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Dirty-Paper Coding for the Gaussian Multiaccess
Channel With Conferencing
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Abstract�—We derive the capacity region of the two-user dirty-
paper Gaussian multiaccess channel (MAC) with conferencing en-
coders. In this MAC, prior to each transmission block, the trans-
mitters can hold a conference in which they can communicate with
each other over error-free bit pipes of given capacities. The re-
ceived signal suffers not only from additive Gaussian noise but
also from additive interference, which is known noncausally to the
transmitters but not to the receiver. The additive interference is
modeled as Gaussian or uniform over a sphere. We show that the
interference can be perfectly mitigated, i.e., that the capacity re-
gion without interference can also be achieved in its presence. This
holds irrespective of whether the transmitters learn the interfer-
ence before or after the conference. It follows as a corollary that
also for the MAC with degraded message sets, the interference
can be perfectly mitigated if it is known noncausally to the trans-
mitters. To derive our results, we generalize Costa�’s single-user
writing-on-dirty-paper achievability result to channels with depen-
dent interference and not-necessarily Gaussian noise.

Index Terms�—Capacity, coding over spheres, conferencing en-
coders, interference, multiaccess channel, writing on dirty paper.

I. INTRODUCTION

W E consider a multiaccess channel (MAC), where two
transmitters wish to communicate with a common re-

ceiver. Prior to each transmission block, the transmitters can
hold a conference, i.e., they can communicate with each other
over noise-free bit pipes of given capacities. Special cases of
this setting are the classical MAC where the transmitters are
completely unaware of each other�’s message�—corresponding
to bit pipes of zero capacity; the fully cooperative MAC�—cor-
responding to bit pipes of innite capacity; and the MAC with
degraded message sets, where one of the encoders is fully cog-
nizant of the message the other encoder wishes to send�—corre-
sponding to the pipe from the cognizant transmitter to the nonc-
ognizant transmitter being of zero capacity and the other pipe
being of innite capacity.
Our setting is known as MAC with conferencing encoders. It

was introduced by Willems [24], who also derived its capacity
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region for discrete memoryless channels. The capacity region of
the Gaussian MAC with conferencing encoders was presented
in [1].
In this paper, we consider the Gaussian MAC with confer-

encing encoders where the received signal is also corrupted by
independent additive interference that is known noncausally
to both transmitters but not to the receiver. The interference
is assumed to be uniformly distributed over a sphere. For this
scenario, we derive a result in the spirit of Costa [3], i.e., we
show that, although the receiver is not informed of the inter-
ference, the capacity region of the network with interference
equals the capacity region of the network without interference.
This result holds irrespective of whether the transmitters learn
the interference before or after the conference. Moreover,
it also holds when�—instead of being uniformly distributed
over a sphere�—the interference is memoryless and Gaussian.
Therefore, our result recovers as a special case Gel�’fand
and Pinsker�’s writing-on-dirty-paper result for the Gaussian
MAC (without conferencing) [7]. The result also yields a
writing-on-dirty-paper result for the MAC with degraded mes-
sage sets where one transmitter knows both messages and the
other only one.
Our achievability results utilize the Cohen and Lapidoth

single-user writing-on-dirty-paper scheme [2]. As in their work,
our achievability results do not depend on the Gaussianity of
the noise but only on its ergodicity. Thus, our achievability
results hold for any stationary and ergodic (not-necessarily
Gaussian) noise of second moment .
To describe our coding scheme, it is useful to think about

Transmitter 1�’s message as comprising two parts: Transmitter
1�’s private message and its common message. Likewise for
Transmitter 2. We refer to the pair comprising Transmitter 1�’s
common message and Transmitter 2�’s common message as
�“the common message.�”
Our scheme consists of two stages. In the rst stage, the trans-

mitters use the bit pipes as in Willems�’s scheme [24] to ex-
changes messages. During this stage, Transmitter 1 reveals its
common message to Transmitter 2, and Transmitter 2 reveals
its common message to Transmitter 1. At the end of this stage,
the common message is thus known to both transmitters; Trans-
mitter 1�’s private message is known only to Transmitter 1, and
Transmitter 2�’s private message is known only to Transmitter 2.
Since in this stage, the transmitters do not use their knowledge
of the interference sequence, our achievability results hold irre-
spective of whether the transmitters learn the interference before
or after the conference.
In the second stage, the transmitters send the common mes-

sage and the private messages over theMAC to the receiver. The
transmission at this stage is as follows. To convey the common
message, the transmitters agree, prior to communication, on an
encoding scheme à la Cohen and Lapidoth but properly scaled

