
On the Sum Capacity of the Gaussian Multiple Access Channel
with Feedback

Ehsan Ardetsanizadeh, Tara Javidi, Young-Han Kim, and Michèle A.Wigger
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Abstract—This paper studies the sum capacityC(P ) of
the N -sender additive white Gaussian noise (AWGN) multiple
access channel (MAC), under equal power constraintP , when
noiseless output feedback is available to all theN senders. The
multi-letter characterization of the sum capacity, in terms of
directed information, is considered as an optimization problem.
The main result of this paper is to solve this problem when it is
restricted to Gaussian causally conditional input distributions.
Also, a dependence balance bound in terms of directed informa-
tion is introduced, which for the case of memoryless channels
is the same as the bound introduced by Kramer and Gastpar.
This bound is used to capture the causality, however, since it is
in general “non-convex” makes the problem technically hard. A
general upper bound is obtained by forming the Lagrange dual
problem and it is then shown that this upper bound coincides
with the sum-rate achieved by Kramer’s Fourier-MEC scheme.
This result generalizes earlier work by Kramer and Gastpar on
the achievable sum rate under a “per-symbol” power constraint
to the one under the standard “block” power constraint.

I. I NTRODUCTION

Consider the communication problem betweenN senders
and a receiver over a multiple access channel (MAC) with
additive white Gaussian noise (AWGN) when channel output
is noiselessly fed back to all the senders. Each senderj ∈
S := {1, . . . , N} wishes to reliably transmit a messageMj ∈
Mj := {1, . . . , 2nRj} to the receiver. At each timei, the
output of the channel is

Yi =
N
∑

j=1

Xji + Zi, (1)

where {Zi} is a discrete-time zero-mean white Gaussian
noise process with unit average power

(

E(Z2
i ) = 1

)

,
and is independent ofM1, . . . , MN . The transmitted sym-
bol Xji for senderj at time i depends on the message
Mj and the previous channel output sequenceY i−1 :=
{Y1, Y2, . . . , Y

i−1}, and must satisfy the expected block
power constraint

n
∑

i=1

E(X2
ji(mj , Y

i−1)) ≤ nPj , mj ∈ Mj .

We define a(2nR1 , . . . , 2nRN , n) code with power con-
straintsP1, . . . , PN as

1) N message setsM1, . . . ,MN , where Mj =
{1, 2, . . . , 2nRj},

2) a set ofN encoders, where encoderj, at each timei,
(stochastically) maps the pair(mj , y

i−1) to a symbol
xji such thatXji satisfies

n
∑

i=1

E(X2
ji(mj , Y

i−1)) ≤ nPj , mj ∈ Mj ,

and
3) a decoder map which assigns indicesm̂j ∈ Mj, j ∈

{1, . . . , N}, to each received sequenceyn.
Let X(A) := {Xj : j ∈ A}, A ⊆ S = {1, . . . , N},
be an ordered subset of random variablesX1, . . . , XN .
We assume throughout thatM(S) := (M1, . . . , MN ) is a
random variable uniformly distributed overM1×· · ·×MN .
The probability of error is defined as

P (n)
e := P{M̂(S) 6= M(S)}.

A rate tuple(R1, . . . , RN ) is called achievable if there exists
a sequence of(2nR1 , . . . , 2nRN , n) codes such thatP (n)

e → 0
asn → ∞. The capacity regionC is defined as the closure of
the set of achievable rates and the sum capacityC is defined
as

C := sup

{

Rsum =

N
∑

k=1

Rj : (R1, . . . , RN ) ∈ C
}

.

The capacity region for theN -sender AWGN-MAC with
feedback is not known except for the caseN = 2. In
this case the capacity region was found by Ozarow [8].
Ozarow’s capacity achieving scheme is an extension of a
scheme by Schalkwijk and Kailath [9] for the single-user
AWGN channel. Kramer [4] further generalized Ozarow’s
scheme toN ≥ 2 senders. However, it is not known whether
Kramer’s Fourier-MEC scheme is optimal in general.

