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Constrained Source Coding with Side Information
Amos Lapidoth, Andreas Malär, and Michèle Wigger

Abstract—The source-coding problem with side information at
the decoder is studied subject to a constraint that the encoder—
to whom the side information is unavailable—be able to compute
the decoder’s reconstruction sequence to within some distortion.

For discrete memoryless sources and finite single-letter distor-
tion measures, an expression is given for the minimal description
rate as a function of the joint law of the source and side
information and of the allowed distortions at the encoder and
at the decoder. The minimal description rate is also computed
for a memoryless Gaussian source with squared-error distortion
measures.

A solution is also provided to a more general problem where
there are more than two distortion constraints and each distortion
measure may be a function of three arguments: the source
symbol, the encoder’s reconstruction symbol, and the decoder’s
reconstruction symbol.

I. INTRODUCTION

L IKE Wyner and Ziv [1], we study a setting where

a sequence generated by a source is to be described

succinctly to a reconstructor (“decoder”) with access to some

side information. Wyner and Ziv showed that, although the

side information is not available at the describing terminal

(“encoder”), it can be beneficial in improving the trade-off

between the rate of description and the reconstruction distor-

tion. They fully characterized this trade-off for memoryless

sources with single-letter distortion measures. Unlike the case

without side information—since the side information is used

in the reconstruction process, and since the side information

is not available at the describing terminal—the describing

terminal cannot tell how the source sequence it observes

will be reconstructed. In some settings, this is unacceptable.

Steinberg [2] therefore studied the common-reconstruction

problem where an additional restriction is imposed that the

reconstruction sequence be computable with probability nearly

one at the describing terminal. This greatly limits the extent by

which the reconstruction can depend on the side information.

More generally, there is a tension between the degree by which

the reconstructing terminal utilizes the side information and

the precision with which the describing terminal can compute
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Fig. 1. Constrained Wyner-Ziv coding.

the reconstruction sequence. It is this tension that we study in

this paper.

To quantify this tension, we require that the describing

terminal generate an estimate of the sequence that will be

produced at the reconstructing terminal (Figure 1). We then

study the distortions that can be simultaneously achieved at

the describing terminal (“the encoder distortion”) and at the

reconstructing terminal (“the decoder distortion”) as a function

of the description rate. If the encoder’s distortion measure is

the Hamming distance and if the allowed distortion is zero,

then our problem reduces in essence to Steinberg’s common-

reconstruction problem.1 And if the allowed encoder distortion

is infinite, our problem reduces to that of Wyner and Ziv. We

can thus view our problem as a generalization of the Wyner-

Ziv problem and Steinberg’s common reconstruction problem.

For discrete memoryless sources and finite single-letter

distortion measures, we provide a single-letter characterization

of the trade-off between the description rate and the distortions

at the encoder and decoder sides. We also calculate this

trade-off for a memoryless Gaussian source and squared-error

distortion measures. Finally, in Section IV, we generalize the

results to account for more than two constraints and to allow

each distortion measure to depend on three arguments: the

source symbol, the encoder’s reconstruction symbol, and the

decoder’s reconstruction symbol.

Steinberg’s work was also extended in other ways. Kit-

tichokechai, Oechtering, and Skoglund [3] determined the

rate-distortion function under a common-reconstruction con-

straint for a modified Wyner-Ziv setup where the encoder

can influence the decoder’s side information via an action-

generator. Ahmadi, Tandon, Simeone, and Poor [6] presented

the rates-distortions function under a common-reconstruction

constraint for a cascade source-coding problem when the

side informations are physically degraded. Timo, Grant, and

1Steinberg used a vanishingly small block-error criterion whereas we use
a vanishingly small average-per-symbol error criterion. See Remark 3 in
Section II-B ahead.
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Kramer [4], [5], and Ahmadi, Tandon, Simeone, and Poor

[6] derived the rate-distortions function under a common-

reconstruction constraint for two special cases of the Heegard-

Berger/Kaspi problem (the Wyner-Ziv problem with two de-

coders): [6] for physically degraded side informations, and

[4], [5] for complementary side informations. Timo, Grant,

and Kramer [5] extended their work also to a joint source-

channel coding setup. Already in [2], Steinberg studied the

implications of the common-reconstruction constraint on joint

source-channel coding for the degraded broadcast channel and

on the simultaneous transmission of data and state. Vellambi

and Timo [7] finally studied the Heegard-Berger problem

under a slightly modified common reconstruction constraint,

where the two receivers are required to reconstruct each others

reconstructions of the source. For this setup they derived

the rate-distortions function when a) the side-information is

physically degraded; b) the side information is stochastically

degraded and a certain full-support condition holds; or c)

also the encoder is required to reconstruct both receivers’

reconstructions.

Our results in Section II ahead, have recently been extended

by Rezagah and Erkip [8]. They studied the setup where the

two terminals (here termed encoder and decoder) wish to

reconstruct functions of the two sources (here termed source

and side information) and where to achieve this goal they can

alternatingly exchange messages during a given number of

t ≥ 1 rounds. (Our setup corresponds to t = 1 rounds.) They

gave a single-letter characterization of the rates-distortions

regions for discrete-memoryless sources with average-per-

symbol distortion measures and for Gaussian sources with

squared-error distortion measures.

The paper is organized as follows. In the rest of this section

we introduce our notation. In Section II we treat discrete

sources and general distortions, and in Section III Gaussian

sources with quadratic distortions. In Section IV we revisit

discrete sources but this time with more and more general

distortion constraints.

A. Notation

Random variables are denoted by upper-case letters and

their realizations by lower-case letters. Vectors are denoted

by bold-face letters: random vectors by upper-case bold-

face letters, and deterministic vectors by lower-case bold-

face letters. The transpose of a vector a is denoted by aT;

its Euclidean norm by ‖a‖; and the Euclidean inner product

between the vectors a and b by 〈a,b〉.
Sets and events are denoted by calligraphic letters, e.g..,

A. An n-tuple (A1, . . . , An) is denoted An, and the n-fold

Cartesian product of the set A is denoted An. The convex

hull of a set A is denoted by conv(A), and its cardinality

by |A|. The set of real numbers is denoted R and its d-fold

Cartesian product Rd. The nonnegative reals are denoted R+,

and the positive reals R++. For the respective d-fold Cartesian

products we write R
d
+ and R

d
++.

To indicate that two random variables A and C are con-

ditionally independent given a third random variable B we

write

A⊸−−B⊸−−C.

The abbreviation IID stands for independently and identically

distributed and w.p. 1 stands for with probability 1. Further,

E[·] denotes the expectation operator.

We use I{·} to denote the indicator function: I{statement}
is equal to one if the statement is true and is equal to zero if it

is false. Throughout the paper log(·) denotes base-2 logarithm,

and log+(ξ) = max{log ξ, 0}.

II. DISCRETE MEMORYLESS SOURCE AND GENERAL

DISTORTIONS

A. Problem Statement

Our setting is illustrated in Figure 1 and is specified by a

tuple
(

X ,Y, X̂ , PXY , dd, de, Dd, De

)

,

where X ,Y, X̂ are finite sets; PXY is a probability distribution

on X × Y; dd(·, ·) and de(·, ·) are nonnegative functions

dd : X × X̂ → R
+ (1)

de : X̂ × X̂ → R
+; (2)

and Dd and De are nonnegative real numbers.

The sets X , Y , and X̂ are the source, side information,

and reconstruction alphabets. A source sequence Xn ∈ Xn is

observed at the encoder (but not at the decoder) and a side-

information sequence Y n ∈ Yn at the decoder (but not at the

encoder). The sequence of pairs {(Xi, Yi)}ni=1 is assumed to

be drawn IID according to the joint law PXY .

The encoder describes the source sequence Xn to the

decoder by an index

M = f (n)(Xn) (3)

where

f (n) : Xn → M (4)

is the encoding function and

M , {1, . . . ,M} (5)

denotes the message set for some positive integer M. Based on

the index M and its side information Y n, the decoder forms

a reconstruction sequence

X̂n
d = φ(n)(M,Y n) (6)

where

φ(n) : M×Yn → X̂n (7)

is the decoder’s reconstruction function. The encoder’s esti-

mate of the decoder’s reconstruction sequence is

X̂n
e = ψ(n)(Xn) (8)

for some

ψ(n) : Xn → X̂n. (9)

The goal is that the decoder’s reconstruction X̂n
d be within

distortion Dd of the source sequence Xn and that the en-

coder’s estimate X̂n
e be within distortion De from the de-

coder’s reconstruction X̂n
d . The distortions are measured by

the bounded, nonnegative, single-letter distortion measures

dd(·, ·) and de(·, ·).
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We say that a nonnegative triple (R,Dd, De) is achievable if

for every ǫ > 0 and sufficiently large n there exists a message

set M of size

|M| ≤ 2n(R+ǫ) (10)

and a triple of functions (f (n), φ(n), ψ(n)) as above such that

the decoder-side reconstruction constraint

1

n

n
∑

i=1

E
[

dd(Xi, X̂d,i)
]

≤ Dd + ǫ (11)

and the encoder-side reconstruction constraint

1

n

n
∑

i=1

E
[

de(X̂d,i, X̂e,i)
]

≤ De + ǫ (12)

are both met.

Our problem is not very interesting if the distortion con-

straints cannot be met even when the source sequence is

revealed losslessly to the reconstructor. Consequently, we shall

make the following assumption throughout:

Assumption 1: The distortion measures dd and de are such

that for each x ∈ X there exist x̂d, x̂e ∈ X̂ satisfying

dd(x, x̂d) = 0 and de(x̂d, x̂e) = 0.

As we shall see, this assumption ensures that, irrespective of

Dd, De ≥ 0, the triple (R,Dd, De) is achievable whenever

R ≥ H(X |Y ).
Given Dd, De ≥ 0, let R(Dd, De) denote the set of rates

R ≥ 0 for which the tuple (R,Dd, De) is achievable:

R(Dd, De) , {R ≥ 0: (R,Dd, De) is achievable}. (13)

Notice that by the assumption above, the set R(Dd, De)
contains all rates R exceeding H(X |Y ) and is thus nonempty.

We can now define the rate-distortions function as

R(Dd, De) , min
R∈R(Dd,De)

R, (14)

where the minimum exists because the set R(Dd, De) is

nonempty, closed, and bounded from below by 0. We wish

to find R(Dd, De).

B. Related Setups

Wyner and Ziv’s classic lossy source-coding problem with

side information [1] is similar to our problem except that

Wyner and Ziv do not impose the encoder-side reconstruction

constraint (12). Informally, our problem thus reduces to the

Wyner-Ziv problem if we set De to infinity. Wyner and Ziv’s

result can be summarized as follows:

Theorem 1 (Wyner and Ziv [1]): The rate-distortion func-

tion RWZ(Dd) in the Wyner-Ziv setup is

RWZ(Dd) = min
Z,φ

(

I(X ;Z)− I(Y ;Z)
)

(15)

where (X,Y ) ∼ PXY , and where the minimization is over all

functions φ : Y ×Z → X̂ and discrete random variable Z for

which: Z takes values in an auxiliary alphabet Z of size at

most |X |+ 1;

Z⊸−−X⊸−−Y (16)

forms a Markov chain; and

E
[

dd

(

X,φ(Y, Z)
)]

≤ Dd. (17)

Since imposing the encoder-side reconstruction con-

straint (12) cannot enlarge the set of achievable rates,

R(Dd, De) ≥ RWZ(Dd). (18)

Equality holds whenever the encoder-side reconstruction con-

straint (12) does not pinch. For example, when X̂ = X ;

Dd = De; and

de(x̂, x) = dd(x, x̂), x, x̂ ∈ X . (19)

Indeed, in this case the encoder can set X̂e,i to be Xi, which

results in (12) being identical to (11) and thus superfluous.