0018-9448/$31.00 © 2012 IEEE



BROSS et al.: DIRTY-PAPER CODING FOR THE GAUSSIAN MULTIACCESS CHANNEL WITH CONFERENCING 5641

to account for the power that each of them allocates to the trans-
mission of the common message. To convey their private mes-
sages, they choose independent Cohen and Lapidoth encoding
rules. Each transmitter encodes its private message and encodes
the common message using the above schemes and then trans-
mits a linear combination of the schemes�’ outputs. Since the
transmitters use the same rule to encode the common message
(except for some scaling), the channel combines the codewords
corresponding to the common message coherently.
The receiver performs successive decoding and stripping:

rst it decodes the common message, and then it decodes the
private messages. The order in which it decodes the private
messages depends on the rate-pair. In each of the successive
decoding steps, the receiver uses a nearest neighbor decoding
rule à la Cohen and Lapidoth to decode its desired message and
treats the effect of the messages it has not yet decoded as �“ad-
ditional noise.�” This �“additional noise�” is, alas, not Gaussian.
Trickier still is that the way the as-of-yet-undecoded messages
affect the received signal depends on the interference, so the
�“additional noise�” and the interference are not independent. To
analyze our scheme, we thus need to generalize the Cohen and
Lapidoth achievability result to the case where the noise can
depend (in a controlled way) on the interference.
The single-user dirty-paper channel with dependent noise and

interference has been previously studied in the case where the
interference and the noise are jointly Gaussian [12] and of arbi-
trary correlation. But for our analysis, we must study the case
where the noise is not Gaussian. Our analysis thus treats chan-
nels with non-Gaussian noise, but where the interference and
the noise are nearly orthogonal with very high probability (for
sufciently large blocklengths). Thus, neither of the two results
implies the other. In fact, the tools used to derive the two results
could be combined to treat more general channels.
Related multiaccess setups with conferencing encoders have

recently been studied in [23] and [13].1 In these works, it
is assumed that the output is corrupted by two interference
sequences, each of which is known to a different transmitter.
These results show that when the two transmitters know dif-
ferent parts of the interference, then during the conferencing
phase they should also exchange information about the inter-
ference. Unlike our scenario, in these scenarios, the capacity
region depends on whether the transmitters learn the inter-
ference before or after the conferencing. Multiaccess setups
without conferencing where both transmitters know only parts
of the interference were also studied in [9], [10], [14]�–[16],
[19]�–[21], and [27].
The rest of this paper is organized as follows. In Section II, we

introduce some notation. In Section III, we describe the dirty-
paper MAC with conferencing encoders in detail; we present
the capacity region of this channel; and we prove (also based
on the scheme in Section VI) our capacity result. In Section IV,
we describe the generalized single-user dirty-paper channel and
present our results pertaining to this channel. In Section V, we
recall the single-user dirty-paper scheme from [2] and extend
its analysis. Finally, in Section VI, we describe and analyze a
1The work in [13] assumes that also the receiver is cognizant of the interfer-

ences.

capacity-achieving scheme for the dirty-paper MAC with con-
ferencing encoders.

II. NOTATION
Random variables are denoted by capital letters and their re-

alizations by lowercase letters. Vectors are denoted by bold let-
ters: random vectors by uppercase bold letters, and deterministic
vectors by lowercase bold letters. Sets and events are denoted
by calligraphic letters. The notation stands for the -tuple

. The transpose of a vector is denoted by ; its
Euclidean norm by ; and the Euclidean inner product of two
vectors and by . The set of real numbers is denoted
by and its -fold Cartesian product by ; the set of positive
integers is denoted by . For a real number , we use
to denote . Throughout the paper, denotes the

logarithm to the base 2.
An -sphere of radius centered at is the set of

all vectors satisfying

When the center of the sphere is the origin , we call it a
centered sphere, and when the radius of the sphere is 1, we call
it a unit sphere.
For every vector on the centered unit -sphere, the spher-

ical cap of half-angle centered at is the set of all vectors
on the centered unit -sphere satisfying

The surface area of such a spherical cap does not depend on the
vector but only on the dimension and the angle . We denote
it by .
We say that a random -vector is uniformly distributed over

an -sphere, if it is drawn according to a uniform probability
measure over the surface of this sphere.

III. DIRTY-PAPER MAC WITH CONFERENCING ENCODERS:
SETTING AND RESULTS

A. Setting
Two transmitters 1 and 2 wish to convey their messages

and to a common receiver. The messages and are
independent and uniformly distributed over the nite sets
and . The communication takes place over a GaussianMAC
with a single additive interference that is known noncausally
to both transmitters but not to the receiver. Thus, the time-
channel output corresponding to the time- channel inputs

is

(1)

where is the Gaussian noise corrupting the channel, and
is the interference. The noise sequence , the interfer-

ence sequence , and the messages and are indepen-
dent. The noise is a sequence of independent and iden-
tically distributed (IID) zero-mean variance- Gaussian
random variables. Denoting the blocklength by , we can de-
scribe the distribution of the interference as follows: we stack
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interference symbols into a column-vector
, and we assume that this vector is uniformly

distributed over a centered -sphere of radius . We
refer to as the interference variance. As we shall see, our re-
sults continue to hold in the more realistic case where are
IID zero-mean, variance- Gaussian random variables.
Both transmitters learn the interference noncausally. Thus,

prior to each block of channel uses, they learn the sequence
of the next interference symbols.

