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Abstract—A generic intuition says that the pre-log, or multi-
plexing gain, cannot be larger than the minimum of the number
of transmit and receive dimensions. This suggests that for the
scalar broadcast channel, the pre-log cannot exceed one. By
contrast, in this note, we show that when the noises are anti-
correlated and feedback is present, then a pre-log of two can
be attained. In other words, in this special case, in the limit
of high SNR, the scalar Gaussian broadcast channel turns into
two parallel AWGN channels. Achievability is established via a
coding strategy due to Schalkwijk, Kailath, and Ozarow.

I. I NTRODUCTION

The significance of feedback in a capacity sense has been
thoroughly studied for point-to-point and several network
scenarios. Many results point to the lack of such a signifi-
cance, starting with Shannon’s proof that the capacity of a
memoryless channel is unchanged by feedback. For networks,
even for memoryless ones, feedback can increase capacity, as
first shown by Gaarder and Wolf [1]. However, in most cases,
the increase in capacity due to feedback remains modest, as
expressed for example in a general conjecture in [2].

The exact feedback capacity remains unknown for most
networks, with the notable exception of the two-user Gaussian
multiple-access channel (MAC), whose capacity was found
by Ozarow [3]. Some recent progress concerns theM -user
Gaussian MAC [4]. Again, these results emphasize the lack
of significance of feedback in a capacity sense.

By contrast, the result presented in this short note shows
that feedbackcanhave a rather significant impact on capacity
in a certainbroadcastsetting. More specifically, we consider
the problem of two-user broadcast subject to additive white
Gaussian noise. This scenario has been studied previously by
Ozarow [5], Ozarow and Leung [6], as well as Willems and
van der Meulen [7].

The main result of this paper is that for the special case
where the two noises are (fully)anti-correlated,in the limit
as the available power becomes large, the trade-off betweenthe
two broadcast clients vanishes, and each client attains a rate
as if the other did not exist. Formally, the result is presented
as a “pre-log,” or “multiplexing gain.”

To our knowledge the considered setting is the first example
of a channel where the “pre-log” is larger than the number of
transmit antennas. This behavior is surprising in view of the

result by Telatar [8] who showed that foruncorrelatednoise
sequences, the “pre-log” is upper bounded by the number of
transmit antennas and by the number of receive antennas, even
if the two receivers are allowed cooperate. Therefore, in the
setting at hand when the noise sequences are uncorrelated the
“pre-log” is upper bounded by one.

An extension of our result concerns the two-user Gaussian
interference channel where all channel gains are equal. Again,
we can show that when feedback is available and the noises are
(fully) anti-correlated, the ”pre-log” is two. Without feedback
the ”pre-log” is one, irrespective of the noise correlation.

The only situation known to date where a ”pre-log” of two is
achievable for a two-user Gaussian interference channel (only
for non-equal channel gains) is when both transmitters know
the other transmitter’s message, which corresponds to a setting
where the two transmitters can fully cooperate. If only one
of the two transmitters knows the other transmitter’s message
the ”pre-log” remains one [9]. Hence, this specific form of
limited transmitter-cooperation does not increase the “pre-
log”. Our result here shows that in general limited transmitter-
cooperation can be sufficient to increase the ”pre-log” to two,
e.g., when the limited transmitter-cooperation is established
through full causal feedback links. For interference networks
with more than two users the fact that limited transmitter-
cooperation can increase the “pre-log” has been observed in
[10] for the case where some of the transmitters know some
of the other transmitters’ messages.

One motivation for the study of anti-correlated noises is
that the signalsZ1 and Z2 in Figure 1 are due to one and
the same outside interferer, but appear with different (more
precisely, opposite) phase shifts at the two receivers.

II. T HE MODEL

The communication system studied in this note is illustrated
in Figure 1. For a given time-t channel inputxt the channel
outputs observed at receivers 1 and 2 are

Yk,t = xt + Zk,t, k ∈ {1, 2}, (1)

where the sequence of pairs of random variables{(Z1,t, Z2,t)}
is drawn independently and identically distributed (iid) for a
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Fig. 1. The two-user AWGN broadcast channel with full causaloutput
feedback.

normal distribution with zero mean and covariance matrix

K =

(

σ2
1 ρzσ1σ2

ρzσ1σ2 σ2
2

)

(2)

for σ1, σ2 > 0 and−1 ≤ ρz ≤ 1.
The goal of the transmission is to convey messageM1

to Receiver 1 and an independent messageM2 to Re-
ceiver 2, whereM1 is uniformly distributed over the set
{1, . . . , b2nR1c} andM2 is uniformly distributed over the set
{1, . . . , b2nR2c}, n being the block-length andR1 andR2 the
respective rates of transmission.

