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Abstract�—This paper studies the class of generalized linear
feedback codes for additive white Gaussian noise multiple access
channel. This class includes (nonlinear) nonfeedback codes at one
extreme and linear feedback codes by Schalkwijk and Kailath,
Ozarow, and Kramer at the other extreme. The linear sum
capacity CL(P ), the maximum sum-rate achieved by the gen-
eralized linear feedback codes, is characterized under symmetric
block power constraints P for all the senders. In particular, it
is shown that the Kramer linear code achieves CL(P ). Based
on the properties of the conditional maximal correlation, an
extension of the Hirschfeld�–Gebelein�–Renyi maximal correlation,
it is conjectured that Kramer�’s linear code achieves not only the
linear sum capacity, but also the general sum capacity, i.e., the
maximum sum-rate achieved by arbitrary feedback codes.

I. INTRODUCTION

The capacity region for the N -sender additive white Gaus-
sian noise (AWGN) multiple access channel (MAC) with
feedback is not known except for the case of N = 2, which
was found by Ozarow [1]. The capacity achieving feedback
code for N = 2 is an extension of the linear feedback code by
Schalkwijk and Kailath [2] for the single-user AWGN channel.
Two decades later, Kramer [3] further generalized Ozarow�’s
code to the case N ≥ 3 and established the sum capacity for
the case of equal and high enough power constraints (cf. (29)).
However, it is not known whether the Kramer code achieves
the sum-capacity in general.

In this paper, we focus on the class of generalized linear
feedback codes (or linear codes in short), where linearity
refers to how the feedback signals are incorporated into the
transmitted signals. This class of generalized linear feedback
codes includes the linear feedback codes by Schalkwijk and
Kailath [2], Ozarow [1], and Kramer [3] as well as any
nonfeedback (nonlinear) code.

We characterize the linear sum capacity CL(P ), which is the
maximum sum-rate achieved by generalized linear feedback
codes under symmetric block power constraints P for all
the senders (see Theorem 1). The main contribution is the
proof of the converse. We rst prove an upper bound on
CL(P ), which is a multi-letter optimization problem over
Gaussian distributions (cf. Cover and Pombra [4]). Next, we
derive an equivalent optimization problem over the set of
positive semidenite (covariance) matrices by considering a
dependence balance condition, introduced by Hekstra and
Willems [5] and rened by Kramer and Gastpar [6]. Lastly,
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we carefully analyze this (nonconvex) optimization problem
via Lagrange dual formulation.

Achievability is proved by the Kramer linear code. Hence,
this rather simple code which renes receiver�’s knowledge
iteratively is sum-rate optimal among the class of generalized
linear feedback codes.

Complete characterization of C(P ), the maximum sum-rate
among all feedback codes, still remains open. We conjecture
that C(P ) = CL(P ), based on the properties of conditional
maximal correlation, which is an extension of the Hirschfeld�–
Gebelein�–Renyi maximal correlation [7] to the case where an
extra common random variable is shared (see Section IV).

The rest of the paper is organized as follows. In Sections II
and III, we state the main result and provide the proof of
the converse, respectively. Section IV concludes the paper by
discussion on the aforementioned conjecture.

II. MAIN RESULT

Consider the communication problem over AWGN-MAC
where each sender j ∈ {1, . . . , N} wishes to transmit a
message Mj ∈ Mj := {1, . . . , 2nRj} reliably to the common
receiver. At each time i = 1, . . . , n, the output of the channel
is

Yi =
N

∑

j=1

Xji + Zi (1)

where {Zi} is a discrete-time zero-mean white Gaussian noise
process with unit average power, i.e., E(Z2

i ) = 1, and is
independent of M1, . . . , MN . We assume that the output sym-
bols are causally fed back to each sender and the transmitted
symbol Xji from sender j at time i depends on both the
previous channel output sequence Y i−1 := {Y1, Y2, . . . , Yi−1}
and the message Mj .