The two transmitters are allowed to cooperate in the fol-
lowing way. Prior to each block of channel uses, the
transmitters can hold a conference, i.e., they can exchange
information over uses of two pipes: a pipe from Transmitter
1 to Transmitter 2 and a pipe from Transmitter 2 to Transmitter
1. The pipes are assumed to be
1) perfect in the sense that any input symbol to a pipe is avail-
able immediately and error-free at the output of the pipe;
and

2) of throughputs and , in the sense that when the
inputs to the pipe from Transmitter 1 to Transmitter 2 take
values in the sets and the inputs to the pipe
from Transmitter 2 to Transmitter 1 take values in the sets

, then

(2)

and

(3)

The communication over the pipes is assumed to be held in a
conferencing way, that is, the th inputs and

can depend on the respective messages, the interference
sequence , and the past observed pipe-outputs

for some given sequences of encoding functions and
where

(4)
(5)

We dene an -conference to be the collec-
tion of an integer number , two sets of input alphabets

and , and two sets of en-
coding functions and as in
(4) and (5), where , and the sets
and satisfy (2) and (3).
After the conference, Transmitter 1 is cognizant of its mes-

sage , the symbols , and the inter-
ference sequence . Similarly, Transmitter 2 is cognizant of
its message , the symbols , and the
interference sequence . The channel input sequences

and can be described
as

where

(6)

(7)

We only allow encoding functions and that with prob-
ability 1 satisfy

(8)

(9)

The decoder applies a decoding function

(10)

to produce the message estimates and based on its ob-
served output sequence

An error occurs in the transmission whenever
.

This leads us to the denition of achievable rate pairs and ca-
pacity region. A blocklength , powers code of rate
pair is a triple ,

where and are of the form (6) and (7) and satisfy the
power constraints (8) and (9), and where is of the form
(10). We say that a rate pair is achievable if for every

and every sufciently large blocklength , there exists an
-conference and a blocklength , powers

code of rates exceeding such that the average
probability of decoding error tends to 0 as tends to innity,
i.e.,

(11)

The capacity region is dened as the set of all achievable rate
pairs and is denoted by , or by

for short.
Our setting includes various classical communication sce-

narios as special cases.
1) When , the setup coincides with the Gaussian
MAC with conferencing encoders without interference.
The capacity region in this special case is denoted by

and was derived in [1].
2) When , the setting is equivalent�—in
terms of achievable rates�—to a fully cooperative dirty-
paper MAC where both transmitters are cognizant of both
messages and but cannot hold a conference. The
equivalence can be seen as follows. Every scheme de-
signed for the fully cooperative MAC exhibits the same
performance on the MAC with conferencing encoders and
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if in this latter setting, prior to trans-
mission over the MAC, the two encoders exchange their
messages over the pipes of innite capacities. On the other
hand, every scheme designed for the MAC with confer-
encing encoders exhibits the same performance on the fully
cooperative MAC if in the latter setting the two transmit-
ters simulate the conference by letting each transmitter
compute its corresponding pipe outputs based on and
.

3a) When , the setting is equivalent to
the dirty-paper MAC without conferencing. The capacity
region of this special case is denoted by and
(in the case of a Gaussian interference) was derived by
Gel�’fand and Pinsker [7].
3b) When and , the setting is equiv-
alent to the classical Gaussian MAC without conferencing
and without interference. Its capacity is denoted by
and was reported in [5] and [26].
4a) When and , the setting is equiva-
lent�—again in terms of achievable rates�—to a dirty-paper
MAC with degraded message sets where Transmitter 1 is
cognizant of both messages and and Transmitter 2
only of Message and where the transmitters cannot
conference. The equivalence follows by similar arguments
as the equivalence in case 2).
4b) When , , and , then the setting
is equivalent to a Gaussian MAC with degraded message
sets without conferencing and without interference.

B. Results

Our rst result determines the capacity region of the dirty-
paper MAC with conferencing encoders. The capacity region is
stated after the following denition and a theorem from [1].

Denition III.1: For all parameters and
, dene the region

(or for short) as

(12)

where and .

Theorem III.2 ([1, Th. 1]): The capacity region of
the Gaussian MAC with conferencing encoders without inter-
ference is

The main result of this paper is that�—irrespective of the inter-
ference variance �—if the interference is known noncausally to
both transmitters, then the capacity is the same as if there were
no interference.

Theorem III.3: The capacity region of the
dirty-paper MAC with conferencing encoders equals that of
the Gaussian MAC with conferencing encoders without inter-
ference

Proof: See Section III-C.

The scheme that we propose in Section VI (see also Lemmas
III.10 and III.11) for achieving does not require that
the interference sequence be known before the conference be-
gins; it sufces that it be known thereafter. Consequently:

Remark III.4: The region is achievable even
if the transmitters learn the interference only after the confer-
encing phase, so Theorem III.3 remains valid also in this setup.
To simplify the analysis, we have assumed that the inter-

ference sequence is uniformly distributed over the centered
sphere of radius , where is the blocklength. But our re-
sults are also applicable to the case where the components of
are IID Gaussians of mean zero and variance :

Remark III.5: The result of Theorem III.3 also holds when
the interference sequence is IID Gaussian.