Steinberg’s setup in [2] is obtained from ours by replacing

the encoder-side distortion constraint (12) by the more strin-

gent perfect-reconstruction constraint

Pr
[

X̂n
e 6= X̂n

d

]

≤ ǫ. (20)

Theorem 2 (Steinberg [2]): The rate-distortion function

Rcr(Dd) in Steinberg’s setup is

Rcr(Dd) = min
X̂

(

I(X ; X̂)− I(Y ; X̂)
)

, (21)

where the minimization is over all X̂ taking value in X̂ and

satisfying

X̂⊸−−X⊸−−Y (22)

and

E

[

dd(X, X̂)
]

≤ Dd. (23)

Remark 3: Constraint (20) is equivalent to the block-

distortion constraint

E

[

I{X̂n
e 6= X̂n

d }
]

≤ ǫ. (24)

Thus, when in our setup de(·, ·) is the Hamming distortion

and De = 0, then Steinberg’s setup differs from ours only in

that (20) is a block-distortion constraint whereas (12) is an

average-per-symbol distortion constraint.

C. Results

To describe the rate-distortions function for the setup of

Section II-A, we introduce the function R̃(Dd, De). The

expression for R̃(Dd, De) is similar to the expression for

RWZ(Dd) in (15) except that in the expression for R̃(Dd, De)
we have the additional constraint; see (28) ahead.

Given the joint law PXY of the source and side information,

and given the distortion measures dd, de, this function is

defined as

R̃(Dd, De) = min
Z,φ,ψ

(

I(X ;Z)− I(Y ;Z)
)

(25)

where the minimization is over all discrete random variables Z
taking value in some finite auxiliary alphabet Z and forming

the Markov chain

Z⊸−−X⊸−−Y (26)

and over the functions φ : Y × Z → X̂ and ψ : X × Z → X̂
satisfying

E
[

dd

(

X,φ(Y, Z)
)]

≤ Dd (27)

E
[

de

(

φ(Y, Z), ψ(X,Z)
)]

≤ De. (28)
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Note that, thanks to Assumption 1, the feasible set in (25)

is not empty: we can choose Z as X and φ, ψ as the functions

whose existence is guaranteed by the assumption. This choice

demonstrates that

R̃(Dd, De) ≤ H(X |Y ). (29)

Using the convex cover method [9] it can be shown that:

Remark 4: Allowing for sets Z of cardinality greater than

|X | + 3 does not decrease the value of the optimization

problem.

A consequence of this remark is that the minimum in (25) is

achieved: indeed, we may choose Z as the set {1, . . . , |X |+3}
with result that there are only a finite number of functions φ,

ψ, and the problem is reduced to minimizing a continuous

function over a compact set.

Like the Wyner-Ziv rate-distortion function RWZ(·) [10],

[11], also the function R̃(Dd, De) can be written in terms of

Shannon strategies, but we will have no use for that.

The key properties of R̃(Dd, De) are summarized in the

following proposition:

Proposition 5 (Key Properties of the Function R̃(Dd, De)):
The function R̃(Dd, De) : R

2
+ → R+ is bounded from above

by H(X |Y ) and is nondecreasing in the distortions

(

D′
d ≥ Dd and D′

e ≥ De

)

⇒
(

R̃(D′
d, D

′
e) ≤ R̃(Dd, De)

)

.

Moreover, it is convex and continuous over R2
+.

Proof: See Appendix B.

Our main result can be now stated as:

Theorem 6: The rate-distortions function for the setup in

Section II-A is equal to R̃(Dd, De)

R(Dd, De) = R̃(Dd, De). (30)

Proof: The coding scheme that establishes achievability

is a variation on the coding scheme of Wyner and Ziv [1] and

is thus only sketched. Its analysis is omitted.

Fix Z, φ, ψ satisfying (26) and (28), and fix also a block-

length n and some (small) ǫ > 0. Let C be a random

blocklength-n codebook with ⌊2n(I(X;Z)−I(Y ;Z)+2ǫ)⌋ bins,

each containing approximately 2n(I(Y ;Z)−ǫ) codewords with

the total number of codewords thus being ⌊2n(I(X;Z)+ǫ)⌋.

Generate the codewords independently with the components

of each codeword being drawn IID PZ . Number the bins 1
through ⌊2n(I(X;Z)−I(Y ;Z)+2ǫ)⌋.

Upon observing the source sequence Xn, the encoder seeks

a codeword Z∗n in C that is jointly typical with Xn. If

successful, it sends the number of the bin containing Z∗n

as the message M . It also produces the reconstruction se-

quence X̂n
e by applying the function ψ componentwise to Z∗n

and Xn. The decoder seeks a codeword Ẑn in Bin M that is

jointly typical with its side-information Y n and applies the

reconstruction function φ componentwise to Ẑn and Y n to

produce X̂n
d .

The converse is proved in Subsection II-D.

Though not identical, Steinberg’s setup is very similar to

our setup when de(·, ·) is the Hamming distortion and De is

zero (Remark 3). It is therefore not surprising2 that, as the

2See [9, Section 3.6.4], [12], and [13] for related discussions.

following corollary shows, the two setups lead to identical

rates:

Corollary 7: Let dd(·, ·) be arbitrary, and let de(·, ·) be the

Hamming distortion measure

de(x̂d, x̂e) = I{x̂d 6= x̂e}, x̂d, x̂e ∈ X̂ . (31)

Then

R(Dd, De)
∣

∣

∣

De=0
= Rcr(Dd). (32)

Proof: See Appendix A.

Remark 8: Our results can be extended to a scenario where

the encoder observes not only the source sequence {Xi}
but also some sequence {Wi} which is correlated with the

decoder’s side-information sequence {Yi}. This additional

sequence {Wi} makes it easier for the encoder to estimate the

decoder’s reconstruction sequence and thus allows the decoder

to rely more heavily on its side information {Yi}. To see how

this seemingly more general scenario reduces to our scenario

assume that {(Xi,Wi, Yi)}ni=1 are IID random triples of law

PXWY and that Wi takes value in the finite set W . Consider

now a new IID source {X̃i} taking value in the set X̃ = X×W
according to the law PXW with X̃i = (Xi,Wi). The encoder

now observes the source sequence {X̃i} only and no additional

sequences. The decoder side information is still {Yi}, and the

joint law of X̃i, Yi is PXWY . Finally define the new decoder

distortion measure d̃d : X̃ × X̂ → R
+ as

d̃d

(

(Xi,Wi), X̂i

)

= dd(Xi, X̂i),

i.e., the distortion measure d̃d does not depend on the Wi-

component. Solving the original scenario for this new source

and new decoder distortion measure is equivalent to solving

the seemingly more general problem we described.

These observations apply also to the plain Wyner-Ziv prob-

lem without encoder-side reconstruction constraint, see, e.g.,

[14].

D. Proof of the Converse to Theorem 6

To establish the converse, we show that if a triple

(R,Dd, De) is achievable, then for every ǫ > 0

R + ǫ ≥ R̃(Dd + ǫ,De + ǫ). (33)

Since R̃(Dd, De) is continuous (Proposition 5), and since ǫ
can be arbitrarily small, this implies that R ≥ R̃(Dd, De)
whenever (R,Dd, De) is achievable, and consequently that

R(Dd, De) ≥ R̃(Dd, De).
The first part of our proof identifying the auxiliary random

variable Zi (44) and the function φi (46) is similar to the proof

of the Wyner-Ziv result [9]. For a given blocklength-n code

f (n), φ(n), ψ(n) satisfying (10)–(12), we have

n(R+ ǫ)
(a)

≥ H(M) (34)

(b)

≥ I(Xn;M |Y n) (35)

(c)
=

n
∑

i=1

I(Xi;M |Y n, X i−1) (36)
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=

n
∑

i=1

H(Xi|Y n, X i−1)−H(Xi|M,Y n, X i−1) (37)

(d)
=

n
∑

i=1

H(Xi|Yi)−H(Xi|M,Y n, X i−1) (38)

(e)

≥
n
∑

i=1

H(Xi|Yi)−H(Xi|M,Y n) (39)

(f)
=

n
∑

i=1

H(Xi|Yi)−H(Xi|Zi, Yi) (40)

=

n
∑

i=1

I(Xi;Zi|Yi) (41)

(g)
=

n
∑

i=1

H(Zi|Yi)−H(Zi|Xi) (42)

=

n
∑

i=1

I(Xi;Zi)− I(Yi;Zi), (43)

where (a) follows by (10); (b) follows because conditioning

cannot increase entropy and because H(M |Y n, Xn) ≥ 0;

(c) follows from the chain rule for mutual information; (d)

follows because the pair Xi, Yi is independent of the tuple

(X i−1
1 , Y i−1

1 , Y ni+1); (e) follows from the fact that conditioning

cannot increase entropy; (f) follows by defining

Zi , (M,Y i−1, Y ni+1); (44)

and (g) follows because with the definition above

Zi⊸−−Xi⊸−−Yi. (45)

Denote by φ
(n)
i the function that maps (M,Y n) to the i-th

component of the n-tuple φ(n)(M,Y n), and denote by ψ
(n)
i

the function that maps Xn to the i-th component of the n-

tuple ψ(n)(Xn). Since there is a one-to-one correspondence

between the pairs (Yi, Zi) and (M,Y n), we can define a

function φi that maps (Yi, Zi) to φ
(n)
i (M,Y n)

φi(Yi, Zi) , φ
(n)
i (M,Y n). (46)

We now define

Dd,i , E

[

dd

(

Xi, φ
(n)
i (M,Y n)

)

]

, (47)

where E[·] is with respect to PXnY n . By definitions (46) and

(47),

E

[

dd

(

Xi, φi(Yi, Zi)
)

]

= Dd,i, (48)

where E[·] is with respect to PXiYi
PZi|Xi

.

We next turn to the encoder-side distortion. We will show

that there exists a deterministic function ψi : X ×Z → X̂ that

achieves a distortion no larger than De,i, where De,i is the

distortion achieved by ψ
(n)
i (Xn), namely,

De,i , E

[

de

(

φ
(n)
i (M,Y n), ψ

(n)
i (Xn)

)

]

. (49)

This is the key step in our converse proof. It is similar to steps

applied in [15].

To this end, we express De,i as

De,i

= EXn,Yi,Zi

[

de

(

φi(Yi, Zi), ψ
(n)
i (Xn)

)

]

(50)

= EXn,Zi
EYi|Xn,Zi

[

de

(

φi(Yi, Zi), ψ
(n)
i (Xn)

)

]

(51)

= EXn,Zi
EYi|Xi,X\i,Zi

[

de

(

φi(Yi, Zi), ψ
(n)
i (Xi, X\i)

)

]

, (52)

where X\i , (X i−1, Xn
i+1). For every (xi, zi) ∈ X × Z , we

define x∗\i(xi, zi) (or for short x∗\i) as:3

x∗\i(xi, zi) , argmin
x\i∈Xn−1

EYi|Xi=xi,X\i=x\i,Zi=zi

[

de

(

φi(Yi, zi), ψ
(n)
i (xi, x\i)

)

]

(53)

or in any other way that guarantees

EX\i|Xi=xi,Zi=zi

EYi|Xi=xi,X\i,Zi=zi

[

de

(

φi(Yi, zi), ψ
(n)
i (xi, X\i)

)

]

≥

EYi|Xi=xi,X\i=x
∗
\i
,Zi=zi

[

de

(

φi(Yi, zi), ψ
(n)
i (xi, x

∗
\i)
)

]

. (54)

We can now define the function ψi as

ψi : X × Z → X̂ (55a)

(xi, zi) 7→ ψ
(n)
i

(

xi, x
∗
\i(xi, zi)

)

. (55b)

For every (xi, x\i, zi) ∈ Xn ×Z , we have

EYi|Xi=xi,X\i=x\i,Zi=zi

[

de

(

φi(Yi, zi), ψ
(n)
i (xi, x\i)

)

]

(a)

≥ EYi|Xi=xi,X\i=x
∗
\i
,Zi=zi

[

de

(

φi(Yi, zi), ψ
(n)
i (xi, x

∗
\i)
)

]

(56)

(b)
= EYi|Xi=xi,Zi=zi

[

de

(

φi(Yi, zi), ψ
(n)
i (xi, x

∗
\i)
)

]

(57)

(c)
= EYi|Xi=xi,Zi=zi

[

de

(

φi(Yi, zi), ψi(xi, zi)
)

]

, (58)

where (a) follows from the definition of x∗\i; (b) follows

because

X\i⊸−−(Xi, Zi)⊸−−Yi; (59)

and (c) follows from the definition of ψi (55).

