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Michèle Wigger

Telecom ParisTech, France

wigger@telecom-paristech.fr

Abstract—A coding scheme for the two-receivers Gaussian
broadcast channel (BC) with feedback is proposed. For some
asymmetric settings it achieves new rate pairs. Moreover, it
achieves prelog 2 when the noises at the two receivers are fully
positively correlated and of unequal variances, thus allowing us
to complete the characterization of the prelog of the two-receivers
Gaussian BC with feedback. The new achievable rates also allow
us to determine the asymptotic power offset when the noises at
the two receivers are uncorrelated.

I. INTRODUCTION AND CHANNEL MODEL

We consider the real, scalar, memoryless two-user Gaussian

broadcast channel (BC) with perfect feedback. Achievable

regions for this setup were proposed by Ozarow & Leung [9],

Elia [4], Wu et al. [11], and Ardestanizadeh et al. [1]. The

region in [9] is for the general setup, whereas the regions in

[4], [1] are only for symmetric setups where the noises at the

two receivers are of equal variances, and the regions in [4],

[11] only for setups where these noises are uncorrelated. For

such setups, the regions in [4], [11], [1] include the one in [9].

The results in [9], [4], [1] demonstrate that feedback can

enlarge the capacity region of the two-user Gaussian BC.

This gain can be even unbounded in the signal-to-noise ratio

(SNR): in the absence of feedback the prelog is 1, whereas in

some settings with feedback (e.g., when the noises at the two

receivers are perfectly anticorrelated) it is 2 [5], [6].

Outer bounds on the capacity region were presented in [3],

[9], [5],[6]. However, they do not coincide with the known

achievable regions, except for the special case where the noises

at the two receivers are identical (i.e., fully correlated noises

of equal variances). In this case the capacity with feedback is

the same as without [3]. For all other scenarios the capacity

of the two-user Gaussian BC with feedback is still unknown.

Here, we present a new coding scheme which yields new

achievable regions for some non-symmetric setups with un-

equal noise variances at the two receivers. Our achievable

regions allow us to characterize the prelog of the two-user

Gaussian BC with feedback and, when the noises at the two

receivers are uncorrelated, also its asymptotic power offset.

II. CHANNEL MODEL

Let xt ∈ R denote the time-t channel input, and Y1,t, Y2,t ∈
R the time-t channel outputs observed at Receivers 1 and 2.

Then,

Yk,t = xt + αkZ0,t + Zk,t, k ∈ {1, 2}. (1)

where α1 and α2 are real constants and {Z0,t}, {Z1,t},

and {Z2,t} are independent sequences of independent and

identically distributed (IID) zero-mean Gaussians of variances

1, σ2
1 , and σ2

2 .

The total noise experienced at Receiver k ∈ {1, 2} is

α2
k + σ2

k, which, by assumption, is strictly positive for both

receivers. Thus, for k ∈ {1, 2}

α2
k > 0 or σ2

k > 0.

The correlation between the noises at the two receivers is

ρz ,
α1α2

√

α2
1 + σ2

1

√

α2
2 + σ2

2

. (2)

Thus, when both σ2
1 and σ2

2 are zero, the correlation ρz is

sign(α1α2), i.e., either −1 or +1, and when both α1 and α2

are zero, ρz is zero.

For convenience, and without loss of generality, we will

assume that α1 and α2 are either both zero or both nonzero.

The goal of the transmitter is to convey Message M1 to

Receiver 1 and Message M2 to Receiver 2. The messages are

independent and Message Mk, for k ∈ {1, 2}, is uniformly

distributed over the set Mk , {1, . . . , ⌊2nRk⌋}, where n
denotes the blocklength and Rk the rate of transmission.

The transmitter has access to noise-free feedback from both

receivers. Thus, after sending xt−1 it learns both Y1,t−1 and

Y2,t−1, and it can compute its next channel input

Xt = f
(n)
t (M1,M2, Y1,1, . . . , Y1,t−1, Y2,1, . . . , Y2,t−1) , (3)

where

f
(n)
t : M1 ×M2 × R

t−1 × R
t−1 → R

is the time-t encoding function. We only allow encoding

functions that produce inputs satisfying the expected average

block-power constraint

1

n
E

[

n
∑

t=1

X2
t

]

≤ P. (4)

Receiver k decodes its message Mk based on its observed

sequence Y n
k = (Yk,1, . . . , Yk,n) by producing the guess

M̂k = φ
(n)
k (Y n

k ) (5)

for some decoding function φ
(n)
k : Rn → {1, . . . , ⌊2nRk⌋}.

