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Abstract—A necessary condition for the transmissibility of
correlated sources over a multi-access channel (MAC) is pre-
sented. The condition is related to Wyner’s common information
and to the Slepian-Wolf capacity region of the MAC with
private and common messages. An analogous condition for the
transmissibility of remote sources over a MAC is also derived.
Here the transmitters only observe noisy versions of the sources.

I. INTRODUCTION AND SETUP

We consider the setup in Figure 1 of a two-to-one discrete
memoryless multiple-access channel (MAC) with finite input
alphabets X1 and X2, finite output alphabet Y2, and transition
law PY |X1X2

. The channel is used in order to enable the
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Fig. 1. Transmission of a remote source over a two-user MAC.

receiver to reconstruct, with some required fidelity, the two
source sequences

Sn
1 := (S1,1, . . . , S1,n) and Sn

2 := (S2,1, . . . , S2,n),

where the pairs
�
(S1,t, S2,t)

 n

t=1
are drawn IID from the

finite set S1 ⇥ S2 according to the joint source distribution
PS1S2 . Transmitter i observes the sequence Sn

i and generates
its channel inputs Xn

i := (Xi,1, . . . , Xi,n) as

Xn
i = f

(n)
i (Sn

i ), i 2 {1, 2}, (1)

for some encoding function

f
(n)
i : Sn

i ! Xn
i , i 2 {1, 2}. (2)

The receiver produces the estimates ˆSn
1 := (

ˆS1,1, . . . , ˆS1,n)

and ˆSn
2 := (

ˆS2,1, . . . , ˆS2,n) based on the channel outputs
Y n

:= (Y1, . . . , Yn). Thus,
✓

ˆSn
1

ˆSn
2

◆
= g(n)

(Y n
), (3)

where g(n) is some decoding function

g(n)
: Yn ! ˆSn

1 ⇥ ˆSn
2 (4)

and ˆS1 and ˆS2 denote the finite reconstruction alphabets.

Given two nonnegative distortion functions

di : Si ⇥ ˆSi ! R+, i 2 {1, 2},

(where R+ denotes the nonnegative reals) and two maximum-
allowed distortions D1, D2 � 0, we require that

lim

n!1

1

n

nX

t=1

E
⇥
d1(S1,t, ˆS1,t)

⇤
 D1, (5a)

lim

n!1

1

n

nX

t=1

E
⇥
d2(S2,t, ˆS2,t)

⇤
 D2. (5b)

Given distortion functions d1 and d2, we say that the source-

channel pair (PS1S2 , PY |X1X2
) is (D1, D2)-feasible if for

each blocklength n it is possible to find encoding functions
f

(n)
1 and f

(n)
2 , and a reconstruction function g(n) such that (5)

holds. Our interest is in characterizing the pairs (D1, D2) that
are feasible.

A special case of this problem was studied by Lapidoth and
Tinguely [1] who considered a bivariate Gaussian source; a
power-limited Gaussian MAC; and the squared-error distortion
functions.

Another special case is the lossless case

1 where the dis-
tortion functions are Hamming distortions and the maximum
allowed distortions are zero:

di : (si, ŝi) 7!
(

1, ŝi 6= si

0, ŝi = si

, i 2 {1, 2}, (6a)

and
D1 = D2 = 0. (6b)

We say that a source-channel pair is feasible in the lossless

case if it is (0, 0)-feasible in this setting.
Cover, El Gamal, and Salehi [2] (for the lossless case),

Salehi [3] and Minero, Lim, and Kim [4] (both for the lossy
case) presented sufficient conditions that guarantee that a
source-channel pair (PS1S2 , PY |X1X2

) is (D1, D2)-feasible
given distortion functions d1 and d2. In this paper we present
necessary conditions. Generally, the sufficient and necessary
conditions do not match.

Necessary conditions for the lossless case were previously
derived by Kang and Ulukus [5] by generalizing the necessary

1The term lossless source coding is traditionally used for a slightly different
scenario where the probability of blockerror Ŝn

i 6= Sn
i is required to tend

to 0; specializing Condition (5) to (6) implies that the average probability of

symbol error tends to 0. Our condition is thus stronger, and as a consequence,
any necessary condition for feasibility that we present for our lossless setup
is also necessary condition for feasibility in the traditional lossless setup.



condition of Lapidoth and Tinguely [1], which is based on the
observation that when the source is a bivariate Gaussian, the
correlation coefficient between the MAC inputs cannot exceed
the correlation coefficient between the source components.

