Conditional and Relevant Common Information

†Amos Lapidoth and Michèlle Wigger††
†† ETH Zurich, lapidoth@isi.ee.ethz.ch
Telecom ParisTech, Université Paris-Saclay, 75013 Paris, France, michele.wigger@telecom-paristech.fr

Abstract—Two variations on Wyner’s common information are proposed: conditional common information and relevant common information. The former characterizes the minimum common rate that is required for lossless source-coding over a one-to-two Gray-Wyner network, when the sum-rate is restricted to be minimal and the terminals all share the side-information. It also characterizes the minimum rate of common randomness that is required for two terminals sharing some side-information to strongly coordinate their outputs according to a target distribution. The latter, relevant common information, is an upper bound on the minimum common rate required for two receivers of a one-to-two Gray-Wyner network to weakly coordinate their reconstructions sequences with the source according to a target distribution. It also characterizes the minimum rate of common randomness that is required for two terminals to produce a target strongly-coordinated sequence at the output of a two-user multiple-access channel.

I. INTRODUCTION

Wyner [1] defined the common information $C(T_1; T_2)$ between two random variables T_1 and T_2 as

$$C(T_1; T_2) \triangleq \min_{W: T_1 \rightarrow W \rightarrow T_2} I(T_1, T_2; W),$$

(1)

where $X \rightarrow Y \rightarrow Z$ indicates that X and Z are conditionally independent given Y, i.e., that X, Y, Z forms a Markov chain. He provided two operational meanings to this quantity. It is the smallest common rate required to losslessly describe a bivariate source $\{(T_1, i, T_2, i)\}$ IID $Q_{T_1; T_2}$ over a Gray-Wyner network (Fig. 2 with $\{Y_i\}$ null) with the sum-rate at its minimum, and it is also the smallest rate of common randomness required for two terminals to simultaneously produce outputs of joint distribution $Q_{T_1; T_2}$ (Fig. 3 with $\{Y_i\}$ null).

Here we propose two generalizations of Wyner’s common information. The first, the conditional common information $C(T_1; T_2 | Y)$, accounts for side-information (SI) Y that is available to all terminals. The second, the relevant common information $C(T_1; T_2 \rightarrow S)$, quantifies the common information that is related to a random variable S.

Definition 1 (Conditional Common Information): Given a triple of random variables Y, T_1, T_2, the conditional common information of the pair (T_1, T_2) given Y is

$$C(T_1; T_2 | Y) \triangleq \min_{W: T_1 \rightarrow (W,Y) \rightarrow T_2} I(T_1, T_2; W | Y).$$

(2)

Definition 2 (Relevant Common Information): Given a triple of random variables S, T_1, T_2, the common information of the pair (T_1, T_2) relevant to S is

$$C(T_1; T_2 \rightarrow S) \triangleq \min_{W: T_1 \rightarrow W \rightarrow T_2 \rightarrow S} I(S; W).$$

(3)

Remark 1: For $Y = \emptyset$ and for $S = (T_1, T_2)$, the conditional common information and the relevant common information reduce to Wyner’s original common information:

$$Y = \emptyset \implies C(T_1; T_2 | Y) = C(T_1; T_2),$$

(4)

$$S = (T_1, T_2) \implies C(T_1; T_2 \rightarrow S) = C(T_1; T_2).$$

(5)

In Section II we will provide the following operational meanings to the conditional common information:

- It is the smallest common rate required to describe a bivariate source $\{(T_1, i, T_2, i)\}$ over the Gray-Wyner network of Fig. 2 where the side information $\{Y_i\}$ is available to all the terminals, and where the sum of all the rates is at its minimum.
- It is the smallest rate of common randomness required to strongly coordinate the outputs of two terminals according to a target distribution $Q_{T_1; T_2}$ when the two terminals are furnished with $\{Y_i\}$.

In Section III we provide operational meanings to the relevant common information:

- It is an upper bound on the smallest common rate required in a one-to-two Gray-Wyner network to weakly coordinate the receivers’ reconstructions $\{T_1, i\}$ and $\{T_2, i\}$ with each other and with the source $\{S_i\}$ according to a target distribution $Q_{T_1; T_2; S}$, where the sum of all rates needs to be at its minimum.
- It is the smallest rate of common randomness required at two terminals to—through their inputs—strongly coordinate the output of a two-user multiple-access channel (MAC) according to a target distribution Q_S.

