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Abstract—This paper studies the sum capacityC(P) of
the N-sender additive white Gaussian noise (AWGN) multiple
access channel (MAC), under equal power constrain?, when
noiseless output feedback is available to all thé&V senders. The
multi-letter characterization of the sum capacity, in terms of
directed information, is considered as an optimization prdlem.
The main result of this paper is to solve this problem when it $
restricted to Gaussian causally conditional input distributions.
Also, a dependence balance bound in terms of directed inforax
tion is introduced, which for the case of memoryless channsl
is the same as the bound introduced by Kramer and Gastpar.
This bound is used to capture the causality, however, since iis
in general “non-convex” makes the problem technically hard A
general upper bound is obtained by forming the Lagrange dual
problem and it is then shown that this upper bound coincides
with the sum-rate achieved by Kramer’s Fourier-MEC scheme.
This result generalizes earlier work by Kramer and Gastpar m
the achievable sum rate under a “per-symbol” power constrait
to the one under the standard “block” power constraint.

I
Consider the communication problem betwe€rsenders
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2) a set of N encoders, where encodgr at each time;,
(stochastically) maps the pafn;,y*~') to a symbol
x;; such thatX;; satisfies
ZE(X%(TTLP Yiil)) < nPja mj € Mj?
i=1
and
3) a decoder map which assigns indicgs € M, j €
{1,..., N}, to each received sequenge.
Let X(4) = {X, : j € A}, AC S = {1,...,N},
be an ordered subset of random variablgs, ..., Xy.
We assume throughout that' (S) := (My,...,My) is a
random variable uniformly distributed ovar; x - - - x My.
The probability of error is defined as

P(™ := P{NI(S) # M(S)}.

A rate tuple(Ry, ..., Ry) is called achievable if there exists
a sequence k"1, ... 2%~ p) codes such tha™ — 0
asn — oo. The capacity regiof#” is defined as the closure of

and a receiver over a multiple access channel (MAC) witkhe set of achievable rates and the sum capatity defined
additive white Gaussian noise (AWGN) when channel outpyjg

is noiselessly fed back to all the senders. Each semder
S :={1,..., N} wishes to reliably transmit a messae €

M, = {1,...,2"Ri} to the receiver. At each timg the
output of the channel is

N
C = sup{Rsum = ZRj : (Ry,...,RN) € C}.
k=1

The capacity region for thé&/-sender AWGN-MAC with
feedback is not known except for the cadé = 2. In

N
Y; :Zin—l-Zm

j=1

(1) this case the capacity region was found by Ozarow [8].
Ozarow’s capacity achieving scheme is an extension of a
cheme by Schalkwijk and Kailath [9] for the single-user
WGN channel. Kramer [4] further generalized Ozarow’s
scheme taV > 2 senders. However, it is not known whether

Kramer's Fourier-MEC scheme is optimal in general.

where {Z;} is a discrete-time zero-mean white Gaussia
noise process with unit average poweE(Z?) = 1),
and is independent ob/fy,..., My. The transmitted sym-

bol X;; for sender; at time i depends on the message In this paper we consider the sum capacity under equal
M; and the previous channel output sequente! pap pacity q

W, Y: Yi-1}, and must satisfy the expected 'blockblock power constraint. From [5] we know that the sum-rate
17 27 AR | 1 . . .
power constraint capacity is given by

C = lim Cp,

n—oo

> E(XF(my, YY) <nPj, m; € M,;.
=1
where for each nonnegative integer

We define a(2nf1 ... 27~ n) code with power con-
straints P, ..., Py as Cp := lim sup lI(X{l, L XY™,
1) N message setsMy,..., My, where M; = T pat e llyn ) T
{1,2,... 277, )



where I(X7,..., X% — Y™) denotes Massey’s directed andV}; are zero-mean Gaussian random variables such that
information [7], i.e., V" is independent o™ and V! for all j # j', and Ly;’s
n are linear functions. Then

n n ny .__ 7 [V i1—1
T A= ;I(Xl’ o A, CE(P) = C1(P,¢(P)) = Ca(P, ¢(P)),
(3)  where for each real numbes € [1, N]:

and where the supremum in (2) is over all causally condi-
tional distributions of the form

p(aﬁllaax%nynil) 02(P3¢) =

=p(T1,4,- s $N7i|1‘§_1, el ;vijgl,yifl)

