuscriptcentral.com/t-it

IEEE Transactions on Information Theory, For Peer Review Only



27

Notice that for all i ∈ Ω and given the observation Y t−1 = yt−1, upon observing the new

sample yt, the belief state evolves as

ρi(t+ 1) =
ρi(t)P (Y = yt|X = γyt−1(i))

M
∑

j=1

ρj(t)P (Y = yt|X = γyt−1(j))

.

Furthermore,

Pr(Yt = y|Y t−1) =
M
∑

j=1

ρj(t)P (Y = y|X = γyt−1(j)).

Under a (possibly randomized) coding scheme c,

Ec

[

M
∑

i=1

ρi(t+ 1) log
ρi(t+ 1)

1− ρi(t+ 1)

∣

∣

∣

∣

F(t)

]

=
∑

γ∈E

Pr(Γc = γ|Y t−1 = yt−1)
∑

y∈Y

M
∑

i=1

ρi(t)Pγ(i)(y) log
ρi(t)Pγ(i)(y)

∑

j 6=i

ρj(t)Pγ(j)(y)

=

M
∑

i=1

ρi(t) log
ρi(t)

1− ρi(t)
+
∑

γ∈E

Pr(Γc = γ|Y t−1 = yt−1)D

(

Pγ(i)

∥

∥

∥

∑

j 6=i

ρj(t)

1− ρi(t)
Pγ(j)

)

=
M
∑

i=1

ρi(t) log
ρi(t)

1− ρi(t)
+ EJS(ρ(t),Γc).

which implies that

Ec

[

Ũ(t+ 1)|F(t)
]

= Ũ(t) + EJS(ρ(t),Γc). (66)

From (66) and condition (33) of Theorem 1, the sequence {Ũ(t)}τt=0 satisfies

Ec

[

Ũ(t+ 1)|F(t)
]

≥











Ũ(t) +Rmin if Ũ(t) < 0

Ũ(t) + ρ̃Emin if Ũ(t) ≥ 0
. (67)

The sequence {Ũ(t)}τt=0 forms a submartingale with respect to the filtration {F(t)}. Furthermore,

from Lemma 7 below,

|Ũ(t + 1)− Ũ(t)| ≤ 4C2 if max{Ũ(t), Ũ(t + 1)} ≥ 0. (68)

Note that if ρi(t) < 1− ǫ for all i ∈ Ω, then

Ũ(t) <

M
∑

i=1

ρi(t) log
1− ǫ

ǫ
− log

ρ̃

1− ρ̃
≤ log

1− ǫ

ǫ
.
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In other words, if Ũ(t) ≥ log 1
ǫ
, then there is an i ∈ Ω for which ρi(t) ≥ 1− ǫ. Let υ := min{t :

Ũ(t) ≥ log 1
ǫ
}. Note that by construction, τ̃ǫ ≤ υ. Appealing to Lemma 10 at the end of this

section, we obtain

Ec[τ̃ǫ] ≤ Ec[υ]

≤
log 1

ǫ
− Ũ(0)

ρ̃Emin

+ Ũ(0)1{Ũ(0)<0}

(

1

ρ̃Emin

−
1

Rmin

)

+
3(4C2)

2

ρ̃RminEmin

≤
log 1

ǫ

ρ̃Emin
+

−Ũ(0)

Rmin
1{Ũ(0)<0} +

6(4C2)
2

RminEmin

=
log 1

ǫ

ρ̃Emin

+

M
∑

i=1

ρi(0) log
1−ρi(0)
ρi(0)

+ log ρ̃

1−ρ̃

Rmin

1{Ũ(0)<0} +
6(4C2)

2

RminEmin

≤
log 1

ǫ

ρ̃Emin
+

H(ρ(0)) + log ρ̃

1−ρ̃

Rmin
+

6(4C2)
2

RminEmin

≤
log 1

ǫ

Emin

(

1 +
1

max{logM, log 1
ǫ
}

)

+
H(ρ(0)) + log log M

ǫ

Rmin
+

6(4C2)
2

RminEmin

≤
H(ρ(0)) + log log M

ǫ

Rmin

+
log 1

ǫ
+ 1

Emin

+
6(4C2)

2

RminEmin

. (69)

Lemma 7. If max{Ũ(t), Ũ(t + 1)} ≥ 0, then

∣

∣

∣
Ũ(t+ 1)− Ũ(t)

∣

∣

∣
≤ 4C2.