Proof: The proof of the converse to Theorem III.3 (see
Section III-C) does not depend on the interference�’s law, so
the only modication required is in the proof of the direct part.
The modication (inspired by [2]) is that�—having observed the
IID Gaussian interference �—the transmitters would produce
their sequences (as in Section VI) as though the interference
were but that one of the transmitters, say Trans-
mitter 1, would then add to its sequence. This
will cause the channel to appear as though the interference were

and hence uniformly distributed over the centered
sphere of radius . Of course, adding to
its sequence might increase the transmitted power, but the addi-
tional power is negligible because for IID zero-mean
variance- Gaussians

Specializing Theorem III.3 to the case
without conferencing and combining the result with Remark
III.5, recovers Gel�’fand and Pinsker�’s dirty-paper result for the
Gaussian MAC [7]. Similarly, specializing Theorem III.3 to the
case and results in an analogous result for
the MAC with degraded message sets.
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Corollary III.6 (Degraded Message Sets): The capacity re-
gion of the dirty-paper MAC with degraded message sets is the
same as if the interference were not present.
Our proof that the region is achievable (see

Lemmas III.10 and III.11 and the coding scheme in Section VI)
does not rely on the Gaussianity of the noise sequence . It
sufces that it be stationary and ergodic and of second moment
.

Remark III.7: The achievability results in Theorem III.3 and
Corollary III.6 hold for arbitrary stationary and ergodic noise
processes of second moment . In particular, Gel�’fand and
Pinsker�’s writing-on-dirty-paper result for the MAC holds also
for such general noise processes.

Remark III.8: Our results in Theorem III.3 and Remarks III.4
and III.5 extend also to the two-user dirty-paper MAC with
common and private messages (without conferencing) [8], [18].
In particular, we can recover the result in [8] that for this setup
with common and private messages, and in the Gaussian case
the capacity region with interference is the same as without.

C. On the Proof of Theorem III.3

The converse
(13)

follows because contains the capacity region of the
channel with interference even when the interference is known
also to the receiver. Indeed, in this case, the receiver can
subtract the interference from the channel output, thus reducing
the channel to one without interference and with known to all
parties. In this new setup, the interference sequence is inde-
pendent of the messages and of the channel law, and it therefore
only plays the role of a common randomness at the transmitters
and the receiver, and common randomness does not increase
the capacity of the Gaussian MAC with conferencing encoders.

The direct part
(14)

follows from Lemmas III.10 and III.11 ahead. Before stating
these lemmas, we dene a region
through rate constraints similar to those dening

but with two additional
constraints, so

Nevertheless, as we shall see, this set is rich enough in the sense
that its convex hull contains , i.e.,
the set of all rate pairs that are achievable in the absence of
interference (see Theorem III.2).

Denition III.9: Given and , de-
ne (or for short) as in (15),
shown at the bottom of the page, where recall that
and .

Lemma III.10: The convex hull of equals

Proof: In Appendix A, we show that
, and hence by Theorem III.2 also

.

Lemma III.11: Irrespective of the interference variance ,
the region is achievable for the dirty-paper MAC
with conferencing encoders:

(15a)

(15b)

(15c)

(15d)

(15e)

(15f)
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Proof: A scheme achieving all rates in the region is
described and analyzed in Section VI.

IV. GENERALIZED SINGLE-USER DIRTY-PAPER CHANNEL:
SETTING AND RESULT

A. Setting

In the following two sections, we consider a single-user
channel where a transmitter wishes to send a message ,
which is uniformly distributed over the nite set . The
communication takes place over an additive-interference addi-
tive-noise channel whose time- output corresponding to its
time- input is

where denotes the random interference, and denotes
the random noise. The interference is known noncausally to
the transmitter. Thus, for a given blocklength , the transmitter
learns the entire interference sequence before the
transmission begins. To state our assumptions, we stack the in-
terference symbols in a column vector

and the noise symbols in a column vector

We assume that the pair is independent of the message
, and that�—as in the previous section�— is uniformly dis-

tributed over the centered -sphere of radius . Our setup
differs from the classical dirty-paper channel [3] in two impor-
tant ways: the noise need not be Gaussian, and it may de-
pend on the interference.
The channel inputs are subject to a block-power constraint

The rate of transmission is dened as . A rate
is said to be achievable if for every and for all

sufciently large blocklengths (depending on and ), there
exist encoding and decoding rules such that a message of rate
exceeding can be sent with probability of error smaller
than .

B. Results

Theorem IV.1: A rate is achievable for the general-
ized single-user dirty-paper channel with parameters and ,
and noise whenever there exists some such that for
every sufciently small there exists some
(depending on ) that meets the following three conditions:
1) is small enough so that

(16)

where ;
2) the empirical second moment of the noise satises

(17)

3) and for every

(18)

Proof: Based on the scheme in Section V and on its
analysis in Lemma V.1 and Remark V.3. For details, see
Appendix D.

As a corollary, we obtain the following �”Gaussian-is-the-
worst-noise�”-result similar to the results in [11, Th. 1] and [2,
Theorem 2.3].

Corollary IV.2: If for some and every

(19)

and

(20)

then the rate

is achievable.
Proof: The corollary�’s hypothesis implies that Conditions

(17) and (18) in Theorem IV.1 are satised for all .
Consequently, it sufces to show that for
and every sufciently small we can nd some
so that Condition (16) is satised. For a xed the existence
of such an follows from the following observations.
1) The right-hand side of (16) does not depend on and is
continuous and decreasing in .

2) The left-hand side of (16) does not depend on and is
continuous in .

3) For , , and both sides of
(16) coincide.