N . .
= [ p(jilzi y ). 4)
j=1

CA(P,¢) = 3 los(1 + NPg)

T o1+ (Y = 9)Po).

and whereg(P) € [1, N] is defined as the unique solution
of Cl(P7 ¢) = CQ(Pv ¢)

Proof: The lower bound,C%(P) > Cy(P,¢(P))
(gollows from the distribution corresponding to Kramer’s
Fourier-MEC scheme [4] with proper initialization. The

. upper boundC% (P) < Oy (P, ¢(P)), is proved in Section I1.

Z I(X1i, ..., XN Y5 YY), Il. PROOF OF THEUPPERBOUND OF THEOREM 1

i=1 In this section we prove the upper bourd”(P) <
Thus, the sum-rate capacity of tié-user AWGN MAC (P, ¢(P)). To this end, we show that for every nonnega-
with feedback and equal power constraifitsis defined as tive integern:
follows:

For discrete memoryless channels, the directed informati
in (3) reduces to

(X7, X% —Y™)

S|

CS(P) < C1(P,¢(P))

. 1 i
C:,}mgosupg E I( Xy, XNis YiY l)a (5)  where
= G(P) = sup ~I( X+, Lyl
where the supremum is over distributions of the form given o (P) = sup nI(X“’ - Xvis Vi),

in (4) such that for every nonnegative integer with the supremum taken over all distributions satisfyiay (
n (6), (7).
ZE(XJ%) <nP, je{l,...,N} (6) First, we prove a dependence balance bound in terms of
i=1 directed informations for any distribution of the form (4).
We evaluate this multi-letter sum capacity expression fQremma 1. For every causally conditional distribution on the
causally conditional distribution of lthe form input sequencef Xy ;};l ;. ..., {Xn,}i, satisfying (4) we
Xji = Vi + Lu(Y'™h), (7) have

N
where V;; are zero-mean Gaussian random variables suc n n 1 n . ny|yn
i P (s) -y >SN_1§;”X (S\{5} = Y IIX).
J=

that V" is independent oZ™ and V}} for all j # j', and

where Lj;’s are linear functions. This class of distributions (8)
is the multi-user analogous of the distributions considere Proof See Section Il

by Cover and Pombra [3]. We show that when taking the Moreover, since the channel is memoryless:
supremum in (5) only over causally conditional distribngo N

of the form (7), the result meets with the sum rate achievable n ny _ (S V. [vi—1

by Kramer's Fourier-MEC scheme. This generalizes the [X™8) =¥ )_;I(Xl(S),YJY ) ©
recent work by Kramer and Gastpar [6] who considered the a

more restrictive symmetric “per-symbol” power constraint

E(X%) <P, Vie{l,...,n}, je{l,...,N}

In the following theorem, we state our main result.

I(X™(S\{7}) = Y"[|XF)
< Z I(Xi(S\{7}); Vi1, Xj0), (10)
1=1"
Theorem 1. Let a nonnegative poweP be given, and let where the last inequality comes from the fact that condition
ing reduces entropy. Combining (8), (9), (10), we obtain the

: 1 i .
CE(P) = Jim sup EI(Xlia L XN YY) dependence balance bound as in [6]:
where | ZI(XZ(S)7K|Y1—1)
Xji=Vji+ Lu(Y'™h), i=1

