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Abstract—Two variations on Wyner’s common information are
proposed: conditional common information and relevant common
information. The former characterizes the minimum common
rate that is required for lossless source-coding over a one-to-
two Gray-Wyner network, when the sum-rate is restricted to be
minimal and the terminals all share the side-information. It also
characterizes the minimum rate of common randomness that
is required for two terminals sharing some side-information to
strongly coordinate their outputs according to a target distri-
bution. The latter, relevant common information, is an upper
bound on the minimum common rate required for two receivers
of a one-to-two Gray-Wyner network to weakly coordinate their
reconstruction sequences with the source according to a target
distribution. It also characterizes the minimum rate of common
randomness that is required for two terminals to produce a
target strongly-coordinated sequence at the output of a two-user
multiple-access channel.

I. INTRODUCTION

Wyner [1] defined the common information C(T1;T2) be-
tween two random variables T1 and T2 as

C(T1;T2) , min
W : T1→W→T2

I(T1, T2;W ), (1)

where X → Y → Z indicates that X and Z are conditionally
independent given Y , i.e., that X,Y, Z forms a Markov chain.
He provided two operational meanings to this quantity: It
is the smallest common rate required to losslessly describe
a bivariate source {(T1,i, T2,i)} ∼ IID QT1T2

over a Gray-
Wyner network (Fig. 2 with {Yi} null) with the sum-rate
at its minimum, and it is also the smallest rate of common
randomness required for two terminals to simulate outputs of
joint distribution QT1T2 (Fig. 1 with {Yi} null).

Here we propose two generalizations of Wyner’s common
information. The first, the conditional common information
C(T1;T2|Y ), accounts for side-information (SI) Y that is
available to all terminals. The second, the relevant common
information C(T1;T2 → S), quantifies the common informa-
tion that is related to a random variable S.

Definition 1 (Conditional Common Information): Given a
triple of random variables Y, T1, T2, the conditional common
information of the pair (T1, T2) given Y is

C(T1;T2|Y ) , min
W : T1→(W,Y )→T2

I(T1, T2;W |Y ). (2)

Definition 2 (Relevant Common Information): Given a triple
of random variables S, T1, T2, the common information of the
pair (T1, T2) relevant to S is

C(T1;T2 → S) , min
W : T1→W→T2

S→(T1,T2)→W

I(S;W ). (3)

Remark 1: For Y = ∅ and for S = (T1, T2), the conditional
common information and the relevant common information
reduce to Wyner’s original common information:

Y = ∅ =⇒ C(T1;T2|Y ) = C(T1;T2), (4)

S = (T1, T2) =⇒ C(T1;T2 → S) = C(T1;T2). (5)

In Section II, we will provide the following operational
meanings to the conditional common information:
• It is the smallest common rate required to describe

a bivariate source {(T1,i, T2,i)} over the Gray-Wyner
network of Fig. 2, where the side information {Yi} is
available to all the terminals, and where the sum of all
the rates is at its minimum.

• It is the smallest rate of common randomness required
to strongly coordinate [3] the outputs of two terminals
according to the target distribution QT1T2 when the two
terminals are furnished with {Yi}.

In Section III we provide operational meanings to the
relevant common information:
• It is an upper bound on the smallest common rate required

in a one-to-two Gray-Wyner network to weakly coordi-
nate [3] the receivers’ reconstructions {T1,i} and {T2,i}
with each other and with the source {Si} according to
a target distribution QT1T2S , where the sum of all rates
needs to be at its minimum.

• It is the smallest rate of common randomness required
at two terminals to—through their inputs—strongly co-
ordinate the output of a two-user multiple-access channel
(MAC) according to a target distribution QS .

Our definition of relevant conditional information in (3)
is reminiscent of the definition of lossy common information
in [4]. However, in [4], the minimization is not only over the
auxiliary random variable W but also over all pairs (T1, T2)
for which T1 and T2 reconstruct the source S up to given
distortions D1 and D2.

II. ON CONDITIONAL COMMON INFORMATION

We present two operational meanings of the conditional
common information (Definition 1).

A. The Strong-Coordination Problem

Consider the scenario of Figure 1, where the side-
information {Yi} is IID according to a given distribution QY

over a finite set Y . For a given blocklength n > 0, we define
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Fig. 1. A simulation problem with side-information.

Y n := (Y1, . . . , Yn), and let the common randomness J be
uniformly distributed over the index set {1, . . . , b2nRc}.