Remark IV.3: Every stationary and ergodic process of
second moment that is independent of the interference
satises the corollary�’s hypothesis. Thus, Corollary IV.2 re-
covers the writing-on-dirty-paper result by Cohen and Lapidoth
[2] for channels with stationary and ergodic noise that is inde-
pendent of the interference.
Using the same argument, we used to prove Remark III.5 we

obtain
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Remark IV.4: Theorem IV.1 applies also when the interfer-
ence sequence is IID Gaussian.

V. GENERALIZED SINGLE-USER DIRTY-PAPER CHANNEL:
CODING SCHEME AND ANALYSIS

In this section, we consider the generalized single-user dirty-
paper channel of Section IV. Its parameters are

(21)

where is the maximal allowed energy of each codeword,
where the state vector is drawn uniformly at random over
the centered -sphere of radius , and where denotes the
noise vector.
We shall briey recall the scheme in [2] and extend the

scheme�’s decoding rule. The scheme in [2] is based on coding
over spheres and on nearest neighbor decoding. This is different
from the scheme by Gel�’fand and Pinsker in [6] which uses IID
random codebooks and a joint-typicality decoder. Notice how-
ever that Gel�’fand and Pinsker�’s scheme [6] does not directly
apply to Gaussian dirty-paper setups (single-user or multiuser)
because it is based on strong typicality. Replacing strong typi-
cality with weak typicality in the description and the analysis of
the Gel�’fand and Pinsker scheme does not resolve this problem,
because the conditional typicality lemma ([6, Lemma 2])
does not hold under weak typicality and because�—even when
averaged over codebooks and the random interference�—the
channel input sequence produced by this modied scheme
is not Gaussian. Analyzing the weak-typicality decoder for
Gaussian dirty-paper channels requires additional geometric
arguments.
The approach based on coding over spheres and on nearest

neighbor decoding considered here has simpler geometric argu-
ments in the analysis and allows for more general results than
the Gaussian codebooks and joint-typicality decoding approach
of [6]. In fact, it allows us to generalize the analysis in [2] to the
case where the noise and interference need not be indepen-
dent.
The extended decoding rule and the generalized analysis pre-

sented in this section will be useful when we apply this scheme
as a building block in our scheme for the dirty-paper MAC with
conferencing encoders in Section VI ahead.
For a xed blocklength , the scheme has the parameters

(22)

where is nonnegative and , , , and are positive. Given
these parameters, we dene

As we shall see, the rate of transmission of our scheme is
, which approaches as the blocklength tends

to innity.

A. Codebook Generation
The codebook consists of bins, each containing

codewords. The th codeword in the th bin is denoted
. It is chosen at random independently of the other code-

words according to the uniform distribution over the centered

-sphere of radius . After the codebook is
generated, it is revealed to the encoder and decoder.

B. Encoding

In order to convey Message when the
interference is , the encoder chooses the codeword in
Bin that has largest inner product with the interference , so

(Notice that is uniquely dened with probability one.)
The encoder then produces the channel inputs

where denotes the channel inputs stacked in
an -dimensional column-vector.We refer to as the dirty-
paper codeword and to as the dirty-paper sequence.
Both depend on the message and the interference.

C. Decoding of [2]

The receiver stacks its observed channel outputs
into an -dimensional column-vector . It then
applies nearest neighbor decoding, i.e., it looks for the codeword

in the codebook that is closest (in Euclidean distance)
to . Since all the codewords in are of equal Euclidean norm,
this is equivalent to looking for the codeword that for all

and all satises

(The codeword is uniquely dened with probability one.)
The receiver then produces the bin of the closest codeword

as its guess of the transmitted message.

D. Extended Decoding

We extend the decoding rule of [2] and require that in addition
to , the decoder also produces .

E. Analysis

We next analyze the transmitted power and the probability of
error of the extended decoding. We say that a decoding error
occurred if . Thus, we say that an error has
occurred not only when the wrong message is declared, but also
when a wrong index is declared.

Lemma V.1: Consider the performance of our scheme with
parameters (22) over the generalized dirty-paper channel of pa-
rameters and and with noise vector . Assume that ,
that , that

(23)

(24)

and that for some in the open interval the following
three conditions are satised:
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i) is sufciently small so that2

(25)

ii) the empirical noise variance satises

(26)

iii) and for every

(27)

Then, the probability of error of the extended scheme sat-
ises

(28)

and the probability that the average3 block power exceeds
the constraint tends to 0 as tends to innity.

Proof: See Appendix C.

Corollary V.2: Consider a generalized dirty-paper channel
with parameters and , and where the noise is inde-
pendent of the interference and is a stationary and ergodic
sequence of variance . If in our scheme, we choose parame-
ters satisfying Conditions (23) and (24) and such
that , , and , then the probability that
the extended decoder errs and the probability that the produced
input sequence violates the average block power constraint
both tend to 0 as the blocklength tends to innity.

Proof: If is an ergodic noise sequence of variance
independent of , then Assumptions (26) and (27) are satis-
ed for all . Moreover, for every choice of
satisfying (24) there is a choice of satisfying (25) (see
footnote 2).

Remark V.3: The extended decoder errs whenever the orig-
inal decoder errs, i.e., whenever . Thus, if the assump-
tions in Lemma V.1 hold, then also the original scheme has
probability of error tending to 0 as the blocklength tends to
innity.