Proof: We first consider the case Ũ(t) ≥ 0. Note that if ρi(t) < ρ̃, ∀i ∈ Ω, then Ũ(t) < 0.

Therefore, Ũ(t) ≥ 0 implies that ∃i ∈ Ω such that ρi(t) ≥ ρ̃. Without loss of generality assume

ρ1(t) ≥ ρ̃. We obtain,

∣

∣

∣
Ũ(t+ 1)− Ũ(t)

∣

∣

∣

=

∣

∣

∣

∣

∣

M
∑

i=1

ρi(t+ 1) log
ρi(t+ 1)

1− ρi(t+ 1)
−

M
∑

i=1

ρi(t) log
ρi(t)

1− ρi(t)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

M
∑

i=1

ρi(t+ 1)

(

log
ρi(t+ 1)

1− ρi(t+ 1)
− log

ρi(t)

1− ρi(t)

)

+

M
∑

i=1

(ρi(t+ 1)− ρi(t)) log
ρi(t)

1− ρi(t)

∣

∣

∣

∣

∣

≤ max
i∈Ω

∣

∣

∣

∣

log
ρi(t+ 1)

1− ρi(t+ 1)
− log

ρi(t)

1− ρi(t)

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

M
∑

i=1

(ρi(t+ 1)− ρi(t)) log
ρi(t)

1− ρi(t)

∣

∣

∣

∣

∣

(a)

≤ logC2 +

M
∑

i=1

|ρi(t+ 1)− ρi(t)| ·

∣

∣

∣

∣

log
ρi(t)

1− ρi(t)

∣

∣

∣

∣
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(b)

≤ logC2 + C2

M
∑

i=1

ρi(t)(1− ρi(t))

∣

∣

∣

∣

log
ρi(t)

1− ρi(t)

∣

∣

∣

∣

≤ logC2 + C2ρ1(t)(1− ρ1(t)) log
ρ1(t)

1− ρ1(t)
+ C2

∑

i 6=1

ρi(t) log
1

ρi(t)

(c)

≤ logC2 + C2 + C2

(

∑

i 6=1

ρi(t)

)

log
M − 1
∑

i 6=1

ρi(t)

≤ logC2 + C2 + C2((1− ρ̃) log(M − 1) + 1)

= logC2 + C2 + C2

( log(M − 1)

1 + max{logM, log 1
ǫ
}
+ 1

)

≤ logC2 + 3C2

≤ 4C2

where (a) and (b) follow respectively from Lemmas 8 and 9 below, and (c) follows from Jensen’s

inequality and the fact that

∣

∣

∣
x(1− x) log

x

1− x

∣

∣

∣
≤ 1, x ∈ [0, 1].

This completes the proof for the case Ũ(t) ≥ 0. The proof for the case Ũ(t+ 1) ≥ 0 is done

by following the similar lines and interchanging time indices (t) and (t+ 1).

Lemma 8. For any i ∈ Ω,
∣

∣

∣

∣

log
ρi(t + 1)

1− ρi(t+ 1)
− log

ρi(t)

1− ρi(t)

∣

∣

∣

∣

≤ logC2.

Proof:

∣

∣

∣

∣

log
ρi(t+ 1)

1− ρi(t + 1)
− log

ρi(t)

1− ρi(t)

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

log
P (Y = yt|X = γyt−1(i))

∑

j 6=i

ρj(t)

1−ρi(t)
P (Y = yt|X = γyt−1(j))

∣

∣

∣

∣

∣

∣

∣

≤ max
y∈Y

log
maxx∈X P (Y = y|X = x)

minx∈X P (Y = y|X = x)
= logC2.