It now follows from (52) and (58) that

EXi,Yi,Zi

[

de

(

φi(Yi, Zi), ψi(Xi, Zi)
)

]

≤ De,i. (60)

Continuing from (43) we thus obtain

n(R+ ǫ) ≥
n
∑

i=1

I(Xi;Zi)− I(Yi;Zi) (61)

(a)

≥
n
∑

i=1

R̃(Dd,i, De,i) (62)

(b)
= n

1

n

n
∑

i=1

R̃(Dd,i, De,i) (63)

(c)

≥ nR̃

(

1

n

n
∑

i=1

Dd,i ,
1

n

n
∑

i=1

De,i

)

(64)

(d)

≥ nR̃(Dd + ǫ,De + ǫ) (65)

3If argmin is not unique, x\i(xi, zi) is defined as the first in lexicograph-
ical order.
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where (a) follows from the definition of R̃(Dd, De) and

from (45), (48), and (60); (b) follows by multiplying by

1; (c) follows from the convexity of R̃(Dd, De) (Proposi-

tion 5); and (d) follows from the monotonicity of R̃(Dd, De)
(Proposition 5) and the fact that 1

n

∑n
i=1Dd,i ≤ Dd + ǫ

and 1
n

∑n
i=1De,i ≤ De + ǫ. This establishes (33) and thus

concludes the proof of the converse.

III. GAUSSIAN SOURCE AND QUADRATIC DISTORTIONS

A. Setup

We next consider the case where the source, side informa-

tion, and reconstruction alphabets X ,Y, X̂ are the reals R; the

distortion functions dd and de are quadratic

dd(x, x̂d) = (x− x̂d)
2, (66)

de(x̂d, x̂e) = (x̂d − x̂e)
2; (67)

and the source and side-information pair (X,Y ) is a centered

bivariate Gaussian, where X is of positive variance σ2
X

σX > 0 (68)

and where Y = ξX+U for some centered variance-σ2
U Gaus-

sian U that is independent of X for some nonzero constant

ξ.4 The rate-distortions function depends on ξ only through

the ratio σ2
U/ξ

2, because the receiver can premultiply its

side information by ξ−1 without affecting the rate-distortions

function. In the following we thus assume that ξ = 1, i.e.,

Y = X + U. (69)

We denote the rate-distortions function for this setup by

RG(Dd, De).
When σU is zero the problem is not interesting, because

in this case the source sequence is determined by the side

information, and RG(Dd, De) is thus zero for all nonnegative

values of Dd and De. We shall henceforth thus assume

σU > 0. (70)

In this case, no finite rate can allow Dd to be zero (even if

we ignore the encoder-side reconstruction constraint). Thus,

we shall also assume

Dd > 0. (71)

B. Related Work

As we have seen in Section II-B, the Wyner-Ziv setup is

obtained from ours if the encoder-side reconstruction con-

straint (12) is omitted, and Steinberg’s common reconstruction

setup is obtained if (12) is replaced by (20).

For a Gaussian source and quadratic distortion measures,

Steinberg’s common reconstruction rate-distortion function is

[2]

RG
cr(Dd) =

1

2
log+

σ2
X(σ2

U +Dd)

(σ2
X + σ2

U )Dd
, (72)

and the Wyner-Ziv rate-distortion function is [1]

RG
WZ(Dd) =

1

2
log+

σ2
Xσ

2
U

(σ2
X + σ2

U )Dd
. (73)

4The problem is not interesting when ξ is zero, because in this case the
side information is independent of the source and is thus irrelevant.

Note that (73) is also the rate-distortion function when the side

information is revealed not only to the decoder but also to the

encoder.

C. Result

Theorem 9: For a Gaussian source and quadratic distortion

measures, the rate-distortions function RG(Dd, De) can be

expressed as follows:

If
√

Deσ2
U ≥ min

{

Dd,
σ2
Xσ

2
U

σ2
X+σ2

U

}

, then

RG(Dd, De) =
1

2
log+

σ2
Xσ

2
U

(σ2
X + σ2

U )Dd
. (74)

If
√

Deσ2
U < min

{

Dd,
σ2
Xσ

2
U

σ2
X
+σ2

U

}

, then

RG(Dd, De) =
1

2
log+

(

σ2
X

σ2
X + σ2

U

σ2
U +Dd − 2

√

σ2
UDe

Dd −De

)

.

(75)

Proof: The direct part is proved in Section III-D and the

converse in Section III-E.

Remark 10: If De = 0, then our rate-distortions function

RG(Dd, 0) coincides with Steinberg’s common-reconstruction

rate-distortion function RG
cr(Dd) of (72):

RG(Dd, De)
∣

∣

∣

De=0
= RG

cr(Dd). (76)

Remark 11: If Dd and De are such that
√

Deσ2
U ≥ min

{

Dd,
σ2
Xσ

2
U

σ2
X + σ2

U

}

(77)

or
σ2
X + σ2

U

σ2
X

≥ σ2
U +Dd − 2

√

σ2
UDe

Dd −De
(78)

then RG(Dd, De) coincides with the Wyner-Ziv rate-distortion

function RG
WZ(Dd) in (73). Thus, if (77) or (78) holds, then

relaxing Constraint (12) and/or revealing the side information

also to the encoder does not decrease the rate-distortions

function.

The reasons for this are as follows. Under condition (77)

it is possible to find some X̂n
e that satisfies the encoder-

side reconstruction constraint (12) when X̂n
d is chosen as the

optimum reconstruction for the Wyner-Ziv problem. (For more

details see the direct part described in the next section.) Under

condition (78), by Theorem 9, RG(Dd, De) = 0. Since the

required rate for the relaxed Wyner-Ziv problem is nonnegative

and no larger than RG(Dd, De) = 0, we conclude that in this

case also RG
WZ(Dd) = 0.

D. The Direct Part of Theorem 9

In the two cases that we shall describe in (79) and (82)

ahead, no encoding is necessary because the encoder and the

decoder can produce sufficiently good reconstructions X̂n
e and

X̂n
d based solely on their observed sequences Xn and Y n. In

these cases RG(Dd, De) is thus zero.

1) If
√

Deσ2
U ≥ min

{

Dd,
σ2
Xσ

2
U

σ2
X + σ2

U

}

(79a)
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and

Dd ≥ σ2
Xσ

2
U

σ2
X + σ2

U

, (79b)

then the encoder and decoder can produce the sequences

X̂n
e =

σ2
X

σ2
X + σ2

U

Xn (80)

X̂n
d =

σ2
X

σ2
X + σ2

U

Y n (81)

which satisfy the distortion constraints.

2) If
√

Deσ2
U < min

{

Dd,
σ2
Xσ

2
U

σ2
X + σ2

U

}

(82a)

and

Dd ≥ σ2
X

(

1−
√

De

σ2
U

)2

+De, (82b)

then the encoder and decoder can produce the sequences

X̂n
e =

√

De

σ2
U

Xn (83)

X̂n
d =

√

De

σ2
U

Y n (84)

which satisfy the distortion constraints.

The achievability of Theorem 9 in the remaining cases will

be established using the following proposition with a judicious

choice of the parameters.

Proposition 12: For the setup in Section III-A of a Gaus-

sian source and quadratic distortion measures, the tuple

(R,Dd, De) is achievable whenever

R ≥ 1

2
log

σ2
Xσ

2
U + σ2

Xσ
2
W + σ2

Uσ
2
W

(σ2
X + σ2

U )σ
2
W

(85)

for some parameters σ2
W , a > 0 and b ≥ 0 simultaneously

satisfying

(1 − a− b)2σ2
X + a2σ2

W + b2σ2
U ≤ Dd (86a)

and

b2σ2
U ≤ De. (86b)

Thus,

RG(Dd, De) ≤ min
a, b, σ2

W

1

2
log

σ2
Xσ

2
U + σ2

Xσ
2
W + σ2

Uσ
2
W

(σ2
X + σ2

U )σ
2
W

,

(87)

where the minimization is over all σ2
W , a > 0 and b ≥ 0

satisfying (86).

Proof: See Appendix C.

We can now prove the achievability part of Theorem 9 for

the remaining cases.

3) If
√

Deσ2
U ≥ min

{

Dd,
σ2
Xσ

2
U

σ2
X + σ2

U

}

(88a)

and

Dd <
σ2
Xσ

2
U

σ2
X + σ2

U

, (88b)

then the choice

σ2
W =

Dd

1− σ2
X+σ2

U

σ2
X
σ2
U

Dd

(89a)

(which is positive by (88b)) and

a =
Dd

σ2
W

= 1− σ2
X + σ2

U

σ2
Xσ

2
U

Dd, (89b)

b =
σ2
X

σ2
X + σ2

U

(1− a)

=
Dd

σ2
U

. (89c)

satisfies (86) because

(1 − a− b)2σ2
X + a2σ2

W + b2σ2
U

=

(

σ2
X + σ2

U

σ2
X

b− b

)2

σ2
X +

D2
d

σ2
W

+
D2

d

σ2
U

(90)

=
D2

d

σ2
X

+Dd

(

1− σ2
X + σ2

U

σ2
Xσ

2
U

Dd

)

+
D2

d

σ2
U

(91)

= Dd (92)

and

b2σ2
U =

D2
d

σ2
U

≤ De. (93)

Moreover, for this choice,

1

2
log

σ2
Xσ

2
U + σ2

Xσ
2
W + σ2

Uσ
2
W

(σ2
X + σ2

U )σ
2
W

=
1

2
log

σ2
Xσ

2
U

(σ2
X + σ2

U )Dd
. (94)

Thus, by (92)–(94) and by Proposition 12, we conclude

that when Dd and De satisfy (88),

RG(Dd, De) ≤
1

2
log

σ2
Xσ

2
U

(σ2
X + σ2

U )Dd
. (95)

4) If
√

Deσ2
U < min

{

Dd,
σ2
Xσ

2
U

σ2
X + σ2

U

}

(96a)

and

Dd < σ2
X

(

1−
√

De

σ2
U

)2

+De, (96b)

then we consider the choice

b =

√

De

σ2
U

, (97a)

a =
σ2
X

σ2
X + σ2

W

(1− b), (97b)

σ2
W =

σ2
X(Dd − b2σ2

U )

σ2
X(1− b)2 + b2σ2

U −Dd

=
σ2
X(Dd −De)

σ2
X

(

1−
√

De

σ2
U

)2

+De −Dd

. (97c)
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To see that the RHS of (97c) is positive note that (96b)

implies that the denominator is positive, and (96a)

implies that the numerator is positive because

(

√

Deσ2
U < min

{

Dd,
σ2
Xσ

2
U

σ2
X + σ2

U

})

=⇒
(

De < min
{

σ2
U , Dd

}

)

. (98)

(Since σ2
X/(σ

2
X + σ2

U ) is smaller than one, the LHS of

(98) implies that De < σ2
U . This, and the fact that the

LHS of (98) also implies that Deσ
2
U < D2

d demonstrates

that the LHS of (98) also implies that De < Dd.)