Our necessary condition for the lossless case (Corollary 1.2)
is difficult to compare to Kang and Ulukus’s condition [5], but
it does seem to be simpler to evaluate, especially when the
source has a known rate-distortion function and the channel
has a known Slepian-Wolf capacity region for the MAC with
private and common messages [6]; see Remark 1.

In Section III we consider a more general setup and propose
a necessary condition for the transmissibility of remote sources
over a MAC. This setup differs from our original setup in that
each transmitter only observes a noisy version of its source
component. Special cases of this setup were previously studied
and solved by Gastpar [7] and by Lapidoth and Wang [8].

II. MAIN RESULTS

A. The General Lossy Case

Theorem 1: Let distortion functions d1 and d2 be given.
If the source-channel pair (PS1S2 , PY |X1,X2

) is (D1, D2)-
feasible, then for every auxiliary random variable W forming
a Markov chain with the source components,

S1 ! W ! S2, (7)

there exists an auxiliary U forming a Markov chain with the
inputs,

X1 ! U ! X2, (8)

and two reconstruction symbols ˆS1 and ˆS2 so that the follow-
ing five constraints (9) are satisfied:

I(S1;
ˆS1)  I(X1; Y |X2, U) + I(S1; W ) (9a)

I(S2;
ˆS2)  I(X2; Y |X1, U) + I(S2; W ) (9b)

I(S1, S2;
ˆS1, ˆS2)  I(X1, X2; Y |U) + I(S1, S2; W ) (9c)

I(S1, S2;
ˆS1, ˆS2)  I(X1, X2; Y ), (9d)

and

E
⇥
di(Si, ˆSi)

⇤
 D, i 2 {1, 2}. (9e)

Proof: Follows by specializing Theorem 2 in Section IV
to T1 = S1 and T2 = S2.

Remark 1:

1) Every choice of the auxiliary random variable W that
satisfies (7) yields a necessary condition. An interest-
ing choice for symmetric settings is Wyner’s common
part [9]. (See Corollary 1.1 for more details.) With this
choice, I(S1, S2; W ) equals Wyner’s common informa-
tion CWyner(S1, S2) in (10).

2) The conditional law PŜ1,Ŝ2|S1,S2
should be chosen to

minimize the left-hand sides (LHS) of (9a)–(9d) subject
to the distortion constraints (9e). For various source
distributions PS1S2 the optimal conditional distributions
PŜ1Ŝ2|S1S2

are known. For example, for a bivariate
Gaussian source and squared-error distortion functions

the optimal ˆS1 and ˆS2 are jointly Gaussian with the
source (S1, S2).

3) The joint law PUX1X2 should be chosen to maximize
the right-hand sides (RHS) of (9a)–(9d) subject to (8).
These RHSs coincide with the rate-constraints in Slepian
and Wolf’s capacity region of the MAC with private
and common messages [6]. Our necessary condition is
thus particularly simple to evaluate for channels, such as
the Gaussian MAC [10], whose Slepian-Wolf capacity
region is known.

We obtain a simpler—albeit generally weaker—necessary
condition, if in Theorem 1 we relax the “single-rate” con-
straints (9a) and (9b). To state the resulting corollary in a
compact form, we make the following two definitions. Let
CWyner denote Wyner’s common information [9]:

CWyner(S1, S2) := min

S1!W!S2

I(S1, S2; W ). (10)

Let RS1S2(D1, D2) denote the standard rate-distortion func-
tion when compressing the bivariate source sequence (Sn

1 , Sn
2 )

so as to satisfy the two distortion constraints (5):

RS1S2(D1, D2) := min I(S1, S2;
ˆS1, ˆS2) (11)

where the minimum is over all reconstruction random variables
ˆS1 and ˆS2 that satisfy (9e).