We say that a rate pair (R1, R2) is achievable if for every



blocklength n there exists a set of n encoding functions
{

f
(n)
t

}n

t=1
and two decoding functions φ

(n)
1 and φ

(n)
2 such that

the probability of decoding error tends to 0 as the blocklength

n tends to infinity, i.e., such that

lim
n→∞

Pr
[

(M1,M2) 6= (M̂1, M̂2)
]

= 0.

A set of achievable rate pairs is an achievable region.

The closure of the union of all achievable regions is the

capacity region. The sum-rate capacity is the supremum of

R1 +R2 over all achievable rate pairs (R1, R2). We denote it

by CΣ(α1, α2, σ
2
1 , σ

2
2 ;P ).

III. MAIN RESULTS

Definition 1: Given a positive integer η, two strictly lower-

triangular η-by-η matrices B1 and B2, two η-dimensional

column vectors u1 and u2, and two η-dimensional row-vectors

v1 and v2, define R(η,B1,B2,u1,u2,v1,v2) as the set of all

nonnegative rate pairs (R1, R2) satisfying (6) on top of the

next page.

Theorem 1: The following region is achievable:

closure





⋃

η,B1,B2,u1,u2,v1,v2

R(η,B1,B2,u1,u2,v1,v2)



 (7)

where the union is over all choices of parameters

(η,B1,B2,u1,u2,v1,v2) satisfying (8) on top of the next

page, where tr(·) denotes the trace-operator.

Remark 1: The set of achievable rates in [9], [4], and [1]

are included in the achievable region in (7).

We have the following Corollaries 1–4 to Theorem 1.

Corollary 1 (Fully Correlated Noises): If σ2
1 = σ2

2 = 0
and α1 6= α2, then all rate pairs (R1, R2) satisfying

0 ≤ Rk ≤ 1

2
log+

(

P

α2
k

)

, k ∈ {1, 2} (9)

are achievable, where log+(x) = max{0, log(x)}.

Remark 2: For large powers P , some of the achievable

rates in Corollary 1 are not contained in the achievable region

proposed by Ozarow and Leung [9]. In particular, when

σ2
1 = σ2

2 = 0 and α1 and α2 have the same sign but α1 6= α2,

then the achievability of prelog 2 (Theorem 2 ahead) can be

proved with the achievable rates in Corollary 1 but not with

the achievable rates in [9].

Combined with the results in [5], [6], Corollary 1 yields:

Theorem 2 (Prelog): The prelog of the two-user BC with

feedback is:

lim
P→∞

CΣ(α1, α2, σ
2
1 , σ

2
2 ;P )

1
2 log(1 + P )

=

{

2 if σ2
1 = σ2

2 = 0 and α1 6= α2

1 otherwise.
(10)

Thus, when the noise correlation ρz = 1 (i.e., σ2
1 = σ2

2 = 0
and α1 and α2 have the same sign), the prelog is 2 whenever

the total noise variances at the two receivers differ, and it is

1 when they are the same.

Corollary 2 (Noise Correlation in (−1, 0) or (0, 1)): Let

σ2
1 , σ

2
2 > 0 and α1, α2 6= 0 be given and so that α1 6= α2.

Also, let p > 0 be defined through (11) on top of the next

page. Then, the rate pair (R1, R2) is achievable if it satisfies

0 ≤ Rk ≤ 1

2
log+

(

p2

α2
k

(

1

α1
− 1

α2

)2
)

, k ∈ {1, 2}. (12)

Remark 3: For certain channel parameters, the achievable

region in Corollary 2 contains rate pairs that are not in Ozarow

& Leung’s achievable region [9]. In particular, when α1 and α2

have the same sign (i.e., the noise correlation is positive) but

α1 6= α2, Theorem 3 ahead can be proved with the achievable

rates in Corollary 2 but not with the ones in [9].

For the scope of the generalized prelog result in Theorem 3,

we let the independent-noise variances σ2
1 and σ2

2 depend on

the power P , and write σ2
1(P ) and σ2

2(P ).
Theorem 3 (Generalized Prelog): Let α1 6= α2 be fixed.