This choice satisfies (86) because

(1− a− b)2σ2
X + a2σ2

W + b2σ2
U

=

(

σ2
W (1− b)

σ2
X + σ2

W

)2

σ2
X +

(

σ2
X(1− b)

σ2
X + σ2

W

)2

σ2
W +De

(99)

=
σ2
X(1 − b)2

σ2
X

σ2
W

+ 1
+De (100)

=
σ2
X(1 − b)2(Dd − b2σ2

U )

σ2
X(1− b)2

+De (101)

= Dd. (102)

and

b2σ2
U = De. (103)

Moreover, for this choice,

1

2
log

σ2
Xσ

2
U + σ2

Xσ
2
W + σ2

Uσ
2
W

(σ2
X + σ2

U )σ
2
W

=
1

2
log

σ2
X

(

σ2
U +Dd − 2

√

σ2
UDe

)

(σ2
X + σ2

U )(Dd −De)
. (104)

Thus, by (102)–(104) and by Proposition 12, we con-

clude that when (96) holds,

RG(Dd, De) ≤
1

2
log

σ2
X

(

σ2
U +Dd − 2

√

σ2
UDe

)

(σ2
X + σ2

U )(Dd −De)
.

(105)

Remark 13: The expressions in Proposition 12 and their

relation to (25) become more transparent when we define

Z=a(X +W ) (106a)

X̂d=bY + Z (106b)

X̂e=bX + Z (106c)

for a > 0, b ≥ 0, and W a centered Gaussian of positive

variance σ2
W independent of the pair (X,Y ). With these

definitions

I(X ;Z|Y ) =
1

2
log

σ2
Xσ

2
U + σ2

Xσ
2
W + σ2

Uσ
2
W

(σ2
X + σ2

U )σ
2
W

(107a)

E

[

(X − X̂d)
2
]

= (1− a− b)2σ2
X + a2σ2

W + b2σ2
U (107b)

E

[

(X̂d − X̂e)
2
]

= b2σ2
U . (107c)

Since Z⊸−−X⊸−−Y for all choices of the parameters a > 0,

b ≥ 0, σ2
W > 0, we can also rewrite (87) as:

RG(Dd, De) ≤ min
Z,X̂d,X̂e

I(X ;Z|Y ) (108)

where the minimum is over all Z, X̂d, X̂e that are of the form

in (106) and satisfy the distortion constraints

E

[

(

X − X̂d

)2
]

≤ Dd, (109)

E

[

(

X̂d − X̂e

)2
]

≤ De. (110)

E. The Converse for Theorem 9

If
√

Deσ2
U ≥ min

{

Dd,
σ2
Xσ

2
U

σ2
X + σ2

U

,
}

then the converse follows by relaxing the constraint (12); see

Remark 11. We thus focus on the case where
√

Deσ2
U < min

{

Dd,
σ2
Xσ

2
U

σ2
X + σ2

U

}

. (111)

We define the function R̃cnt : R++×R+ → R+ like R̃(·, ·)
except that its first argument (Dd) is strictly positive; the

minimum is replaced by an infimum; and the size of the

auxiliary alphabet Z can be unbounded. Thus,

R̃cnt(Dd, De) , inf
Z,φ,ψ

I(X ;Z|Y ) (112)

where the infimum is over all choices5 of the random vari-

able Z and functions φ, ψ satisfying

E

[

(X − X̂d)
2
]

≤ Dd, (113a)

E

[

(X̂d − X̂e)
2
]

≤ De, (113b)

Z⊸−−X ⊸−−Y, (113c)

where

X̂d , φ(Y, Z), (113d)

X̂e , ψ(X,Z). (113e)

In analogy to Proposition 5 we have:

Lemma 14: Over R++ × R+ the function R̃cnt(Dd, De) is

finite, monotonic in each of its arguments, and convex.

Proof: The function is bounded by the rate-distortion

function of the Gaussian source without side information. The

proof of monotonicity is identical to the proof of monotonicity

in Proposition 5. The proof of convexity is also very similar:

only a minor change is needed to account for the fact that,

prima facie, the infimum need not be achieved.

The following lemma provides an explicit expression for

R̃cnt(Dd, De) when (111) holds.

Lemma 15: If Dd > 0 and De ≥ 0 satisfy (111), then

R̃cnt(Dd, De) =
1

2
log+

(

σ2
X

σ2
X + σ2

U

σ2
U +Dd − 2

√

σ2
UDe

Dd −De

)

.

(114)

5To be more precise we should specify the set where Z may take value, and
we must restrict the functions φ and ψ to be measurable. In the converse Z
will correspond to the tuple (M,Y i−1, Y n

i+1
), and we can therefore restrict

Z here to be the space where such tuples take value.
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Proof of Lemma 15: We first prove

R̃cnt(Dd, De) ≤
1

2
log+

(

σ2
X

σ2
X + σ2

U

σ2
U +Dd − 2

√

σ2
UDe

Dd −De

)

.

(115)

To this end, we present a choice for Z , X̂d, X̂e that satisfies

the constraints (113) and is such that the objective function

I(X ;Z|Y ) in (112) evaluates to the RHS of (115). Our choice

depends on whether

Dd ≥ σ2
X

(

1−
√

De

σ2
U

)2

+De (116)

or

Dd < σ2
X

(

1−
√

De

σ2
U

)2

+De. (117)

In the first case (116) the RHS of (115) evaluates to 0, whereas

in the second case (117) it is positive.

When Dd and De satisfy (116), a suitable choice is—as in

(83) and (84) in the proof of the direct part—

Z = ∅, X̂n
e =

√

De

σ2
U

Xn, X̂n
d =

√

De

σ2
U

Y n. (118)

When Dd and De satisfy (117), a suitable choice is—as

in (97) and (106) in the direct part—

Z = a(X +W ), X̂e = bX + Z, X̂d = bY + Z, (119)

where W is a centered Gaussian of variance σ2
W =

σ2
X (Dd−De)

σ2
X
(1−

√
De/σ2

U
)2+De−Dd

and independent of the pair (X,Y )

and where b =
√

De/σ2
U and a =

σ2
X

σ2
X+σ2

W

(1 − b). That

this choice has the desired properties follows by (102)–(104)

and (107).

Having established (115), we now complete the proof of the

lemma by proving the reverse inequality

R̃cnt(Dd, De) ≥
1

2
log+

(

σ2
X

σ2
X + σ2

U

σ2
U +Dd − 2

√

σ2
UDe

Dd −De

)

.

(120)

Since rates are nonnegative, it suffices to prove

RG(Dd, De) ≥
1

2
log

(

σ2
X

σ2
X + σ2

U

σ2
U +Dd − 2

√

σ2
UDe

Dd −De

)

(121)

where log+ has been replaced by log.

Since the joint law of (X,Y ) is fixed and is a bivariate

Gaussian law

I(X ;Z|Y ) = h(X |Y )− h(X |Y, Z)

=
1

2
log

(

2πe
σ2
Xσ

2
U

σ2
X + σ2

U

)

− h(X |Y, Z). (122)

Consequently, (121) is equivalent to

Ω ≤ 1

2
log

(

2πeσ2
U

Dd −De

σ2
U +Dd − 2

√

σ2
UDe

)

, (123)

where Ω is defined as

Ω , sup
Z,φ,ψ

h(X |Y, Z) (124)

under the same constraints (113) that define R̃cnt(Dd, De)
in (112).

To prove (123) we first note that, since X̂d is a deterministic

function of (Y, Z),

h(X |Y, Z) = h(X − X̂d|Y, Z, X̂d) (125)

= h(X − X̂d|X − X̂d + U,Z, X̂d) (126)

≤ h(X − X̂d|X − X̂d + U) (127)

where in the second line we recalled that Y = X + U (69),

and where the last line follows because conditioning cannot

increase differential entropy.

The Markov condition Z⊸−−X⊸−−Y (113c) and the fact

that Y = X + U (69) imply that

Z⊸−−X⊸−−U. (128)

This, combined with the assumption that U is independent

of X , implies that U is independent of (X,Z). And since X̂e

is a function of (X,Z),

U and (X̂e, X, Z) are independent. (129)

This independence implies that U is independent of (X−X̂e).
This latter independence and the fact that X − X̂d can be

expressed as −
(

X̂d − X̂e − (X − X̂e)
)

implies that

Cov(X − X̂d, U) = −Cov(X̂d − X̂e, U). (130)

From (130), (113b), the fact that the variance of a random

variable cannot exceed its second moment, and the fact that

the magnitude of a correlation coefficient cannot exceed 1, it

follows that

|Cov(X − X̂d, U)|2 ≤ De σ
2
U . (131)

From (127) and (131) we thus obtain

Ω ≤ Γ (132)

where Γ is defined as

Γ , sup
X̂d

h(X − X̂d|X − X̂d + U) (133)

subject to the relaxed constraints

Var(X − X̂d) ≤ Dd, (134a)
∣

∣Cov(X − X̂d, U)
∣

∣

2 ≤ De σ
2
U . (134b)

We now proceed to study Γ. Define

A , X − X̂d (135)

so

Γ = sup
A
h(A|A+ U) (136)

subject to

Var(A) ≤ Dd, (137a)
∣

∣Cov(A,U)
∣

∣

2 ≤ De σ
2
U . (137b)

By the conditional max-entropy theorem [16], the supre-

mum in (136) is achieved when (A,U) are jointly Gaussian,

as we henceforth assume. As we next argue, the lemma’s

hypothesis that (111) holds implies that the choice of A as −U
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is not in the feasible set. Indeed, with this choice |Cov(A,U)|2
is equal to σ4

U , which violates (137b) because (111) and (98)

imply

De < min{σ2
U , Dd}. (138)

We thus assume in the following that A is jointly Gaussian

with U and that A 6= −U . Consequently,

h(A|A+ U)

=
1

2
log

(

2πe

(

σ2
U − (σ2

U + κAU )
2

σ2
A + σ2

U + 2κAU

))

(139)

=
1

2
log

(

2πe
σ2
Aσ

2
U − κ2AU

σ2
A + σ2

U + 2κAU

)

(140)

where σ2
A , Var(A) and κAU , Cov(A,U).

We can thus rewrite the optimization problem in (133) as

Γ = sup
κAU ,σ2

A

1

2
log

(

2πe
σ2
Aσ

2
U − κ2AU

σ2
A + σ2

U + 2κAU

)

(141)

subject to

0 ≤ σ2
A ≤ Dd, (142)

0 ≤ |κAU |2 ≤ Deσ
2
U , (143)

0 ≤ |κAU |2 ≤ σ2
Aσ

2
U . (144)

(We have to add the last constraint because the magnitude of

a correlation coefficient cannot exceed one.) For fixed κAU ,

the objective function in (141) is monotonically increasing in

σ2
A (see also (139)), and so is the RHS of Constraint (144).