Corollary 1.1: Let distortion functions d1 and d2 be given.
If the pair (PS1S2 , PY |X1,X2

) is (D1, D2)-feasible then

RS1S2(D1, D2)

 max

X1!U!X2

min

�
I(X1, X2; Y |U) + CWyner(S1, S2),

I(X1, X2; Y )

 
. (12)

Proof: Consider the necessary condition of Theorem 1.
After relaxing Constraints (9a) and (9b), the auxiliary random
variable W only appears in the Markov chain (7) and in the
“sum-rate” constraint (9c). The strongest condition is obtained
by choosing W which minimizes I(S1, S2; W ) subject to
(7). This is precisely Wyner’s common part [9], and the
corresponding I(S1, S2; W ) is Wyner’s common information
CWyner(S1, S2) in (10).

In the relaxed condition, the reconstructions ˆS1 and ˆS2

appear only in (9e) and—in form of the mutual information
I(S1, S2;

ˆS1, ˆS2)—on the LHS of constraints (9c) and (9d).
It thus suffices to consider the pair ˆS1, ˆS2 that minimizes
I(S1, S2;

ˆS1, ˆS2) subject to (9e). This allows to replace the
LHSs of (9c) and (9d) by RS1S2(D1, D2).

Example 1: Consider a bivariate Gaussian source
✓

S1

S2

◆
⇠ N

✓✓
0

0

◆
, Q

✓
1 ⇢
⇢ 1

◆◆
(13a)

and a memoryless additive Gaussian noise MAC

Y = X1 + X2 + Z, (13b)

whose inputs X1 and X2 are block-power constrained to the
same power P , and where Z is a standard Gaussian. Let



d1, d2 : (s, ŝ) 7! (s� ŝ)2 be squared-error distortion functions
and D1 = D2 = D.

Let us evaluate the necessary condition of Corollary 1.1
for this example.2 For this source, RS1S2(D1, D2) and
CWyner(S1, S2) are well known [9] and

CWyner(S1, S2) =

1

2

log2
1 + ⇢

1 � ⇢
. (14)

Moreover, according to the reasoning in [10, 11], we can
restrict to jointly Gaussian triples (U, X1, X2) where X1

and X2 are of full power P . We thus obtain the following
necessary condition: If the source-channel pair in (13) is
(D, D)-feasible, then the source parameters ⇢ and Q, the
channel input-power P , and the maximum allowed distortion
D have to satisfy Condition (15) on the next page.

The necessary condition of [1] is stronger than ours and is
tight in the high-SNR regime. It is obtained if in (15) we re-

place the term
�(1�⇢)+

q
(1�⇢)2+4(1+⇢)

(

2⇢+ ⇢
P )

2(1+⇢) by the smaller
term ⇢. See Figure 2 for a comparison of the two terms when
P = 10. However, the Lapidoth-Tinguely condition is tailored
to the Gaussian source-channel pair, whereas our condition in
Theorem 1 holds for general sources and channels.

B. The Lossless Case

In the lossless case, Theorem 1 specializes to the following:
Corollary 1.2: If the source-channel pair (PS1S2 , PY |X1X2

)

is feasible in the lossless case, then for every auxiliary random
variable W forming the Markov chain

S1 ! W ! S2 (16)

there exists an auxiliary random variable U that forms the
Markov chain

X1 ! U ! X2 (17)

and satisfies the following four conditions:

H(S1|S2)I(X1; Y |X2, U)+I(S1; W |S2) (18a)
H(S2|S1)I(X2; Y |X1, U)+I(S2; W |S1) (18b)

H(S1|S2)+H(S1|S2)I(X1, X2; Y |U)

+I(S1; W |S2) + I(S2; W |S1)

H(S1, S2)I(X1, X2; Y ). (18c)

Example 2 (DSBS(q) source and Gaussian MAC): Let
(S1, S2) be a doubly-symmetric binary source of parameter q
(DSBS(q)), i.e., S1 and S2 are Bernoulli-1/2 random variables
and Pr[S1 6= S2] = q. As in Example 1, the MAC is memo-
ryless Gaussian with unit noise variance and with inputs that
are average block-power constrained to power P .