Having access to perfect feedback the encoder can produce
its time-t channel inputs not only as a function of the messages
M1 andM2 but also based on the previous channel outputs.
Thus a block-lengthn encoding scheme consists ofn functions
f

(n)
t , for t = 1, . . . , n, such that

Xt = f
(n)
t

(

M1, M2,Y
t−1
1 ,Yt−1

2

)

where Y
t−1
1 , (Y1,1, . . . , Y1,t−1) and Y

t−1
2 ,

(Y2,1, . . . , Y2,t−1). We impose an average block-power
constraintP > 0 on the sequence of channel inputs:

1

n
E

[

n
∑

t=1

X2
t

]

≤ P. (3)

Based on the observed sequence of channel outputsY
n
1

andY
n
2 , respectively, the two receivers perform the following

guess of their corresponding message:

M̂k = φ
(n)
k (Yn

k ), k ∈ {1, 2} (4)

for some decoding functionsφ(n)
k for k ∈ {1, 2}.

An error occurs in the communication whenever
(M1, M2) 6= (M̂1, M̂2). We say that a rate pair(R1, R2) is
achievable if for every block-lengthn there exist encoding
functions {f (n)

1 , . . . , f
(n)
n } satisfying (3) and two decoding

functionsφ
(n)
1 andφ

(n)
2 such that

lim
n→∞

Pr
[

(M1, M2) 6= (M̂1, M̂2)
]

= 0.

Of particular interest to this note is thesum-rate capacity
C(P, σ2

1 , σ2
2 , ρz), namely, the supremum ofR1 + R2 for

which reliable communication is feasible, i.e., where the pair
(R1, R2) is achievable.

III. T HE MAIN RESULT

The main result of this note concerns the so-called “pre-
log”, defined as follows.

Definition 1: Letting the sum-rate capacity be given by
C(P, σ2

1 , σ2
2 , ρz), its corresponding pre-log is defined as

κ = lim
P→∞

C(P, σ2
1 , σ2

2 , ρz)
1
2 log2(1 + P )

. (5)

In the context of fading communication channels, the pre-log
is often referred to as themultiplexing gain.

We start by noting that a pre-log of one is trivially attainable.
Moreover, from the fact that for a broadcast channel without
feedback, the capacity region only depends on the conditional
marginals (see e.g. [11, p.599]), we have:

Lemma 1:For the two-user AWGN broadcast channel with-
out feedback, the pre-log is1 irrespective of the noise corre-
lation ρz.

Also, by merely merging the two decoders into a single
decoder, thus turning the problem into a point-to-point com-
munication system, we find:

Lemma 2:For the two-user AWGN broadcast channel with
full (causal) feedback, if the noise correlation satisfies|ρz| <
1, then the pre-log is1.

The main result of this note is the following:
Theorem 1:For the two-user AWGN broadcast channel

with full (causal) feedback, if the noise correlation isρz = −1,
then the pre-log is two.
The converse follows trivially by observing that with or
without feedback, the following simple “single-user” upper
bounds hold:

Rk ≤ 1

2
log2

(

1 +
P

σ2
1

)

, k ∈ {1, 2}. (6)

Thus, the pre-log cannot exceed two.
The somewhat more interesting part of the theorem concerns

the achievability. The proof is given in Appendix A and is
based on a strategy by Ozarow [5], [6] (see Section V).

IV. SOME EXTENSIONS

A. Limited Feedback

In the broadcast setting it can be shown that even if only
one of the two channel outputs are fed back, a pre-log of two
is attainable for the case of fully anti-correlated noises.This
follows directly by noting that in this case one can compute
one of the channel outputs based on the channel input and on
the other channel output.

B. More than 2 Receivers

Consider a real scalar AWGN broadcast channel with more
than 2 receivers. It can be shown that for more than 2 receivers
Lemma 2 and Theorem 1 do not scale with the number of
receivers. Indeed, letK > 2 be the number of receivers and
{Zk,t} denote the noise sequence corrupting the outputs of
Receiverk, for k ∈ {1, . . . , K}. Then, extending Lemma 2
and Theorem 1 toK > 2 receivers, the following two results
can be derived: If for anyk, k′ ∈ {1, . . . , K} with k 6= k′
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Fig. 2. The interference channel with ipsilateral causal output feedback.

the sequences{Zk,t} and{Zk′,t} are not perfectly positively
correlated or anti-correlated, then the pre-log equals one; if for
anyk, k′ ∈ {1, . . . , K} with k 6= k′ the sequences{Zk,t} and
{Zk′,t} are not perfectly correlated and if additionally there
exist k1, k2 ∈ {1, . . . , K} such that{Zk1,t} and {Zk2,t} are
perfectly anti-correlated, then the pre-log equals two.