We dene a (2nR1 , . . . , 2nRN , n) code with power con-
straints P1, . . . , PN as

1) N message sets M1, . . . ,MN , where Mj =
{1, 2, . . . , 2nRj},

2) a set of N encoders, where encoder j at each time i maps
the pair (mj , yi−1) to a symbol xji such that Xji satisfy
the block power constraint

n
∑

i=1

E(X2
ji(mj , Y

i−1)) ≤ nPj , mj ∈ Mj ,

and
3) a decoder map which assigns message estimates m̂j ∈

Mj , j ∈ {1, . . . , n}, to each received sequence yn.



We assume throughout that M(S) := (M1, . . . , MN) is a
random vector uniformly distributed over M1×· · ·×MN . The
probability of error is dened as P (n)

e := P{M̂(S) %= M(S)}.
A rate-tuple (R1, . . . , RN ) is called achievable if there exists
a sequence of (2nR1 , . . . , 2nRN , n) codes such that P (n)

e → 0
as n → ∞. The capacity region C is dened as the closure
of the set of achievable rate-tuples and the sum capacity C is
dened as

C := sup

{

N
∑

j=1

Rj : (R1, . . . , RN ) ∈ C

}

.

We refer to R =
∑N

j=1 Rj as the sum-rate of a given code.
Denition 1: A (2nR1 , . . . , 2nRN , n) code is called a gen-

eralized linear feedback code, if the encoding maps can be
decomposed as follows.

1) Nonfeedback (nonlinear) mappings: The message mj is
mapped to a vector Θj ∈ Rk, k ∈ {1, . . . , n}, which we
refer to as the message point.

2) Linear feedback mappings: At each time i, the pair
(Θj , Y i−1) is mapped to a symbol Xji such that Xji =
Lji(Θj , Y i−1) is linear in (Θj , Y i−1).

As mentioned earlier, any nonfeedback code is a generalized
linear feedback code by picking k = n and Θj ∈ Rn to be
the codeword of the j-th user.

Let CL be the closure of the set of rate-tuples achievable by
linear codes and the linear sum capacity CL be

CL := sup

{

N
∑

j=1

Rj : (R1, . . . , RN ) ∈ CL

}

.

The following theorem characterizes CL(P ), the linear sum
capacity under symmetric block power constraints P .

Theorem 1: For the N -sender AWGN-MAC with symmet-
ric block power constraints Pj = P, j ∈ {1, . . . , N}, we have

CL(P ) =
1

2
log(1 + NPφ(P )) (2)

where φ(P ) ∈ R is the unique solution in interval [1, N ] for

(1 + NPφ)N−1 = (1 + Pφ(N − φ))N . (3)

The proof of the upper bound is provided in Section III. This
establishes the theorem since it is already known that Kramer
linear code [3] achieves sum-rates arbitrarily close to (2).

Note that φ(P ) ∈ [1, N ] captures the amount of cooperation
among the senders such that φ = 1 corresponds to no
cooperation whereas φ = N corresponds to full cooperation.

III. PROOF OF THE CONVERSE

In this section we show that sum rate R achievable by
a linear code under symmetric block power constraints P
satises

R ≤ C1(P,φ(P )) :=
1

2
log(1 + NPφ(P )) (4)

where φ(P ) ∈ R is the unique solution in interval [1, N ] for

(1 + NPφ)N−1 = (1 + Pφ(N − φ))N .

The proof can be summarized in four steps. Consider an
upper bound based on Fano�’s inequality for the sum-rate,
which is a multi-letter optimization problem over all causal
distributions. First, based on linearity of the code, we prove
that by limiting the distributions to be Gaussian we can still
upper bound the sum-rate (see Lemma 1). Second, using
a dependence balance condition [5], [6] and the fact that
for Gaussian distributions mutual information terms can be
substituted by covariance matrices, we obtain an equivalent
optimization problem (see (10)) over positive semi-denite
matrices which is nonconvex due to the added dependence
balance condition. Third, based on the Lagrange dual formu-
lation and the symmetry of the functions in the problem, we
derive an upper bound as a function of Lagrange multipliers
which involves an optimization over only two variables (see
Lemma 3). Finally, using a few technical tricks and strong
duality, we show that with appropriate choices of Lagrange
multipliers this upper bound is equal to C1(P,φ(P )) in (4)
(see Lemma 4).