For simplicy we again relax constraints (18a) and (18b). As
in Corollary 1.1, the strongest condition is obtained when W
is Wyner’s common part and I(S1, S2; W ) is hence Wyner’s
common information. For the DSBS(q) in this example [9]

CWyner(S1, S2) = 1 + Hb(q) � 2Hb(�),

2We derived our results for finite sources and discrete channels without
input-cost constraints. They extend however in a straight-forward manner to
the setup in this example.

where � =

1
2

�
1 �

p
1 � 2q

�
and Hb(·) denotes the binary

entropy function.
By the arguments in [10, 11], we can moreover restrict to

jointly Gaussian triples (U, X1, X2) where X1 and X2 are of
full power P . Optimizing over this joint Gaussian distribution,
we obtain the following necessary condition.

If the described source-channel pair (PS1S2 , PY |X1X2
) is

feasible for the lossless case, then the source-parameter q and
the channel input-power P have to satisfy:

1 + Hb(q)

 1

2

log2

0

@
1 + P

0

@
2 +

q
1 + 4�(� � 1)(1 +

1
2P ) � 1

�

1

A

1

A ,

(19)

where � = 2

2(1+Hb(q)�2Hb(�)).
Notice that the LHS of Condition (19) is strictly increasing

in q 2 [0, 1
2 ] and its RHS is strictly decreasing. Moreover,

for P < 3
4 Condition (19) is violated even for q = 0. Thus,

irrespective of the source parameter q 2 [0, 1
2 ], the DSBS(q)

cannot be sent over the Gaussian MAC with input powers
P < 3

4 . For P � 3
4 Condition (19) is satisfied for q = 0, which

allows us to define qsup as the supremum over all q 2 [0, 1
2 ]

such that Condition (19) holds. Our necessary condition states
that for all q 2 (qsup, 1

2 ], the DSBS(q) cannot be sent over
the Gaussian MAC with input powers P . Numerically we find:

P 1 2 5
qsup 0.002 0.115 0.373

III. TRANSMISSION OF REMOTE SOURCES OVER A MAC

A. Setup

We now consider a setup (Figure 3) where the transmitters
cannot directly observe the source sequences Sn

1 and Sn
2 , but

only the noisy versions Tn
1 := (T1,1, . . . , T1,n) and Tn

2 :=

(T2,1, . . . , T2,n), respectively. For each t 2 {1, . . . , n}, the
pair (T1,t, T2,t) takes values in the finite set T1 ⇥ T2 and
is generated by the memoryless channel PT1T2|S1S2

from the
source pair (S1,t, S2,t). The joint PMF of (T1, T2, S1, S2) is
thus

PS1S2 PT1T2|S1S2
.

Each Transmitter generates its channel inputs Xn
i as a function

of its observed symbols Tn
i . So,

Xn
i = f

(n)
i (Tn

i ), i 2 {1, 2}, (20)

for some encoding function

f
(n)
i : T n

i ! Xn
i , i 2 {1, 2}. (21)

The receiver acts in the same manner as before. We say that
the source-channels triple (PS1S2 , PT1T2|S1S2

, PY |X1X2
) is

(D1, D2)-feasible if it is possible to find encoding functions�
f

(n)
i

 1
n=1

, for i 2 {1, 2}, and a reconstruction function�
g(n)

 1
n=1

such that (5) holds.



RS1S2(D, D)  1

2

log2

0

@
1 + 2P

0

@
1 +

�(1 � ⇢) +

q
(1 � ⇢)

2
+ 4(1 + ⇢)

�
2⇢ +

⇢
P

�

2(1 + ⇢)

1
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Fig. 2. The upper green line shows the term
�(1�⇢)+

q
(1�⇢)2+4(1+⇢)(2⇢+ ⇢

P )
2(1+⇢) that arises in our necessary

condition (15), and the lower blue line shows the corresponding term
⇢ in the Lapidoth-Tinguely necessary condition. Power P = 10.
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Fig. 3. Transmission of remote sources over a two-user MAC.

The special case with a bivariate Gaussian source that is
observed in Gaussian noise, with a power-limited Gaussian
MAC, and with squared-error distortion functions was studied
by Lapidoth and Wang [8]. Gastpar considered another special
case with a single Gaussian source [7], for which he derived
a condition that is sufficient and necessary.

