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Abstract—Two variations on Wyner’s common information are
proposed: conditional common information and relevant common
information. The former characterizes the minimum common
rate that is required for lossless source-coding over a one-to-
two Gray-Wyner network, when the sum-rate is restricted to be
minimal and the terminals all share the side-information. It also
characterizes the minimum rate of common randomness that
is required for two terminals sharing some side-information to
strongly coordinate their outputs according to a target distri-
bution. The latter, relevant common information, is an upper
bound on the minimum common rate required for two receivers
of a one-to-two Gray-Wyner network to weakly coordinate their
reconstruction sequences with the source according to a target
distribution. It also characterizes the minimum rate of common
randomness that is required for two terminals to produce a
target strongly-coordinated sequence at the output of a two-user
multiple-access channel.

I. INTRODUCTION

Wyner [1]] defined the common information C(T7;T») be-
tween two random variables 77 and 15 as

O(Ti:Ty) 2 min I(TLTxW), (D
where X — Y — Z indicates that X and Z are conditionally
independent given Y, i.e., that XY, Z forms a Markov chain.
He provided two operational meanings to this quantity: It
is the smallest common rate required to losslessly describe
a bivariate source {(T3,,72,)} ~ IID Qr,1, over a Gray-
Wyner network (Fig. [2[ with {Y;} null) with the sum-rate
at its minimum, and it is also the smallest rate of common
randomness required for two terminals to simulate outputs of
joint distribution Qr, 7, (Fig. []] with {Y;} null).

Here we propose two generalizations of Wyner’s common
information. The first, the conditional common information
C(T1;T2]Y), accounts for side-information (SI) Y that is
available to all terminals. The second, the relevant common
information C(Ty; To — S), quantifies the common informa-
tion that is related to a random variable S.

Definition 1 (Conditional Common Information): Given a
triple of random variables Y, T}, 75, the conditional common
information of the pair (T1,T3) given Y is

C(TI;T2‘Y) = I(T17T2;W|Y). 2)

min
W: Ty —(W,Y)—=Ts
Definition 2 (Relevant Common Information): Given a triple

of random variables S, T}, T5, the common information of the

pair (T, Ty) relevant to S is
C(Ty;;T, — S) & min
W T1*>W*>T2
S*}(Tl,Tz)*)W

I(S;W).  (3)
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Remark 1: For Y = () and for S = (71, T%), the conditional
common information and the relevant common information
reduce to Wyner’s original common information:

Y=0 = COI;T|Y)=C(Ty;Te), “4)

S = (Tl,TQ) — C(T1;T2 — S) = C(Tl;TQ). (5)

In Section [l we will provide the following operational

meanings to the conditional common information:

o It is the smallest common rate required to describe
a bivariate source {(77;,7%;)} over the Gray-Wyner
network of Fig. [2l where the side information {Y;} is
available to all the terminals, and where the sum of all
the rates is at its minimum.

o It is the smallest rate of common randomness required
to strongly coordinate [3] the outputs of two terminals
according to the target distribution Q7,7, when the two
terminals are furnished with {Y;}.

In Section we provide operational meanings to the
relevant common information:

o Itis an upper bound on the smallest common rate required
in a one-to-two Gray-Wyner network to weakly coordi-
nate [3] the receivers’ reconstructions {74 ;} and {75 ;}
with each other and with the source {S;} according to
a target distribution Q, 7,5, where the sum of all rates
needs to be at its minimum.

o It is the smallest rate of common randomness required
at two terminals to—through their inputs—strongly co-
ordinate the output of a two-user multiple-access channel
(MAC) according to a target distribution Q.

Our definition of relevant conditional information in (3)
is reminiscent of the definition of lossy common information
in [4]. However, in [4], the minimization is not only over the
auxiliary random variable W but also over all pairs (73, 7%)
for which 77 and 75 reconstruct the source S up to given
distortions Dy and Ds.