Lemma 9. For any i ∈ Ω,

|ρi(t+ 1)− ρi(t)| ≤ min {ρi(t)(1− ρi(t)), ρi(t+ 1)(1− ρi(t+ 1))}C2.
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Proof:

|ρi(t + 1)− ρi(t)| = ρi(t)

∣

∣

∣

∣

∣

∣

∣

∣

∣

P (Y = yt|X = γyt−1(i))
M
∑

j=1

ρj(t)P (Y = yt|X = γyt−1(j))

− 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤ ρi(t)

∣

∣

∣

∣

∣

∣

∣

∣

∣

(1− ρi(t))maxx∈X P (Y = yt|X = x)
M
∑

j=1

ρj(t)P (Y = yt|X = γyt−1(j))

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤ ρi(t)(1− ρi(t))max
y∈Y

maxx∈X P (Y = y|X = x)

minx∈X P (Y = y|X = x)

= ρi(t)(1− ρi(t))C2. (70)

Similarly we can show that

|ρi(t+ 1)− ρi(t)| = ρi(t+ 1)

∣

∣

∣

∣

∣

∣

∣

1− ρi(t)−

∑

j 6=i

ρj(t)P (Y = yt|X = γyt−1(j))

P (Y = yt|X = γyt−1(i))

∣

∣

∣

∣

∣

∣

∣

= ρi(t+ 1)(1− ρi(t+ 1))×
∣

∣

∣

∣

∣

∣

∣

∣

∣

1− ρi(t)

1− ρi(t+ 1)
−

M
∑

j=1

ρj(t)P (Y = yt|X = γyt−1(j))

P (Y = yt|X = γyt−1(i))

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤ ρi(t + 1)(1− ρi(t + 1))max
y∈Y

maxx∈X P (Y = y|X = x)

minx∈X P (Y = y|X = x)

= ρi(t+ 1)(1− ρi(t+ 1))C2. (71)

Combining (70) and (71), we have the assertion of the lemma.

Lemma 10. Assume that the sequence {ξ(t)}, t = 0, 1, 2, . . . forms a submartingale with respect

to a filtration {F(t)}. Furthermore, assume there exist positive constants K1, K2, and K3 such

that

E[ξ(t+ 1)|F(t)] ≥ ξ(t) +K1 if ξ(t) < 0,

E[ξ(t+ 1)|F(t)] ≥ ξ(t) +K2 if ξ(t) ≥ 0,

|ξ(t+ 1)− ξ(t)| ≤ K3 if max{ξ(t+ 1), ξ(t)} ≥ 0.
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Consider the stopping time υ = min{t : ξ(t) ≥ B}, B > 0. Then we have the inequality

E[υ] ≤
B − ξ(0)

K2

+ ξ(0)1{ξ(0)<0}

(

1

K2

−
1

K1

)

+
3K2

3

K1K2

.

Proof: This lemma is a generalization of Lemma 1 in [25]. The proof is provided below.

Consider the sequence {η(t)} defined as follows

η(t) =











−A + ξ(t)
K1

− t if ξ(t) < 0

−Ae−αξ(t) + ξ(t)
K2

− t if ξ(t) ≥ 0

where A =
[

3K2
3

K2

(

1
K1

− 1
K2

)]+

and α = 0.5K2

K2
3

.

Claim 1. The sequence {η(t)} forms a submartingale with respect to the filtration {F(t)}.

By Doob’s Stopping Theorem,

η(0) ≤ E[η(υ)]

≤ E

[

ξ(υ)

K2

− υ

]

=
E [ξ(υ − 1)] + E [ξ(υ)− ξ(υ − 1)]

K2

− E[υ]

≤
B +K3

K2

− E[υ].

On the other hand, we have

η(0) =

(

−A+
ξ(0)

K1

)

1{ξ(0)<0} +

(

−Ae−αξ(0) +
ξ(0)

K2

)

1{ξ(0)≥0}

≥ −A +
ξ(0)

K2
− ξ(0)1{ξ(0)<0}

(

1

K2
−

1

K1

)

.