Details are as follows.
Step 1: For linear codes, we prove that the sum-rate can

be upper bounded by considering only Gaussian distributions,
in the multi-letter optimization problem based on Fano�’s
inequality.

Lemma 1: A sum-rate R achievable by a linear code under
symmetric block power constraints P is bounded as R ≤
limn→∞ Cn(P ), where

Cn(P ) := max
1

n

n
∑

i=1

I(X1i, . . . , XNi; Yi|Y i−1). (5)

Here the maximization is over Xji of the form

Xji = Lji(Vj , Y
i−1), i = 1, . . . , n (6)

n
∑

i=1

E(X2
ji) ≤ nP, j = 1, . . . , N

where Lji is some linear function and Vj ∈ Rn ∼ N(0, KVj
)

is Gaussian and independent of Zn and {Vj′ : j′ %= j}.
Proof: From Fano�’s inequality [8] and memoryless prop-

erty of the channel, it can be shown that if P (n)
e → 0 as

n → ∞ then

nR = n
N

∑

k=1

Rj ≤
n

∑

i=1

I(Xi(S); Yi|Y i−1) + nεn (7)

where {εn} denotes a sequence such that εn → 0 as n → ∞.
Hence,

R ≤ lim
n→∞

max
1

n

n
∑

i=1

I(Xi(S); Yi|Y i−1) (8)

where the maximization is over all linear codes such that
Xji = Lji(Θj , Y i−1).

Given a linear code with message points Θ(S), let V(S) ∼
N(0, KΘ(S)). We use V(S) with same linear functions as in
the given code to generate

X̃ji = Lji(Vj , Ỹ
i−1)



where Ỹi is the output of the AWGN-MAC corresponding to
X̃i(S). It is not hard to see that

(X̃i(S), Ỹ i) ∼ N(0, KXi(S),Y i).

By the conditional maximum entropy theorem [9, Lemma 1]
we have

I(Xi(S); Yi|Y i−1) ≤ I(X̃i(S); Ỹi|Ỹ i−1). (9)

Combining (8) and (9) we have

R ≤ lim
n→∞

max
1

n

n
∑

i=1

I(X̃i(S); Ỹi|Ỹ i−1)

where X̃ji = Lji(Vj , Ỹ i−1).
Step 2: We show that optimization problem dening Cn(P )

in (5) is equivalent to the following optimization problem

maximize 1
n

∑n
i=1 f1(Ki)

subject to Ki * 0, i = 1, . . . , n
∑n

i=1(Ki)jj ≤ nP, j = 1, . . . , N
∑n

i=1 f1(Ki) − f2(Ki) ≤ 0.

(10)

where

f1(Ki) :=
1

2
log

(

1 +
∑

j,j′

(Ki)jj′

)

(11)

and

f2(Ki) :=
1

2(N − 1)

N
∑

j=1

log

[

1 +
∑

j′,j′′

(Ki)j′j′′

−

(

∑

j′(Ki)jj′

)2

(Ki)jj

]

. (12)

The following lemma provides a necessary condition for any
(causal) functional relationship of the form (6).

Lemma 2 ([6], Theorem 1): Consider independent random
vectors Vj ∈ Rn and let Xji, i = 1, . . . , n, j = 1, . . . , N be
dened as in (6). Then,

n
∑

i=1

(

I(Xi(S); Yi|Y i−1)

≤
1

N − 1

n
∑

i=1

N
∑

j=1

I(Xi(S\{j}); Yi|Y i−1, Xji)
)

.