We say that a joint distribution QT1T2Y over a finite product
set T1 × T2 × S can be strongly coordinated with rate R >
0 and SI {Yi} if, for each blocklength n > 0, there exist
functions ϕ(n)

SI,1 and ϕ
(n)
SI,2 of appropriate domains, for which

the sequences

Tn
1 := ϕ

(n)
SI,1(J, Y n,Θ1) (6)

Tn
2 := ϕ

(n)
SI,2(J, Y n,Θ2) (7)

satisfy ∥∥PTn
1 Tn

2 Y n −Q⊗nT1T2Y

∥∥
TV → 0 as n→∞. (8)

Here Θ1, Θ2, and J are independent (with Θ1 and Θ2 account-
ing for local randomness); PTn

1 Tn
2 Y n denotes the probability

distribution of the tuple (Tn
1 , T

n
2 , Y

n); and Q⊗nT1T2Y
denotes

the n-fold product distribution obtained from QT1T2Y . Also,
‖ · ‖TV stands for total variational distance [3].

Theorem 1: The distribution QT1T2Y can be strongly coor-
dinated with rate R and SI {Yi} if, and only if,

R ≥ I(T1, T2;W |Y ) (9)

for some auxiliary random variable W satisfying

T1 → (W,Y )→ T2. (10)

Proof: Omitted.
As a corollary we obtain the following operational meaning

for C(T1;T2|Y ):
Corollary 1.1: The distribution QT1T2Y can be strongly

coordinated with rate R and SI {Yi} if, and only if,

R ≥ C(T1;T2|Y ).

B. The Lossless Source-Coding Problem

Consider the lossless Gray-Wyner source coding problem of
Figure 2, where the sequence of source and side-information
triples {(T1,i, T2,i, Yi)} is IID according to a given distribution
QT1T2Y over a finite product alphabet T1 × T2 × Y . For a
given blocklength n > 0, define Tn

1 := (T1,1, . . . , T1,n),
Tn
2 := (T2,1, . . . , T2,n) and Y n := (Y1, . . . , Yn). The encoder

Decoder 2

Decoder 1

Encoder

J2

J1

J0{(T1,i, T2,i)}

{Yi}

{Yi}

{T̂2,i}

{T̂1,i}
{Yi}

Fig. 2. Lossless Gray-Wyner source coding with side-information Y n.

observes all three sequences Tn
1 , T

n
2 , Y

n and produces the
indices J0, J1, J2

(J0, J1, J2) = φ
(n)
SI (Tn

1 , T
n
2 , Y

n), (11)

for some encoding function

φ
(n)
SI : T n

1 × T n
2 × Yn

→ {1, . . . , b2nR0c} × {1, . . . , b2nR1c} × {1, . . . , b2nR2c}.
(12)

Indices J0 and J1 are fed to Decoder 1 and Indices J0 and
J2 to Decoder 2. The two decoders also observe the side-
information Y n and produce the reconstruction sequences

T̂n
1 = ψ

(n)
SI,1(J0, J1, Y

n), (13)

T̂n
2 = ψ

(n)
SI,2(J0, J2, Y

n), (14)

for some decoding functions ψ(n)
SI,1 and ψ

(n)
SI,2 of appropriate

domains.
The rate-triple (R0, R1, R2) is achievable if, for each block-

length n > 0, there exists an encoding function φ(n)SI as in (12)
and decoding functions ψ(n)

SI,1 and ψ(n)
SI,2 of appropriate domains,

so that:

lim
n→∞

Pr
(
(Tn

1 , T
n
2 ) 6= (T̂n

1 , T̂
n
2 )
)

= 0. (15)

Theorem 2: Given a joint distribution QT1T2Y , a rate-triple
(R0, R1, R2) is achievable if, and only if, there exists an
auxiliary random variable W such that

R0 ≥ I(W ;T1, T2|Y ) (16a)
R1 ≥ H(T1|W,Y ) (16b)
R2 ≥ H(T2|W,Y ). (16c)

Proof: Omitted.
Let R?

0,SI be the minimal R0 for which for some rates
R1, R2 ≥ 0 and auxiliary random variable W the triple
(R0, R1, R2) satisfies (16) and

R0 +R1 +R2 = H(T1, T2|Y ). (17)

The rate R?
0,SI thus indicates the minimum common rate R0

in the lossless Gray-Wyner source coding problem with
side-information so that for some R1, R2 ≥ 0 the triple
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(R0, R1, R2) is achievable and (17) holds. Notice that
H(T1, T2|Y ) is the minimum compression rate required for
a single receiver knowing {Yi} to losslessly reconstruct
both {T1,i} and {T2,i}.