Combining the above inequalities, we obtain

E[υ] ≤
B +K3

K2

− η(0)

≤
B +K3

K2

+ A−
ξ(0)

K2

+ ξ(0)1{ξ(0)<0}

(

1

K2

−
1

K1

)

=
B − ξ(0)

K2
+ ξ(0)1{ξ(0)<0}

(

1

K2
−

1

K1

)

+

[

3K2
3

K2

(

1

K1
−

1

K2

)]+

+
K3

K2

(a)

≤
B − ξ(0)

K2

+ ξ(0)1{ξ(0)<0}

(

1

K2

−
1

K1

)

+
3K2

3

K1K2

(72)
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where (a) holds since by definition K1, K2 ≤ K3 and hence, K3

K2
≤ min

{

3K2
3

K1K2
,
3K2

3

K2
2

}

.

Proof of Claim 1: We will show that E[η(t + 1)|F(t)] ≥ η(t). There are two cases:

Case I. ξ(t) < 0:

If ξ(t+ 1) < 0, then

η(t+ 1) = −A +
ξ(t+ 1)

K1

− (t+ 1). (73)

On the other hand, if ξ(t + 1) ≥ 0, then by the assumption of Lemma 10, ξ(t + 1) ≤ K3, and

we have

η(t+ 1) = −Ae−αξ(t+1) +
ξ(t+ 1)

K2
− (t + 1)

(a)

≥ −A +
ξ(t+ 1)

K1

− (t+ 1) (74)

where (a) follows from the fact that 1) if K1 ≥ K2, then by definition A = 0, and x
K2

≥ x
K1

for

x ≥ 0; and 2) if K1 < K2, then −Ae−αx + x
K2

is concave in x, −Ae−αx + x
K2

= −A + x
K1

for

x = 0, and for x = K3

−Ae−αK3 +
K3

K2
≥ −A(1− αK3 +

1

2
(αK3)

2) +
K3

K2

= −A + AαK3(1−
1

4

K2

K3

) +
K3

K2

≥ −A +
9

8
K3

(

1

K1

−
1

K2

)

+
K3

K2

≥ −A +
K3

K1
.

Combining (73) and (74), we obtain

E[η(t+ 1)|F(t)] ≥ E[−A +
ξ(t+ 1)

K1
− (t+ 1)|F(t)]

≥ −A +
ξ(t) +K1

K1
− (t+ 1)

= −A+
ξ(t)

K1

− t = η(t). (75)

Case II. ξ(t) ≥ 0:

If ξ(t+ 1) ≥ 0, then

η(t+ 1) = −Ae−αξ(t+1) +
ξ(t+ 1)

K2
− (t+ 1). (76)

Page 32 of 42

http://mc.manuscriptcentral.com/t-it

IEEE Transactions on Information Theory, For Peer Review Only



33

On the other hand, if ξ(t+ 1) < 0, then we have

η(t+ 1) = −A +
ξ(t+ 1)

K1

− (t + 1)

(a)

≥ −Ae−αξ(t+1) +
ξ(t+ 1)

K2
− (t+ 1) (77)

where (a) follows from the fact that 1) if K1 ≥ K2, then by definition A = 0, and x
K1

≥ x
K2

for

x < 0; and 2) if K1 < K2, then −Ae−αx + x
K2

is concave in x, −Ae−αx + x
K2

= −A + x
K1

for

x = 0, and −Ae−αK3 + K3

K2
≥ −A + K3

K1
.

Combining (76) and (77), we obtain

E[η(t + 1)|F(t)] ≥ E[−Ae−αξ(t+1) +
ξ(t+ 1)

K2
− (t+ 1)|F(t)]

≥ E[−Ae−αξ(t+1)|F(t)] +
ξ(t) +K2

K2
− (t+ 1)

= E[−Ae−αξ(t+1)|F(t)] + Ae−αξ(t) + η(t)

= η(t)− Ae−αξ(t)
E[e−α(ξ(t+1)−ξ(t)) − 1|F(t)]

(a)

≥ η(t)−Ae−αξ(t)
E[−α(ξ(t+ 1)− ξ(t)) +

1

2
α2(ξ(t+ 1)− ξ(t))2eαK3 |F(t)]

≥ η(t) + Aαe−αξ(t)[K2 −
1

2
αK2

3e
αK3]

(b)

≥ η(t) (78)

where (a) follows from the fact that for |x| ≤ K,

ex = 1 +

∞
∑

n=1

xn

n!