Our definition of relevant conditional information in (3) is reminiscent of the definition of lossy common information in [2]. However, in (4), the minimization is not only over the auxilary random variable W but also over all pairs (T_1, T_2) for which T_1 and T_2 reconstruct the source S up to given distortions D_1 and D_2.

II. ON CONDITIONAL COMMON INFORMATION

We present two operational meanings of the conditional common information (Definition 1).

A. The Strong-Coordination Problem

Consider the scenario of Figure 1 where the side-information $\{Y_i\}$ is IID according to a given distribution Q_Y over a finite set \mathcal{Y}. For a given blocklength $n > 0$, we define
Let \(Y^n := (Y_1, \ldots, Y_n) \), and let the common randomness \(J \) be uniformly distributed over the index set \(\{1, \ldots, [2^n R]\} \).

We say that a joint distribution \(Q_{T_1, T_2, Y} \) over a finite product set \(T_1 \times T_2 \times S \) can be strongly coordinated with rate \(R > 0 \) and SI \(\{Y_i\} \) if, for each blocklength \(n > 0 \), there exist functions \(\psi^{(n)}_{SI1} \) and \(\psi^{(n)}_{SI2} \) of appropriate domains, for which the sequences

\[
\begin{align*}
T^n_1 &:= \psi^{(n)}_{SI1}(J, Y^n, \Theta_1) \\
T^n_2 &:= \psi^{(n)}_{SI2}(J, Y^n, \Theta_2)
\end{align*}
\]

satisfy

\[
\| P_{T^n_1 T^n_2 Y^n} - Q_{T^n_1 T^n_2 Y}^{\otimes n} \|_{TV} \to 0 \quad \text{as} \quad n \to \infty. \tag{8}
\]

for some auxiliary random variable \(W \) satisfying

\[
T_1 \to (W, Y) \to T_2. \tag{10}
\]

Proof: Omitted.

As a corollary we obtain the following operational meaning for \(C(T_1; T_2|Y) \):

Corollary 1.1: The distribution \(Q_{T_1, T_2, Y} \) can be strongly coordinated with rate \(R \) and SI \(\{Y_i\} \) if, and only if,

\[
R \geq C(T_1; T_2|Y). \tag{11}
\]

B. The Lossless Source-Coding Problem

Consider the lossless Gray-Wyner source coding problem of Figure 2, where the sequence of source and side-information triples \(\{(T_{1,i}, T_{2,i}, Y_i)\} \) is IID according to a given distribution \(Q_{T_1, T_2, Y} \) over a finite product alphabet \(T_1 \times T_2 \times Y \). For a given blocklength \(n > 0 \), define \(T^n_1 := (T_{1,1}, \ldots, T_{1,n}) \), \(T^n_2 := (T_{2,1}, \ldots, T_{2,n}) \) and \(Y^n := (Y_1, \ldots, Y_n) \). The encoder observes all three sequences \(T^n_1, T^n_2, Y^n \) and produces the indices \(J_0, J_1, J_2 \)

\[
(J_0, J_1, J_2) = \phi^{(n)}_{SI}(T^n_1, T^n_2, Y^n), \tag{12}
\]

for some encoding function

\[
\phi^{(n)}_{SI} : T^n_1 \times T^n_2 \times Y^n \to \{1, \ldots, [2^n R_0]\} \times \{1, \ldots, [2^n R_1]\} \times \{1, \ldots, [2^n R_2]\}. \tag{13}
\]

Indices \(J_0 \) and \(J_1 \) are fed to Decoder 1 and Indices \(J_0 \) and \(J_2 \) to Decoder 2. The two decoders also observe the side-information \(Y^n \) and produce the reconstruction sequences

\[
T^n_1 = \psi^{(n)}_{SI1}(J_0, J_1, Y^n), \tag{14}
\]

\[
T^n_2 = \psi^{(n)}_{SI2}(J_0, J_2, Y^n), \tag{15}
\]

for some decoding functions \(\psi^{(n)}_{SI1} \) and \(\psi^{(n)}_{SI2} \) of appropriate domains.