Corollary 2.1: The minimum common rate R?
0,SI is

R?
0,SI = C(T1;T2|Y ). (18)

III. ON RELEVANT COMMON INFORMATION

We present two operational meanings of the relevant com-
mon information in Definition 2.

A. The Strong-Coordination Problem

Consider the scenario of Figure 3, where Γ(s|t1, t2) denotes
the channel law of a discrete memoryless multiple-access
channel with finite input alphabets T1 and T2 and finite output
alphabet S. For a given blocklength n > 0, we let the

�(s|t1, t2)
Simulator 2

Simulator 1

MAC

memory-
less {Si}

{T1,i}

{T2,i}

J

Fig. 3. A remote strong coordination problem.

common randomness J be uniformly distributed over the index
set {1, . . . , b2nRc}.

We say that distribution QS over S can be remotely strongly-
coordinated with rate R if for each blocklength n there exist
simulator functions ϕ(n)

Rel,1 and ϕ(n)
Rel,2 of appropriate domains,

so that when the sequences

Tn
1 := ϕ

(n)
Rel,1(J,Θ1) (19)

Tn
2 := ϕ

(n)
Rel,2(J,Θ2) (20)

are fed to the MAC Γ(s|t1, t2), the probability distribution
PSn of the produced output Sn satisfies∥∥PSn −Q⊗nS

∥∥
TV → 0 as n→∞. (21)

Here Θ1, Θ2, and J are independent (with Θ1 and Θ2

accounting for local randomness) and Q⊗nS denotes the n-fold
product distribution of QS .

Theorem 3: The distribution QS can be remotely strongly
coordinated with rate R if, and only if,

R ≥ I(S;W ) (22)

for some auxiliary random variables T1, T2,W that satisfy the
Markov chains

T1 → W → T2 (23a)
W → (T1, T2) → S (23b)

and where the conditional probability distribution of S given
T1 = t1 and T2 = t2 is given by Γ(·|t1, t2).

Proof: See Section IV.

Corollary 3.1: Let R?
Rel be the minimum rate R so that QS

can be remotely strongly coordinated at the output of the MAC
Γ(s|t1, t2). We find

R?
Rel = min

T1,T2

C(T1;T2 → S), (24)

where the minimum is taken over all T1, T2 that when passed
to the MAC Γ(s|t1, t2) produce an S ∼ QS .

B. The Weak-Coordination Problem

Consider the Gray-Wyner problem in Figure 4, where the
source {Si} is IID according to a given distribution QS over
a finite alphabet S.

Decoder 2

Decoder 1

Encoder

J2

J1

J0

{T2,i}

{T1,i}
{Si}

Fig. 4. Gray-Wyner weak-coordination problem.

For a given blocklength n, let Sn := (S1, . . . , Sn). The
encoder produces three indices

(J0, J1, J2) = φ
(n)
Rel (Sn), (25)

for some encoding function

φ
(n)
Rel : × Sn
→ {1, . . . , b2nR0c} × {1, . . . , b2nR1c} × {1, . . . , b2nR2c}.

(26)

Indices J0 and J1 are fed to Decoder 1 and Indices J0 and
J2 to Decoder 2. The two decoders produce reconstruction
sequences

Tn
1 = ψ

(n)
Rel,1(J0, J1) (27)

Tn
2 = ψ

(n)
Rel,2(J0, J2). (28)

We say that the joint distribution QST1T2 can be
weakly-coordinated over a Gray-Wyner network with rates
(R0, R1, R2) if for each blocklength n > 0 there exists an
encoding function φ

(n)
Rel as in (26) and decoding functions

ψ
(n)
Rel,1 and ψ(n)

Rel,2 of appropriate domains, so that:

‖π(Sn, Tn
1 , T

n
2 )−QST1T2

‖TV → 0, as n→∞, (29)

where convergence is in probability and where π(Sn, Tn
1 , T

n
2 )

denotes the joint type of the tuple (Sn, Tn
1 , T

n
2 ).

