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Multiple-Access Channel (MAC): Many-to-One
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No transmitter cooperation (classical MAC)

» Each transmitter knows only its own message
» Joint code design

» Time-sharing



Multiple-Access Channel (MAC): Many-to-One
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Full transmitter cooperation
» Both transmitters know both messages

» Joint encodings of messages



Multiple-Access Channel (MAC): Many-to-One
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In this talk: partial transmitter cooperation

1. MAC with conferencing encoders (e.g. closely located transmitters)
> Before transmission, Txs communicate over rate-limited bit-pipes
> Txs can communicate parts of their messages to other Tx

» = Txs can cooperate based on pipe-outputs



Multiple-Access Channel (MAC): Many-to-One
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In this talk: partial transmitter cooperation

2. MAC with imperfect feedback (e.g. uplink/downlink scenarios)
> Txs observe (noisy) feedback from channel outputs
» Cooperation? Past channel outputs give information about both messages

> = Txs can cooperate in future transmissions



Capacity Region for Two-User MAC

> My ~U{L,..., 2"}, My ~U{L, ..., |27}
» n: block-length of transmission

» Ri, Rsy: rates of transmission

» Capacity C: closure of set of pairs Ry
(Ry, Ry) for which 3 block-length n

schemes such that

p(error) — 0 n — oo.

Ry



Additive White Gaussian Noise (AWGN) MAC
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> {Z,} ~ 1ID N(0,N)

» Power constraints: LS EX2 ] <P, ve{l,2}



Additive White Gaussian Noise (AWGN) MAC
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No transmitter cooperation (classical MAC)
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Additive White Gaussian Noise (AWGN) MAC
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Full transmitter cooperation

C:FuIICoop = {(R17 RQ) :

CA) = Receiver (J\}[17 M2)
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What about Partial Transmitter Cooperation?

Goal: Capacity of settings with partial transmitter cooperation!

v

C:NoCoop - CPartiaICoop - CFuIICoop

2

Are inclusions strict?

v

. CFuIICoop
» Does partial coop. help at all?

CPartiaICoop

v

Is partial coop. ~ full coop.?
C:Nc:Cocxp

= Important design issues Ry

» We consider two scenarios:

» AWGN MAC with Conferencing Encoders
» AWGN MAC with Feedback



Part 1:

AWGN MAC with Conferencing Encoders



AWGN MAC with Conferencing Encoders
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1. phase: Conference (Willems'83):

> k sequential uses of the perfect bit-pipes

> Vig =M1 (M V)

» Rate-limitations:

Zlog |V1,k|

k=1

S TLClQ and

Voo = £33 (Mo, V)

(M, M)

Z log |V2,k| S n021
k=1



AWGN MAC with Conferencing Encoders

— Transmitter 1
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2. phase: Transmission over channel

X1t = 90%) (M1, V")

Receiver
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Main Result for Conferencing Encoders

Theorem 1: Capacity region of AWGN MAC with Conferencing Encoders
CConf =
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Main Result for Conferencing Encoders

Theorem 1: Capacity region of AWGN MAC with Conferencing Encoders
Coconf =

Ry < 3 log 1+M +Cly
Ry, < 1log 1+M 1+ Oy
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Main Result for Conferencing Encoders
Theorem 1: Capacity region of AWGN MAC with Conferencing Encoders
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If Ci1o>00r Cy >0
Ceconf CNoCoop C CConf

strictly!




Main Result for Conferencing Encoders
Theorem 1: Capacity region of AWGN MAC with Conferencing Encoders
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Achievability (Inner Bound)

> Transmitters split messages: My = (M ., My ,) and My = (M ., M ;)

> Conference: Transmitters exchange M . and Ms . over bit-pipes

v

Rate of M; . < Ci2 and rate of My . < U

v

Transmitters use Gaussian codebooks and add up codewords for
transmission over AWGN MAC

» Successive decoding at the receiver

No superposition encoding and joint decoding necessary!
= easier than Willems's scheme



Converse (Outer Bound)
» Converse as in Willems'83, but accounting for power constraints:
CConf g U RX17U7X2

X1—o—U-—o—Xo
E[X7]<P1, E[X3]|<P;

where
Rl S I(X17Y|X2U) +012
A . R2 S I(XQ;Y|X1U) +021
RX1,U,X2 - (R17R2) . R1+R2 § I(XlXQ,Y|U) +012 +021
R1 + RQ S I(XlXQ,Y)

Propose technique to prove:

Suffices to take union over Gaussian Markov Triples XY —oUY%—o—XJ

Traditional Max-Entropy techniques fail because of Markov condition!