The rate-triple \((R_0, R_1, R_2)\) is achievable if, for each blocklength \(n > 0 \), there exists an encoding function \(\phi^{(n)}_{SI} \) as in (12) and decoding functions \(\psi^{(n)}_{SI1} \) and \(\psi^{(n)}_{SI2} \) of appropriate domains, so that:

\[
\lim_{n \to \infty} \Pr((T^n_1, T^n_2) \neq (\hat{T}^n_1, \hat{T}^n_2)) = 0. \tag{16}
\]

Theorem 2: Given a joint distribution \(Q_{T_1, T_2, Y} \), a rate-triple \((R_0, R_1, R_2)\) is achievable if, and only if, there exists an auxiliary random variable \(W \) such that

\[
\begin{align*}
R_0 &\geq I(W; T_1, T_2|Y) \tag{16a} \\
R_1 &\geq H(T_1|W, Y) \tag{16b} \\
R_2 &\geq H(T_2|W, Y). \tag{16c}
\end{align*}
\]

Proof: Omitted.

Let \(R^*_{0, SI} \) be the minimal \(R_0 \) for which for some rates \(R_1, R_2 \geq 0 \) and auxiliary random variable \(W \) the triple \((R_0, R_1, R_2)\) satisfies (16) if

\[
R_0 + R_1 + R_2 = H(T_1, T_2|Y). \tag{17}
\]

The rate \(R^*_{0, SI} \) thus indicates the minimum common rate \(R_0 \) in the lossless Gray-Wyner source coding problem with side-information so that for some \(R_1, R_2 \geq 0 \) the triple...
(R₀, R₁, R₂) is achievable and \([17]\) holds. Notice that \(H(T₁, T₂|Y)\) is the minimum compression rate required for a single receiver knowing \(\{Y_i\}\) to losslessly reconstruct both \(\{T₁,i\}\) and \(\{T₂,i\}\).

Corollary 2.1: The minimum common rate \(R_{0,SI}^*\) is
\[
R_{0,SI}^* = C(T₁; T₂|Y).
\]

III. On Relevant Common Information

We present two operational meanings of the relevant common information in Definition 2.

A. The Strong-Coordination Problem

Consider the scenario of Figure 3 where \(\Gamma(s|t₁, t₂)\) denotes the channel law of a discrete memoryless multiple-access channel with finite input alphabets \(T₁\) and \(T₂\) and finite output alphabet \(S\). For a given blocklength \(n > 0\), we let the common randomness \(J\) be uniformly distributed over the index set \(\{1, \ldots, [2ⁿR]\}\).

We say that distribution \(Q_S\) over \(S\) can be remotely strongly-coordinated with rate \(R\) if for each blocklength \(n\) there exist simulator functions \(ϕ_{Rel,1}^{(n)}\) and \(ϕ_{Rel,2}^{(n)}\) of appropriate domains, so that when the sequences
\[
T₁^n := ϕ_{Rel,1}^{(n)}(J, Θ₁)
\]
\[
T₂^n := ϕ_{Rel,2}^{(n)}(J, Θ₂)
\]
are fed to the MAC \(\Gamma(s|t₁, t₂)\), the probability distribution \(Pₜ\) of the produced output \(S^n\) satisfies
\[
∥Pₜ - Q_S^n∥_{TV} → 0 \quad \text{as} \quad n → ∞.
\]

Here \(Θ₁, Θ₂,\) and \(J\) are independent (with \(Θ₁\) and \(Θ₂\) accounting for local randomness) and \(Q_S^n\) denotes the \(n\)-fold product distribution of \(Q_S\).

Theorem 3: The distribution \(Q_S\) can be remotely strongly coordinated with rate \(R\) if, and only if,
\[
R ≥ I(S; W)
\]

for some auxiliary random variables \(T₁, T₂, W\) that satisfy the Markov chains
\[
T₁ → W → T₂ \quad (23a)
\]
\[
W → (T₁, T₂) → S \quad (23b)
\]
and where the conditional probability distribution of \(S\) given \(T₁ = t₁\) and \(T₂ = t₂\) is given by \(Γ(·|t₁, t₂)\).

Proof: See Section IV

Corollary 3.1: Let \(R_{rel}\) be the minimum rate \(R\) so that \(Qₜ\) can be remotely strongly coordinated at the output of the MAC \(Γ(s|t₁, t₂)\). We find
\[
R_{rel}^* = \min_{T₁, T₂} C(T₁; T₂ → S),
\]

where the minimum is taken over all \(T₁, T₂\) that when passed to the MAC \(Γ(s|t₁, t₂)\) produce an \(S \sim Q_S\).

B. The Weak-Coordination Problem

Consider the Gray-Wyner problem in Figure 4 where the source \(\{S_i\}\) is IID according to a given distribution \(Q_S\) over a finite alphabet \(S\).