Therefore, it is optimal to choose in (141)

σ2
A = Dd. (145)

Substituting this choice in (141) and (144) yields

Γ = sup
κAU

1

2
log

(

2πe
Ddσ

2
U − κ2AU

Dd + σ2
U + 2κAU

)

(146)

subject to (143) and

0 ≤ |κAU |2 ≤ Dd σ
2
U . (147)

Notice that, whenever (111) holds, the RHS of (143) is upper-

bounded by the square of min{Dd, σ
2
U}. Consequently,

(

(111) and (143)
)

⇒
(

|κAU | < min{Dd, σ
2
U}
)

. (148)

Since the RHS of (148) implies (147),
(

(111) and (143)
)

⇒ (147), (149)

and Constraint (147) is redundant. We therefore ignore Con-

straint (147) and study the maximization in (146) subject to

(143) only.

To this end, we compute the derivative of the objective

function in (146) with respect to κAU :

d

dκAU

(

1

2
log

(

2πe
Ddσ

2
U − κ2AU

Dd + σ2
U + 2κAU

))

=
−(Dd + κAU )(σ

2
U + κAU )

(Dd + σ2
U + 2κAU )(Ddσ2

U − κ2AU )
. (150)

By (148), the derivative in (150) is negative for all feasible

κAU . Hence, the objective function in (146) is decreasing on

the (symmetric) interval of interest (143), and it is optimal to

choose

κAU = −
√

Deσ2
U . (151)

The optimality of this choice allows us to evaluate Γ via (146)

and hence to upper-bound Ω via (132). This yields the desired

bound (123), which establishes the lemma.

Proof of Converse when (111) holds: Using Lemma 14

and Lemma 15 we can follow the steps of the proof in

Section II-D of the converse part of Theorem 6. The remaining

technicality is continuity. Continuity in the interior, i.e., on

R++ × R++ follows from convexity. It thus only remains to

establish continuity when Dd > 0, (111) holds, and De is zero.

This can be done by inspecting (114).

IV. MORE AND MORE-GENERAL CONSTRAINTS

So far we have only studied settings with two distortion

measures, one of which—the decoder-side distortion measure

dd(x, x̂d)—depends on the source symbol and the decoder’s

reconstruction, and the other—the encoder-side distortion mea-

sure de(x̂d, x̂e)—depends on the decoder’s and the encoder’s

reconstruction symbols. In this section we extend our setting

to allow for more than two distortion measures and to allow

for distortions that depend on all three symbols: the source

symbol x, the decoder’s reconstruction symbol x̂d, and the

encoder’s reconstruction symbol x̂e . We shall also allow

the reconstruction alphabets to differ. But all alphabets are

assumed finite.

A. Problem Statement

The new setup differs from the setup in Section II in two

ways.

• The encoder-side reconstruction X̂n
e and the decoder-side

reconstruction X̂n
d take value in the finite alphabets X̂n

e

and X̂n
d which can be different.

• There are K (possibly larger than 2) distortion constraints

specified by the K distortion measures

dk : X × Xd ×Xe → R+, k ∈ {1, . . . ,K} (152)

and the corresponding K maximal-allowed distortions

D1, . . . , DK (all of which are assumed to be nonneg-

ative).

We say that the tuple (R,D1, . . . , DK) is achievable if for

every ǫ > 0 and sufficiently large n there exist a message set

M of size |M| ≤ 2n(R+ǫ) and functions

f (n) : Xn → M (153a)

φ(n) : M×Yn → X̂n
d (153b)

ψ(n) : Xn → X̂n
e (153c)

such that the message M = f (n)(Xn) and the reconstruction

sequences X̂n
d = φ(n)(M,Y n) and X̂n

e = ψ(n)(Xn) satisfy:

1

n

n
∑

i=1

E

[

dk(Xi, X̂d,i, X̂e,i)
]

≤ Dk + ǫ, k ∈ {1, . . . ,K}.

(154)

In analogy to Assumption 1, we shall assume:
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Assumption 2: To each x ∈ X corresponds some x̂d ∈ X̂d

and some x̂e ∈ X̂e satisfying

dk(x, x̂d, x̂e) = 0, k ∈ {1, . . . ,K}. (155)

We seek the smallest rate R for which the tuple

(R,D1, . . . , DK) is achievable. This is defined as follows.

Given a maximal-allowed-distortion tuple (D1, . . . , DK), let

RExt(D1, . . . , DK)

, {R ∈ R+ : (R,D1, . . . , DK) is achievable}. (156)

Assumption 2 implies that the set RExt(D1, . . . , DK) contains

all rates exceeding H(X |Y ) and is thus nonempty. The rate-

distortions function RExt can now be defined as

RExt(D1, . . . , DK) , min
R∈RExt(D1,...,DK)

R, (157)

where the minimum exists because the region

RExt(D1, . . . , DK) ⊂ R+ is nonempty, closed, and bounded

from below by 0.

B. Result

To describe the rate-distortions function for the extended

setup of Section IV-A, we next introduce the function

R̃Ext(D1, . . . , DK).
Given the joint law PXY of the source and side information,

and given the distortion measures d1, . . . , dK , this function is

defined as

R̃Ext(D1, . . . , DK) = min
U,Z,φ,ψ

(

I(X ;Z)− I(Y ;Z)
)

(158)

where the minimization is over all discrete auxiliary random

variables Z and U satisfying

(U,Z)⊸−−X⊸−−Y (159)

and over all functions φ : Y×Z → X̂d and ψ : X×Z×U → X̂e

that simultaneously satisfy the K distortion constraints

E
[

dk
(

X,φ(Y, Z), ψ(X,Z,U)
)]

≤ Dk, k ∈ {1, . . . ,K}.
(160)

The following proposition provides cardinality bounds on

the support sets of the auxiliary random variables.

Proposition 16 (Cardinality Bounds): The minimum defin-

ing R̃Ext(D1, . . . , DK) is not increased if we restrict the

cardinality of the support set Z of Z to

|Z| ≤ |X ||U|+K + 1 (161)

and the cardinality of the support set U of U to

|U| ≤ K. (162)

Proof: The cardinality bound on Z can be justified using

the convex cover method [9]. The cardinality bound on U is

proved in Appendix D.

Remark 17 (Improved Cardinality Bound): The cardinality

bound on U can be strengthened: |U| need not exceed the

number of distortion constraints in (154) that depend on X̂e,i.

The latter number equals 1 in the original setup of Section II

thus allowing us to recover Theorem 6.

Proposition 18 (Key Properties of the Function R̃Ext):

The function R̃Ext : R
K
+ → R+ is bounded from above by

H(X |Y ); it is nondecreasing in the distortions

(

D′
1 ≥ D1, . . . , D

′
K ≥ DK

)

=⇒
(

R̃Ext(D
′
1, . . . , D

′
K) ≤ R̃Ext(D1, . . . , DK)

)

;

and it is convex and continuous.

Proof: The proof is similar to the proof of Proposition 5

in Appendix B and is omitted.

Theorem 19: The rate-distortions function for the setup in

Section IV-A is equal to R̃Ext(D1, . . . , DK):

RExt(D1, . . . , DK) = R̃Ext(D1, . . . , DK). (163)

Compared to the rate-distortions function of our original prob-

lem R̃(Dd, De) in (25), the definition of the rate-distortions

function R̃Ext(D1, . . . , DK) in (158) involves an extra aux-

iliary random variable U . This auxiliary U shows up as an

additional argument in the encoder’s reconstruction function

ψ and is subject to the Markov chain (159).6 Intuitively, the

auxiliary U is needed because there might not be a determin-

istic encoder-side reconstruction function that matches all the

K distortion constraints simultaneously, but instead there are

several (in fact K) different reconstruction functions that meet

the K distortion constraints only on average.

Our results extend also to vector-valued distortion measures

as considered in [18].

Proof of Theorem 19: The achievability, i.e., that

RExt(D1, . . . , DK) ≤ R̃Ext(D1, . . . , DK), (164)

can be proved using a scheme that is similar to the one

that was sketched in the proof of Theorem 6. The only

difference is that, to produce the reconstruction sequence X̂n
e ,

the encoder applies the function ψ component-wise to the

tuple (Xn, Z∗n, Un), where, conditional on (Xn, Z∗n), the

components of the sequence Un are generated independently

according to the conditional law PU|Z,X . The analysis of this

scheme is omitted.

We next prove the converse, i.e., that

RExt(D1, . . . , DK) ≥ R̃Ext(D1, . . . , DK). (165)

Fix some positive ǫ, a blocklength n, and a rate R. Let M
be a message set of size |M| ≤ 2n(R+ǫ), and let f (n), φ(n),
and ψ(n) be encoding and reconstruction functions as in (153)

that satisfy the K distortion constraints in (154). For every

i ∈ {1, . . . , n}, define Zi in (44)

Zi , (M,Y i−1, Y ni+1) (166)

and define Ui as X\i, i.e.,

Ui , (X i−1
1 , Xn

i+1). (167)

Notice that for every i ∈ {1, . . . , n}
(Ui, Zi)⊸−−Xi⊸−−Yi. (168)

6The function R̃Ext(D1, . . . ,DK) could also be defined without the
auxiliary U , if instead ψ was allowed to be a randomized function of X
and Z .
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Also, following the steps in (34)–(43), we can conclude that

n(R+ ǫ) ≥
n
∑

i=1

I(Xi;Zi)− I(Yi;Zi). (169)

We further define—as in Section II-D—φ
(n)
i to be the

function that maps (M,Y n) to the i-th symbol of φ(n)(M,Y n)

and ψ
(n)
i to be the function that maps Xn to the i-th symbol

of ψ(n)(Xn). Then, the symbol φ
(n)
i (M,Y n) can be written

as

φi(Yi, Zi) , φ
(n)
i (M,Y n), (170)

and ψ
(n)
i (Xn) can be written as

ψi(Xi, Zi, Ui) , ψ
(n)
i (Xn), (171)

for some functions φi and ψi with arguments in the respective

domains. We finally define for each k ∈ {1, . . . ,K} and i ∈
{1, . . . , n}

Dk,i , E

[

dk(Xi, φ
(n)
i (M,Y n), ψ

(n)
i (Xn))

]

, (172)

where E[·] is with respect to PXnY n . Notice that

n
∑

i=1

Dk,i ≤ Dk + ǫ, k ∈ {1, . . . ,K} (173)

because the chosen encoding and reconstruction functions

f (n), φ(n), and ψ(n) satisfy (154). Moreover, by definitions

(170)–(172),

E
[

dk
(

Xi, φi(Yi, Zi), ψi(Xi, Zi, Ui)
)]

= Dk,i, (174)

where E[·] is with respect to PXiYi
PUiZi|Xi

.

Combining (169) and (174) with the definition of R̃Ext, we

obtain

n(R+ ǫ) ≥
n
∑

i=1

I(Xi;Zi)− I(Yi;Zi) (175)

≥
n
∑

i=1

R̃Ext(D1,i, . . . , DK,i) (176)

≥ nR̃Ext

(

1

n

n
∑

i=1

D1,i, . . . ,
1

n

n
∑

i=1

DK,i

)

(177)

≥ nR̃Ext

(

D1 + ǫ, . . . , DK + ǫ), (178)

where the last two inequalities follow by the convexity and

the monotonicity of R̃Ext and by (173). By the continuity of

R̃Ext and because ǫ > 0 and the blocklength n are arbitrary,

the converse (165) follows immediately from (178).
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APPENDIX A

PROOF OF COROLLARY 7

When de(·, ·) is the Hamming distortion and De = 0, our

average-per-symbol distortion constraint (12) is less stringent

than the block-distortion constraint (24) in Steinberg’s setup

(Remark 3). Consequently,

Rcr(Dd) ≥ R(Dd, 0). (179)

It remains to prove the reverse inequality. Let Z , φ, and ψ be

minimizers of R(Dd, 0), so

R(Dd, 0) = I(X ;Z)− I(Y ;Z) (180a)

E
[

dd

(

X,φ(Y, Z)
)]

≤ Dd (180b)

φ(Y, Z) = ψ(X,Z) w.p. 1 (180c)

Z⊸−−X⊸−−Y. (180d)

To prove the reverse inequality we shall upper-bound Rcr(Dd)
by showing that

X̂ , φ(Y, Z) (181)

is feasible in the minimization (21) that defines it.