In this paper we consider the sum capacity under equal
block power constraint. From [5] we know that the sum-rate
capacity is given by

C = lim
n→∞

Cn,

where for each nonnegative integern:

Cn := lim
n→∞

sup
p(xn

1 ,...,xn
N ||yn−1)

1

n
I(Xn

1 , . . . , Xn
N → Y n),

(2)



where I(Xn
1 , . . . , Xn

N → Y n) denotes Massey’s directed
information [7], i.e.,

I(Xn
1 , . . . , Xn

N → Y n) :=
n
∑

i=1

I(X i
1, . . . , X

i
N ; Yi|Y i−1),

(3)

and where the supremum in (2) is over all causally condi-
tional distributions of the form

p(xn
1 , . . . , xn

N ||yn−1)

:= p(x1,i, . . . , xN,i|xi−1
1 , . . . , xi−1

N , yi−1)

=

N
∏

j=1

p(xj,i|xi−1
j , yi−1). (4)

For discrete memoryless channels, the directed information
in (3) reduces to

I(Xn
1 , . . . , Xn

N → Y n)
1

n

n
∑

i=1

I(X1i, . . . , XNi; Yi|Y i−1).

Thus, the sum-rate capacity of theN -user AWGN MAC
with feedback and equal power constraintsP is defined as
follows:

C = lim
n→∞

sup
1

n

n
∑

i=1

I(X1i, . . . , XNi; Yi|Y i−1), (5)

where the supremum is over distributions of the form given
in (4) such that for every nonnegative integern:

n
∑

i=1

E(X2
ji) ≤ nP, j ∈ {1, . . . , N}. (6)

We evaluate this multi-letter sum capacity expression for
causally conditional distribution of the form

Xji = Vji + Lji(Y
i−1), (7)

where Vji are zero-mean Gaussian random variables such
that V n

j is independent ofZn and V n
j′ for all j 6= j′, and

whereLji’s are linear functions. This class of distributions
is the multi-user analogous of the distributions considered
by Cover and Pombra [3]. We show that when taking the
supremum in (5) only over causally conditional distributions
of the form (7), the result meets with the sum rate achievable
by Kramer’s Fourier-MEC scheme. This generalizes the
recent work by Kramer and Gastpar [6] who considered the
more restrictive symmetric “per-symbol” power constraint:

E(X2
ji) ≤ P, ∀i ∈ {1, . . . , n}, j ∈ {1, . . . , N}.

In the following theorem, we state our main result.

Theorem 1. Let a nonnegative powerP be given, and let

CG(P ) := lim
n→∞

sup
1

n
I(X1i, . . . , XNi; Yi|Y i−1)

where

Xji = Vji + Lji(Y
i−1),

n
∑

i=1

E(X2
ji) ≤ nP, ∀n, j,

andVji are zero-mean Gaussian random variables such that
V n

j is independent ofZn and V n
j′ for all j 6= j′, and Lji’s

are linear functions. Then

CG(P ) = C1(P, φ(P )) = C2(P, φ(P )),

where for each real numberφ ∈ [1, N ]:

C1(P, φ) :=
1

2
log(1 + NPφ)

C2(P, φ) :=
N

2(N − 1)
log(1 + (N − φ)Pφ),

and whereφ(P ) ∈ [1, N ] is defined as the unique solution
of C1(P, φ) = C2(P, φ).

Proof: The lower bound,CG(P ) ≥ C1(P, φ(P ))
follows from the distribution corresponding to Kramer’s
Fourier-MEC scheme [4] with proper initialization. The
upper bound,CG(P ) ≤ C1(P, φ(P )), is proved in Section II.