B. Results and Example

Theorem 2: Let distortion functions d1 and d2 be given. If
the source-channels triple (PS1S2 , PT1T2|S1S2

, PY |X1X2
) is

(D1, D2)-feasible, then for every auxiliary random variable W
forming the Markov chain

T1 ! W ! T2, (22)

there exists an auxiliary random variable U forming a Markov
chain with the channel inputs,

X1 ! U ! X2, (23)

and a pair (

ˆS1, ˆS2) so that

I(S1;
ˆS1)  I(X1; Y |X2, U) + I(S1; T2, W ) (24a)

I(S2;
ˆS2)  I(X2; Y |X1, U) + I(S2; T1, W ) (24b)

I(S1, S2;
ˆS1, ˆS2)  I(X1, X2; Y |U) + I(S1, S2; W ) (24c)

I(S1, S2;
ˆS1, ˆS2)  I(X1, X2; Y ), (24d)

and

E
⇥
di(Si, ˆSi)

⇤
 Di, i 2 {1, 2}. (24e)

Proof: See Section IV.
A special case of interest is a single source

S1 = S2 = S (25a)

where the receiver produces a single reconstruction, so

d1 = d2 = d and D1 = D2 = D. (25b)

Gastpar’s [7] joint source-channel version of the Gaussian
CEO problem is a special case of this scenario.

To apply Theorem 2 to this setting, let us denote by RS(D)

the rate-distortion function

RS(D) := min I(S;

ˆS), (26)

where the minimum is over all reconstructions ˆS such that
E[d(S, ˆS)]  D.

Corollary 2.1: Consider the special case in (25) and let a
distortion function d be given. If the source-channels triple
(PSS , PT1T2|S , PY |X1X2

) is (D, D)-feasible, then for every
auxiliary random variable W forming the Markov chain (22)
there exists an auxiliary random variable U forming the
Markov chain (23) and a reconstruction ˆS so that:

RS(D)  I(X1; Y |X2, U) + I(S; T2, W ) (27a)
RS(D)  I(X2; Y |X1, U) + I(S; T1, W ) (27b)
RS(D)  I(X1, X2; Y |U) + I(S; W ) (27c)
RS(D)  I(X1, X2; Y ). (27d)

Example 3: Consider a zero-mean Gaussian source S of
variance Q > 0. The transmitters observe

T1 = (

˜T1, E) and T2 = (

˜T2, E), (28)

where E is a Bernoulli-1/2 random variable independent of
the source S and where

˜T1 :=

(
S + V + S0, if E = 0

S0, if E = 1

(29)

and

˜T2 :=

(
S0, if E = 0

S + V + S0, if E = 1,
(30)

for S0 and V zero-mean Gaussians of variances Q and �2
V > 0

and independent of each other and of the pair (E, S). The dis-
tortion function d is the squared-error distortion function. As
in the previous examples we consider a memoryless Gaussian
MAC of unit noise-variance and equal input-powers P .

We evaluate Corollary 2.1 for the described setup. For our
Gaussian source, RS(D) =

1
2 log

+
2

⇣
Q
D

⌘
, where log

+
2 (x) :=

max{0, x}. We choose W = (S0, E), which satisfies Markov
chain (22) because I(T1; T2|W ) = 0.



Since I(S; W ) = 0 and since I(X1, X2; Y |U) cannot
exceed the sum-rate capacity of the Gaussian MAC with
private messages, namely 1

2 log2(1 + 2P ), Constraint (27c)
is equivalent to

1

2

log

+
2

✓
Q

D

◆
 1

2

log2 (1 + 2P ) . (31a)

On the other hand, since I(S; T2, W ) =

1
4 log2

⇣
1 +

Q
�2
v

⌘

and since I(X1; Y |U, X2) cannot exceed the capacity of the
Gaussian point-to-point channel from Transmitter 1 to the
receiver, namely 1

2 log2(1+P ), Constraint (27a) is equivalent
to
1

2

log

+
2

✓
Q

D

◆
 1

2

log2 (1 + P ) +

1

4

log2

✓
1 +

Q

�2
v

◆
. (31b)

Constraints (27b) and (27d) are redundant.
We obtain the following necessary condition: If the de-

scribed source-channels triple (PS , PT1T2|S , PY |X1X2
) is

(D, D)-feasible, then the source variance Q, the channel input
power P , and the distortion D must satisfy Conditions (31).