(13)

Remark 1: The proof of Lemma 2 is valid also in the
more general case where the inputs Xji = fji(Vj , Y i−1) are
obtained using arbitrary functions {fji}.

Since random vectors Vj in (6) are jointly Gaussian and
the functions Lji are linear, the random variables (Xn(S), Y n)
generated according to (6) are also jointly Gaussian and we can
replace the mutual information terms in condition (13) with
functions of the covariance matrices. Specically, let Xi =
(X1i, . . . , XNi)T ∼ N(0, Ki) where Ki := KXi

* 0. Then

I(X1i, . . . , XNi; Yi|Y i−1) = f1(Ki)

1

N − 1

N
∑

j=1

I(Xi(S\{j}); Yi|Y i−1, Xji) = f2(Ki)

Hence, the condition (13) reduces to
n

∑

i=1

f1(Ki) − f2(Ki) ≤ 0. (14)

Recall that the condition (14) follows from the functional
realtionship (6). Hence, by representing the objective function
and the power constraints in terms of Ki, the optimization
problem in (5) becomes equivalent to (10).

Notice that even though both functions f1(K) and f2(K)
are concave (see [10]), their difference f1(K)− f2(K) is nei-
ther concave nor convex. Hence, the optimizatin problem (10)
is nonconvex [11] due to the constraint (14).

Step 3: Using Lagrange multipliers λ, γ ≥ 0, we provide a
general upper bound U(λ, γ) for the solution of the optimiza-
tion problem given in (10). We further simplify this upper
bound exploiting symmetry.

Consider the dual problem of (10) with equal Lagrange mul-
tipliers λj = λ ≥ 0, j ∈ {1, . . . , N} for the power constraints
∑n

i=1 P − (Ki)jj ≥ 0, j ∈ {1, . . . , N}, and the Lagrange
multiplier γ ≥ 0 for the constraint

∑n
i=1 f2(Ki)−f1(Ki) ≥ 0.

Since the dual problem is an average of a function of Ki, it is
not hard to see that the maximum can be upper bounded by
the maximum of this function, which is given by

U(λ, γ) := max
K%0

(1 − γ)f1(K) + γf2(K) + λ
N

∑

j=1

(P − Kjj).

(15)

It is easy to see that, for any λ, γ ≥ 0, the solution of (10)
is upper bounded by the solution of the dual problem. Hence,
U(λ, γ) is an upper bound for the solution of (10).

Lemma 3: Let λ, γ ≥ 0. Then, the upper bound U(λ, γ)
can be simplied as follows.

U(λ, γ) = max
x≥0

max
0≤φ≤N

g(γ, x,φ) + λN(P − x). (16)

where

g(γ, x,φ) := (1 − γ)C1(x,φ) + γC2(x,φ). (17)

and

C1(x,φ) :=
1

2
log(1 + Nxφ)

C2(x,φ) :=
N

2(N − 1)
log(1 + (N − φ)xφ). (18)

Proof:
It can be shown [10] that there exists a matrix K of the

following form

K = x ·















1 ρ ρ . . . ρ
ρ 1 ρ . . . ρ
ρ ρ 1 . . . ρ
...

...
...

. . .
...

ρ ρ ρ . . . 1















(19)

which achieves the maximum in (15). Thus, we continue our
analysis with matrices of the form in (19) and by letting

φ = 1 + (N − 1)ρ



we have

f1(K) = C1(x,φ)

f2(K) = C2(x,φ). (20)

Since K is positive semidenite, x ≥ 0 and −1/(N −1) ≤
ρ ≤ 1, where the lower bound on ρ comes from the fact that
∑N

i,j=1 Kij is nonnegative for K * 0. Hence, 0 ≤ φ ≤ N
and (15) reduces to (16).

The form of K in (19) was also considered in [9], [3]. How-
ever, in those cases the objective function was concave. In our
case if γ > 1 the objective function is not necessarily concave
and proving this claim needs further treatment (see [10]).