II. PROOF OF THEUPPERBOUND OF THEOREM 1

In this section we prove the upper boundCG(P ) ≤
C1(P, φ(P )). To this end, we show that for every nonnega-
tive integern:

CG
n (P ) ≤ C1(P, φ(P ))

where

CG
n (P ) := sup

1

n
I(X1i, . . . , XNi; Yi|Y i−1),

with the supremum taken over all distributions satisfying (4),
(6), (7).

First, we prove a dependence balance bound in terms of
directed informations for any distribution of the form (4).

Lemma 1. For every causally conditional distribution on the
input sequences{X1,i}n

i=1, . . . , {XN,i}n
i=1 satisfying (4) we

have

I(Xn(S) → Y n) ≤ 1

N − 1

N
∑

j=1

I(Xn(S\{j} → Y n||Xn
j ).

(8)

Proof: See Section III.
Moreover, since the channel is memoryless:

I(Xn(S) → Y n) =

n
∑

i=1

I(Xi(S); Yi|Y i−1) (9)

and

I(Xn(S\{j}) → Y n||Xn
j )

≤
∑

i=1n

I(Xi(S\{j}); Yi|Y i−1, Xji), (10)

where the last inequality comes from the fact that condition-
ing reduces entropy. Combining (8), (9), (10), we obtain the
dependence balance bound as in [6]:

n
∑

i=1

I(Xi(S); Yi|Y i−1)

≤ 1

N − 1

N
∑

j=1

n
∑

i=1

I(Xi(S\{j}); Yi|Y i−1, Xji), (11)



which we refer to as the dependence balance bound (DBB)
in the proof.

Since, for any distribution of the form (4) the bound given
in (11) holds,Cn is equal to the solution of the following
optimization problem

maximize
1

n

n
∑

i=1

I(Xi(S); Yi|Y i−1) (12)

subject to Xji = Vji + Lji(Y
i−1)

n
∑

i=1

E(X2
ji) ≤ nPj , j ∈ {1, . . . , N}

DBB(11)

SinceV n(S) are Gaussian andLji’s are linear,(Xn(S), Y n)
are jointly Gaussian and we can replace the mutual infor-
mation terms by functions of the covariance matrixKi :=
KXi(S) as follows.

C1(Ki) :=
1

2
log
(

1 +
∑

j,j′

Ki(j, j
′)
)

= I(Xi(S); Yi|Y i−1) (13)

and

C2(Ki) :=

1

2(N − 1)

N
∑

j=1

log






1 +

∑

j′,j′′

Ki(j
′, j′′) −

(

∑

j′ Ki(j, j
′)
)2

Ki(j, j)







=
1

N − 1

N
∑

j=1

I(Xi(S\{j}); Yi|Y i−1, Xj,i). (14)

Substituting (13) and (14) in (12) and removing the func-
tional relationshipXji = Vji + Lji(Y

i−1) from the opti-
mization problem we have

Cn ≤ p∗,

wherep∗ is the solution to the following problem.

P : maximize 1
n

∑n
i=1 C1(Ki)

subject to Ki � 0, i ∈ {1, . . . , n},
∑n

i=1 Ki(j, j) ≤ nP, j ∈ {1, . . . , k},
∑n

i=1 C1(Ki) − C2(Ki) ≤ 0.

We prove the following lemma for problemP .

Lemma 2. The solutionp∗ to the optimization problemP
satisfies

p∗ ≤ C1(P, φ(P )) = C2(P, φ(P )),

whereφ(P ) ∈ [1, N ] is the unique solution to

C1(P, φ(P )) = C2(P, φ(P )).

Proof:
We form the dual problem using equal Lagrange multipli-

ersλj = λ ≥ 0, j ∈ {1, . . . , N} for theN power constraints

and γ ≥ 0 for the DBB. Then, by weak duality, we have
p∗ ≤ U(λ, γ), where

U(λ, γ) = max
K�0

(1 − γ)C1(K) + γC2(K) + λ

N
∑

j=1

(P − Kjj).

(15)

Next, we show that there exists an optimal matrixK of the
following form.