C. Interference Channel

An extension of our result concerns the two-user Gaussian
interferencechannel, see Figure 2. The main difference to
the previously considered broadcast setting is that here two
transmitters wish to communicate.

The goal of the transmission is that Transmitter 1 conveys
messageM1 to Receiver 1 and Transmitter 2 conveys Message
M2 to Receiver 2, whereM1 andM2 are defined as before.

We assume that all links are of unit-gain (even though our
results require only all equal gains), and hence the channelis
described as follows. For given time-t channel inputsx1,t at
Transmitter 1 andx2,t at Transmitter 2 the channel outputs at
the two receiving terminals are given by

Yk,t = x1,t + x2,t + Zk,t, k ∈ {1, 2}, (7)

where the noise sequences{(Z1,t, Z2,t)} are as in Section II.
Having access to full causal output feedback of their re-

spective channel outputs, the two encoders can produce their
time-t channel inputs as

Xk,t = f
(n)
k,t

(

Mk,Yt−1
k

)

, k ∈ {1, 2}.

for some sequences of encoding functionsf
(n)
1,t andf

(n)
2,t , for

t = 1, . . . , n. As in the broadcast setting we impose an average
block-power constraintP > 0 on the sequences of channel
inputs:

1

n
E

[

n
∑

t=1

X2
k,t

]

≤ P, k ∈ {1, 2}. (8)

The notion of decoding functions, probability of error, achiev-
able rate pairs, and sum-rate capacity are in analogy to
Section II.

The main result in this section is that Lemma 2 and Theo-
rem 1 can be extended also to two-user Gaussian interference
channels with all unit-gains.

Lemma 3:For the two-user AWGN interference channel
with all unit channel gains and with full (causal) feedback

to both transmitters, if the noise correlation satisfies|ρz | < 1,
then the pre-log is1.

Theorem 2:For the two-user AWGN interference channel
with all unit channel gains and with full (causal) feedback to
both transmitters, if the noise correlation isρz = −1, then the
pre-log is two.
The converse follows simply by Theorem 1 because letting
the two transmitters cooperate can only increase capacity.
The achievability is based on the following observations: In
the broadcast strategy leading to Theorem 1 (see Section V)
the single transmitter sends a weighted sum of the current
estimation errors at the two receivers. In our interference
setting due to the feedback links Transmitter 1 can compute
the estimation error of Receiver 1 and Transmitter 2 can
compute the estimation error of Receiver 2. Therefore, the
two transmitters can mimic the single-transmitter strategy in
Section V by each sending a scaled version of the correspond-
ing estimation error because the channel implicitly adds upthe
two inputs. Hence, we can conclude that any rate pair achieved
by the strategy in Section V for the broadcast channel is also
achievable for the interference channel. Note however thatit
requires unit gain (or equal gain) on all channel links.

V. ENCODING SCHEME AND ANALYSIS

The scheme we propose to prove the achievability of pre-log
2 in Theorem 1 follows along the lines of the scheme in [5],
[6]. Our main contribution lies in the choice of the parameter
γ and the asymptotic analysis.

Just for completeness we give a short description of the
scheme followed by a more detailed analysis of performance.

Prior to transmission, the encoder maps both messages
with a one-to-one mapping into message pointsθ1 andθ2 in
(1/2, 1/2]. More precisely,

θν = 1/2 − Mν − 1

b2nRνc , ν ∈ {1, 2}.

To start, the first channel use is dedicated to user 1 only, and
the encoder transmits

√

P
Var(θ1)

θ1. The second channel use is

dedicated to user 2 only, and the encoder transmits
√

P
Var(θ2)

θ2.
Thereafter, each user forms an estimate of its message point,

namely θ̂1,1 =
√

Var(θ1)
P Y1,1 and θ̂2,2 =

√

Var(θ2)
P Z2,2 respec-

tively, incurring errors of

ε1,2 =

√

Var(θ1)

P
Z1,1 (9)

ε2,2 =

√

Var(θ2)

P
Z2,2. (10)

In subsequent iterations, the encoder transmits a linear com-
bination of the current receivers’ estimation errors onθ1 and
θ2, respectively. Thus, at timek the channel input is

Xk =

√

P

1 + γ2 + 2γ|ρk−1|
(11)

·
(

ε1,k−1√
α1,k−1

+ γsign(ρk−1)
ε2,k−1√
α2,k−1

)