Theorem 4: The joint distribution QST1T2
can be weakly co-

ordinated over a Gray-Wyner network with rates (R0, R1, R2)
if there exists an auxiliary random variable W such that

R0 ≥ I(S;W ) (30a)
R0 +R1 ≥ I(S;T1,W ) (30b)
R0 +R2 ≥ I(S;T2,W ) (30c)

R0 +R1 +R2 ≥ I(S;T1, T2,W ) + I(T1;T2|W ). (30d)

Proof: Omitted.
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Cuff, Permuter, and Cover had considered this problem in the
special case without common rate, see [3, Theorem 7]. Both
with and without common rate, a matching converse result is
missing.

Let R?
0,Rel be the minimum common rate R0 > 0 so that

for some rates (R1, R2) satisfying

R0 +R1 +R2 = I(S;T1, T2), (31)

the distribution QST1T2
can be weakly-coordinated over a

Gray-Wyner network with these rates (R0, R1, R2).
Notice that I(S;T1, T2) is the smallest rate required to

weakly coordinate reconstruction sequences {T1,i, T2,i} with
the source {Si} according to a joint target distribution QST1T2

when there is only a single decoder that produces both {T1,i}
and {T2,i}.

From Theorem 4 we obtain the following.
Corollary 4.1: The minimum common rate R?

Rel,0 is at most
equal to the common information of T1 and T2 relevant to S
in (3):

R?
0,Rel ≤ C(T1;T2 → S). (32)

Proof: Fix QST1T2
and consider a rate-tuple (R0, R1, R2)

satisfying the constraints in Theorem 4. By the sum-rate
constraint (30d) we can have equality in

R0 +R1 +R2 = I(S;T1, T2), (33)

only if for some auxiliary W

I(S;W |T1, T2) = 0 and I(T1;T2|W ) = 0.

That is, only if for some W the following two Markov chains
hold:

S → (T1, T2)→W (34a)
T1 →W → T2. (34b)

Let W satisfy (34), and set

R0 = I(W ;S) (35)
R1 = I(T1;S|W ) (36)
R2 = I(T1;S|W ). (37)

This tuple satisfies all four constraints in Theorem 4 because
of the Markov chains (34). By minimizing over all legitimate
choices of W , we obtain the desired upper bound on R?

Rel,0.
It can also be shown that no better upper bound on R?

Rel,0
can be obtained from Theorem 4. The relevant common
information C(T1;T2 → S) only represents an upper bound on
R?

Rel,0, because we are missing a converse proof to Theorem 4.

IV. PROOF OF THEOREM 3

We first prove the achievability part, followed by the con-
verse part.

A. Achievability

A main ingredient in the achievability proof is the following
lemma from [2].

Lemma 5 (Lemma 19 in [2]): Fix a joint distribution QAB

over the product alphabet A × B. Denote its marginal and
conditional marginal on B by QB and by QB|A. Fix δ > 0
and R > I(A;B), where this mutual information is calculated
for (A,B) ∼ QAB .

For all sufficiently large n, there is a subset {an(j)}b2
nRc

j=1

of An such that the average distribution

PBn(bn) ,
1

b2nRc

b2nRc∑
j=1

Q⊗nB|A
(
bn|an(j)

)
, bn ∈ Bn, (38)

(where Q⊗nB|A denotes the n-fold product of QB|A) is close to
P⊗nB (bn) in terms of total variational distance:∥∥PBn −Q⊗nB

∥∥
TV ≤ δ. (39)

We now prove feasibility of Theorem 3. Fix a rate R > 0
and a joint distribution QWST1T2

so that (W,S, T1, T2) ∼
QWST1T2 satisfy the Markov chains (23) and

R > I(W ;S). (40)

Consider the construction in Figure 5 where the index
J is uniform over the set

{
1, . . . , b2nRc} and the n-length

sequences {wn(j)}b2
nRc

j=1 are chosen as explained in Lemma 5
above. We feed the random n-length sequence wn(J) to a
discrete memoryless channel QS|W , and denote the output
sequence of this channel by Sn. By Lemma 5, the produced
Sn satisfies (21) whenever (40) holds.

SnJ
wn(·) Wn

QS|W

Fig. 5. A simple construction generating the desired random output sequence
Sn. The set {wn(·)} needs to be chosen to satisfy the assumptions in
Lemma 5 when QAB is replaced by QWS .

Since we chose QWST1T2 to satisfy Markov chain (23a),
the construction in the following Figure 6 is equivalent to the
one in Figure 5.