VI. DIRTY-PAPER MAC WITH CONFERENCING ENCODERS:
CODING SCHEME AND ANALYSIS

In this section, we present a coding scheme that achieves the
region over the dirty-paper MAC with conferencing en-
coders and, by time-sharing, its convex hull.
2There always exists an satisfying (25). This follows because of

the continuity of the left-hand side and the right-hand side of (25); because the
right-hand side of (25) is monotonically increasing in the sum ; and
because for and the left-hand
side of (25) equals its right-hand side.
3A scheme of asymptotically equal probability of error, but that satises the

block-power constraint with probability one, is obtained if the transmitter sends
the all-zero sequence whenever the produced dirty-paper sequence violates the
power constraint.

Encoding takes place in two stages. In the rst stage, as pro-
posed by Willems [24], the transmitters use the conference to
create a common message: Transmitter 1 splits Message
into a private part of rate and a common part of
rate , where and sum to and likewise Trans-
mitter 2. The rates of the common parts are chosen to satisfy

(29)
(30)

so the transmitters can use the conference to exchange the
common parts of their messages. After the conference, each
transmitter is cognizant of its private message and of the
common-message pair . The transmitters do not
use their knowledge of the interference sequence during the
conference.
In the second stage, the transmitters communicate the pri-

vate messages and and the common-message pair
over the MAC to the receiver. In this stage, we

adopt an approach different from Willems�’s. In our approach
the transmitters use time-sharing between two schemes. The
rst scheme achieves arbitrary small probability of error
(for sufciently large blocklengths) whenever the rate tuple

lies in the region

and the second scheme achieves arbitrary small probability of
error whenever the rate tuple ( lies in the
region

As we next show, by time-sharing between the two schemes,
we can achieve arbitrary small probability of error in the second
stage whenever the rate tuple lies in
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To see this, we note that for every pair the
convex-hull of the union of the polytope in the denition
of corresponding to this pair and the poly-
tope corresponding to it in the denition of
is the polytope corresponding to in the denition of

. (This is reminiscent of the fact that for xed
input distributions, the convex-hull of the union of the rectangle

corre-
sponding to successive decoding for the classical MAC in one
order and the rectangle

corresponding to successive decoding in the other
is the pentagon

.)
We conclude that our technique can achieve arbitrary

small probability of error over both stages, if the rate tuple
simultaneously satises the rate con-

straints imposed in these two stages, i.e., if it lies in the region

(31)
Projecting the region in (31) onto the 2-D plane

(e.g., by means of the Fourier-Motzkin
Elimination) results in . That is, equals the image of
the region in (31) under the mapping

. This establishes that the presented
two-staged coding technique achieves all rate pairs in

.
It remains to describe the two coding schemes that can be

used in the second stage to achieve and .We shall
focus on the scheme that achieves . The other scheme is
analogous but with reversed roles for the two transmitters and
reversed decoding order of the private messages.

A. Scheme Achieving in the Second Stage

Recall that after the conference, Transmitter 1 is cognizant
of its private part and of the common parts and

, whereas Transmitter 2 is cognizant of its private part
and of the common parts and . To simplify no-

tation, dene the common message of rate
.

We begin with a sketch of the coding scheme. It is based
on separately encoding messages , , and with a
single-user dirty-paper code as described in Section V. Each
transmitter then adds the dirty-paper sequence produced for
its private message and a scaled version of the dirty-paper
sequence produced for the common message and transmits the

result. The encoders use the same dirty-paper code to encode
the common message, so the channel adds these sequences
coherently. The receiver applies successive decoding and strip-
ping to decode the three messages , where each
decoding step is performed using nearest neighbor decoding.
The outputs observed in the three decoding steps correspond
to outputs of generalized single-user dirty-paper channels as
considered in Section IV, but with different parameters.
We now describe the scheme in detail. We x a blocklength .

Our scheme has parameters ,
, and .

1) Preliminary Denitions: Dene for each

(32)

and

(33)

We interpret as the power that Transmitter allocates to its
private message , and as the received power dedicated
to the common message . Further, dene

(34)

(35)

(36)

We will see that is the noise-variance that the receiver expe-
riences when decoding ; is the noise-variance it experi-
ences when decoding (if was decoded correctly); and
is the noise-variance it experiences when decoding (if
and were decoded correctly).
Dene the -dimensional column-vectors

(37)

(38)

(39)

We will see that these vectors correspond to the interference
experienced in the different decoding steps. The vectors ,
and are of normalized powers , , and

, where and, for

, .
Finally, dene the rates as

(40)

(41)

(42)

and

(43)
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(44)

(45)

Notice that by (40)�–(45)

(46)

(47)

(48)

Remark VI.1: As we will see, our scheme is of rates
, , and . Thus, when

the blocklength tends to innity, the rates of our scheme tend
to .