K = x ·















1 ρ ρ . . . ρ
ρ 1 ρ . . . ρ
ρ ρ 1 . . . ρ
...

...
...

. . .
...

ρ ρ ρ . . . 1















. (16)

This form of K was also considered in [10], [4]. However,
in those cases the objective function was concave. Here, we
show that although(15) is not in general concave inK it is
still sufficient to look at matrices of the form (16).

To show the sufficiency of matrices of the form in (16),
we fix an arbitrary matrixK ′ (not necessarily as in (16)).
Then, we construct a matrix̄K of the form in (16) and such
that

(1 − γ)C1(K̄) + γC2(K̄) + λ

N
∑

j=1

(P − K̄jj)

≥ (1 − γ)C1(K
′) + γC2(K

′) + λ
N
∑

j=1

(P − K ′
jj). (17)

To this end, we consider for each permutationπ on the
indices{1, . . . , N} the matrix that is obtained by permuting
the rows and the columns ofK ′ according to the permutation
π, and denote this matrix byπ(K ′). By symmetry, it is easily
seen that for each permutationπ:

(1 − γ)C1(π(K ′)) + γC2(π(K ′)) + λ

N
∑

j=1

(P − π(K ′)jj)

= (1 − γ)C1(K
′) + γC2(K

′) + λ
N
∑

j=1

(P − K ′
jj).

Now consider all N ! possible permutations on the set
{1, . . . , N} and denote them byπ1, . . . , πN !. Then, consider
the arithmetic average over the corresponding permuted
matrices:

K̄ :=
1

N !

N !
∑

`=1

π`(K
′).

SinceC1(K) and
∑N

j=1 Kjj are functions only of the sum
of the entries ofK and sinceC2(K) is concave inK (see
Lemma 5), it follows that this arithmetic average satisfies
(17). Since the matrixK̄ is also of the form in (16) this
establishes the desired sufficiency of the matrices in (16).



Thus, we can continue our analysis with matrices of the
form in (16), and define

C1(K) = C1(x, φ) :=
1

2
log(1 + Nxφ)

C2(K) = C2(x, φ) :=
N

2(N − 1)
log(1 + (N − φ)xφ),

whereφ := 1 + (N − 1)ρ. We know thatρ > −1/(N − 1),
so φ ≥ 0 and we have

U(λ, γ) = max
x

max
0≤φ≤N

g(γ, x, φ) + λN(P − x),

where

g(γ, x, φ) := (1 − γ)C1(x, φ) + γC2(x, φ).

By Lemma 6, for fixedx, γ ≥ 0, g(γ, x, φ) is concave inφ
and the maximum happens atφ∗(γ, x) > 0 such that

(1 − γ)(N − 1)

1 + Nxφ∗
=

γ(2φ∗ − N)

1 + xφ∗(N − φ∗)
,

which is equivalent to the condition that the first derivative
is zero. Hence,

U(λ, γ) = max
x

g(x, φ∗(γ, x)) + λN(P − x),

Recall thatU(λ, γ) is an upper bound forRsum, for any
γ, λ ≥ 0. Hence, for anyγ ≥ 0 we have

Rsum ≤ min
λ≥0

U(λ, γ)

= min
λ≥0

max
x

g(x, φ∗(γ, x)) + λN(P − x).

To evaluate the last expression we use the following lemma.

Lemma 3. Let γ, x ≥ 0 andφ∗(γ, x) > 0 be the solution to

(1 − γ)(N − 1)

1 + Nxφ
=

γ(2φ − N)

1 + xφ(N − φ)
. (18)

Then,

g(x, φ∗(γ, x)) = (1−γ)C1(x, φ∗(γ, x))+γC2(x, φ∗(γ, x)),

is concave inx.

Proof: See Section III.
Sinceg(x, φ∗(γ, x)) is concave inx and is unbounded as

x → ∞ we have

min
λ≥0

max
x

g(x, φ∗(γ, x)) + λN(P − x) = g(P, φ∗(γ, P )).