N
n 1

STE(X2) < nP¥n,j, <
i=1 j

j=14

I(X(S\{5}); Va1, X50), (11)
1

n



which we refer to as the dependence balance bound (DBBhd vy > 0 for the DBB. Then, by weak duality, we have
in the proof. p* <U(A,7v), where
Since, for any distribution of the form (4) the bound given

in (11) holds,C,, is equal to the solution of the following N
optimization problem UAv) = I}é&’g(l = 7CUEK) +7Ca(K) + /\Z (P = Kjj)-
= =
T : 15
maximize ~ > I(X;(S);Y;|[Y"™) (12) (19)
n -
_ =1 i1 Next, we show that there exists an optimal matkixof the
subject to X;; = Vj; + L;i(Y") following form.
> E(X3) <nPj, jefl,...,N} 1 p p 0
=1 p 1 p p
DBB(11) K=z-| P P 1 ro. (16)
SinceV"(S) are Gaussian antl;;’s are linear(X"(S),Y™) R oo
are jointly Gaussian and we can replace the mutual infor- p p p ... 1
mation terms by functions of the covariance matfix :=
Kx,(s) as follows. This form of K was also considered in [10], [4]. However,
1 in those cases the objective function was concave. Here, we
C1(K;) := = log (1 + ZKi(j,j')) show that althougli15) is not in general concave i it is
2 — i ici i
IR still sufficient to look at matrices of the form (16).
= I(X;(S); Y3y 1) (13) To show the sufficiency of matrices of the form in (16),
we fix an arbitrary matrixk” (not necessarily as in (16)).
and Then, we construct a matrik of the form in (16) and such
CQ(Ki) — that
(Z KG)) 3
Zlog 1+ZK G5 A\ (1—=7)C1(K) +vCo(K —i-/\ZP Kjj)
;17 Kl(.]?.]) ] 1
J'J
> (1 =7)Ci(K") +7Co(K') + Ay (P—-K};). (17)
- ZI (S\D: VY X, (14) Z

Substltutmg (13) and (14) in (12) and removing the funcT0 this end, we consider for each permutationon the
tional relationshipX;; — Vj; + L;;(Yi~1) from the opti- indices{1, ..., N} the matrix that is obtained by permuting
mization problem wje havej / the rows and the columns &f’ according to the permutation

m, and denote this matrix by(K’). By symmetry, it is easily

C, <p*, seen that for each permutatian
wherep* is the solution to the following problem.
P :maximize 137" C1(K;) (1 =)Ci(m(K")) + 7 Ca(m(K)) + )‘Z
subjectto K; =0, i€ {l,...,n},
Y, Ki(j.d) <nP. je{l,....k}, = (1= GE) +1Ca(K “Z (P = Kj)

>oic Cr(K;) — Ca(K;) < 0.

. Now consider all N! possible permutations on the set
Wi the foll I f blerR. .
© prove e ToTlowing femma for proble {1,..., N} and denote them by, ..., wx:. Then, consider

Lemma 2. The solutionp* to the optimization problen® the arithmetic average over the corresponding permuted

satisfies matrices:
* [ 1 4 /!
p* < Ci(P,¢(P)) = Ca(P, ¢(P)), K= > m(K
=1
where¢(P) € [1, N] is the unique solution to
_ SinceC; (K) and Y% | K;; are functions only of the sum
C1 (P, ¢(P)) = Co(P, ¢p(P)). A J=1""3J . .
1(P6(P) 2(P0(P) of the entries ofK a]nd sinceCsy(K) is concave inK (see
Proof: Lemma 5), it follows that this arithmetic average satisfies

We form the dual problem using equal Lagrange multipli{17). Since the matrix< is also of the form in (16) this
ersh; =A>0, j€{l,...,N} forthe N power constraints establishes the desired sufficiency of the matrices in (16).



Thus, we can continue our analysis with matrices of the It remains to find the propet. We use the following

form in (16), and define lemma.
Ci1(K) =Ci(x,9) := %log(l + Nzg) Lemma 4. Let
N
Co(K) = Ca(z,¢) = AN 1) log(1 + (N — ¢)x¢),

C(e,0) = 3log( 1+ Nug )

log( 14 (N —¢)z¢ ),

where¢ := 1+ (N — 1)p. We know thatp > —1/(N — 1),
S0 ¢ > 0 and we have Co(z,9) =

U()\a’Y) = mIaXOgbaJSXNg(’%x’ (b) + /\N(P - I)a

N
2(N —1)

where Then for everyr > 0, there exists a uniqué(z) satisfying
Cy(z, ) = Ca(x, ¢). Moreover,
g(’}/v Zz, (b) = (1 - V)Cl (Ia ¢) + 702(175 ¢)