(12)



where ε1,k−1 and ε2,k−1 denote the receiver’s estimation
error of θ1 and θ2 after the observation of the(k − 1)-th
channel output; whereα1,k−1 andα2,k−1 denote the variances
of the estimation errors andρk−1 denotes their correlation
coefficient; where sign(·) denotes the signum function, i.e.,
sign(x) = 1 if x ≥ 0 and sign(x) = −1 otherwise; and where
we choose (possibly sub-optimally)

γ =
σ1

σ2
. (13)

After the reception of eachk-th channel output each receiver
performs a linear minimum mean square estimation (LMMSE)
to estimate the respective errorε1,k−1 andε2,k−1, and based on
it they update their estimate of the respective message point.

At the end of each block ofn channel uses, each decoder
guesses that the message has been transmitted which corre-
sponds to the message point closest to its final estimate.

A. Analysis

A detailed analysis of performance can be found in [5], [6].
Here we present the most important quantities of the analysis:
the variances of the estimation errors at time-k

α1,k = α1,k−1

σ2
1

σ2
2

P (1 − ρ2
k−1) + (σ2

1 + σ2
2 + 2σ1σ2|ρk−1|)

(1 +
σ2
1

σ2
2

+ 2σ1

σ2
|ρk−1|)(P + σ2

1)

and

α2,k = α2,k−1

P (1 − ρ2
k−1) + (σ2

1 + σ2
2 + 2σ1σ2|ρk−1|)

(1 +
σ2
1

σ2
2

+ 2σ1

σ2
|ρk−1|)(P + σ2

2)
,

and the correlation coefficient, see (14) on top of the next
page. Note that Recursion (14) has at least one “fix point”
ρ∗ in the interval[0, 1] in the sense that ifρ2 = ρ then the
sequence{ρk} alternates in sign but is constant in magnitude.
This can seen by noting that forρk−1 = 0 it follows that
|ρk| > 0 and for |ρk−1| = 1 it follows that |ρk| < 1, and
thus by the continuity of the recursion there must exist a “fix
point” ρ ∈ [0, 1].

By a slight modification of the scheme as suggested in [3]
one can ensure thatρ2 equals the “fix point”ρ and one can
show that any non-negative rate pair(R1, R2) is achievable if
it satisfies

R1 <
1

2
log2

(

P + σ2
1

P
2 (1 − ρ) + σ2

1

)

(15)

R2 <
1

2
log2

(

P + σ2
2

P
2 (1 − ρ) + σ2

2

)

(16)

whereρ is a solution in[0, 1] of

ρ3 + aρ2 + bρ + c = 0 (17)

where

a = −2σ1σ2

P
− P + σ2

1 + σ2
2 + ρzσ1σ2

√

P + σ2
1

√

P + σ2
2

− 2σ2
1σ2

2

P
√

P + σ2
1

√

P + σ2
2

, (18)

b = −1 − σ2
1 + σ2

2

P
− ρz

(σ2
1 + σ2

2)
√

P + σ2
1

√

P + σ2
2

− σ1σ2(σ
2
1 + σ2

2)

P
√

P + σ2
1

√

P + σ2
2

, (19)

c =
P + σ2

1 + σ2
2 − ρzσ1σ2

√

P + σ2
1

√

P + σ2
2

. (20)

APPENDIX

A. Proof of Theorem 1

In this section we prove that forρz = −1 the scheme
described in Section V achieves a pre-log of 2.

The proof of the theorem follows directly by the achiev-
ability of rate pairs(R1, R2) satisfying (15) and (16) and the
following lemma.

Lemma 4:For ρz = −1 the function ρ(P ) implicitly
defined by solutions in [0,1] to (17) satisfies

lim
P→∞

P 1−δ(1 − ρ(P )) = 0, ∀δ > 0. (21)

Proof: Note first that the functionρ(P ) must satisfy

lim
P→∞

ρ(P ) = 1. (22)

This follows by the continuity of the coefficientsa, b, andc
in P , and by observing that for largeP Equation (17) tends
to ρ3 − ρ2 − ρ + 1 = 0 for which the only solutions are−1
and+1.