Also, let {σ2
1(P )}{P>0} and {σ2

2(P )}{P>0} be given se-

quences of variances of the form

σ2
k(P ) =

ǫk(P )

P ζ
, ζ ∈ [0, 1], k ∈ {1, 2}, (13)

where

lim
P→∞

log(ǫk(P ))

log(P )
= 0. (14)

Then,

lim
P→∞

CΣ(α
2
1, α

2
2, σ

2
1(P ), σ2

2(P );P )
1
2 log (1 + P )

= 1 + ζ. (15)

Proof: The achievability can be proved with the rates in

Corollary 2. The converse is based on [6, Equation (60)].

Corollary 3 (Independent Noises): Let α1 = α2 = 0. The

rate pair (R1, R2) is achievable if it satisfies

0 ≤ R1 ≤ 1

2
log+

(

q2(1 + δ)2
)

(16a)

0 ≤ R2 ≤ 1

2
log+

(

q2δ2(1 + δ)2
)

(16b)

for some δ /∈ {−1, 0} and q > 0 satisfying

(q2 + q4δ2(1 + δ)2)σ2
1 +(q2δ4 + q4δ4(1+ δ)2)σ2

2 = P. (17)

Choosing δ =
σ2

1

σ2

2

and q > 0 as to satisfy (17), we obtain:

Corollary 4 (Independent Noises): Let σ2
1 = σ2

2 = σ2. The

equal rate pair (R,R) is achievable if it satisfies

0 ≤ R ≤ 1

2
log+

(

−1

2
+

√

1

4
+

2P

σ2

)

. (18)

For general σ2
1 , σ

2
2 ≥ 0 and large powers P a sum-rate

(R1 +R2) is achievable if it satisfies

0 ≤ R1 +R2 ≤ 1

2
log+

(

P (σ2
1 + σ2

2)

σ2
1σ

2
2

)

+ o(P ),

where o(P ) tends to 0 as P → ∞.

Corollary 4 and the converse in [6, Equation (59)] yield:



R1 ≤ 1

2

(

1 +
(v1u1)

2

(v1u2)2 + ‖v1 (B1α1 + B2α2 + Iα1) ‖2 + ‖v1 (B1 + I) ‖2σ2
1 + ‖v1B2‖2σ2

2

)

(6a)

R2 ≤ 1

2

(

1 +
(v2u2)

2

(v2u1)2 + ‖v2 (B1α1 + B2α2 + Iα2) ‖2 + ‖v2 (B2 + I) ‖2σ2
2 + ‖v2B1‖2σ2

1

)

(6b)

‖u1‖2 + ‖u2‖2 + tr
(

(α1B1 + α2B2) (α1B1 + α2B2)
T
)

+ tr (B1B
T

1)σ
2
1 + tr (B2B

T

2)σ
2
2 ≤ ηP (8)

p2 =

−
(

(

1
α1

− 1
α2

)2

+
σ2

1

α4

1

+
σ2

2

α4

2

)

+

√

(

(

1
α1

− 1
α2

)2

+
σ2

1

α4

1

+
σ2

2

α4

2

)2

+ 4P 1
α2

1
α2

2

(

1
α1

− 1
α2

)2 (
σ2

1

α2

1

+
σ2

2

α2

2

)

2 1
α2

1
α2

2

(

1
α1

− 1
α2

)2 (
σ2

1

α2

1

+
σ2

2

α2

2

)

(11)

Theorem 4 (Asymptotic Power Offset): When α1 = α2 =
0, i.e., when the noises at the two receivers are independent,

lim
P→∞

(

CΣ(0, 0, σ
2
1 , σ

2
2 ;P )− 1

2
log

(

P (σ2
1 + σ2

2)

σ2
1σ

2
2

))

= 0.

Thus, when the two noises are uncorrelated, then in the

asymptotic high-power regime the sum-rate capacity of the

two-user Gaussian BC with feedback approaches the sum-

rate capacity of a single-user setup (with or without feedback)

where the two receivers can decode their messages jointly.

For the symmetric setup σ2
1 = σ2

2 the achievability result in

Theorem 4 has previously been reported in [1].