![Gray-Wyner weak-coordination problem](image)

For a given blocklength \(n\), let \(S^n := (S₁, \ldots, S_n)\). The encoder produces three indices
\[
(J₀, J₁, J₂) = ϕ_{Rel}^{(n)}(S^n),
\]

for some encoding function
\[
ϕ_{Rel} : × S^n → \{1, \ldots, [2ⁿR₀]\} × \{1, \ldots, [2ⁿR₁]\} × \{1, \ldots, [2ⁿR₂]\}.
\]

Indices \(J₀\) and \(J₁\) are fed to Decoder 1 and Indices \(J₀\) and \(J₂\) to Decoder 2. The two decoders produce reconstruction sequences
\[
T₁^n = ϕ_{Rel,1}^{(n)}(J₀, J₁)
\]
\[
T₂^n = ϕ_{Rel,2}^{(n)}(J₀, J₂).
\]

We say that the joint distribution \(Q_{ST₁T₂}\) can be weakly-coordinated over a Gray-Wyner network with rates \((R₀, R₁, R₂)\) if for each blocklength \(n > 0\) there exists an encoding function \(ϕ_{Rel}^{(n)}\) as in (26) and decoding functions \(ψ_{Rel,1}^{(n)}\) and \(ψ_{Rel,2}^{(n)}\) of appropriate domains, so that:
\[
∥π(S^n, T₁^n, T₂^n) - Q_{ST₁T₂}∥_{TV} → 0 \quad \text{as} \quad n → ∞,
\]

where convergence is in probability and where \(π(S^n, T₁^n, T₂^n)\) denotes the joint type of the tuple \((S^n, T₁^n, T₂^n)\).

Theorem 4: The joint distribution \(Q_{ST₁T₂}\) can be weakly-coordinated over a Gray-Wyner network with rates \((R₀, R₁, R₂)\) if there exists an auxiliary random variable \(W\) such that
\[
R₀ ≥ I(S; W) \quad (30a)
\]
\[
R₀ + R₁ ≥ I(S; T₁, W) \quad (30b)
\]
\[
R₀ + R₂ ≥ I(S; T₂, W) \quad (30c)
\]
\[
R₀ + R₁ + R₂ ≥ I(S; T₁, T₂, W) + I(T₁; T₂|W) \quad (30d)
\]

Proof: Omitted.
Cuff, Permuter, and Cover had considered this problem in the special case without common rate, see [3, Theorem 7]. Both with and without common rate, a matching converse result is missing.

Let \(R_{0,\text{Rel}} \) be the minimum common rate \(R_0 > 0 \) so that for some rates \((R_1, R_2)\) satisfying
\[
R_0 + R_1 + R_2 = I(S; T_1, T_2),
\]
the distribution \(Q_{ST_1T_2} \) can be weakly-coordinated over a Gray-Wyner network with these rates \((R_0, R_1, R_2)\).

Notice that \(I(S; T_1, T_2) \) is the smallest rate required to weakly coordinate reconstruction sequences \(\{T_{1,i}\}, \{T_{2,i}\} \) with the source \(\{S_i\} \) according to a joint target distribution \(Q_{ST_1T_2} \) when there is only a single decoder that produces both \(\{T_{1,i}\} \) and \(\{T_{2,i}\} \). From Theorem 4 we obtain the following.

Corollary 4.1: The minimum common rate \(R^*_{\text{Rel,0}} \) is at most equal to the common information of \(T_1 \) and \(T_2 \) relevant to \(S \) in [3]:
\[
R^*_{\text{Rel,0}} \leq C(T_1; T_2 \rightarrow S).
\]

Proof: Fix \(Q_{ST_1T_2} \) and consider a rate-tuple \((R_0, R_1, R_2)\) satisfying the constraints in Theorem 4 By the sum-rate constraint (30d) we can have equality in
\[
R_0 + R_1 + R_2 = I(S; T_1, T_2),
\]
only if for some auxiliary \(W \)
\[
I(S; W|T_1, T_2) = 0 \quad \text{and} \quad I(T_1; T_2|W) = 0.
\]
That is, only if for some \(W \) the following two Markov chains hold:
\[
S \rightarrow (T_1, T_2) \rightarrow W \tag{34a}
\]
\[
T_1 \rightarrow W \rightarrow T_2. \tag{34b}
\]
Let \(W \) satisfy (34), and set
\[
R_0 = I(W; S) \tag{35}
\]
\[
R_1 = I(T_1; S| W) \tag{36}
\]
\[
R_2 = I(T_1; S| W). \tag{37}
\]
This tuple satisfies all four constraints in Theorem 4 because of the Markov chains (34). By minimizing over all legitimate choices of \(W \), we obtain the desired upper bound on \(R^*_{\text{Rel,0}} \).