From the definition of X̂ (181) and from (180c), it follows

that X̂ is computable (w.p. 1) from (X,Z). This combines

with (180d) to establish that

(X̂, Z)⊸−−X⊸−−Y (182)

and, a fortiori, that

X̂⊸−−X⊸−−Y. (183a)

And by (180b) and (181),

E
[

dd

(

X, X̂
)]

≤ Dd. (183b)

It follows from (183) that X̂ is feasible in the minimization

(21) defining Rcr(Dd) and thus

Rcr(Dd) ≤ I(X ; X̂)− I(Y ; X̂) (184)

= I(X ; X̂|Y ) (185)

≤ I(X ;Z|Y ) (186)

= I(X ;Y )− I(X ;Z) (187)

= R(Dd, 0) (188)

where (185) follows from (183a); where (186) follows, by the

(conditional) data processing inequality, from

X̂⊸−−(Y, Z)⊸−−X (189)

(which holds by (181)); where (187) follows from (180d);

and (188) follows from (180a). Inequalities (179) and (188)

establish the corollary.
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APPENDIX B

PROOF OF PROPOSITION 5

That R̃(Dd, De) is bounded by H(X |Y ) is just a restate-

ment of (29). Monotonicity holds because the feasible set

in the minimization defining R̃(Dd, De) is enlarged (or is

unaltered) when Dd and/or De are increased.

As to the convexity, let Z(1), φ(1), ψ(1) and Z(2), φ(2), ψ(2)

be the random variables and functions that achieve the minima

in the definitions of R̃
(

D
(1)
d , D

(1)
e

)

and R̃
(

D
(2)
d , D

(2)
e

)

. Let

Q ∼ Bernoulli(λ) be independent of (X,Y, Z(1), Z(2)). Define

Z ,
(

Q,Z(Q)
)

(190)

and the functions

φ(Y, Z) , φ(Q)
(

Y, Z(Q)
)

(191)

ψ(X,Z) , ψ(Q)
(

X,Z(Q)
)

. (192)

Then

Z⊸−−X⊸−−Y ; (193)

E[dd(X,φ(Y, Z))] (194)

= λE[dd(X,φ
(1)(Y, Z(1)))]

+(1− λ)E[dd(X,φ
(2)(Y, Z(2)))] (195)

≤ λD
(1)
d + (1− λ)D

(2)
d ; (196)

and

E[de(φ(Y, Z), ψ(X,Z))] (197)

= λE[de(φ
(1)(Y, Z(1)), ψ(1)(X,Z(1)))]

+(1− λ)E[de(φ
(2)(Y, Z(2)), ψ(2)(X,Z(2)))] (198)

≤ λD(1)
e + (1− λ)D(2)

e ; (199)

so Z, φ, ψ are feasible for the distortions
(

λD
(1)
d + (1− λ)D

(2)
d , λD(1)

e + (1− λ)D(2)
e

)

.

Consequently,

R̃
(

λD
(1)
d + (1− λ)D

(2)
d , λD

(1)
e + (1− λ)D

(2)
e

)

≤ I(X ;Z)− I(Y ;Z)

= H(X)−H(X |Z)−H(Y ) +H(Y |Z)
= H(X)−H(X |Z(Q), Q)−H(Y ) +H(Y |Z(Q), Q)

= H(X)− λH(X |Z(1))− (1− λ)H(X |Z(2))

−H(Y ) + λH(Y |Z(1)) + (1− λ)H(Y |Z(2))

= λ
(

I(X ;Z(1))− I(Y ;Z(1))
)

+ (1− λ)
(

I(X ;Z(2))− I(Y ;Z(2))
)

.

= λ R̃
(

D
(1)
d , D

(1)
e

)

+ (1 − λ) R̃
(

D
(2)
d , D

(2)
e

)

. (200)

To conclude the proof it remains to prove that R̃(Dd, De)
is continuous on R

2
+. (Continuity on R

2
++ is a consequence

of the convexity, but we also claim continuity in the closed

set R2
+.) Since R

2
+ is locally simplicial (as can be verified by

the definition in [17, Section 10, p. 84] or using [17, Theorem

20.5, p 184]), the convexity of R̃(Dd, De) on R
2
+ implies its

upper-semicontinuity relative to R
2
+. It thus remains to prove

lower-semicontinuity relative to R
2
+. That is, we need to show

that
(

D
(κ)
d , D(κ)

e

)

→
(

Dd, De

)

implies that there is a subsequence {κν} such that

R̃(Dd, De) ≤ lim
ν→∞

R̃(D
(κν)
d , D(κν)

e ).

Let φ(κ), ψ(κ), P
(κ)
Z|X achieve R̃(D

(κ)
d , D

(κ)
e ) with Z =

{1, . . . , |X | + 3}. Since there are only a finite number of

functions from Y × Z to X̂ and only a finite number of

functions from X×Z to X̂ , we can choose a subsequence {κν}
along which: the mappings φ(κν) do not depend on ν and can

be thus denoted φ; the mappings ψ(κν) do not depend on ν

and can be thus denoted ψ; and the conditional laws P
(κν)
Z|X

converge to some conditional law that we denote P
(0)
Z|X . By the

continuity of mutual information, R̃(D
(κν)
d , D

(κν)
e ) converges

to I(X ;Z) − I(Y ;Z) evaluated with respect to P
(0)
Z|XPXY ,

and R̃(Dd, De) cannot exceed this value because P
(0)
Z|X , ψ,

and φ are in the feasible set defining it.

APPENDIX C

PROOF OF PROPOSITION 12

We present and analyze a scheme that achieves the rate-

distortions tuples in Proposition 12. Before describing the

scheme, we introduce some notation and lemmas on n-

dimensional spheres.

A. On n-dimensional Spheres

An n-sphere of radius r > 0 centered at ξ ∈ R
n is the set

of all vectors x ∈ R
n satisfying

‖x− ξ‖ = r.

When the center of the sphere ξ is the origin 0, we call it a

centered sphere, and when the radius of the sphere is 1, we

call it a unit sphere.

We denote the angle between two nonzero vectors u,v ∈
R
n by ∢(u,v). Its cosine is

cos∢(u,v) ,
〈u,v〉
‖u‖‖v‖ . (201)

Given a nonzero vector µ on an n-sphere S, the spherical cap

of half-angle θ centered at µ is the set of all vectors x on S
satisfying

∢(µ,x) ≤ θ.

The surface area of such a spherical cap does not depend on

the vector µ but only on the dimension n, the radius of the

sphere r, and the angle θ. If the radius r = 1, we denote this

surface area by Cn(θ).
We say that a random n-vector is uniformly distributed over

an n-sphere, if it is drawn according to a uniform probability

measure over the surface of this sphere.

The proofs of the following four lemmas are based on

results in [19] and omitted.



14

Lemma 20: Let Ψ be uniformly distributed over the cen-

tered unit n-sphere, and let µ be a deterministic unit-length

vector in R
n. Then,

Pr[〈Ψ,µ〉 ≥ τ ] =
Cn(arccos(τ))

Cn(π)
, 0 ≤ τ ≤ 1. (202)

Lemma 21: For 0 ≤ τ < 1:

lim
n→∞

1

n
log

(

Cn(arccos(τ))

Cn(π)

)

=
1

2
log(1− τ2). (203)

Lemma 22: Let f : R → (0, 1] be such that the limit

−η1 , lim
n→∞

1

n
log f(n) (204)

exists and η1 > 0. Then,

lim
n→∞

(

1− f(n)
)2nη2

=

{

1 if η1 > η2

0 if η1 < η2.
(205)

Lemma 23: For θ ∈ (0, π/2)

lim
n→∞

Cn(θ)

Cn(π)
= 0, (206)

whereas for θ ∈ (π/2, π)

lim
n→∞

Cn(θ)

Cn(π)
= 1. (207)

B. Scheme

Our scheme has parameters

a, δ, σ2
W > 0 and b ≥ 0 (208)

that must satisfy Conditions (86a) and (86b), which we repeat

for convenience here:

(1− a− b)2σ2
X + a2σ2

W + b2σ2
U ≤ Dd (209)

b2σ2
U ≤ De. (210)

To describe and analyze the scheme we use vector notation.

Let X denote the n-dimensional column-vector that results

when the source symbols are stacked on top of each other

X ,
(

X1 X2 . . . Xn

)

T

. (211)

Likewise define the side-information vector Y and the recon-

struction vectors X̂d, and X̂e.

1) Codebook generation: Let

σ2
Z , a2(σ2

W + σ2
X), (212)

R′ ,
1

2
log

(

σ2
X + σ2

W

σ2
W

)

, (213)

R ,
1

2
log

(

σ2
Xσ

2
U + σ2

Xσ
2
W + σ2

Wσ
2
U

(σ2
X + σ2

U )σ
2
W

)

. (214)

Draw ⌈2nR′⌉ independent random n-vectors

{Z(1),Z(2), . . . ,Z(⌈2nR′⌉)} uniformly over the centered

n-sphere of radius r =
√

nσ2
Z . Assign these vectors to

⌊2n(R+δ)⌋ bins: the first ⌈2(R′−R−δ)⌉ are assigned to bin 1,

the following ⌈2(R′−R−δ)⌉ vectors are assigned to bin 2, etc.

More specifically, if B(m) denotes the set of vectors assigned

to bin m ∈ {1, . . . , ⌊2n(R+δ)⌋}, then

B(m) =
{

Z(m−1)⌈2(R′−R−δ)⌉+1, . . . ,Zm⌈2(R′−R−δ)⌉

}

for m = 1, . . . , ⌊2n(R+δ)⌋ − 1 and

B
(

⌊2n(R+δ)⌋
)

,
{

Z(⌊2n(R+δ)⌋−1)+1, . . . ,Z⌈2nR′⌉

}

.

The codebook C , {Z(1),Z(2), . . . ,Z(⌈2nR′⌉)}.

2) Encoder: Given the source sequence X = x, the encoder

looks for the codeword z∗ ∈ C that is closest to having the

“correct” angle with x:

z∗ = argmin
z∈C

∣

∣

∣cos∢(x, z) −
√

1− 2−2R′

∣

∣

∣ . (215)

The encoder then sends M = m∗, where m∗ denotes the index

of the bin containing z∗. It also produces the reconstruction

sequence x̂e = z∗ + bx.

3) Decoder: Given M = m∗ and the side-information

vector Y = y, the decoder chooses

ẑ = argmin
z∈B(m∗)

∣

∣

∣cos∢(y, z) −
√

1− 2−2(R′−R)
∣

∣

∣ , (216)

and produces the reconstruction sequence x̂d = ẑ+ by.

With probability 1 the argmins in (215) and (216) are

unique.