This is true sinceminλ≥0 maxx g(x, φ∗(γ, x))+λN(P −x)
is the dual problem of

maximize g(x, φ∗(γ, x))

subject to x ≤ P,

which is a convex optimization (concave maximization) [1]
for which Slater’s condition is satisfied, hence, strong duality
holds. Also, since the objective is unbounded for largex the
optimum of the dual problem can not happen atλ = 0 and
by complementary slackness condition the optimum happens
at x = P . Therefore,minλ≥0 U(λ, γ) = g(P, φ∗(γ, P )) and

Rsum ≤ g(P, φ∗(γ, P )), ∀γ ≥ 0.

It remains to find the properγ. We use the following
lemma.

Lemma 4. Let

C1(x, φ) =
1

2
log( 1 + Nxφ )

C2(x, φ) =
N

2(N − 1)
log( 1 + (N − φ)xφ ),

Then for everyx > 0, there exists a uniqueφ(x) satisfying
C1(x, φ) = C2(x, φ). Moreover,

1 +
(2φ(x) − N)(1 + Nxφ(x))

(N − 1)(1 + xφ(x)(N − φ(x)))
> 0. (19)

Proof: See Section III.

Let 1 ≤ φ(P ) ≤ N be the unique solution forC1(P, φ) =
C2(P, φ). Then, by (19) it is always possible to pickγ∗ ≥ 0
such thatγ∗, P, φ(P ) satisfy (18) and forγ = γ∗ we have
φ∗(γ∗, P ) = φ(P ). Then, we have

Rsum ≤ g(P, φ∗(γ∗, P ))

= (1 − γ∗)C1(P, φ∗(γ∗, P )) + γ∗C2(P, φ∗(γ∗, P ))

= (1 − γ∗)C1(P, φ(P )) + γ∗C2(P, φ(P )) (20)

= C1(P, φ(P )), (21)

where (20) and (21) follow fromφ∗(γ∗, P ) = φ(P ) and
C1(P, φ) = C2(P, φ), respectively. This completes the proof
of the upper bound.

III. PROOF OF THELEMMAS

Lemma 1. For every causally conditional distribution on
the input sequences{X1,i}n

i=1, . . . , {XN,i}n
i=1 satisfying

p(xn
1 , . . . , xn

N ||yn−1) =

n
∏

i=1

N
∏

j=1

p(xji|xi−1
j , yi−1) (22)

we have

I(Xn(S) → Y n) ≤ 1

N − 1

N
∑

j=1

I(Xn(S\{j}) → Y n|Xn
j )

(23)



Proof: Consider

I(Xn(S) → Y n) −
N
∑

j=1

I(Xn
j → Y n)

=
[

n
∑

i=1

h(Xi(S)|X i−1(S), Y i−1) + h(X i−1(S)|Y i−1)

− h(X i(S)|Y i)
]

−
[

N
∑

j=1

n
∑

i=1

h(Xji|X i−1
j , Y i−1)

+ h(X i−1
j |Y i−1) − h(X i

j |Y i)
]

=





n
∑

i=1

h(Xi(S)|X i−1(S), Y i−1) −
N
∑

j=1

h(Xji|X i−1
j , Y i−1)





+

N
∑

j=1

h(Xn
j |Y n) − h(Xn(S)|Y n) (24)

=
N
∑

j=1

h(Xn
j |Y n) − h(Xn(S)|Y n), (25)

≥ 0 (26)

where the last inequality holds since conditioning reduces
entropy and (24) follows form the fact that for any distribu-
tion of the form (22) the bracket term in (24) is zero. Hence,
we have

I(Xn(S) → Y n) −
N
∑

j=1

I(Xn
j → Y n) ≥ 0

Adding(N−1)I(X(S) → Y n) to both sides and rearranging
terms using the chain rule of directed information we have

I(Xn(S) → Y n) ≤ 1

N − 1
I(Xn(S\{j}) → Y n||Xn

j ).