Bound (31b) is active when �2
v is large and T1 and T2

are very noisy observations of the source S. Intuitively,
Bound (31a) can be understood as saying that T1 and T2 have
no common part related to the source S that could allow the
MAC transmitters to cooperate in a useful manner.

IV. PROOF OF THEOREM 2
Fix a blocklength n and let Wn be a random vector so

that the tuple (Sn
1 , Sn

2 , Tn
1 , Tn

2 , Wn
) is i.i.d. according to the

joint law PS1S2T1T2W that satisfies the Markov chain (22).
Let Ut := Wn, and let Z be a uniform random variable over
{1, . . . , n} that is independent of all other involved random
variables. Define now S1 := S1,Z , S2 := S2,Z , and similarly
for T1, T2, ˆS1, ˆS2, W, X1, X2, Y . Also, let U := (UZ , Z).

The “single-rate” constraint (24a) is obtained as follows:

I(S1;
ˆS1)  I(S1;

ˆS1|Z) =

1

n

nX

t=1

I(S1,t;
ˆS1,t)

 1

n

nX

t=1

I(S1,t;
ˆSn
1 |St�1

1 ) =

1

n
I(Sn

1 ;

ˆSn
1 )

 1

n
I(Sn

1 ; Y n
)  1

n
I(Sn

1 ; Y n, Tn
2 , Wn

)

=

1

n
I(Sn

1 ; Y n|Tn
2 , Wn

) +

1

n
I(Sn

1 ; Tn
2 , Wn

)

=

1

n
I(Sn

1 ; Yt|Tn
2 , Wn, Y t�1

) + I(S1; T2, W )

 1

n
I(X1,t; Yt|X2,t, Ut) + I(S1; T2, W )

= I(X1; Y |X2, U) + I(S1; T2, W ). (32)

The second “single-rate” constraint (24b) is obtained in the
same way. To obtain the “sum-rate” constraint (24c) we notice:

I(S1, S2;
ˆS1, ˆS2)  I(S1, S2;

ˆS1, ˆS2|Z)

 1

n

nX

t=1

I(S1,t, S2,t;
ˆSn
1 , ˆSn

2 |St�1
1 , St�1

2 )

=

1

n
I(Sn

1 , Sn
2 ;

ˆSn
1 , ˆSn

2 )  1

n
I(Sn

1 , Sn
2 ; Y n, Wn

)

=

1

n
I(Sn

1 , Sn
2 ; Y n|Wn

) +

1

n
I(Sn

1 , Sn
2 ; Wn

)

=

1

n

nX

t=1

I(Sn
1 , Sn

2 ; Yt|Y t�1, Wn
) + I(S1, S2; W )

 1

n

nX

t=1

I(X1,t, X2,t; Yt|Wn
) + I(S1, S2; W )

= I(X1, X2; Y |U) + I(S1, S2; W ). (33)

The second “sum-rate” constraint (24d) is obtained as follows:

I(S1, S2;
ˆS1, ˆS2) 

1

n
I(Sn

1 , Sn
2 ;

ˆSn
1 , ˆSn

2 )  1

n
I(Sn

1 , Sn
2 ; Y n

)

=

1

n

nX

t=1

I(Sn
1 , Sn

2 ; Yt|Y t�1
)  1

n

nX

t=1

I(X1,t, X2,t; Yt)

= I(X1, X2; Y |Z)  I(X1, X2; Y ). (34)

Notice further that the Markov chain (23) holds because
Tn

1 ! (Wn, Z) ! Tn
2 and because X1,t and X2,t are

functions of Tn
1 and Tn

2 . We also notice that for i 2 {1, 2}:

1

n

nX

t=1

E
⇥
di(Si,t, ˆSi,t)

⇤
= EZ

h
E
⇥
di(Si, ˆSi)|Z

⇤i

= E
⇥
di(Si, ˆSi)

⇤
. (35)

Thus, given (5), for arbitrary ✏ > 0 and if n is sufficiently
large, E

⇥
di(Si, ˆSi)

⇤
 Di + ✏, for 2 {1, 2}.

The proof is concluded by standard continuity arguments.
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