Remark VI.2: For every quadruple in
the interior of , one can nd and

so that the rate dened through the right-hand
side of (43) and exceeds the sum of the common rates

and so that the rates dened through the right-hand
sides of (44) and (45) and exceed the private rates

and . By continuity arguments, the same holds also for
all sufciently small .
2) Codebook Generation: Independently construct code-

books and as in Section V-A. Choose the parameters
as the tuple when con-

structing ; choose them as when
constructing ; and choose them as
when constructing .
Denote the codewords in Bin of code-

book by ; the codewords in Bin

of codebook by ; and
the codewords in Bin of codebook
by .
3) Encoding: The transmitters encode the common message
with the single-user dirty-paper encoding of Section V-B

using the codebook , the parameter , and assuming that the
interference is . This produces the dirty-paper sequence

Transmitter also encodes its private message with the
dirty-paper encoding of Section V-B. It now uses the codebook
, the parameter , and assumes that the interference is .

This produces the dirty-paper sequence

Transmitter then transmits a linear combination of
and . To describe Transmitter �’s signal, we stack

its input symbols into an -dimensional column-vector
. The inputs are then described by

(49)

where

Notice that , and the channel coherently combines
the transmissions of the common message , so the -dimen-
sional column-vector of output symbols is

where denotes the -dimensional column vector of noise
symbols .
4) Decoding: The receiver stacks its observed outputs sym-

bols into an -dimensional column-vector .
It rst decodes message based on using the extended
decoding in Section V-D with codebook . Thus, in this rst
decoding step, the receiver treats the dirty-paper sequences
and produced to encode the private messages as additional
noise. The extended decoding produces the pair and
the receiver declares the common message . The receiver
then subtracts the decoded dirty-paper codeword in
from to obtain

If the rst decoding stage was successful, then
. And since ,

by subtracting from the interference is reduced
by . Notice that the receiver cannot subtract the dirty-paper
sequence that was used to encode the commonmessage ,
because it is not cognizant of the interference .
Based on the receiver decodes again by means

of the extended decoding in Section V-D but now using the
codebook . Thus, in this second decoding step, the receiver
treats the dirty-paper sequence for the private message

as additional noise. The extended decoding produces the
pair , and the receiver declares that Transmitter 1
sent the private message . It then subtracts the decoded
codeword in from to form

If the rst two decoding stages were successful, then
.

Based on the receiver nally decodes by means of
the extended decoding now using the codebook . This de-
coding produces the pair , and the receiver declares
that Transmitter 2 sent the private message . It discards .
5) Error Analysis: The decoder errs whenever

We analyze the average error probability of the scheme (aver-
aged over all possible codebooks, messages, interferences, and
noise sequences). To this end, we use a genie-aided argument as
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in [17] and [25]. As there, we introduce a genie-aided decoder,
but our approach differs in that we dene additional error events
for the genie-aided decoder.
Genie-Aided Decoder: The genie-aided decoder consists

of three independent decoders. The rst decoder is fed the
sequence of channel outputs

(50)

where is dened in (37), and . It applies
the extended decoding in Section V-D to using the codebook
, thus producing the pair .
The second decoder is fed by a genie the sequence

(but not the original output sequence ), where
is the correct common message and is the index that was
produced by the encoder when it encoded it. Thus

(51)

where is dened in (38), and . It applies the
extended decoding to with the codebook thus producing
the pair .
The third decoder is fed by a genie the sequence

(but not the original output sequence
or the sequence ), where is the correct private message
of Transmitter 1, and is the index that was produced when
it was encoded. Thus

(52)

where is dened in (39), and . Based on it applies
the extended decoding using the codebook , thus producing
the pair .
The error event for the genie-aided decoder structure is the

event that at least one of the three single decoders errs, i.e., that

Thus, the genie-aided decoder errs not only when it produces
wrong messages, but also wrong indices.
The original decoder guesses the messages

correctly whenever the genie-aided decoder guesses the sex-
tuple correctly. Thus, the prob-
ability of error of the original decoder cannot be larger than the
probability of error of the genie-aided decoder.
We show that for every choice of and suf-

ciently small (depending on the other parameters), the proba-
bility of error of the genie-aided decoder tends to 0 as the block-
length tends to innity. Since the genie-aided decoder struc-
ture errs whenever one of the three single decoders errs, it suf-
ces to show that under these conditions, the probability of error
for each of the three single decoders tends to 0.
We rst analyze the probability of error of the third

genie-aided decoder which guesses the pair .
To this end, we notice that the outputs in (52) are the result of
applying the dirty-paper coding of Section V with parameters

over a dirty-paper channel with interfer-
ence , which is uniformly distributed

over an -sphere of radius , and with independent mem-
oryless Gaussian noise of variance . Since the decoder uses
the extended decoding of Section V, it follows from (42) and
(48) and Corollary V.2 that

(53)

We next analyze the probability of error of the rst
genie-aided decoder which tries to guess . We
again notice that the outputs (50) are the result of ap-
plying the dirty-paper coding in Section V with param-
eters over a generalized dirty-paper
channel with interference , which is uniformly dis-
tributed over an -sphere of radius , and with noise

.
Here, the noise depends on the interference (be-
cause the dirty-paper sequences and

depend on ). Thus, even though the
receiver applies the extended dirty-paper coding of Section V,
Corollary V.2 is not sufcient to prove that the probability of
error tends to 0. Instead, we need the more general Lemma V.1
combined with the following Lemma VI.3.