(27)

Lemma 3. Let γ, x ≥ 0 and φ∗(x) > 0 be the solution
to

(1 − γ)(N − 1)

1 + Nxφ
=

γ(2φ − N)

1 + xφ(N − φ)
. (28)

Then,

g(x, φ∗(x)) = (1 − γ)C1(x, φ∗(x)) + γC2(x, φ∗(x)),

is concave inx.
Proof: If 0 ≤ γ ≤ 1 the concavity is immediate since

we knowC1(K) andC2(K) are concave inK. For γ > 1
let

g(x, φ) := (1 − γ)C1(x, φ) + γC2(x, φ).

where

C1(x, φ) = log(1 + Nxφ)

C2(x, φ) =
N

N − 1
log(1 + xφ(N − φ)).

Consider
max

x
max

φ
g(x, φ)

For a fixedx the objective is concave inφ. Setting the first
derivative with respect toφ we have

(1 − γ)(N − 1)

1 + Nxφ
=

γ(2φ − N)

1 + xφ(N − φ)
. (29)

or

aφ2 + bφ + c = 0, (30)

where

a = (N + γ − 1 + γN)x

b = −N(N + γ − 1)x + 2γ

c = −(N + γ − 1)

Sinceac < 0, there is only one positive solution

0 < φ∗(x) =
−b +

√
b2 − 4ac

2a
<

N

2
, (31)

where the last inequality follows form (29) and the fact that
γ > 1.

Monotonicity: For γ > 1 andx ≥ 0, φ∗(x) is increasing
in x and

φ∗(x) ≥ N + γ − 1

2γ
.

From (29) we haveφ∗(0) = N+γ−1
2γ

. Taking the derivative
of (30) with respect tox we have

dφ∗

dx
=

−φ∗(a′φ∗ + b′)

2aφ∗ + b
, (32)

wherea′ = N + γ − 1 + γN, b′ = −N(N + γ − 1) are
derivatives ofa, b with respect tox. From (31) we know
2aφ∗ + b > 0. We need to showa′φ∗ + b′ ≤ 0. Note that

dφ∗

dx
= 0 ⇐⇒ φ∗ = −b′/a′,

and φ∗(∞) = − b′

a′
. For γ > 1, we can showφ∗(0) <

−b′/a′. Therefore,

dφ∗

dx

∣

∣

∣

x=0
> 0.

Hence, we can concludeφ∗(x) ≤ − b′

a′
for all x ≥ 0. The

reason is that if we start withφ∗ < −b′/a′ and φ∗ wants
to become larger than−b′/a′, the first derivative has to be
positive atφ∗ = −b′/a′, which can not happen.

Concavity: Let f(x) := g(x, φ∗(x)). For x ≥ 0, f(x) is
concave and

df(x)

dx
=

N(γ − 1)(φ∗(x))2

(1 + Nxφ∗(x))(N − 2φ∗(x))
≥ 0.

We have

df(x)

dx
=

∂g(x, φ)

∂x
+

∂g(x, φ)

∂φ

dφ

dx

∣

∣

∣

x,φ∗(x)

From the definition ofφ∗(x) we know

∂g(x, φ)

∂φ

∣

∣

∣

x,φ∗(x)
= 0.



Hence,

df(x)

dx
=

∂g(x, φ)

∂x

∣

∣

∣

x,φ∗(x)

= (1 − γ)
Nφ

1 + Nxφ
+ γ · N

N − 1
· φ(N − φ)

1 + xφ(N − φ)

∣

∣

∣

x,φ∗(x)

=
Nφ

1 + Nxφ

(

1 − γ + γ · N − φ

N − 1
· 1 + Nxφ

1 + xφ(N − φ)

)

∣

∣

∣

x,φ∗(x)

=
N(γ − 1)(φ∗(x))2

(1 + Nxφ∗(x))(N − 2φ∗(x))
(33)

≥ 0,

where (33) follows from the fact thatφ∗(x) satisfies (29)
and the last inequality holds sinceφ∗(x) < N

2 .
To prove the concavity off(x) we show that

d2f(x)

dx2
< 0.