C. Analysis

We fix ǫ > 0 sufficiently small such that

(1− 4ǫ)
√

1− 2−2(R′−R) >
√

1− 2−2(R′−R−δ/2), (217)

and define the following four events:

1) Esrc : “The source and side information are atypical”,

i.e.,
∣

∣

∣

1

n
‖X‖2 − σ2

X

∣

∣

∣
> ǫσ2

X or (218a)

∣

∣

∣

1

n
‖Y‖2 − σ2

Y

∣

∣

∣ > ǫσ2
Y or (218b)

| cos∢(X,Y) − ρXY | > ǫρXY (218c)

where ρXY denotes the correlation coefficient between

X and Y :

ρXY =

√

σ2
X

σ2
X + σ2

U

. (219)

2) Eenc : “No codeword has a good angle with the source

sequence”, i.e.,
∣

∣

∣ cos∢(X,Z∗)−
√

1− 2−2R′

∣

∣

∣ > ǫ
√

1− 2−2R′ . (220)

3) Edec1 : “The chosen codeword Z∗ does not have the

correct angle with the side-information sequence”, i.e.,
∣

∣

∣ cos∢(Y,Z∗)−
√

1− 2−2(R′−R)
∣

∣

∣ > 4ǫ
√

1− 2−2(R′−R).

(221)

4) Edec2 : “The decoder does not find the correct code-

word”, i.e.,

Ẑ 6= Z∗. (222)
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Also, we define the event

E , Esrc ∪ Eenc ∪ Edec1 ∪ Edec2.
Lemma 24:

lim
n→∞

Pr[E ] = 0. (223)

Proof: We note

Pr[E ] ≤ Pr[Esrc] + Pr[Eenc|Ecsrc] + Pr[Edec1|Ecsrc ∩ Ecenc]
+Pr[Edec2|Ecsrc ∩ Ecenc]. (224)

In the following we show that each term on the RHS of (224)

tends to zero as the blocklength n tends to infinity. The first

limit

lim
n→∞

Pr[Esrc] = 0 (225)

follows directly from the weak law of large numbers. The

second limit

lim
n→∞

Pr[Eenc|Ecsrc] = 0 (226)

can be shown following the same steps as in the proof of

Limit (134) in [20]. The third limit

lim
n→∞

Pr[Edec1|Ecsrc ∩ Ecenc] = 0 (227)

is proved as follows. We have

cos∢(Y,Z∗) = cos∢(X,Y) cos∢(X,Z∗) +
〈Y⊥,Z∗⊥〉
‖Y‖‖Z∗‖

(228)

where Y⊥ and Z∗⊥ denote the components of Y and Z that

are orthogonal to X:

Y⊥ , Y − 〈X,Y〉
‖X‖2 X (229)

= Y − cos∢(X,Y)‖Y‖ X

‖X‖ , (230)

and

Z∗⊥ , Z∗ − 〈X,Z∗〉
‖X‖2 X (231)

= Z∗ − cos∢(X,Z∗)‖Z∗‖ X

‖X‖ . (232)

Let tXZ∗ satisfy

tXZ∗ ∈
[

(1− ǫ)
√
2−2R′ , (1 + ǫ)

√
2−2R′

]

(233)

and let x and y be vectors in R
n satisfying

∣

∣

∣

1

n
‖x‖2 − σ2

X

∣

∣

∣ ≤ ǫσ2
X (234a)

∣

∣

∣

1

n
‖y‖2 − σ2

Y

∣

∣

∣
≤ ǫσ2

Y σ
2
Y (234b)

| cos∢(x,y) − ρXY | ≤ ǫρXY . (234c)

Then, conditional on events

Ecsrc, Ecenc, X = x, Y = y, cos∢(X,Z∗) = tXZ∗ ,
(235)

by (233) and (234c), we have

cos∢(X,Y) cos∢(X,Z∗) ≤ (1 + ǫ)ρXY (1 + ǫ)
√
2−2R′

(a)

≤
√

1− 2−(R′−R)(1 + 3ǫ) (236a)

and

cos∢(X,Y) cos∢(X,Z∗) ≥ (1− ǫ)ρXY (1 − ǫ)
√
2−2R′

(a)

≥
√

1− 2−(R′−R)(1− 3ǫ),

(236b)

where Inequalities (a) follow because

ρXY ·
√

1− 2−2R′ =
√

1− 2−(R′−R) (237)

and because ǫ ∈ (0, 1). Moreover, conditional on the events

in (235), the vector Z∗⊥ is uniformly distributed over a

centered (n− 1)-dimensional sphere of radius σ2
Z(1− t2XZ∗),

and thus Limit (238) on top of the next page follows by

Lemmas 20 and 23.

We can combine Limit (238) and Inequalities (236) to obtain

the limit (239) on top of the next page. If in (239) we take

the expectation with respect to X,Y, and cos∢(X,Z∗) (but

keep the conditioning on events Ecsrc and Ecenc), we obtain the

desired third limit (227).

We finally prove the fourth limit

lim
n→∞

Pr[Edec2|Ecsrc ∩ Ecenc] = 0. (240)

To this end, we define event E2 as

cos∢(Y,Z′) <
√

1− 2−2(R′−R−δ/2), ∀Z′ ∈ (B(M)\Z∗) .
(241)

Recalling the decoding rule in (216) and the definition of

event Edec1 in (221), we see that when Ecdec1 and E2 occur

simultaneously, then by condition (217) the decoder finds the

correct codeword Ẑ = Z∗. Therefore,

Pr[Edec2|Ecsrc, Ecenc] ≤ 1− Pr[Ecdec1 ∩ E2|Ecsrc, Ecenc] , (242)

and thus (227) and the limit

lim
n→∞

Pr[Ec2 |Ecsrc, Ecenc] = 0 (243)

establish (240).

We now prove (243). For each m ∈
{

1, . . . , ⌊2n(R+δ)⌋
}

,

we index the vectors in the m-th bin from 1 to |B(m)| and

we shall refer to the k-th vector in this m-th bin by Zm,k. Let

K∗ be the index of Z∗, i.e., ZM,K∗ = Z∗. By the symmetry

of the code construction and the encoding rule, the probability

Pr[Ec|Ecsrc, Ecenc,M = m,K∗ = k] does not depend on the

values m and k. We therefore, assume in the following that

M = 1 and K∗ = 1. If we additionally condition on

X = x and on cos∢(X,Z∗) = tXZ∗ > 0, the vectors

Z1,2, . . . ,Z1,|B(1)| (i.e., the vectors in bin 1 that are not Z∗)

are independent and uniformly distributed over the centered

n-sphere of radius
√

nσ2
Z without the spherical cap of half-

angle arccos(tXZ∗) centered at x. Thus, 2
Cn(π)

is an upper

bound on the conditional density of the normalized vectors
1√
nσ2

Z

Z1,2, . . . ,
1√
nσ2

Z

Z1,|B(1)| on the centered unit n-sphere.

Applying Lemma 20, we therefore obtain Inequality (245)

shown on top of the next page. We note that for any γ ∈ [0, 1]

0 ≤
(

1− 2Cn(arccos(γ))

Cn(π)

)

≤ 1 (247)



16

lim
n→∞

Pr

[

∣

∣〈y⊥,Z∗⊥〉
∣

∣ ≤ ǫ
√

1− 2−2(R′−R)‖y‖
√

σ2
Z

∣

∣

∣X = x,Y = y, cos∢(X,Z∗) = tXZ∗

]

= 1 (238)

lim
n→∞

Pr
[∣

∣

∣ cos∢(Y,Z∗)−
√

1− 2−2(R′−R)
∣

∣

∣ ≤ 4ǫ
√

1− 2−2(R′−R)
∣

∣

∣Ecsrc, Ecenc,X = x,Y = y, cos∢(X,Z∗) = tXZ∗

]

= 1

(239)

Pr





|B(1)|
⋃

k=2

(

cos∢(Y,Z1,k) ≥
√

1− 2−2(R′−R−δ/2)
)

∣

∣X = x,M = 1,K∗ = 1, Ecsrc, Ecenc





= 1−
|B(1)|
∏

k=2

(

1− Pr
[

cos∢(Y,Z1,k) ≥
√

1− 2−2(R′−R−δ/2)
∣

∣X = x,M = 1,K∗ = 1, Ecsrc, Ecenc
])

(244)

< 1−
(

1− 2Cn(arccos(
√
1− 2−2(R′−R−δ/2)))

Cn(π)

)|B(1)|−1

(245)

≤ 1−
(

1− 2Cn(arccos(
√
1− 2−2(R′−R−δ/2)))

Cn(π)

)2n(R′−R−δ)

(246)

and hence the mapping t 7→
(

1− 2Cn(arccos(γ))
Cn(π)

)t

is decreas-

ing in t > 0. Therefore, since

|B(1)| − 1 < 2n(R
′−R−δ) (248)

we further obtain (246). If now we take the expectation with

respect to X, M , and K∗ (but keep the conditioning on Ecsrc
and Ecenc), (246) results in

Pr [E2| Ecsrc, Ecenc]

< 1−



1−
2Cn

(

arccos
√

1− 2−2(R′−R− δ
2 )
)

Cn(π)





2n(R′−R−δ)

.

(249)

The desired limit (243) follows by (249) and by Lemma 22.

In fact, applying Lemma 22 to

η2 = R′ −R− δ (250)

and to the function

f : n→ 2Cn(arccos(
√
1− 2−2(R′−R−δ/2)))

Cn(π)
, (251)

we obtain that the right-hand side of (249) tends to 1 as n
tends to infinity because

η1 , − lim
n→∞

1

n
log

(

2Cn(arccos(
√
1− 2−2(R′−R−δ/2)))

Cn(π)

)

= R′ −R− δ/2 (252)

> η2. (253)

Here, the equality holds by Lemma 21 and because the factor

2 in the logarithm does not change the limit, and the inequality

holds by (250) and because δ > 0.

This concludes the proof of limit (243) and thus of the

fourth limit (240). Combining finally (224) with (225)–(227)

and (240) establishes the proof of the lemma.

We can now bound the expected distortions of our scheme.

We have

E

[

d
(n)
d (X, X̂d)

]

= Pr[Ec]E
[

d
(n)
d (X, X̂d)

∣

∣Ec
]

+ Pr[E ]E
[

d
(n)
d (X, X̂d)

∣

∣E
]

, (254)

and

E

[

d(n)e (X̂d, X̂e)
]

= Pr[Ec]E
[

d(n)e (X̂d, X̂e)
∣

∣Ec
]

+Pr[E ]E
[

d(n)e (X̂d, X̂e)
∣

∣E
]

. (255)

The decoder-side distortion satisfies

d
(n)
d (x, x̂d) =

1

n
‖x− z∗ − by‖2 (256)

≤ 3

n
‖x‖2 + 3

n
‖z∗‖2 + 3

n
b2‖y‖2, (257)

where the inequality holds by the Cauchy-Schwarz Inequality

and because an arithmetic mean of two nonnegative numbers

cannot be smaller than it’s geometric mean. Therefore,

Pr[E ]E
[

d
(n)
d (X, X̂d)

∣

∣E
]

≤ 3

n
Pr[E ]E

[

‖X‖2 + ‖Z∗‖2 + b2‖Y‖2
∣

∣E
]

(258)

=
3

n
E
[

‖X‖2 + ‖Z∗‖2 + b2‖Y‖2
]

− 3

n
Pr[Ec]E

[

‖X‖2 + ‖Z∗‖2 + b2‖Y‖2
∣

∣Ec
]

(259)

≤ 3
(

σ2
X + σ2

Z + b2(σ2
X + σ2

U )
)

−3
(

σ2
X(1− ǫ) + σ2

Z + b2(σ2
X + σ2

U )(1 − ǫ)
)

Pr[Ec](260)

≤ 3
(

σ2
X + σ2

Z + b2(σ2
X + σ2

U )
)

(

1− (1− ǫ)Pr[Ec]
)

. (261)

In the event Ec, we can derive a bound on the decoder-side

distortion d
(n)
d (x, x̂d) that is tighter than (257):

d
(n)
d (x, x̂d)
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=
1

n
‖x− z∗ − by‖2 (262)

=
1

n
‖x‖2 + 1

n
‖z∗‖2 + b2

n
‖y‖2

− 2

n
〈x, z∗〉 − 2b

n
〈x,y〉 + 2b

n
〈z∗,y〉 (263)

≤ (1 + ǫ)σ2
X + σ2

Z + (1 + ǫ)b2(σ2
X + σ2

U )

− 2(1− ǫ)2aσ2
X − 2(1− ǫ)3bσ2

X

+ 2(1 + ǫ)(1 + 4ǫ)abσ2
X (264)

≤ (1 + a2 + b2 − 2a− 2b+ 2ab)σ2
X + a2σ2

W + b2σ2
U

+ ǫ(σ2
X + b2(σ2

X + σ2
U ) + 4aσ2

X + 6bσ2
X + 10abσ2

X)

+ 8ǫ2abσ2
X + 2ǫ3bσ2

X (265)

≤ Dd

+ ǫ(σ2
X + b2(σ2

X + σ2
U ) + 4aσ2

X + 8bσ2
X + 18abσ2

X)
(266)

where the first inequality follows from the definition of the

event Ec, the second by throwing away some negative ǫ-terms,

and the third from Condition (209) and because ǫ < 1. Since

Pr[Ec] ≤ 1, we thus have:

Pr[Ec]E
[

d(n)e (X̂d, X̂e)
∣

∣Ec
]

≤ Dd + ǫ(σ2
X + b2(σ2

X + σ2
U ) + 4aσ2

X + 8bσ2
X + 18abσ2

X).