By Lemma 6, for fixedx,v > 0, g(v,z, ¢) is concave ing
and the maximum happens @t (v, z) > 0 such that 1+

(1-(N-1) 426" - N)
1+ Nzog* 14+ z¢*(N — ¢*)’ .
which is equivalent to the condition that the first derivativ Proof: See Section Ill.
is zero. Hence, Let1 < ¢(P) < N be the unique solution faf'; (P, ¢) =
B . Cy(P, ¢). Then, by (19) it is always possible to pigk > 0
UA7) = mfxg(x’ ¢"(1,2)) + AN(P — z), such thaty*, P, ¢(P) satisfy (18) and fory = v* we have

Recall thatU (), y) is an upper bound foftg., for any @" (7", FP) = ¢(P). Then, we have
~v,A > 0. Hence, for anyy > 0 we have

(2¢(x) — N)(1 + Nzo(x))
(N = 1)1+ z¢(x)(N — ¢(x)))

> 0. (29)

Roum < 2R UO) Ronm < (P 6" (", P)
— minmax g(z, ¢* (7, 2)) + AN(P — ). =1 =7")C1(P,¢" (", P)) + 7" Ca(P, " (7", P))
A0 = (1 =7")Ci(P,o(P )) +77Co (P, 6(P)) (20)
To evaluate the last expression we use the following lemma. = C1(P,¢(P)), (21)

Lemma 3. Lety,z > 0 and ¢* (v, x) > 0 be the solution to

1-y)(N-1) (26— N) (18) Where (20) and (21) follow fromp*(y*, P) = ¢(P) and
14+ Nz¢ 1+ zp(N — @) C1 (P, ¢) = Co(P, ¢), respectively. This completes the proof
Then, of the upper bound.
9(x, " (7,2)) = (1 =7)Ci(z, ¢ (7, 7)) +7C2(z, ¢" (7, 7)),

is concave inz.

IIl. PROOF OF THELEMMAS
Proof: See Section lIl.

Sinceg(x, ¢*(v, z)) is concave inc and is unbounded as
r — oo we have Lemma 1. For every causally conditional distribution on

it max g(a, 6" (7,2)) + AN (P — ) = g(P. " (7, ). "® MPUt SSAUENCERLiima, o, { Kb, satishing

This is true sinceniny>o max, g(x, ¢* (v, x)) + AN (P —z) N
is the dual problem of Hp zilzi ) (22)
3 J ’

15=1

:j:

plat, ok lly" ™
maximize g(x,¢* (v, z)) i
subjectto =z < P,

we have
which is a convex optimization (concave maximization) [1]

for which Slater’s condition is satisfied, hence, stronglithua

holds. Also, since the objective is unbounded for larghe 1
optimum of the dual problem can not happemat 0 and ~ 1(X"(S) = Y") < - > IXM(S\{5}) = Y"IXT)
by complementary slackness condition the optimum happens J=1

atz = P. Thereforeminy>o U(A,7) = g(P, ¢* (v, P)) and (23)

Rsumgg(Pv(b*(FYaP))a V"yZO

2




Proof: Consider

N
I(X™S) = Y™) = > I(X) —Y™)
j=1

n

= [ AXAS)IXTHS), YT + XTSIV

—M<|W}[ifﬁxmvﬂww

i=1
+ AT = R(XGIY)|

= |2 h(X(S) X

i=1

N
+ Y AXPYT) = M(X(S) V™) (24)
Jj=1
N
=Y W(XJY") = h(X™(S) Y™, (25
j=1
>0 (26)

where the last inequality holds since conditioning reduces
entropy and (24) follows form the fact that for any distribu-
tion of the form (22) the bracket term in (24) is zero. Hencef-rom (29) we have)*(0) =

we have
N
I(X"(S) = Y") = > I(X} —=Y") >0
j=1

Adding (N

N
YZ l Zh in|XJZ:717yi—l)
j=1

~1)I(X(S) — Y™) to both sides and rearrangingWherea’ = N + v — 1+ 9N, V' =

For a fixedx the objective is concave in. Setting the first
derivative with respect t@ we have