From (33) we have

df(x)

dx
= N(γ − 1)f̃(x),

where

f̃(x) := h(x, φ∗(x))

h(x, φ) :=
φ2

(1 + Nxφ)(N − 2φ)
.

Therefore it is enough to show that

f̃(x)

dx
< 0.

Consider

df̃(x)

dx
=

∂h(x, φ)

∂x
+

∂h(x, φ)

∂φ

dφ

dx

∣

∣

∣

x,φ∗(x)

=
−Nφ3

(1 + Nxφ)2(N − 2φ)
+

φ(N2xφ + 2(N − φ))

(1 + Nxφ)2(N − 2φ)2
dφ

dx

∣

∣

∣

x,φ∗(x)

= φ ·
dφ
dx

(

N2xφ + 2(N − φ)
)

− Nφ2(N − 2φ)

(1 + Nxφ)2(N − 2φ)2

∣

∣

∣

x,φ∗(x)

Sinceφ > 0 and the denominator is also positive we need
to show

dφ∗(x)

dx
<

Nφ2(N − 2φ)

N2xφ + 2(N − φ)

∣

∣

∣

∣

∣

x,φ∗(x)

(34)

For the rest of the proof, with abuse of notation, we alter-
natively useφ for φ∗(x), the positive solution of (29). From
(32) we have

dφ∗(x)

dx
=

−φ2(a′φ + b′)

2aφ2 + bφ

=
−φ2(a′φ + b′)

aφ2 − c
,

Defining

α :=
N + γ − 1

N
,

we havea = N(α+γ)x, b = −N2αx+2γ, c = −αN, a′ =
N(α + γ), b′ = −N2α, and

dφ∗(x)

dx
=

−φ2(a′φ + b′)

aφ2 − c
,

=
Nφ2(Nα − (α + γ)φ)

(α + γ)Nxφ2 + αN

=
Nφ2(N − βφ)

βNxφ2 + N
, (35)

where

β := 1 +
γ

α
.

It is not hard to see thatβ ∈ (2, N +1
)

for γ > 1. Plugging
(35), (34) becomes equivalent to

N − βφ

N − 2φ
<

βNxφ2 + N

N2xφ + 2(N − φ)

⇐⇒ N − βφ

N − 2φ
<

N − βφ + βφ(Nxφ + 1)

N − 2φ + N(Nxφ + 1)

⇐⇒ N − βφ

N − 2φ
<

βφ

N
, (36)

where (36) follows from the fact that forb, d > 0,

a

b
<

c

d
⇔ a

b
<

a + c

b + d
. (37)

Noting thatβ > 2 and using (37) withc = d = 2φ, we can
see that to prove (36) it is sufficient to show

N − (β − 2)φ

N
≤ βφ

N

⇐⇒ N + γ − 1

2γ
≤ φ,

which holds by the first part.
Lemma 4. Let

C1(x, φ) =
1

2
log( 1 + Nxφ )

C2(x, φ) =
N

2(N − 1)
log( 1 + (N − φ)xφ ),

Then for everyx > 0, there exists a uniqueφ(x) satisfying
C1(x, φ) = C2(x, φ). Moreover,

1 +
(2φ(x) − N)(1 + Nxφ(x))

(N − 1)(1 + xφ(x)(N − φ(x)))
> 0. (38)

Proof: Let f(φ) = C2(x, φ)−C1(x, φ). We prove there
exists a unique solution by showingf(1) ≥ 0,f(N) < 0,
and f ′(φ) < 0 for 1 ≤ φ ≤ N . The fact thatf(N) < 0 is
immediate. Conditionf(1) ≥ 0 is equivalent to

(

1 + x(N − 1)
)N

≥
(

1 + Nx
)N−1

.