It can also be shown that no better upper bound on \(R^*_{\text{Rel,0}} \) can be obtained from Theorem 4. The relevant common information \(C(T_1; T_2 \rightarrow S) \) only represents an upper bound on \(R^*_{\text{Rel,0}} \), because we are missing a converse proof to Theorem 4.

IV. PROOF OF THEOREM 3

We first prove the achievability part, followed by the converse part.

A. Achievability

A main ingredient in the achievability proof is the following lemma from [3].

Lemma 5 (Lemma 19 in [2]): Fix a joint distribution \(Q_{AB} \) over the product alphabet \(A \times B \). Denote its marginal and conditional marginal on \(B \) by \(Q_B \) and by \(Q_{B|A} \). Fix \(\delta > 0 \) and \(R > I(A; B) \), where this mutual information is calculated for \((A, B) \sim Q_{AB}\).

For all sufficiently large \(n \), there is a subset \(\{a^n(j)\}_{j=1}^{[2^nR]} \) of \(A^n \) such that the average distribution
\[
P^B_{\text{avg}}(b^n) \triangleq \frac{1}{[2^nR]^n} \sum_{j=1}^{[2^nR]} Q^n_{B|A}(b^n|a^n(j)), \quad b^n \in B^n, \tag{38}
\]
where \(Q^n_{B|A} \) denotes the \(n \)-fold product of \(Q_{B|A} \) is close to \(P^B_{\text{avg}}(b^n) \) in terms of total variational distance:
\[
\|P^B_{\text{avg}} - Q^n_{B|A}\|_{TV} \leq \delta. \tag{39}
\]

We now prove feasibility of Theorem 3. Fix a rate \(R > 0 \) and a joint distribution \(Q_{WST_1T_2} \) so that \((W, S, T_1, T_2) \sim Q_{WST_1T_2} \) satisfy the Markov chains (23) and
\[
R > I(W; S). \tag{40}
\]

Consider the construction in Figure 5 where the index \(J \) is uniform over the set \(\{1, \ldots, [2^nR]\} \) and the \(n \)-length sequences \(\{w^n(j)\}_{j=1}^{[2^nR]} \) are chosen as explained in Lemma 5 above. We feed the random \(n \)-length sequence \(w^n(J) \) to a discrete memoryless channel \(Q_{S|W} \), and denote the output sequence of this channel by \(S^n \). By Lemma 5, the produced \(S^n \) satisfies (21) whenever (40) holds.

\[
J \xrightarrow{} w^n(\cdot) \xrightarrow{} W^n \xrightarrow{} Q_{S|W} \xrightarrow{} S^n
\]

Fig. 5. A simple construction generating the desired random output sequence \(S^n \). The set \(\{w^n(\cdot)\} \) needs to be chosen to satisfy the assumptions in Lemma 5 when \(Q_{AB} \) is replaced by \(Q_{WS} \).

Since we chose \(Q_{WST_1T_2} \) to satisfy Markov chain (23a), the construction in the following Figure 6 is equivalent to the one in Figure 5.

\[
J \xrightarrow{} u^n(\cdot) \xrightarrow{} W^n \xrightarrow{} Q^n_{T_1,T_2|W} \xrightarrow{} \text{memory-less MAC} \xrightarrow{} \Gamma(s(t_1,t_2)) \xrightarrow{} S^n
\]

Fig. 6. This construction is equivalent to the one in Figure 5 because of the Markov chain \(S \rightarrow (T_1, T_2) \rightarrow W \).

Since \(Q_{WST_1T_2} \) also satisfies Markov chain (23b), the construction in Figure 6 is further equivalent to the construction in Figure 7. The construction in Figure 7 is of the form demanded in the problem setup, and since the generated output
sequence satisfies (24), the construction is a solution to our problem. Considering the assumptions we made on \(R \) and on the distribution \(Q_{WST_1T_2} \), this concludes the proof.