IV. A BLOCK-SCHEME

We first describe a general coding scheme (Section IV-A)

achieving the rates in Theorem 1. Then we propose choices of

parameters for this scheme (Sections IV-B and IV-C) which

establish Corollaries 1–9.

A. General Scheme

Our scheme is similar to the schemes in [2], [7], [8]. It

has the following parameters: the positive integer η; the η-by-

η strictly lower-triangular matrices B1,B2; the η-dimensional

column-vectors u1,u2; and the η-dimensional row-vectors

v1,v2.

1) Code Construction: Let the block-length n be a multiple

of η, i.e., n = ηn′ for some positive integer n′.

Independently generate the two codebooks {Ck}2k=1, each

containing ⌊2nRk⌋ codewords of length n′, by randomly

drawing all entries of all codewords IID according to a

standard Gaussian distribution. The codebooks are revealed

to the transmitter and the receivers.

2) Encoding: Let Ξk(Mk) be the codeword in Ck corre-

sponding to Message Mk, and let Ξk,i be its i-th symbol.

Also, for i ∈ {1, . . . , n′}, let Xi be the η-length column-

vector Xi , (X(i−1)η+1, . . . , X(iη))
T, and let Z0,i and for

each k ∈ {1, 2} also Yk,i and Zk,i be defined similarly.

The encoding procedure is as follows. The transmitter picks

from each codebook Ck, for k ∈ {1, 2}, the codeword that cor-

responds to the message Mk. In each subblock i ∈ {1, . . . , n′}

it then sends a linear combination of the i-th symbols of these

codewords and the subblock’s past noise-symbols

Xi = Ξ1,iu1+Ξ2,iu2+B1(α1Z0,i+Z1,i)+B2(α2Z0,i+Z2,i).

The transmitter can compute the past noise symbols because it

knows the past inputs and, through the feedback, also the past

outputs. Also, the strict lower-triangularity of the matrices B1

and B2 assures that only past noise symbols are sent.

The inputs satisfy the average block-power constraint (4)

whenever Inequality (8) is satisfied.

3) Decoding: In each subblock i ∈ {1, . . . , n′} Receiver 1
observes

Y1,i = Ξ1,iu1 + Ξ2,iu2 + (B1α1 + B2α2 + Iα1)Z0,i

+(B1 + I)Z1,i + B2Z2,i, (19a)

and Receiver 2 observes

Y2,i = Ξ1,iu1 + Ξ2,iu2 + (B1α1 + B2α2 + Iα2)Z0,i

+(B2 + I)Z2,i + B1Z1,i. (19b)

Each Receiver k ∈ {1, 2} forms

Ik,i , vkYk,i, i ∈ {1, . . . , n′}, (20)

and decodes its desired message Mk by applying a maximum-

likelihood decoder to the sequence Ik,1, . . . , Ik,n′ .

The analysis of the scheme is standard and omitted.

B. Simple Choice of Parameters

We present a simple choice of parameters (in particular,

simple matrices B1,B2). The choice is sub-optimal (see Sub-

section IV-C ) but suffices to prove the results in Section III.

Given a positive integer η we choose B1,B2, u1,u2, and

v1,v2 in a way that

1) v1 is orthogonal to the first η − 1 columns of (B1α1 +
B2α2 + Iα1), and if σ2

1 , σ
2
2 > 0, also to the first η − 2

columns of the matrices (B1 + I) and B2;

2) v2 is orthogonal to the first η − 1 columns of (B1α1 +
B2α2 + Iα2), and if σ2

1 , σ
2
2 > 0, also to the first η − 2

columns of the matrices (B2 + I) and B1;



3) u1 is orthogonal to v2 but not to v1;

4) u2 is orthogonal to v1 but not to v2;

By 3) and 4), the symbols I1,1, . . . , I1,n′ can be viewed as

the outputs of a point-to-point channel where the transmitter

sends the codeword Ξ1,1, . . . ,Ξ1,n′ only. Moreover, by 1) each

I1,i depends only on the last two noises of subblock i, i.e., on

{Zk,iη−1, Zk,iη}2k=0; all previous noise symbols are cancelled,

see (23). Analogous observations hold for I2,1, . . . , I2,n′ .