Next, define the functiong(P ) ∈ [0, 1] as

g(P ) , 1 − ρ(P ). (23)

By (23) and (17) the functiong(P ) must satisfy

0 = 1 + a + b + c + g(P )(−3 − 2a − b)

+ (g(P ))
2
(3 + a) − (g(P ))

3
, (24)

or equivalently by (18)–(20),

0 = −(g(P ))3 +Λ2(P )(g(P ))2 +Λ1(P )g(P )+Λ0(P ) (25)

where

Λ2(P ) = 3 − 2σ1σ2

P
− P + σ2

1 + σ2
2 + ρzσ1σ2

√

P + σ2
1

√

P + σ2
2

− 2σ2
1σ

2
2

P
√

P + σ2
1

√

P + σ2
2

,

Λ1(P ) = −2

(

1 − P
√

P + σ2
1

√

P + σ2
2

)

+
(2 + ρz)σ

2
1 + (2 + ρz)σ

2
2 + 2ρzσ1σ2

√

P + σ2
1

√

P + σ2
2

+
σ2

1 + σ2
2 + 4σ1σ2

P
+

σ1σ2(σ
2
1 + 4σ1σ2 + σ2

2)

P
√

P + σ2
1

√

P + σ2
2

,

Λ0(P ) = −σ2
1 + 2σ1σ2 + σ2

2

P

(

1 + ρz
P

√

P + σ2
1

√

P + σ2
2

)

−σ1σ2(σ
2
1 + 2σ1σ2 + σ2

2)

P
√

P + σ2
1

√

P + σ2
2

.



ρk =

√

P + σ2
1

√

P + σ2
2

P (1 − ρ2
k−1) + (σ2

1 + σ2
2 + 2σ1σ2|ρk−1|)

· 1

σ1σ2

·
(

ρk−1(σ
2
1 + σ2

2 + 2σ1σ2|ρk−1|) − (σ1 + σ2|ρk−1|)(σ2 + σ1|ρk−1|)sign(ρk−1)
P (P + σ2

1 + σ2
2 − ρzσ1σ2)

(P + σ2
1)(P + σ2

2)

)

(14)

In the remaining we will prove that

lim
P→∞

P 1−δg(P ) = 0, ∀δ > 0, (26)

which by (23) establishes Lemma 4 and thus also concludes
the proof of Theorem 1.

Start the proof by noting that

lim
P→∞

P 1−δg(P ) ≥ 0, ∀δ > 0,

follows trivially since g(P ) ≥ 0. Thus, we are left with
proving

lim
P→∞

P 1−δg(P ) ≤ 0, ∀δ > 0, (27)

which we shall prove by contradiction. More precisely, we
will show that if there exists aδ > 0 such thatg(P ) satisfies

lim
P→∞

P 1−δg(P ) > 0, (28)

then Condition (25) on the functiong(P ) is violated. To this
end, assume that there exists aδ > 0 satisfying (28). Then,
define

δ∗ , sup
{

δ : lim
P→∞

P 1−δg(P ) > 0
}

, (29)

and note that by assumption,δ∗ > 0. Also, by (22) and (23)

lim
P→∞

g(P ) = 0, (30)

and henceδ∗ ≤ 1. Next, choose0 < ε < δ∗ and consider the
asymptotic expression

∆ , lim
P→∞

P 2−δ∗
−ε
(

−(g(P ))3 + Λ2(P )(g(P ))2

+Λ1(P )g(P ) + Λ0(P )) . (31)

We shall analyze the limiting expression (31) and show that it
tends to a non-zero value. But this violates Condition (25) and
therefore leads to the desired contradiction. In the analysis of
expression (31) we shall separately consider the sum of the
first two summands, the third summand, and forth summand.
We start with the sum of the first two summands. Note first
that

lim
P→∞

Λ2(P ) = 2. (32)

Next, note that since1 − δ∗+ε
2 > 1 − δ∗ by (29)

lim
P→∞

(

P 1− δ
∗+ε

2 g(P )
)2

> 0, (33)

Therefore, also using (30) we can conclude that

lim
P→∞

(

P 1− δ
∗+ε

2 g(P )
)2

(Λ2(P ) − g(P )) > 0. (34)

In order to analyze the third summand we notice that

lim
P→∞

P 1−ε/2Λ1(P ) = 0, (35)

where we used that by Bernoulli-de l’Hôpital’s rule:

lim
P→∞

P

(

1 − P
√

P + σ2
1

√

P + σ2
2

)

=
σ2

1 + σ2
2

2
. (36)

Hence, by (35) and because1 − δ∗ − ε/2 < 1 − δ∗,

lim
P→∞

P 2−δ∗
−εΛ1(P )g(P ) = 0. (37)

Finally, for the last summand one can show that forρz = −1

lim
P→∞

P 2−δ∗
−εΛ0(P ) = 0, (38)

which is again based on the limiting expression (36).
Thus, by (34), (37), and (38) we obtain that∆ > 0 which

contradicts Condition (25). This concludes the proof both of
Lemma 4 and Theorem 1.
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