For the above condition to hold it is sufficient that
(

n

N

)

(N − 1)k ≥
(

N − 1

k

)

Nk, (39)



which is true since(1 − 1/N)k ≥ 1 − k/N for N > 1.
Finally, we need to showf ′(φ) < 0 which is equivalent to

N − 2φ

1 + xφ(N − φ)
− N − 1

1 + Nxφ
< 0. (40)

Rearranging the terms we have

1 + Nxφ − (2φ + xφ2 + Nxφ2) < 0,

which holds for anyφ ≥ 1. This shows that there exists a
unique solution. Also, note that (40) is same as condition
(38) which we wanted to prove.

Lemma 5. Let X = X1, . . . , XN ∼ N(0, K), X(T ) :=
{Xj : j ∈ T }. Also, let Am×|T | be an arbitrary matrix

and I =

(

Im×m 0
0 0

)

. Then log
(

|I+KAX(T ),X(T c)|

|KX(T c)|

)

is

concave in covariance matrixK for all T ⊆ {1, . . . , N}.

Proof: The proof is similar to Bergstrøm’s theorem [2,
Theorem, 17.10.1]. LetY = AX + Z, whereXθ, P(θ =
1) = λ = 1 − P(θ = 2), X1 ∼ N(0, K1), X2 ∼ N(0, K2),
Z = {Z1, . . . , Zm} are i.i.d.N(0, 1). AssumeZ, X1, X2, θ
are independent. The covariance matrix ofX is given by
K = λK1 + (1 − λ)K2. Consider

λ

2
log

( |I + KAX1(T ),X1(T c)|
|KX1(T c)|

)

+
(1 − λ)

2
log

( |I + KAX2(T ),X2(T c)|
|KX2(T c)|

)

=
λ

2
log

( |KY1(T ),X1(T c)|
|KX1(T c)|

)

+
(1 − λ)

2
log

( |KY2(T ),X2(T c)|
|KX2(T c)|

)

= λ(h(Y1(T )|X1(T
c)) − h(Z)

+ (1 − λ)(h(Y2(T )|X2(T
c)) − h(Z)) (41)

= h(Yθ(T )|Xθ(T
c), θ) − h(Z)

≤ h(Y (T )|X(T c)) − h(Z)

=
1

2
log

|KY (T ),X(T c)|
|KX(T c)|

(42)

=
1

2
log

|I + KAX(T ),X(T c)|
|KX(T c)|

.

where (41) and (42) come form the fact thatY (T ) is a linear
combination ofX(T ) andZ, hence is jointly Gaussian with
X(T c).

Lemma 6. Let

C1(K) =
1

2
log
(

1 +
∑

m,l

Kml

)

C2(K) =
1

2(N − 1)

N
∑

j=1

log
(

1 +
∑

m,l

Kml −
(
∑

l Kml)
2

Kjj

)

and the elements on the diagonal ofK be fixed. Then

f(γ, K) := (1 − γ)C1(K) + γC2(K)

is concave inK for any fixedγ ≥ 0.

Proof: Let X = X1, . . . , XN ∼ N(0, K) and Y =
∑

j Xj + Z, whereZ is independent ofX1, . . . , XN . Then

f(γ, K) = (1 − γ)C1(K) + γC2(K)

(1 − γ)h(Y ) +
γ

N − 1

N
∑

j=1

h(Y |Xj)

= (1 − γ)h(Y ) +
γ

N − 1

N
∑

j=1

h(Y ) + h(Xj |Y ) − h(Xj)

= h(Y )(1 +
γ

N − 1
) +

γ

N − 1

N
∑

j=1

h(Xj |Y ) − h(Xj).

We know thath(Y ) andh(Xj |Y ) are concave inK. If the
diagonal ofK are fixed thenh(Xj) = 1

2 log(2πeKjj) is also
fixed and as long asγ ≥ 0, f(γ, K) is concave inK.
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