≤ 1 + x+
x2

2

(

1 +
K

3
+

K2

12
+ . . .

)

≤ 1 + x+
x2

2
eK ;

and (b) holds since

1

2
αK2

3e
αK3 =

1

4
K2e

0.5K2
K3 ≤

e0.5

4
K2 ≤ K2.
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APPENDIX III

PROOF OF THE PROPOSITIONS

A. Proof of Proposition 1

Fix a time instant t and assume that Y t−1 = yt−1. For ease of notation, in the following we

drop the time index t for ρi(t) and simply write ρi.

Let

λγ := Pr(ΓPM = γ|Y t−1 = yt−1).

Define for each i ∈ Ω and x ∈ X :

Λi,x :=
∑

γ : γ(i)=x

λγ = Pr(X = x|θ = i, Y t−1 = yt−1) (79)

and

ρ̂i,x := ρiΛi,x = Pr(X = x, θ = i|Y t−1 = yt−1). (80)

Notice that for each i, j ∈ Ω, x, x′ ∈ X , and for a fixed posterior distribution, the various

messages are mapped into inputs of the channel independently of each other and hence,

∑

γ :
γ(i)=x
γ(j)=x′

λγ = Λi,xΛj,x′. (81)

Rearranging terms and using Jensen’s inequality, we obtain

EJS(ρ(t),ΓPM) =
∑

γ∈E

λγ

M
∑

i=1

ρiD

(

Pγ(i)

∥

∥

∥

∑

j 6=i

ρj
1− ρi

Pγ(j)

)

=
M
∑

i=1

ρi
∑

x∈X

∑

γ : γ(i)=x

λγD

(

Px

∥

∥

∥

∑

j 6=i

ρj
1− ρi

Pγ(j)

)

≥
M
∑

i=1

∑

x∈X

ρiΛi,xD

(

Px

∥

∥

∥

∑

j 6=i

ρj
1− ρi

∑

γ : γ(i)=x

λγ

Λi,x

Pγ(j)

)

=
M
∑

i=1

∑

x∈X

ρ̂i,xD

(

Px

∥

∥

∥

∑

j 6=i

ρj
1− ρi

∑

x′∈X

∑

γ :
γ(i)=x
γ(j)=x′

λγ

Λi,x

Px′

)

(a)
=

M
∑

i=1

∑

x∈X

ρ̂i,xD

(

Px

∥

∥

∥

∑

j 6=i

∑

x′∈X ρjΛj,x′Px′

1− ρi

)
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=

M
∑

i=1

∑

x∈X

ρ̂i,xD

(

Px

∥

∥

∥

∑

x′∈X (π
⋆
x′Px′ − ρ̂i,x′Px′)

1− ρi

)

,

=
M
∑

i=1

∑

x∈X

ρ̂i,xD

(

Px

∥

∥

∥

∑

x′∈X (π
⋆
x′Px′ − ρ̂i,x′Px′)

1− ρi

)

+
M
∑

i=1

∑

x∈X

ρ̂i,x
ρi

1− ρi
D

(

Px

∥

∥

∥

∑

x′ ρ̂i,x′Px′

ρi

)

−
M
∑

i=1

∑

x∈X

ρ̂i,x
ρi

1− ρi
D

(

Px

∥

∥

∥

∑

x′ ρ̂i,x′Px′

ρi

)

≥
M
∑

i=1

∑

x∈X

ρ̂i,x
1− ρi

D

(

Px

∥

∥

∥

∑

x′∈X

π⋆
x′Px′

)

−
M
∑

i=1

ρ2i
1− ρi

∑

x∈X

Λi,xD

(

Px

∥

∥

∥

∑

x′∈X

Λi,x′Px′

)

(b)

≥
M
∑

i=1

∑

x∈X

ρ̂i,x
1− ρi

C −
M
∑

i=1

ρ2i
1− ρi

C

=
M
∑

i=1

ρi
1− ρi

C −
M
∑

i=1

ρ2i
1− ρi

C

= C (82)

where (a) follows from (81); and inequality (b) follows from Fact 1 and that

∑

x∈X

Λi,xD
(

Px

∥

∥

∑

x′∈X

Λi,x′Px′

)

is the mutual information I(X ; Y ) between an input X with probability mass function {Λi,x}x∈X

and the output produced by the channel (see property (7) of the JS divergence), and thus is smaller

than the capacity C.