Lemma 7 (Lemma 21 in [2]): Let \(A \) be a probability law over a finite alphabet \(\mathcal{A} \), and let \(A^n \) be a random sequence over \(\mathcal{A}^n \). If

\[
\|P_{A^n} - Q_A^{\otimes n}\|_{TV} < \epsilon,
\]

for some \(1/2 > \epsilon > 0 \), then

\[
\frac{1}{n} \sum_{k=1}^{n} I(A_k; A^{k-1}) \leq 2\epsilon \left(\log |\mathcal{A}| + \log \frac{1}{\epsilon} \right).
\]

Lemma 7 (Lemma 21 in [2]): Let \(Q_A \) be a probability law over a finite alphabet \(\mathcal{A} \), and let \(A^n \) be a random sequence over \(\mathcal{A}^n \). Assume that

\[
\|P_{A^n} - Q_A^{\otimes n}\|_{TV} < \epsilon,
\]

for some \(1/2 > \epsilon > 0 \). Also, let the time-sharing random variable \(U \) be uniform over \(\{1, \ldots, n\} \) and independent of the tuple \(A^n \).

Then,

\[
I(A_U; U) \leq 2\epsilon \left(\log |\mathcal{A}| + \log \frac{1}{\epsilon} \right).
\]

We now prove the infeasibility result in the theorem. Consider a sequence of simulator functions \(\{\varphi_{\text{Rel,1}}^{(n)}\}_{n=1}^{\infty} \) and \(\{\varphi_{\text{Rel,2}}^{(n)}\}_{n=1}^{\infty} \), for which the induced MAC outputs \(\{S^n\}_{n=1}^{\infty} \) satisfy (24) for a given distribution \(Q_S \).

Fix a large positive integer \(n \), and let \(\epsilon_n \in (0, 1/2) \) satisfy

\[
\|P_{S^n} - Q_S^{\otimes n}\|_{TV} < \epsilon_n.
\]

Let \(T_1^n \) and \(T_2^n \) be the sequences produced by the chosen \(\varphi_{\text{Rel,1}}^{(n)} \) and \(\varphi_{\text{Rel,2}}^{(n)} \), and \(S^n \) the corresponding sequence of MAC outputs. Also, let \(U \) be uniform over \(\{1, \ldots, n\} \) independent of \(J, T_1^n, T_2^n, S^n \). Define \(S \triangleq S_U \) and \(W \triangleq (J, U) \). Then,

\[
R = \frac{1}{n} H(J) \geq \frac{1}{n} I(J; S^n) \geq \frac{1}{n} H(S^n) - \frac{1}{n} \sum_{k=1}^{n} H(S_k | J)
\]

\[
= \frac{1}{n} \sum_{k=1}^{n} [H(S_k | S^{k-1}) - H(S_k | J)]
\]

\[
= \frac{1}{n} \sum_{k=1}^{n} [H(S_k) - I(S_k; S^{k-1}) - H(S_k | J)]
\]

\[
\geq \frac{1}{n} \sum_{k=1}^{n} [H(S_k) - 2\epsilon_n \left(\log |\mathcal{A}| + \log \frac{1}{\epsilon_n} \right) - H(S_k | J)]
\]

\[
= I(S_U; J | U) - 2\epsilon_n \left(\log |\mathcal{A}| + \log \frac{1}{\epsilon_n} \right)
\]

\[
\geq I(S_U; J | U) - 4\epsilon_n \left(\log |\mathcal{A}| + \log \frac{1}{\epsilon_n} \right),
\]

\[
= I(S; W) - 4\epsilon_n \left(\log |\mathcal{A}| + \log \frac{1}{\epsilon_n} \right).
\]

where the second inequality follows because conditioning can only reduce entropy; the third inequality by Lemma 6, and the fourth inequality by Lemma 7.

Since the considered sequence of simulators achieves the goal in (24), we can choose the sequence \(\epsilon_n \) tending to 0 as \(n \to \infty \). Therefore,

\[
R \geq I(S; W).
\]

Notice that by the structure of the problem’s setup in Figure 3

\[
T_{1,k} \rightarrow J \rightarrow T_{2,k}
\]

and

\[
J \rightarrow (T_{1,k}, T_{2,k}) \rightarrow S_k.
\]

Let \(T_1 \triangleq T_{1,U} \) and \(T_2 \triangleq T_{2,U} \). Since \(U \) is independent of \((T_1^n, T_2^n, S^n, J) \), the above two Markov chains also imply

\[
T_1 \rightarrow W \rightarrow T_2
\]

and

\[
W \rightarrow (T_1, T_2) \rightarrow S.
\]

Combined with (27), these two Markov chains conclude the proof of the infeasibility part.

Acknowledgement

The authors thank Ligong Wang for insightful discussions.

References