Technique also Applies to Cover-Leung Region
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Achievable region for AWGN MAC with perfect partial or perfect feedback

Ri < I(X1;Y]XoU)
RcL = U (R17R2) : Ry < I(X2§Y|X1U)
X1 —o—U—o—X Ri+ Ry < I(X1Xy;Y)
E[x?]<Pi,
E[x3]<P;

Suffices to take union over Gaussian Markov triples X{ —o—U9—o—X7§!



Technique also Applies to Slepian-Wolf Region
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Capacity region for AWGN MAC with common message
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Suffices to take union over Gaussian Markov triples Xlg—o—Ug—o—X2g!



Dirty-Paper MAC with Conferencing Encoders
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» Transmitters know interference S™ £ (S1,...,S,) non-causally

» Inputs X £ (X, 1,...,X,.) at Transmitter v:

Xil = (pgm (Mh V2H7Sn)
ng = (Pén) (MQ, V1N7Sn)



Dirty-Paper MAC with Conferencing Encoders
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2 Settings:

» Transmitters learn S™ before the conference
> Vie= F00 VIS and Ve = £ (Ma, VT8

» Transmitters learn S™ after the conference



Interference acausally known at Txs can perfectly be
canceled
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Theorem 2
For two-user Gaussian MAC with conferencing encoders:

CInt,bel"ore = CInt,after = CConfa VQ > 07

if interference known non-causally at both encoders.



Part 2:

AWGN MAC with Feedback



AWGN MAC with Perfect Feedback
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» Transmitters observe perfect causal output feedback:

Xu,t =@
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(n)

v e {l1,2}.

(MlvMQ)



AWGN MAC with Perfect Feedback
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AWGN MAC with Noisy Feedback
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> Noisy feedback:

Vv,t :Y;f'i‘Wu,t; {(Wl,hWZ,t)} ~ “DN(Ov KW1W2)3 Ve {172}

» Transmitters observe noisy feedback:

Xot = @0 (M), Vit Vi), v e {1,2).



AWGN MAC with Noisy Feedback
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> ChoisyFB = ?

CFuIICoop

> ChnoCoop € ChioisyFB C CherfectF

. . . CherfectFB
» Are inclusions strict? eree
> Previous schemes collapse to Cnocoop CioisyFB

if fb-noise variances too large
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Noisy or Perfect Partial Feedback to Tx 2
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» Noisy partial feedback: Vo =Y, + Way, {Wa,} ~1ID N(0,03)
» Transmitter 1 has no feedback: Xt = gpgrft)(Ml)
» Transmitter 2 observes noisy feedback:

Xop = @é’ft) (M2, Vaiy ..oy, Vapo1),

v

03 = 0: perfect partial feedback



Noisy or Perfect Partial Feedback to Tx 2
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> CNoisyPartiaIFB =
CFuIICoop
> CNoCoop - CNoisyPartiaIFB C CPerfectFB
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» Are inclusions strict? PerfectFB
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Main Results for Noisy Feedback

Theorem 3a: Noisy feedback is always beneficial!
» Noisy feedback always increases capacity region

> Fixed Py, Py, N > 0: ChoCoop C Chroisyrs, ¥V Kw,w, = 0.

Inclusion is strict!

Theorem 4: Almost-perfect feedback = perfect feedback!
» Capacity with noisy feedback converges to perfect-feedback capacity

> Fixed P, Py, N >0
C|( U ﬂ Chroisyra(P1, P2, N, K)) = Chrerfectra (P1, P2, N)

02>0K: tr(K)<o?2



Main Results for Partial Feedback

Theorem 3b: Noisy partial feedback is always beneficial!
> Noisy partial feedback always increases capacity region

» Fixed P, P>, N > 0:
1,2, = CNoCoop C CNoisyPartialFBv v U% > 0.

Inclusion is strict!

Theorem 5: Perfect partial-feedback capacity # Cover-Leung region!
(Answer to van der Meulen)

> Perfect partial-feedback capacity > Cover-Leung region



Robust Noisy-Feedback Scheme: Concatenated Structure
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Inner Channel, n channel uses of ongmal channel

> Inner Encoders/Decoder: (Exploit Feedback)

> Use feedback
> Use original channel 7 times per fed symbol
> Generalize Ozarow's perfect-feedback scheme; linear encodings/decodings

» Outer Encoders/Decoder: (Robustify Inner Scheme)

> Ignore feedback
> Use inner channel once every i channel uses of original channel
> Code to achieve capacity of inner channel



Summary
» AWGN MAC with conferencing encoders

> Determined capacity region
» Conference always increases capacity
> New technique for proving opt. of Gaussians under a Markovity constraint

> Acausally known interference at both txs can perfectly be canceled

» AWGN MAC with imperfect feedback

> Robust noisy-feedback scheme
> Feedback always increases capacity region, even if very noisy or only partial
» Almost-perfect feedback = perfect feedback

» Cover-Leung region # perfect partial-feedback capacity (answer to v.d.
Meulen)
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