1+ Nz¢ 1+ 2p(N — @)
or
ap? +bp+c =0, (30)
where
a=(N+~v—-14+~N)z
b=—-N(N+vy—-1)z+2y
=—(N+~v-1)
Sinceac < 0, there is only one positive solution
b+ —b+Vb* —dac b2 — 4ac N
0<¢*(z) = - 5 (31)

where the last inequality follows form (29) and the fact that
v > 1.
Monotonicity: For~y > 1 andz > 0, ¢*(«) is increasing
in z and
N+~v-1

6 (x) 2 =5

A£2=1. Taking the derivative
of (30) with respect tar we have

dg* _ —¢*(a'¢" + V')
de  2a¢*+b
—N(N +~—1) are

(32)

terms using the chain rule of directed information we haveferivatives ofa,b with respect tor. From (31) we know

1

I(X™(8) = Y") < T XS\ — YPIXG).

SN C
(27)
[
Lemma 3. Lety,z > 0 and ¢*(z) > 0 be the solution
to
1+ Nz¢ 1+ z2p(N — @)
Then,

g(z, " (x)) = (1

is concave inc.

—7)Ci(x, ¢ (x)) +7Ca(, ¢"(2)),

Proof: If 0 < v < 1 the concavity is immediate since

we know C; (K
let

) and C2(K) are concave ink. Fory > 1

9(z,¢) := (1 =7)Ci(z,¢) +7Ca(x, ¢).
where

C1(z, ¢) = log(1 + Nzo)

Ca(,0) = 57~ log(1 + 2d(N — ).

Consider

,®)

max max g(z
z ¢

2a¢* + b > 0. We need to show’¢* + b’ < 0. Note that

do* /o
- — ¢ /a,
and ¢*(c0) = —%. For~y > 1, we can shows*(0) <
—b'/a’. Therefore,
do*
0.
dx =0 o

Hence, we can concludg*(z) < —Z—/, for all z > 0. The
reason is that if we start withh* < —b'/a’ and ¢* wants
to become larger thard’/d’, the first derivative has to be
positive atgp* = —b’/a’, which can not happen.

Concavity: Let f(z) := g(x, ¢*(z)). Forz > 0, f(z) is
concave and

df (z) _ N(y—1)(¢*(2))?

e 0+ Neo @)(N—20(a) ~
We have
@) _ dg(e.0) , dgle,0) do
de Oz 0¢  dxlz,¢*(z)
From the definition ofp* (x) we know
9g(z, 9) _
09 g% (x)



Hence, we havean = N(a+7)x, b = —N2?az+2v, c = —aN, a’ =
df (z) B dg(x, ¢) N(a+7), b= —N2a, and
dx Oz ¢*(z) dp*(z)  —¢*(d'p + ')
=(1-7) No + N _eN—¢) de — ag?—c
1+ Nz¢ N-1 1+z¢(N —¢)las¢ @) N@*(Na — (a+7)¢)
__N¢ . N-¢  1+Nag ~ (a+7y)Nz¢?2 +aN
TrNeg\ TN L T 2N - ) ) e _ N¢*(N - (39) (35)
_ N(y = 1)(¢*(x))? (33) BNz¢? + N’
(14 Nzo*(z))(N — 2¢*(x)) where
>0, Bi=1+21,
«

where (33) follows from the fact thap*(z) satisfies (29)
and the last inequality holds singg (z) < &.
To prove the concavity of (z) we show that

d*f(x)
s < 0.
From (33) we have
df (x) _ ;
= N(y—=1)f(x),
where
f(@) := h(z,¢" (x))
¢2
Mz 9) = A Nea) (v = 29)
Therefore it is enough to show that
f(=)
Consider
df(x) _ Oh(w,9)  Oh(z,9)do
L 0¢  dxlz,¢*(x)
_ ~Ng? $(N2z¢ +2(N — ¢)) _¢
(1+ Nzg)?(N —2¢) (14 Na¢)?2(N — 2¢)? dx
22 (226 + 2(N = 6)) ~ Ne*(N - 29)
- T+ NaoPP(N — 207 o)