�(s|t1, t2)
MAC

memory-
less

Sn
J

wn(·) Wn
QT1,T2|W

Fig. 6. This construction is equivalent to the one in Figure 5 because of the
Markov chain S → (T1, T2)→W .

Since QWST1T2
also satisfies Markov chain (23b), the con-

struction in Figure 6 is further equivalent to the construction
in Figure 7. The construction in Figure 7 is of the form
demanded in the problem setup, and since the generated output
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sequence satisfies (21), the construction is a solution to our
problem. Considering the assumptions we made on R and on
the distribution QWST1T2

, this concludes the proof.

�(s|t1, t2)

Simulator 2

Simulator 1

MAC

memory-
less

Sn

Tn
1

Tn
2

J

wn(·)

wn(·) QT2|W

QT1|W
Wn

Wn

Fig. 7. This construction is equivalent to the one in Figure 6 because of the
Markov chain S → (T1, T2)→W . Both simulators use the same codebook
{wn(·)}. Simulator k feeds the codeword Wn = wn(J) to a DMC PTk|W .

B. Infeasibility Proof

We will need the following lemmas 20 and 21 from [2]:
Lemma 6 (Lemma 20 in [2]): Let QA be a probability law

over a finite alphabet A, and let An be a random sequence
over An. If ∥∥PAn −Q⊗nA

∥∥
TV < ε, (41)

for some 1/2 > ε > 0, then

1

n

n∑
k=1

I(Ak;Ak−1) ≤ 2ε

(
log |A|+ log

1

ε

)
. (42)

Lemma 7 (Lemma 21 in [2]): Let QA be a probability law
over a finite alphabet A, and let An be a random sequence
over An. Assume that∥∥PAn −Q⊗nA

∥∥
TV < ε, (43)

for some 1/2 > ε > 0. Also, let the time-sharing random
variable U be uniform over {1, . . . , n} and independent of
the tuple An.

Then,

I(AU ;U) ≤ 2ε

(
log |A|+ log

1

ε

)
. (44)

We now prove the infeasibility result in the theorem.
Consider a sequence of simulator functions {ϕ(n)

Rel,1}∞n=1 and
{ϕ(n)

Rel,2}∞n=1 for which the induced MAC outputs {Sn}∞n=1

satisfy (21) for a given distribution QS .
Fix a large positive integer n, and let εn ∈ (0, 1/2) satisfy∥∥PSn −Q⊗nS ‖TV < εn. (45)

Let Tn
1 and T2 be the sequences produced by the chosen

ϕ
(n)
Rel,1 and ϕ(n)

Rel,2, and Sn the corresponding sequence of MAC
outputs. Also, let U be uniform over {1, . . . , n} independent
of J, Tn

1 , T
n
2 , S

n. Define S , SU and W , (J, U). Then,

R =
1

n
H(J) ≥ 1

n
I(J ;Sn)

≥ 1

n
H(Sn)− 1

n

n∑
k=1

H(Sk|J)

=
1

n

n∑
k=1

[
H(Sk|Sk−1)−H(Sk|J)

]
=

1

n

n∑
k=1

[
H(Sk)− I(Sk;Sk−1)−H(Sk|J)

]
≥ 1

n

n∑
k=1

[
H(Sk)− 2εn

(
log |S|+ log

1

εn

)
−H(Sk|J)

]
= I(SU ; J |U)− 2εn

(
log |S|+ log

1

εn

)
≥ I(SU ; J, U)− 4εn

(
log |S|+ log

1

εn

)
,

= I(S;W )− 4εn

(
log |S|+ log

1

εn

)
. (46)

where the second inequality follows because conditioning can
only reduce entropy; the third inequality by Lemma 6; and the
fourth inequality by Lemma 7.

Since the considered sequence of simulators achieves the
goal in (21), we can choose the sequence εn tending to 0 as
n→∞. Therefore,

R ≥ I(S;W ). (47)

Notice that by the structure of the problem’s setup in
Figure 3,

T1,k → J → T2,k (48)

and
J → (T1,k, T2,k)→ Sk. (49)

Let T1 , T1,U and T2 , T2,U . Since U is independent of
(Tn

1 , T
n
2 , S

n, J), the above two Markov chains also imply

T1 →W → T2 (50)

and
W → (T1, T2)→ S. (51)

Combined with (47), these two Markov chains conclude the
proof of the infeasibility part.
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