B. Proof of Proposition 2

Fix a time t and assume that Y t−1 = yt−1. Recall that ΓPM denotes the random encoding

function of the variable-length posterior matching scheme in Section IV-B. By definition (38)

and by Proposition 1,

EJS(ρ(t), γ∗) ≥ EJS(ρ(t),ΓPM) ≥ C.
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Now, assume that maxi∈Ω ρi(t) ≥ ρ̃ and define

î := argmax
i∈Ω

ρi(t). (83)

Then,

ρî(t) ≥ ρ̃. (84)

Let x, x′ ∈ X be two inputs of the channel satisfying D(Px‖Px′) = C1. Also, define the encoding

function

γ̂(i) :=











x if i = î

x′ otherwise.
. (85)

By definition (38), from (84), and by the selection of x, x′:

EJS(ρ(t), γ∗) ≥ EJS(ρ(t), γ̂) ≥ ρî(t)D(Px‖Px′) ≥ ρ̃C1. (86)

C. Proof of Proposition 3

Let

πx(t) :=
∑

i∈Ω: γGHBZ(i)=x

ρi(t), x ∈ {0, 1}. (87)

Let

k∗
2 := k∗ − sign

( k∗
∑

i=1

ρi(t)−
1

2

)

,

and define

δ1(t) :=

∣

∣

∣

∣

k∗
∑

i=1

ρi(t)−
1

2

∣

∣

∣

∣

, δ2(t) :=

∣

∣

∣

∣

k∗2
∑

i=1

ρi(t)−
1

2

∣

∣

∣

∣

.

Suppose
∑k∗

i=1 ρi(t) −
1
2
< 0 which implies that k∗

2 = k∗ + 1. Note that by definition, π0(t) =

1
2
− δ1(t), ρk∗2 (t) = δ1(t) + δ2(t), and π1(t) = 1

2
+ δ1(t). In this case, the EJS divergence is

bounded as

EJS(ρ(t), γGHBZ) =
k∗
∑

i=1

ρi(t)D

(

P0

∥

∥

∥

π0(t)− ρi(t)

1− ρi(t)
P0 +

π1(t)

1− ρi(t)
P1

)

+ ρk∗2 (t)D

(

P1

∥

∥

∥

π0(t)

1− ρk∗2 (t)
P0 +

π1(t)− ρk∗2 (t)

1− ρk∗2 (t)
P1

)

+
M
∑

i=k∗2+1

ρi(t)D

(

P1

∥

∥

∥

π0(t)

1− ρi(t)
P0 +

π1(t)− ρi(t)

1− ρi(t)
P1

)
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(a)

≥ π0(t)D

(

P0

∥

∥

∥
π0(t)P0 + π1(t)P1

)

+ ρk∗2 (t)D

(

P1

∥

∥

∥

1

2
P0 +

1

2
P1

)

+ (π1(t)− ρk∗2 (t))D

(

P1

∥

∥

∥
π0(t)P0 + π1(t)P1

)

(b)
= π0(t)D

(

P0

∥

∥

∥
π0(t)P0 + π1(t)P1

)

+ ρk∗2 (t)D

(

P0

∥

∥

∥

1

2
P0 +

1

2
P1

)

+ (π1(t)− ρk∗2 (t))D

(

P0

∥

∥

∥
π1(t)P0 + π0(t)P1

)

(c)

≥ D

(

P0

∥

∥

∥

1

2
P0 +

1

2
P1

)

= C

where (a) follows from the facts that
π0(t)−ρi(t)
1−ρi(t)

≤ π0(t),
π1(t)−ρk∗2

(t)

1−ρk∗
2
(t)

≤ 1
2
,

π1(t)−ρi(t)
1−ρi(t)

≤ π1(t),

and by Lemma 1; (b) holds because of condition (41); and (c) follows from the facts that KL

divergence is convex, (π0(t))
2 + 1

2
ρk∗2 (t) + (π1(t)− ρk∗2 (t))π1(t) =

1
2
+ δ1(t)(δ1(t)− δ2(t)) ≤

1
2
,

and by Lemma 1.