Step 4: We show that there exists Lagrange multipliers
(λ∗, γ∗) such that U(λ∗, γ∗) = C1(P,φ(P )), which completes
the proof of the converse.

Lemma 4: There exists λ∗, γ∗ ≥ 0 such that

U(λ∗, γ∗) = C1(P,φ(P )).

where C1(P,φ(P )) is given in (4).
Proof: Consider the optimization problem over (x,φ)

which gives U(λ, γ) in (16). Note that g(γ, x,φ) given by
(17) is neither concave or convex in (x,φ) for γ > 1. Let

U(γ) := U(λ∗(γ), γ) = min
λ≥0

U(λ, γ). (21)

where λ∗(γ) is the minimizer corresponding to γ. we use the
following lemma to nd U(γ).

Lemma 5: g(γ, x,φ) is concave in φ for xed x, γ ≥ 0.
Proof: See [10].

By concavity of g(γ, x,φ) in φ for a xed x, the inner
maximum in (16) happens at 0 < φ∗(γ, x) < N such that

∂g(γ, x,φ)

∂φ
= 0

⇔
(1 − γ)(N − 1)

1 + Nxφ∗
=

γ(2φ∗ − N)

1 + xφ∗(N − φ∗)
(22)

or at the boundaries φ∗(γ, x) ∈ {0, N}. Therefore,

U(γ) = min
λ≥0

max
x≥0

max
0≤φ≤N

g(γ, x,φ) + λN(P − x)

= min
λ≥0

max
x≥0

g(γ, x,φ∗(γ, x)) + λN(P − x). (23)

for any γ ≥ 0. To evaluate the last expression we use the
following lemma.

Lemma 6: Let γ, x ≥ 0 and φ∗(γ, x) > 0 be the positive
solution to (22). Then, g(γ, x,φ∗(γ, x)) is increasing and
concave in x.

Proof: See [10].
Remark 2: As pointed out earlier, for γ > 1, g(γ, x,φ)

is not concave in both x,φ in general. However, this lemma
shows that g(γ, x,φ∗(γ, x)) is concave in x for all γ > 1 and
this is sufcient for the rest of the proof.

By concavity of g(γ, x,φ∗(γ, x)) and Slater�’s condition [11]
we have strong duality as follows.

min
λ≥0

max
x

g(γ, x,φ∗(γ, x)) + λN(P − x)

= max
x≤P

g(γ, x,φ∗(γ, x)) = g(γ, P,φ∗(γ, P )) (24)

where the last equality follows from the fact that
g(γ, x,φ∗(γ, x)) is increasing in x (see Lemma 6). Combining
(23) and (24) we have

U(γ) = g(γ, P,φ∗(γ, P )). (25)

Lastly, we nd γ∗ such that U(γ∗) = C1(P,φ(P )).
Lemma 7: For a xed x ≥ 0, the equation C1(x,φ) −

C2(x,φ) = 0 has a unique solution 1 ≤ φ(x) ≤ N . Moreover,

1 +
(2φ(x) − N)(1 + Nxφ(x))

(N − 1)(1 + xφ(x)(N − φ(x)))
> 0. (26)

Proof: See [10].
Let φ(P ) ∈ [1, N ] be the unique solution for C1(P,φ) =

C2(P,φ). Given P and φ(P ), we pick γ∗(P,φ(P )) such that
it satises (22) for x = P and φ∗ = φ(P ). It is easy to
check that γ∗ := γ∗(P,φ(P )) > 0 is greater than zero by
plugging x = P and φ(x) = φ(P ) in (26). Since γ∗, P and
φ(P ) satisfy (22) we conclude that φ(P ) is equal to φ∗(γ∗, P ),
the positive solution of (22). Plugging γ∗ > 0 and φ∗(γ∗, P )
into (25) we have