Remark 4: When σ2
1 , σ

2
2 > 0, Conditions 1)–4) can only

be satisfied if the matrices B1,B2 have non-zero entries on at

least two diagonals (unless B1 = B2 = 0). When σ2
1 = σ2

2 = 0
non-zero entries on one diagonal suffice to satisfy 1)–4).

We choose Bk Toeplitz with non-zero entries only on the

first and second diagonals below the main diagonal

Bk =



















0 0 · · · 0 0 0
ak 0 · · · 0 0 0
bk ak 0 · · · 0 0
0 bk ak 0 · · · 0
...

. . .
. . .

. . .
. . .

...

0 0 0 bk ak 0



















, (21)

and we choose

u1 =
√

P/(2 + 2γ2
2) ·

(

1 −γ2 0 . . . 0
)

T

(22a)

u2 =
√

P/(2 + 2γ2
1) ·

(

1 −γ1 0 . . . 0
)

T

(22b)

v1 =
(

γη−1
1 γη−2

1 . . . γ1 1
)

(22c)

v2 =
(

γη−1
2 γη−2

2 . . . γ2 1
)

(22d)

for some real values a1, a2, b1, b2, γ1, γ2 which will be defined

shortly. Notice that by (19), (20), and (21)–(22) we have

I1,i =

√

P

(2 + 2γ2
2)
γη−1
1

(

1− γ2
γ1

)

Ξ1,i + α1Z0,iη

+(γ1 + a1)Z1,iη−1 + Z1,iη + a2Z2,iη−1 (23)

I2,i =

√

P

(2 + 2γ2
1)
γη−1
2

(

1− γ1
γ2

)

Ξ2,i + α2Z0,iη

+(γ2 + a2)Z2,iη−1 + Z2,iη + a1Z1,iη−1. (24)

We now present our choice of a1, a2, b1, b2, γ1, γ2 depend-

ing on the channel parameters α1, α2, σ
2
1 , σ

2
2 .

1) σ2
1 = σ2

2 = 0 (Fully Correlated Noises): Choose

b1 = b2 = 0 (25a)

a1α1 + a2α2 =
√
P (25b)

γk = −
√
P

αk

, k ∈ {1, 2}. (25c)

Specializing (21)–(22) to our choice (25) results in parameters

for our scheme that satisfy Conditions 1)–4) and constraint (8).

Among all such choices of a1, a2, b1, b2, γ1, γ2 that also satisfy

(25a), the one in (25) maximizes the rate constraints in (6).

Here, B1 and B2 have non-zero entries only on the first

lower-diagonal (see Remark 4). Thus, by (22), starting from

the third channel use in each subblock the transmitter simply

sends a scaled version of the previous noise symbols.

Specializing Theorem 1 to (21)–(22d) and (25) yields:

Corollary 5: If σ2
1 = σ2

2 = 0 our scheme achieves all rate

pairs (R1, R2) that satisfy

0 ≤ R1 ≤ 1

2η
log

(

1 +

(

P

α2
1

)η−1(

1− α1

α2

)2
P/α2

1

2 + 2P/α2
2

)

,

0 ≤ R2 ≤ 1

2η
log

(

1 +

(

P

α2
2

)η−1(

1− α2

α1

)2
P/α2

2

2 + 2P/α2
1

)

.

Lemma 1: Let ξ, ζ be positive integers. If 1 + ζ ≥ ξ, then

the function f : Z+ → R
+
0 , f(η) = 1

2η log(1 + ξη−1ζ), has a

maximum at η = 1; otherwise it has a supremum at η → ∞.

Thus, for small P , η = 1 is optimal in (26) (i.e., the feedback

should not be used at all), and for large P , η → ∞ is optimal.

Letting η → ∞, we obtain Corollary 1 in Section III.

Remark 5: Corollary 5 shows that when σ2
1 = σ2

2 = 0 and

α1 6= α2, our scheme achieves prelog 2 η−1
η

for every finite η.

Thus, η = 3 suffices to achieve a prelog larger than 1.

2) α1, α2 6= 0 and σ2
1 , σ

2
2 > 0 (Noise Correlation in (−1, 0)

or (0, 1)): Let p > 0 be defined through (11), and choose

ak =
(−1)kp

α2
k

, k ∈ {1, 2}, (27a)

bk = − (−1)k

αk

· p2

α1α2

(

1

α1
− 1

α2

)

, k ∈ {1, 2}, (27b)

γk =
p

αk

(

1

α1
− 1

α2

)

, k ∈ {1, 2}. (27c)

Specializing (21)–(22d) to the choice (27) results in parame-

ters for our scheme that satisfy Conditions 1)–4) and the power

constraint (8). Among all such choices of a1, a2, b1, b2, γ1, γ2,

the one in (27) maximizes the constraints in (6) as η → ∞.