II. ON CONDITIONAL COMMON INFORMATION
We present two operational meanings of the conditional
common information (Definition [T)).
A. The Strong-Coordination Problem

Consider the scenario of Figure [, where the side-
information {Y;} is IID according to a given distribution Qy
over a finite set ). For a given blocklength n > 0, we define
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Fig. 1. A simulation problem with side-information.

Y™ := (Y1,...,Y,), and let the common randomness .J be
uniformly distributed over the index set {1,...,[2"#]}.

We say that a joint distribution ), 7,y over a finite product
set 71 X Ta X S can be strongly coordinated with rate R >
0 and SI {Y;} if, for each blocklength n > 0, there exist
functions goé?)l and 90&?)2 of appropriate domains, for which
the sequences

TP = o) (J,Y", 01) (6)
T3 = ¢ih(J. Y™, 62) )

satisfy
HPTlnTznyn — Q?:LTQYHTV —0 as n— oo. (8)

Here ©1, O4, and J are independent (with ©; and ©- account-
ing for local randomness); PTlnTZ;Lyn denotes the probability
distribution of the tuple (77", 73',Y™); and Q%% , denotes
the n-fold product distribution obtained from Qr,7,y. Also,
|| - [[Tv stands for total variational distance [3].

Theorem 1: The distribution Q7,7,y can be strongly coor-
dinated with rate R and SI {Y;} if, and only if,

R>I(Th,T3; WIY) )
for some auxiliary random variable W satisfying

Proof: Omitted. [ |
As a corollary we obtain the following operational meaning
for C(T1; T»|Y):
Corollary 1.1: The distribution 7,7,y can be strongly
coordinated with rate R and SI {Y;} if, and only if,

R > C(Ty; Tu|Y).

B. The Lossless Source-Coding Problem

Consider the lossless Gray-Wyner source coding problem of
Figure [2| where the sequence of source and side-information
triples {(71,;, T2, Y;) } is IID according to a given distribution
Qr, 1,y over a finite product alphabet 73 x 72 x ). For a
given blocklength n > 0, define 77" = (Ti1,...,T1n),
Ty = (Toq,...,To,) and Y™ := (Y3,...,Y,). The encoder

) v}
] & : {T1,:}
{(Th,:,T2,)} Jo Decoder 1 ——
——={ Encoder { {T2 3
Decoder 2 F—>
Jo .
{vi}

Fig. 2. Lossless Gray-Wyner source coding with side-information Y.

observes all three sequences 717°,75', Y™ and produces the
indices Jy, J1, Jo

(Jos Ji, Jo) = &S (TT, T3, Y™, (11)

for some encoding function

éTIl) 7-1n % 7—2n % yn
= {1, 20 Y x {1, |20 Y < {1, |20 )

12)

Indices Jy and J; are fed to Decoder 1 and Indices J; and
Jo to Decoder 2. The two decoders also observe the side-
information Y™ and produce the reconstruction sequences

T =9 (Jo, J1,Y™), (13)

Ty =G (Jo, J2, Y™, (14)
for some decoding functions zbé?)l and T/Jéll)z of appropriate
domains.

The rate-triple (R, Ry, R2) is achievable if, for each block-
length n > 0, there exists an encoding function qbé?) as in (12)
and decoding functions wé?)l and wé?)z of appropriate domains,
so that:

lim Pr((77,T%) # (T7,T3)) = 0. (15)

n— oo
Theorem 2: Given a joint distribution Q7,7,v, a rate-triple
(Ro, Ry, R2) is achievable if, and only if, there exists an
auxiliary random variable W such that

Ry > I(W;T1,T2]Y) (16a)
Ry > H(T4|W,Y) (16b)
Ry > H(T3|W,Y). (16¢)
Proof: Omitted. ]

Let Rjq be the minimal Ry for which for some rates
Ry, Ry > 0 and auxiliary random variable W the triple
(Ro, R1, R2) satisfies (16) and

Ro+ Ry + Ry = H(Ty, To|Y). (17)

The rate Rf; thus indicates the minimum common rate Ry
in the lossless Gray-Wyner source coding problem with
side-information so that for some R;, Ro > 0 the triple
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(Ro, R1, R2) is achievable and holds. Notice that
H(Ty,T»|Y) is the minimum compression rate required for
a single receiver knowing {Y;} to losslessly reconstruct
both {Tlﬂ'} and {Tgﬂ'}.