U(γ∗) = g(γ∗, P,φ∗(γ∗, P ))

= (1 − γ∗)C1(P,φ∗(γ∗, P )) + γ∗C2(P,φ∗(γ∗, P ))

= (1 − γ∗)C1(P,φ(P )) + γ∗C2(P,φ(P )) (27)

= C1(P,φ(P )) (28)

where (27) and (28) follow from φ∗(γ∗, P ) = φ(P ) and
C1(P,φ) = C2(P,φ), respectively. Hence, U(λ∗(γ∗), γ∗) =
U(γ∗) = C1(P,φ(P )).

Combining the four steps we have R ≤ C1(P,φ(P )), and
the proof of the converse is complete.

IV. DISCUSSION

It is still unknown whether the linear sum capacity CL(P )
is in general equal to the sum capacity C(P ). However, there
exists [3] a threshold Pc, which depends on the number of
users N , such that for P ≥ Pc, a linear code can achieve the
sum capacity C(P ). More specically,

CL(P ) = C(P ), P ≥ Pc

where Pc ≥ 0 is the unique solution to

(1 + N2P/2)N−1 = (1 + N2P/4)N . (29)

The condition (29) corresponds to the case for which the well-
known cut-set upper bound [9] on the sum capacity,

C(P ) ≤ max
φ

min
{

C1(P,φ), C2(P,φ)
}

. (30)

meets with linear sum capacity CL(P ), where functions
C1(P,φ), C2(P,φ) are same as in (18).

For P < Pc, we conjecture that we still have C(P ) =
CL(P ) based on the properties of Hirschfeld�–Gebelein�–Rényi
maximal correlation [7]. In the following we provide some
insights. Let ρ∗(Θ1, Θ2) denote the maximal correlation be-
tween two random variables Θ1 and Θ2, that is,

ρ∗(Θ1, Θ2) = sup
g1,g2

E (g1(Θ1)g2(Θ2)) (31)



where the supremum is over all g1, g2 such that E(g1) =
E(g2) = 0, E(g2

1) = E(g2
2) = 1. We extend this notion of

maximal correlation to conditional maximal correlation as
follows. Let

ρ∗(Θ1, Θ2|Y ) = sup
g1,g2

E (g1(Θ1, Y )g2(Θ2, Y )) (32)

where g1, g2 satisfy E(g1|Y ) = E(g2|Y ) = 0, E(g2
1) =

E(g2
2) = 1 be the conditional maximal correlation between Θ1

and Θ2 given a common random variable Y . The assumption
E(g1|Y ) = E(g2|Y ) = 0 is crucial; otherwise, g1 and g2 can
be picked as Y and ρ∗(Θ1, Θ2|Y ) = 1 trivially.

For simplicity, consider N = 2 and equal per-symbol power
constraint E(X2

ji) ≤ P, j = 1, 2. Then,

R ≤
1

n

n
∑

i=1

I(X1i, X2i; Yi|Y i−1)

=
1

n

n
∑

i=1

I(X̃1i, X̃2i; Ỹi|Y i−1) (33)

where X̃ji = Xji − E(Xji|Y i−1), j = 1, 2, and Ỹi = X̃1i +
X̃2i + Zi. The equality (33) holds since E(Xji|Y i−1) is a
funcion of Y i−1. On the other hand, it can be easily seen
that E(X̃2

ji) ≤ E(X2
ji) ≤ P . Therefore, there is no loss of

optimality in considering Xji such that E(Xji|Y i−1) = 0.
Under this assumption, consider

R ≤
1

n

n
∑

i=1

I(X1i, X2i; Yi|Y i−1)

≤
1

n

n
∑

i=1

I(X1i, X2i; Yi)

≤
1

2n

n
∑

i=1

log
(

1 + 2P + 2P E
(

ρ(X1iX2i)
)

)

(34)

≤
1

2n

n
∑

i=1

log
(

1 + 2P
(

1 + ρ∗
(

Θ1i, Θ2i

∣

∣Y i−1
)