Specializing Theorem 1 to (21)–(22d) and (27) results in:

Corollary 6: When α1, α2 6= 0 and σ2
1 , σ

2
2 > 0, a rate pair

(R1, R2) is achievable if it satisfies (28) on the next page.

By Lemma 1, η = 1 is optimal for small p2 (and thus small

P , see (11)), and η → ∞ is optimal for large p2 (i.e., large

P ). Letting η → ∞, one obtains Corollary 2 in Section III.

3) α1 = α2 = 0 (Independent Noises): Let q > 0 and

δ /∈ {−1, 0} satisfy (17). Choose

ak = (−δ2)k−1q, k ∈ {1, 2}, (29a)

bk = −q2δk(1 + δ), k ∈ {1, 2}, (29b)

γk = −q(−δ)k−1(1 + δ), k ∈ {1, 2}. (29c)

Specializing (21)–(22d) to the choice (29) results in parameters

that satisfy Conditions 1)–4) and (8). Among all such choices,

the one in (29) maximizes the constraints in (6) as η → ∞.

Corollary 7: For α1 = α2 = 0 our scheme achieves all rate

pairs (R1, R2) satisfying (30) on top of the next page.

Again, η = 1 is optimal for small P and η → ∞ for large P .

Letting η → ∞ we obtain Corollary 3 in Section III.

C. Improved Choice of Parameters

We improve (generalize) our choices of parameters using

an idea from [10]. For k ∈ {1, 2} and some real numbers a1,

a2, b1, b2, c1, c2, γ1, γ2, we choose the vectors uk,vk as in



0 ≤ R1 ≤ 1

2η
log









1 +

(

p2

α2

1

)η−1 (
1
α1

− 1
α2

)2η

α2
1

(

α2
1 +

p2

α2

1
α2

2

σ2
1 + σ2

1 +
p2

α4

2

σ2
2

) · P
(

2 + 2 p2

α2

2

(

1
α1

− 1
α2

)2
)









(28a)

0 ≤ R1 ≤ 1

2η
log









1 +

(

p2

α2

2

)η−1 (
1
α1

− 1
α2

)2η

α2
2

(

α2
2 +

p2

α2

1
α2

2

σ2
2 + σ2

2 +
p2

α4

1

σ2
1

) · P
(

2 + 2 p2

α2

1

(

1
α1

− 1
α2

)2
)









(28b)

0 ≤ R1 ≤ 1

2η
log

(

1 +

(

q2(1 + δ)2
)η−1

(1 + δ)
2

(δ2q2σ2
1 + σ2

1 + δ4q2σ2
2)

· P

(2 + 2q2δ2(1 + δ)2)

)

(30a)

0 ≤ R2 ≤ 1

2η
log

(

1 +

(

q2δ2(1 + δ)2
)η−1 (

1 + 1
δ

)2

(δ2q2σ2
2 + σ2

2 + q2σ2
1)

· P

(2 + 2q2(1 + δ)2)

)

(30b)

(22) and the matrix Bk Toeplitz with the following entries. For

j ∈ {1, . . . , ⌈η−1
2 ⌉} the entries on the 2j-th diagonal below the

main diagonal of Bk equal akc
i−1
k , and for j ∈ {1, . . . , ⌊η−1

2 ⌋}
the entries on its 2j + 1-th diagonal below the main diagonal

equal bkc
j−1
k . The idea is to choose a1, a2, b1, b2, c1, c2, γ1, γ2

in a way that:

1) For every fixed positive integer j, the contribution of

Zk,(i−1)η+j on I1,i and I2,i vanishes exponentially as

η → ∞, for k ∈ {0, 1, 2}. This way the total noise-

variances of I1,i and I2,i are bounded in η, and do not

influence the achievable rates as η → ∞.

2) The vector v1 is orthogonal to u2 but not to u1.

3) The vector v2 is orthogonal to u1 but not to u2.