Corollary 2.1: The minimum common rate R g is

o.s1 = C(Ty; Ta|Y). (18)

III. ON RELEVANT COMMON INFORMATION
We present two operational meanings of the relevant com-
mon information in Definition 2}
A. The Strong-Coordination Problem

Consider the scenario of Figure 3] where I'(s|t1,¢2) denotes
the channel law of a discrete memoryless multiple-access
channel with finite input alphabets 7; and 73 and finite output
alphabet S. For a given blocklength n > 0, we let the

T
Simulator 1 { 1’}~ memory-
J less (S}
MAC |—2,
T: i F(S‘tl,tg)
Simulator 2 (T2, }‘

Fig. 3. A remote strong coordination problem.

common randomness .J be uniformly distributed over the index
set {1,...,[2"F]}.

We say that distribution Qg over S can be remotely strongly-
coordinated with rate R if for each blocklength n there exist
simulator functions 4,01({;1)’1 and @1(221)’2 of appropriate domains,
so that when the sequences

TP = 1 (7, 61) (19)
T3 = el 5 (J, ) (20)

are fed to the MAC T'(s|t1,t2), the probability distribution
Pgsn of the produced output S™ satisfies

HPSH — ?n| —0 as n — oo.

v @D

Here ©;, ©2, and J are independent (with ©; and ©Os
accounting for local randomness) and Q?” denotes the n-fold
product distribution of Qs.

Theorem 3: The distribution (g can be remotely strongly

coordinated with rate R if, and only if,
R>I(S;W) (22)

for some auxiliary random variables 77, T, W that satisfy the
Markov chains

T1 — w
W — (Tl,TQ)

— 15 (23a)

-5 (23b)

and where the conditional probability distribution of S given
T1 =1t and T2 =19 is giVCIl by F('|t1,t2).
Proof: See Section [ |

Corollary 3.1: Let Ry, be the minimum rate R so that Qg
can be remotely strongly coordinated at the output of the MAC
F(S|t1,t2). We find

RRa = }?ITHQ C(Ty; T, — 9), (24)

where the minimum is taken over all 7,75 that when passed
to the MAC T'(s|t1,t2) produce an S ~ Q.

B. The Weak-Coordination Problem

Consider the Gray-Wyner problem in Figure @ where the
source {S;} is IID according to a given distribution Qg over
a finite alphabet S.

Ji )
Decoder 1 ﬂlﬁ}

{S:} J,
——— Encoder (1.}
Jo Decoder 2 RS

Fig. 4. Gray-Wyner weak-coordination problem.

For a given blocklength n, let S™ := (Si,...,S,). The
encoder produces three indices
(Jos 1, J2) = i (S™), (25)
for some encoding function
o s
= {1, 2"} x {1, (27 ) x {1, 2R )
(26)

Indices Jy and J; are fed to Decoder 1 and Indices Jy and
Jo to Decoder 2. The two decoders produce reconstruction
sequences

T3 =t (Jo, 1) @7)
T§ = il (o, o). (28)
We say that the joint distribution Qgsry7, can be

weakly-coordinated over a Gray-Wyner network with rates
(Ro, R1, R2) if for each blocklength n > 0 there exists an
encoding function ¢y as in and decoding functions

]({;),1 and w](g]),z of appropriate domains, so that:

||7T<Sn7T1n7T2n) - QST1T2||TV — 0,

where convergence is in probability and where = (5™, T7*, T3)
denotes the joint type of the tuple (S™, T, T3").