The proof for the case
∑k∗

i=1 ρi(t)−
1
2
≥ 0 follows similarly.

D. Proof of Proposition 4

Suppose γ is an encoding function that satisfies (50). Let

πx(t) =
∑

i∈Ω: γ(i)=x

ρi(t) for x ∈ X = {0, 1},

and define δ(t) = π0(t)− π1(t). From (50),

0 ≤ δ(t) ≤ ρi(t), ∀i ∈ {j ∈ Ω: γ(j) = 0}. (88)

We have

EJS(ρ(t), γ) =

M
∑

i=1

ρi(t)D

(

Pγ(i)

∥

∥

∥

∑

j 6=i

ρj(t)

1− ρi(t)
Pγ(j)

)

=
∑

i∈Ω: γ(i)=0

ρi(t)D

(

P0

∥

∥

∥

π0(t)− ρi(t)

1− ρi(t)
P0 +

π1(t)

1− ρi(t)
P1

)
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+
∑

i∈Ω: γ(i)=1

ρi(t)D

(

P1

∥

∥

∥

π0(t)

1− ρi(t)
P0 +

π1(t)− ρi(t)

1− ρi(t)
P1

)

(a)

≥
∑

i∈Ω: γ(i)=0

ρi(t)D

(

P0

∥

∥

∥

1

2
P0 +

1

2
P1

)

+
∑

i∈Ω: γ(i)=1

ρi(t)D

(

P1

∥

∥

∥

1

2
P0 +

1

2
P1

)

(b)
= C

where (a) follows from the facts that π0(t)−ρi(t) ≤ π1(t) for any i with γ(i) = 0, π1(t) ≤ π0(t),

and since for two distributions P and Q and α ∈ [0, 1], D(P‖αP + (1− α)Q) is decreasing in

α (see Lemma 1); and (b) follows from Fact 1 and since the capacity of the channel is achieved

by the uniform input distribution.

On the other hand, if ρî(t) ≥
1
2
, then condition (50) is only satisfied by the encoding function

γ̂ under which γ̂(̂i) = 0 and γ̂(j) = 1 for all j 6= î. Therefore, if ρî(t) ≥ ρ̃ we obtain

EJS(ρ(t), γ̂) ≥ ρî(t)D(P0‖P1) ≥ ρ̃C1.

E. Proof of Proposition 5

For any encoding function γ ∈ E , let

δγ(t) =
∑

i∈Ω: γ(i)=0

ρi(t)−
∑

i∈Ω: γ(i)=1

ρi(t). (89)

Algorithm 1 computes δγ(t) for all 2M encoding functions γ ∈ E and selects γAlg1 such that

γAlg1 := argmin
γ∈E : δγ(t)≥0

δγ(t). (90)

Next we prove by contradiction that γAlg1 satisfies (50), i.e.,

δγAlg1(t) ≤ ρi(t), ∀i ∈ {j ∈ Ω: γAlg1(j) = 0}. (91)

Suppose there exists k ∈ Ω such that γAlg1(k) = 0 and ρk(t) < δγAlg1(t). We consider two cases:

Case I. 0 < ρk(t) ≤
1
2
δγAlg1(t):

Define the encoding function γ̂1 as follows

γ̂1(i) =











1 if i = k

γAlg1(i) otherwise

. (92)
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We have

0 ≤ δγ̂1(t) = δγAlg1(t)− 2ρk(t) < δγAlg1(t),

which contradicts (90).

Case II. 1
2
δγAlg1(t) < ρk(t) < δγAlg1(t):

Define the encoding function γ̂2 as follows

γ̂2(i) = 1− γ̂1(i), ∀i ∈ Ω. (93)

We have

0 < δγ̂2(t) = 2ρk(t)− δγAlg1(t) < δγAlg1(t),

which again contradicts (90).