(267)

Combining (254), (261), and (267), we obtain

E

[

d
(n)
d (X, X̂d)

]

(268)

≤ Dd + 3
(

σ2
X + σ2

Z + b2σ2
Y

)

(

1− (1 + ǫ)Pr[Ec]
)

+ǫ(σ2
X + b2(σ2

X + σ2
U ) + 4aσ2

X + 8bσ2
X + 18abσ2

X).

(269)

Similarly, we have for the encoder-side distortion:

d(n)e (x, x̂d) =
1

n
‖by − bx‖2 (270)

≤ 2

n
b2‖y‖2 + 2

n
b2‖x‖2, (271)

and thus,

Pr[E ]E
[

d(n)e (Xd, X̂e)
∣

∣E
]

≤ 2

n
E
[

b2‖Y‖2 + b2‖X‖2
]

− 2

n
Pr[Ec]E

[

b2‖Y‖2 + b2‖X‖2
∣

∣

∣Ec
]

(272)

≤ 2
(

b2(σ2
X + σ2

U ) + b2σ2
X

)

(

1− (1− ǫ)Pr[Ec]
)

. (273)

Moreover, in the event Ec we can derive a bound on the

encoder-side distortion d
(n)
e (x̂d, x̂e) that is tighter than (271):

d(n)e (x̂d, x̂e) =
1

n
‖by− bx‖2 (274)

=
1

n
b2
(

‖x‖2 + ‖y‖2 − 2〈x,y〉
)

(275)

≤ (1 + ǫ)b2σ2
X + (1 + ǫ)b2(σ2

X + σ2
U )

− 2b2(1− ǫ)3σ2
X (276)

≤ b2σ2
U + ǫb2(8σ2

X + σ2
U ) + ǫ3b2σ2

X (277)

≤ De + ǫb2(9σ2
X + σ2

U ), (278)

where the last inequality follows by Assumption (210) and

because ǫ < 1. Since Pr[Ec] ≤ 1, we thus have

Pr[Ec]E
[

d(n)e (X̂d, X̂e)
∣

∣Ec
]

≤ De + ǫb2(9σ2
X + σ2

U ). (279)

Combining finally (255), (273), and (279), we obtain

E

[

d(n)e (Xd, X̂e)
]

≤ De + 2
(

b2σ2
Y + b2σ2

X

)

(

1− (1− ǫ)Pr[Ec]
)

+ǫb2(9σ2
X + σ2

U ). (280)

Recall that the rate of our scheme is smaller than R+δ and

that ǫ, δ > 0 can be chosen arbitrarily close to 0. Therefore,

from (269), (280), and Lemma 24 we conclude that when

a, σ2
W > 0 and b ≥ 0 satisfy (209) and (210), then our scheme

can achieve the triple
(

R =
1

2
log

(

σ2
Xσ

2
U + σ2

Xσ
2
W + σ2

Uσ
2
W

(σ2
X + σ2

U )σ
2
W

)

, Dd, De

)

.

(281)

This establishes Proposition 12.

APPENDIX D

THE CARDINALITY BOUND ON U
To prove the cardinality bound (162) on U , we shall need

the following variation on Carathéodory’s theorem.

Lemma 25: Any point on the boundary of the convex

hull of a compact set in R
d can be expressed as a convex

combination of d or fewer points in the set.

Proof: Let S be a compact subset of Rd, and let x be a

boundary point of its convex hull conv(S). Since x is in the

convex hull of S, it follows from Carathéodory’s theorem that

there exist d+ 1 or fewer points

x1, . . . ,xν ∈ S, ν ≤ d+ 1 (282)

and positive coefficients summing to 1

λ1, . . . , λν > 0,

ν
∑

i=1

λi = 1 (283)

such that

x =

ν
∑

i=1

λi xi. (284)

We shall show that, in fact, of these ν points, we can find d
or fewer points whose convex combination is x.

Since x is on the boundary of conv(S), there exists a

hyperplane H that supports conv(S) at x. Thus,

H =
{

ξ ∈ R
d : cTξ = cTx

}

(285a)

for some vector c ∈ R
d and

cTx = max
x̃∈conv(S)

cTx̃ (285b)

so

cTx ≥ cTxi, i = 1, . . . , ν. (286)
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We shall next show that the points x1, . . . ,xν are in H. To

that end we note that by (284)

0 = cT

(

x−
ν
∑

i=1

λi xi

)

=

ν
∑

i=1

λic
Tx−

ν
∑

i=1

λic
Txi

=
ν
∑

i=1

λi

(

cTx− cTxi

)

where the second equality holds because the λ’s sum to 1
(283). Since the λ’s are all positive, it follows from (286) that

all the terms on the RHS are nonnegative. Since they sum to

zero, they must all be zero. And since the λ’s are positive, we

conclude that

cTxi = cTx, i ∈ {1, . . . , ν} (287)

and the vectors xi are all in H. The vector x can thus be

written as a convex combination of the ν vectors in x1, . . . ,xν
in H. Since H is (d − 1)-dimensional, it follows from

Carathéodory’s theorem that x is in fact a convex combination

of d or fewer of the vectors x1, . . . ,xν .

The cardinality bound on U can now be proved as follows.

Proof of the Cardinality Bound on U in Proposition 16:

Let the discrete random variables U and Z over the alphabets

U and Z , the function φ : Y × Z → X̂d, and the function

ψ : X ×Z×U → X̂e satisfy (159) and (160). We shall exhibit

a random variable Ũ over the alphabet

Ũ , {1, . . . ,K} (288)

and a function ψ̃ : X × Z × Ũ → X̂e satisfying

Ũ⊸−−(X,Z)⊸−−Y (289)

and the K distortion constraints

E

[

dk
(

X,φ(Y, Z), ψ̃(X,Z, Ũ)
)

]

≤ Dk, k ∈ {1, . . . ,K}.
(290)

Since the Markov conditions (159) and (289) imply

(Ũ , Z)⊸−−X⊸−−Y, (291)

this will allow us to replace U and ψ with Ũ and ψ̃ and thus

conclude the proof.

To describe Ũ and ψ̃, we need some definitions. For each

pair (x, z) ∈ X × Z and each k ∈ {1, . . . ,K}, define

D
(x,z)
k = Pr

[

dk
(

X,φ(Y, Z), ψ(X,Z,U)
)

∣

∣

∣ (X,Z) = (x, z)
]

= E
[

dk
(

x, φ(Y, z), ψ(x, z, U)
)]

, (292)

where the expectation is, by (159), with respect to

PU|XZ(·|x, z)PY |X(·|x). Define also the vector-valued func-

tion

h(x,z) : U → R
K
+

u 7→







E
[

d1
(

x, φ(Y, z), ψ(x, z, u)
)]

...

E
[

dK
(

x, φ(Y, z), ψ(x, z, u)
)]






(293)

where the expectation is with respect to PY |X(·|x). Let S(x,z)

denote the image of h(x,z):

S(x,z) ,
{

s ∈ R
K
+ : s = h(x,z)(u) for some u ∈ U

}

. (294)

By definitions (292)–(294)








D
(x,z)
1
...

D
(x,z)
K









∈ conv
(

S(x,z)
)

(295)

and, consequently, there exists a point

s̄(x,z) =









s̄
(x,z)
1

...

s̄
(x,z)
K









on the boundary of conv(S(x,z)) with

s̄
(x,z)
k ≤ D

(x,z)
k , k ∈ {1, . . . ,K}. (296)

Since S(x,z) is compact (it contains at most |X̂e| points because

h(x,z)(u) depends on u only via ψ(x, z, u)), Lemma 25

implies that s̄(x,z) can be written as a convex combination

of K or fewer points in S(x,z):

s̄(x,z) =

K
∑

j=1

λj s
(x,z)
j , (297)

where s
(x,z)
1 , . . . , s

(x,z)
K ∈ S(x,z) and the coefficients

λ1, . . . λK ∈ [0, 1] sum to 1. Let u
(x,z)
1 , . . . , u

(x,z)
K ∈ U be

preimages of s
(x,z)
1 , . . . , s

(x,z)
K so

h(x,z)
(

u
(x,z)
j

)

= s
(x,z)
j , j ∈ {1, . . . ,K}. (298)

We can now define the function ψ̃ as mapping every pair

(x, z) ∈ X × Z and every j ∈ {1, . . . ,K} to

ψ̃(x, z, j) , ψ
(

x, z, u
(x,z)
j

)

. (299)

And we define the random variable Ũ to be conditionally

independent of Y given (X,Z) with the conditional law

Pr
[

Ũ = j|X = x, Z = z
]

= λ
(x,z)
j , j ∈ {1, . . . ,K}.

(300)

The Markov condition (289) thus holds by definition. More-

over, (292), (293), and (296)–(300) combine to prove that

Ũ and ψ̃ also satisfy the K distortion constraints in (290):

denoting the k-th component of the vector sj by sj,k, for

j, k ∈ {1, . . . ,K},

E

[

dk
(

x, φ(Y, z), ψ̃(x, z, Ũ)
)

]

=
K
∑

j=1

λjE
[

dk
(

x, φ(Y, z), ψ̃(x, z, j)
)

]

(301)

=

K
∑

j=1

λjE
[

dk
(

x, φ(Y, z), ψ(x, z, u
(x,z)
j )

)

]

(302)

=

K
∑

j=1

s
(x,z)
j,k (303)



19

= s̄k (304)

≤ D
(x,z)
k , (305)

where the first equality holds by (300), the second equality

by (299), the third equality by (293) and (298), the fourth

equality by (297), and the inequality at the end by (296).

Finally, from (305) we conclude that

E

[

dk
(

X,φ(Y, Z), ψ̃(X,Z, Ũ)
)

]

=
∑

x∈X ,z∈Z

Pr[X = x, Z = z]E
[

dk
(

x, φ(Y, z), ψ̃(x, z, Ũ)
)

]

(306)

≤
∑

x∈X ,z∈Z

Pr[X = x, Z = z]D
(x,z)
k (307)

≤ Dk (308)

where the last inequality follows from the definition of D
(x,z)
k

in (292) and the fact that the tuple (U,Z, φ, ψ) satisfies the

original distortion constraints in (160).
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