Theorem 4: The joint distribution ) s, 7, can be weakly co-
ordinated over a Gray-Wyner network with rates (Ro, R1, R2)
if there exists an auxiliary random variable W such that

as n — oo, (29)

Ro > I(S;W) (30a)

Ro+ Ry > I(S;Ty, W) (30b)
Ro+ Ry > I(S; Ty, W) (30¢)
Ro+ Ry + Ry > I(S; Ty, To, W) + I(Ty; To|W). (30d)

Proof: Omitted. ]
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Cuff, Permuter, and Cover had considered this problem in the
special case without common rate, see [3, Theorem 7]. Both
with and without common rate, a matching converse result is
missing.

Let R ge be the minimum common rate Ry > 0 so that
for some rates (R, Ry) satisfying

Ro+ Ry + Ry = I(S; T4, T3), (31)

the distribution s, 7, can be weakly-coordinated over a
Gray-Wyner network with these rates (Rg, Ry, R2).

Notice that I(S;7Ty,T>) is the smallest rate required to
weakly coordinate reconstruction sequences {74 ,;,T5;} with
the source {.5;} according to a joint target distribution Qs 7,
when there is only a single decoder that produces both {77 ;}
and {T5;}.

From Theorem [] we obtain the following.

Corollary 4.1: The minimum common rate Ry,  is at most
equal to the common information of 77 and T» relevant to S
in (3):

RS,Rel < C(Tl; Ty — S) (32)

Proof: Fix Qgs1, 1, and consider a rate-tuple (R, Ry, R2)
satisfying the constraints in Theorem [ By the sum-rate
constraint (30d) we can have equality in

Ro+ R1+ Ry = I(S;Ty,T3), (33)
only if for some auxiliary W
I(S, W|T1, Tg)

=0 and I(Ty;To|W)=0.

That is, only if for some W the following two Markov chains
hold:

S — (Th,Te) = W (34a)
T — W —=1T,. (34b)
Let W satisfy (34)), and set
R() = I(W, S) (35)
Ry = I(Ty; S|W) (36)
Ro = I(Th; S|W). 37)

This tuple satisfies all four constraints in Theorem [] because
of the Markov chains (34). By minimizing over all legitimate
choices of W, we obtain the desired upper bound on Rg .
It can also be shown that no better upper bound on Rg o
can be obtained from Theorem @l The relevant common
information C(7T7; T — S) only represents an upper bound on
Rge o> because we are missing a converse proof to TheoremE}
|

IV. PROOF OF THEOREM[3]

We first prove the achievability part, followed by the con-
verse part.

A. Achievability

A main ingredient in the achievability proof is the following
lemma from [2].

Lemma 5 (Lemma 19 in [2|]): Fix a joint distribution Q25
over the product alphabet A x B. Denote its marginal and
conditional marginal on B by g and by Qp|a. Fix 6 > 0
and R > I(A; B), where this mutual information is calculated
for (A,B) ~ Qap.

For all sufficiently large n, there is a subset {a"(j)
of A" such that the average distribution

L2

2nRJ

Ppn (b") & LGR Z QB‘A b la"(4)), b€ B, (38)

(where Q2T BlA denotes the n-fold product of Qp|4) is close to
PE™(b™) in terms of total variational distance:

1P = Q5" [l7y <6

We now prove feasibility of Theorem [3] Fix a rate R > 0
and a joint distribution Qw st 1, so that (W, S, Ty,Ts) ~
QwstyT, satisfy the Markov chains and

R > I(W;S).

(39)

(40)

Consider the construction in Figure [5] where the index
J is uniform over the set {1,...,[2"f|} and the n-length

sequences {w"(j)} ]LZRJ are chosen as explained in Lemma
above. We feed the random n-length sequence w™(J) to a
discrete memoryless channel Q gy, and denote the output
sequence of this channel by S™. By Lemma [5] the produced
S™ satisfies (ZI) whenever (0) holds.

_J w () |ﬂ, Qsw f—= 5"

Fig. 5. A simple construction generating the desired random output sequence
S™. The set {w™(-)} needs to be chosen to satisfy the assumptions in
Lemma 5] when Q 4 is replaced by Qw s.