))

(35)

where ρ(X1i, X2i) = E

(

X1i√
E(X2

1i)
· X2i√

E(X2

2i)

)

is the correla-

tion coefcient between X1i and X2i (Recall by assumption
E(Xji|Y i−1) = 0). Inequality (34) follows from the maximum
entropy theorem [8] and equal per-symbol power constraint
E(X2

ji) ≤ P . Inequality (35) follows from the denition of
conditional maximal correlation (32). The following lemma
provides a useful property of conditional maximal correlation.

Lemma 8: If (Θ1, Θ2, Y ) are jointly Gaussian, then

ρ∗(Θ1, Θ2|Y ) = ρ(Θ1, Θ2|Y )

and linear functions gL
1 , g

L
2 of the form

gL
1(Θ1, Y ) =

Θ1 − E(Θ1|Y )
√

E
(

(Θ1 − E(Θ1|Y ))2
)

gL
2(Θ2, Y ) =

Θ2 − E(Θ2|Y )
√

E
(

(Θ2 − E(Θ2|Y ))2
)

(36)

attain the supremum in ρ∗(Θ1, Θ2|Y ).

Proof: The proof follows from the fact [12] that
ρ∗(U, V ) = ρ(U, V ) for jointly Gaussian random variables
(U, V ) and that given Y = y, (Θ1, Θ2)

∣

∣

Y =y
is Gaussian with

some correlation ρ(Θ1, Θ2

∣

∣Y = y) = ρ independent of y. For
details see [10].

Let (Θ1, Θ2) be Gaussian and ρ∗(Θ1, Θ2|Y i−1) be dened
similar to (32) with a common collection of random variables
Y i−1. By Lemma 8 we know that if (Θ1, Θ2, Y i−1) are jointly
Gaussian, ρ∗(Θ1, Θ2|Y i−1) = ρ(Θ1, Θ2|Y i−1) and Xji =
Lji(Θj , Y i−1), where Lji is of the form (36), achieve the upper
bound on I(X1i, X2i; Yi|Y i−1) (see (35)). This implies that
linear functions are greedy optimal for maximizing the right
hand side of (33) since using linear functions up to time i−1,
results in Gaussian (Θ1, Θ2, Y i−1).

A similar argument holds for any number of senders N ,
where we have the the following upper bound,

R ≤
1

n

n
∑

i=1

I(X(S); Yi|Y i−1)

≤
1

2n

n
∑

i=1

log
(

1 + NP + P
∑

j )=k

ρ∗
(

Θji, Θki

∣

∣Y i−1
)

)

.

However, it is not clear whether linear functions are in gen-
eral optimal. This is because the distribution of (Θ1, Θ2, Y i−1)
depends on all the previous functions up to time i − 1. For
instance using nonlinear functions at time 1, although hurting
the current mutual information term I(X(S); Y1), might be
advantageous for the future terms I(X(S); Yi|Y i−1), i > 1.
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[7] A. Réyni, �“On measures of dependence,�” Acta Mathematica Hungarica,
vol. 10, pp. 441�–451, 1959.

[8] T. M. Cover and J. A. Thomas, Elements of Information Theory. 2nd ed.
New York: Wiley, 2006.

[9] J. A. Thomas, �“Feedback can at most double gaussain multiple access
channel capacity,�” IEEE Trans. Inf. Theory, vol. 33, pp. 711�–716, 1987.

[10] E. Ardestanizadeh, M. A. Wigger, Y.-H. Kim, and T. Javidi, �“Linear
sum capacity for Gaussian multiple access channel with feedback,�” Feb
2010, arXiv:1002.1781.

[11] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
University Press, 2004.

[12] H. O. Lancaster, �“Some properties of the bivariate normal distribution
considered in the form of a contingency table,�” Biometrika, vol. 44, pp.
289�–292, 1957.