Since¢p > 0 and the denominator is also positive we nee

to show

N¢?(N —2¢)

do* ()
< N22g+2(N - 9)

dx

(34)

z,¢* ()

For the rest of the proof, with abuse of notation, we alter-

It is not hard to see that € (2, N + 1) for v > 1. Plugging
(35), (34) becomes equivalent to

N — ¢ BNzp? + N

N_26 " N2zg+2(N—9)

N-p¢ _ N-pB+B¢(Nxd+1)

N —2¢ — 204+ N(Nz¢p+1)
N—-pBo B¢

N2 < — (36)
where (36) follows from the fact that fdr, d > 0,

- <= & _<G+C
b~ d b S b+d

Noting thats > 2 and using (37) withc = d = 2¢, we can
see that to prove (36) it is sufficient to show
N-(3-2)¢ _ B0
N - N
M < &,
2y

which holds by the first part. [ ]

Lemma 4. Let

l(xv(b) =
2(1‘,(]5) =

—

—

a C a

37)

—

%1og( 1+ Nz¢)

ST o1+ (N = 0)ao ),

hen for everyr > 0, there exists a uniqué(x) satisfying

1(z, ) = Cz(x, ¢). Moreover,
(26(x) — N)(1 + Nao(a))
DA e@E ey - 9

Proof: Let f(¢) = Ca(z, ¢) — C1(x, ¢). We prove there

natively useyp for ¢*(z), the positive solution of (29). From exists a unique solution by showinf(1) > 0,f(N) < 0,

(32) we have

d¢*(z) _ —¢*(@'d+1)
dz 2a¢? + bo
_ —P(do+ V)
 apt—c
Defining
_  N+y-1

N 3

and f'(¢) < 0 for 1 < ¢ < N. The fact thatf (N
immediate. Conditiory(1) > 0 is equivalent to

(1 +a(N - 1))N > (1 +Nx)N71.

For the above condition to hold it is sufficient that

(w)ov vz ()

) <O0is

(39)



which is true sincg(l — 1/N)* > 1 — k/N for N > 1. Proof: Let X = X;,..., Xy ~ N(0,K) andY =
Finally, we need to show’(¢) < 0 which is equivalentto >, X; + Z, whereZ is independent o1, ..., Xn. Then

N-2  N-1 _, woy T E) = (1=7)CLE) +1C5(K)
1+xp(N—¢) 1+ Nzo ' N

. (1= h(Y) + 2= D AYIX))
Rearranging the terms we have N -1 o /

14+ Nzp — (2¢ + 2¢° + Nzg?) <0, N

o Botag Nedr) = (L= () + 2 3RO+ B V) — A())

which holds for anyy > 1. This shows that there exists a Jj=1
unique solution. Also, note that (40) is same as condition 5 5 N
(38) which we wanted to prove. n =hYV)0+ 55—+ x—3 > h(XG]Y) = h(X).

Jj=1

Lemma 5. Let X = Xq,..., Xy ~ N(0,K), X(T) := _
{X; : j € T}. Also, let A,z be an arbitrary matrix We know thath(Y") andh(X;|Y) are concave irnK. If the

diagonal of K are fixed therh(X;) = 1 log(2neK;;) is also
Im m 0 I+ K ¢ . i J 2 73
and = ( 0X 0 ) Thenlog (Hﬁ‘é{(—W) IS fixed and as long as > 0, f(vy, K) is concave ink. ®
concave in covariance matrik for all T C {1,...,N}. ACKNOWLEDGMENTS
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where (41) and (42) come form the fact tha{T") is a linear
combination ofX (T") and Z, hence is jointly Gaussian with
X (T°). [ |

Lemma 6. Let
Oy (K) = % log (1+ 3" Kot
m,l

R Kpp)?

and the elements on the diagonal igf be fixed. Then

f(v, K) == (1 =7)Ci(K) +vCa(K)

is concave inK for any fixedy > 0.