For the special cases of fully correlated noises and of uncorre-

lated noises we present choices for a1, a2, b1, b2, c1, c2, γ1, γ2
satisfying Conditions 1)–3) and the power constraint (8).

1) σ2
1 = σ2

2 = 0: Choose r /∈ {0,−α1,−α2} and

a1α1 + a2α2 = −r

√

P

r2 + P
(31a)

b1α1 + b2α2 = −r
P

r2 + P
(31b)

c1 = c2 =
P

r2 + P
(31c)

γk =

√

P

r2 + P

(αk + r)

αk

, k ∈ {1, 2}. (31d)

Corollary 8: Let σ2
1 = σ2

2 = 0 and α1 6= α2. With the

choice in (31) and η → ∞ our scheme achieves all rate pairs

(R1, R2) satisfying

0 ≤ Rk ≤ 1

2
log+

(

P

α2
k

· (αk + r)2

(r2 + P )

)

, r /∈ {0,−α1,−α2}.

Here, r = P
α2

maximizes R1 and r = P
α2

maximizes R2.
2) α1 = α2 = 0: Choose a1, a2, b1, b2 6= 0 and c1, c2 ∈

(−1, 1) so that

b22
a22

− a1
b2
a2

+ b1 = c1 (32a)

b21
a21

− a2
b1
a1

+ b2 = c2 (32b)

a21 + b21
1− c21

σ2
1 +

a22 + b22
1− c22

σ2
2 = P, (32c)

and let

γ1 = − b2
a2

and γ2 = − b1
a1

. (32d)

Corollary 9: Let α1 = α2 = 0. With the choice in (32) and

η → ∞ our scheme achieves all rate pairs (R1, R2) satisfying

0 ≤ Rk ≤ 1

2
log

(

b2k
a2k

)

, k ∈ {1, 2}, (33)

for a1, a2, b1, b2 6= 0 satisfying (32) for some c1, c2 ∈ (−1, 1).

REFERENCES

[1] E. Ardestanizadeh, P. Minero, and M. Franceschetti, “LQG control
approach to Gaussian broadcast channels with feedback.” submitted to
IEEE Trans on IT., Feb 2011.

[2] T. M. Cover and S. Pombra, “Gaussian feedback capacity,” IEEE Trans.

on Inf. Th. vol. 35, pp. 37–43, Jan. 1989.
[3] A. El Gamal, The feedback capacity of degraded broadcast channels,

IEEE Trans. on Inf. Th., vol. 24, no. 3, pp. 379-381, 1978.
[4] N. Elia, ”When Bode meets Shannon: Control oriented feedback com-

munication schemes,” IEEE Trans. on Autom. Control, vol 47, pp. 1477–
1488, 2004.

[5] M. Gastpar and M. Wigger, “The pre-log of Gaussian broadcast with
feedback can be two,” in Proc. of ISIT 2008, July 2008.

[6] M. Gastpar, A. Lapidoth, and M. Wigger, “When feedback doubles the
prelog of Gaussian networks,” submitted to IEEE Trans. on Inf. Th.,
avaiable at http://arxiv.org/abs/1003.6082.

[7] A. Lapidoth and M. Wigger, “On the Gaussian MAC with imperfect
feedback,” IEEE Trans. on Inf. Th., vol. 56, pp. 5432–5477, Nov. 2010.

[8] A. Lapidoth, Y. Steinberg, and M. Wigger, “Gaussian broadcast channel
with partial feedback,” in Proc. of 26-th IEEE Convention of Electrical

and Electronics Engineers in Israel, p. 641, Nov 2010.
[9] L. H. Ozarow and C. S. K. Leung, ”An achievable region and outer bound

for the Gaussian broadcast channel with feedback.” IEEE Trans. on Inf.

Th., vol. 30, pp. 667–671, July 1984.
[10] J. P. M. Schalkwijk and T. Kailath, “A coding scheme for additive noise

channels with feedback—Part I: No bandwidth constraint,” IEEE Trans.

on Inf. Th.L, vol. 12, pp. 172–182, April 1966.
[11] W. Wu, S. Vishwanath, and A. Arapostathis, ”Gaussian Interference

Networks with Feedback: Duality, Sum capacity and Dynamic Team
Problem,” in Proc. of 43rd Allerton Conference, Sep. 2005.