Since we chose Qwsr,1, to satisfy Markov chain (23a)),
the construction in the following Figure [f]is equivalent to the
one in Figure [3

memory-
J wm less
— [ w"() —{Qnnw f—— MAC f——g"

F(S‘tl, tz)

Fig. 6. This construction is equivalent to the one in Figure [5] because of the
Markov chain S — (T1,7T2) — W.

Since Qw s, 1, also satisfies Markov chain (23b)), the con-
struction in Figure [6] is further equivalent to the construction
in Figure []] The construction in Figure [7] is of the form
demanded in the problem setup, and since the generated output
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sequence satisfies (2I)), the construction is a solution to our
problem. Considering the assumptions we made on R and on
the distribution Qw s7,7,, this concludes the proof.

Simulator 1

n Tr
—'—>| w"(+) |L~| QTI\W| :—1> memory-
J Lo _______. 1 less
MAC |— g»
1 n ! T F(S'tl,tg)

Simulator 2

Fig. 7. This construction is equivalent to the one in Figure [f] because of the
Markov chain S — (T, T2) — W. Both simulators use the same codebook
{w™(+)}. Simulator k feeds the codeword W™ = w™(.J) to a DMC Pr, |y
B. Infeasibility Proof

We will need the following lemmas 20 and 21 from [2f]:

Lemma 6 (Lemma 20 in [2)]): Let Q4 be a probability law
over a finite alphabet .4, and let A™ be a random sequence
over A". If

1Par = QX" |y <€,

for some 1/2 > € > 0, then

(41)

1 n
= I(Ag; AFT) < 2¢
g
Lemma 7 (Lemma 21 in [2]]): Let Q4 be a probability law
over a finite alphabet A, and let A™ be a random sequence
over A". Assume that

HPA” - anHTV <6

for some 1/2 > ¢ > 0. Also, let the time-sharing random
variable U be uniform over {1,...,n} and independent of
the tuple A™.

Then,

<1og |A| + log 1) .42
(43)

1
I(Ay;U) < 2 <log | Al + log > . (44)
€
We now prove the infeasibility result in the theorem.
Consider a sequence of simulator functions {<P1(£1),1}%°:1 and
{<pl(£l)2}%c=1 for which the induced MAC outputs {S™}22
satisfy (2I)) for a given distribution Q5.
Fix a large positive integer n, and let ¢,, € (0,1/2) satisfy

|[Psn — QF" v < €n. (45)

Let TT* and T be the sequences produced by the chosen

‘P}(zZI),1 and @1(221)72, and S™ the corresponding sequence of MAC

outputs. Also, let U be uniform over {1,...,n} independent
of J, TP, T3, S™. Define S £ Sy and W £ (J,U). Then,

R— %H(J) > %I(J; )
> LH(S") > H(S)

k=1

[H(Sk|S*™) — H(Sk|J)]

[
S
NE

~
Il
-

[H(Sk) = I(Sk; S*~1) — H(Sk|J)]

I
Si=
NE

=~
Il
_

v
S
NE

[H(Sk) — 2¢, (log |S| + log 1)

677.

=~
Il

1

—H(Sk.m]
1
= I(Sy; J|U) — 2¢, <log |S| + log >
€n
1
> 1(Su: ,U) — de, (mg S1+ log) |
€n

1
=1(S; W) —4de, (log |S| + log ) . (46)
€n

where the second inequality follows because conditioning can
only reduce entropy; the third inequality by Lemma [6} and the
fourth inequality by Lemma

Since the considered sequence of simulators achieves the
goal in (21)), we can choose the sequence ¢, tending to O as
n — oo. Therefore,

R > I(S;W). (47)

Notice that by the structure of the problem’s setup in

Figure 3]

Tl,k —J — Tg’k (48)

and

J — (Tl,k,Tch) — Sk. (49)
Let T} £ T,y and T5 £ T5 . Since U is independent of
(17,13, 8™, J), the above two Markov chains also imply

=W =1 (50)

and

W—>(T1,T2)—>S. on

Combined with (@7), these two Markov chains conclude the
proof of the infeasibility part.
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