Algorithm 2 constructs an encoding function that satisfies (50). Algorithm 2 terminates in at

most M(M − 1)/2 rounds of operations, where in each round the main computational burden

is to find an element of S0 with the lowest belief. Note that we do not have to search for the

element with the lowest belief in each round if we sort all the beliefs once in the beginning,

which has complexity order O(M logM).

APPENDIX IV

PROOF OF LEMMAS 3 AND 4

A. Proof of Lemma 3

From the described optimal decoding rule of (25), the constraint on the probability of error

is satisfied by any coding scheme with the stopping rule (26):

Pe = E[1 −max
i∈Ω

ρi(τ̃ǫ)] ≤ ǫ,

hence, by construction,

E[τ ∗ǫ ] ≤ E[τ̃ ∗ǫ ]. (94)

On the other hand, let us consider E[τ̃ ∗ι ] for any ι > ǫ. Under any coding scheme,

E[τǫ] ≥ E[τǫ|max
j∈Ω

ρj(τǫ) ≥ 1− ι] P (max
j∈Ω

ρj(τǫ) ≥ 1− ι)

(a)

≥ E[τǫ|max
j∈Ω

ρj(τǫ) ≥ 1− ι] (1− ι−1
E[1 −max

j∈Ω
ρj(τǫ)])
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(b)

≥ E[τǫ|max
j∈Ω

ρj(τǫ) ≥ 1− ι] (1−
ǫ

ι
)

≥ E[τ̃ ∗ι ] (1−
ǫ

ι
) (95)

where (a) follows from Markov inequality and (b) follows from the definition of τǫ which implies

that Pe = E[1−max
j∈Ω

ρj(τǫ)] ≤ ǫ. From (95),

E[τ̃ ∗ι ] (1−
ǫ

ι
) ≤ E[τ ∗ǫ ]. (96)

B. Proof of Lemma 4

This proof is based on the dynamic programming (DP) characterization of E[τ̃ ∗ι ].

Let P(Ω) :=
{

ρ ∈ [0, 1]M :
∑M

i=1 ρi = 1
}

. Let V ∗
ι : P(Ω) → R+, referred to as the optimal

value function, be the minimal solution to the following fixed point equation:

V (ρ) =



































0 if min
j∈Ω

{1− ρj} ≤ ι

1 + min
γ∈E

∑

y

P γ
ρ
(y)V (Φγ(ρ, y)) otherwise

(97)

where P γ
ρ
(y) :=

∑M

i=1 ρiPγ(i)(y) is the channel output density under encoding rule γ and

Φ
γ(ρ, y) :=

[

ρ1Pγ(1)(y)

P γ
ρ (y)

, . . . ,
ρMPγ(M)(y)

P γ
ρ (y)

]

(98)

represents the evolution of the belief vector in one transmission step and under encoding γ

according to the Bayes’ rule.

Fact 3 (Proposition 9.8 in [26]). For the uniform initial belief ρ(0) = [ 1
M

· · · 1
M
], V ∗

ι (ρ(0)) =

E[τ̃ ∗ι ]. Furthermore, given the (suboptimal) stopping rule τ̃ι, an optimum encoding rule at any

time t prior to the stopping and any belief ρ(t) is the mapping

γ̃∗ = argmin
γ∈E

∑

y∈Y

P γ
ρ
(y)V ∗

ι (Φ
γ(ρ, y)).

In lieu of full characterization of V ∗
ι , the following fact, specialized for

Vι(ρ) =

[

H(ρ)− FM(δ)− FM(ι)

C
+

log 1−ι
ι

− log 1−δ
δ

− logC2 − 1

C1
1{max

i∈Ω
ρi≤1−δ}

]+

and in combination with Fact 3, provides the assertion of the lemma.
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Fact 4 (Lemma 1 in [21]). Let Vι : P(Ω) → R+ satisfy the following:

Vι(ρ) ≤



































0 if min
j∈Ω

{1− ρj} ≤ ι

1 + min
γ∈E

∑

y∈Y

P γ
ρ
(y)Vι(Φ

γ(ρ, y)) otherwise

.

Then Vι is a uniform lower bound for the optimal value function V ∗
ι .
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