Lemma VI.3: For a xed choice of ,
, , and , if the parameters and

are chosen to satisfy

(54)
(55)

for some specic positive and
, then there exists an in the open

interval so that the following three conditions are
satised:
1) is sufciently small so that

(56)

2) the empirical noise variance satises

(57)

3) and for every

(58)

Proof: See Appendix E-B.

Combining this lemma with Lemma V.1, equalities (40) and
(46), and Assumption , we conclude that if and are
sufciently small to satisfy (54) and (55), then

(59)
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We nally analyze the probability of error of the second
genie-aided decoder which guesses the pair .
We notice that the outputs (51) are the result of applying
the dirty-paper coding in Section V with parameters ,

, , , over a generalized dirty-paper channel
with interference , which is uniformly dis-
tributed over an -sphere of radius , and with noise

. Since the interference and
the noise are dependent, we need to apply Lemma V.1, now
combined with the following Lemma VI.4.

Lemma VI.4: For a xed choice of , ,
, and , if the parameter is chosen to

satisfy

(60)

for some specic positive , then there ex-
ists some in the open interval so that the following
three conditions are satised:
1) is sufciently small so that

(61)

2) the empirical noise variance satises

(62)

3) and for every

(63)

Proof: Similar to the proof of Lemma VI.3, and therefore
omitted.

Combining this lemma with Lemma V.1, equalities (41) and
(47), and Assumption establishes that when is suf-
ciently small so as to satisfy (60), then

(64)

Combining (53), (59), and (64), we conclude the following.
Conclusion VI.5: For given parameters ,

, , and , if and are chosen so as
to satisfy

(65)

(66)

for some specic positive ,
, and , then the

probability of error of the genie-aided decoder tends to 0 as the

blocklength tends to innity. This also implies that under
these conditions the probability of error of our original decoder
tends to 0 as tends to innity.
Power Constraints: By Lemma VI.6 ahead, the probability

that our scheme satises the average block-power constraints
and tends to 1 as the blocklength tends to innity, if

are chosen sufciently small.4

Lemma VI.6: For given parameters ,
and , if our choice of satises

(67)
(68)
(69)

for some specic positive ,
, , then

Proof: See Appendix E-C.

The achievability of during the second stage follows
now immediately by combining Remarks VI.1 and VI.2 with
Conclusion VI.5 and Lemma VI.6.

APPENDIX A
PROOF OF LEMMA III.10

By Theorem III.2, the capacity region equals .
Therefore, to prove the lemma, we can equivalently show

i.e., the two inclusions
(70)

and
(71)

Before proving the inclusions, we dene two sets of regions
and restate the regions and in terms of these sets.
For every pair , dene the region

(72a)

(72b)

(72c)
4The previously described scheme is easily changed to a scheme that satises

the power constraints with probability 1 for every blocklength , if the trans-
mitters simply send the all-zero sequence whenever the inputs computed in (49)
violate the power constraints.
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(72d)

and the region as shown in (73a)�–(73f) at the
bottom of the page. The regions and can be ex-
pressed as

and

We rst prove Inclusion (70). Since the expression for the re-
gion in (72) differs from the expression for

in (73) only in that the latter has the additional
two constraints (73b) and (73d), for every pair the re-
gion is included in the region .
By the convexity of , this concludes the proof of (70).
We next prove (71). To this end, we show that for every pair

the region is included
in the region . The proof is trivial for all pairs

that satisfy

(74)

because in this case, the rate constraints (73b) and (73d) do not
actively constrain the region , and thus the regions

and coincide.
The proof is more tedious for pairs

that violate (74). We x such a pair . By the convex-hull
operator on the right-hand side of (71), it sufces to show that
both dominant corner points of the polytope
are included in the region . A corner point of a region is
called dominant if it is of maximum sum-rate in this region [17].

In the following, we present for each dominant corner point of
a pair such that the

chosen dominant corner point lies in .
Before presenting these choices, we characterize the two

dominant corner points. To this end, we notice that since our
chosen pair violates (74) and since the sum of two
nonnegative numbers cannot be smaller than the maximum of
these numbers:

(75)

This implies that in the region , the sum-rate
is bounded by Constraint (72d) rather than Constraint (72c).

Moreover, since for arbitrary and
the sum of the right-hand sides of (72a) and (72b) is larger
than the right-hand side of (72c) both dominant corner points
in are of sum-rate

Thus, we conclude that the two dominant corner points
and in are given by

(76) and (77) at the bottom of the next page.
We only prove that the rst dominant corner point

lies in for some
. By symmetry the same conclusion also holds for

the second dominant corner point.
Our choice of the pair depends on whether

(78)

or

(73a)

(73b)

(73c)

(73d)

(73e)

(73f)
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(79)

and on whether

(80)

or

(81)

If (79) holds, the rst dominant corner point is given by

(82)

and we choose and . The corner point
lies in because:

1) The rate satises Constraints (73a) and (73b) when in
these constraints the pair is replaced by the pair

. In fact, (73b) follows by

(83)

Constraint (73a) follows by (82) and (79) and by the choice
.

2) Since the rate , it trivially satises Constraints
(73c) and (73d) when in these constraints is re-
placed by .

3) The sum-rate satises both (73e) and (73f)
when are replaced by . This holds because
the single-rate satises the more stringent constraints
(73a) and (73b), and because .

We now consider the case where (78) holds. In this case, the rst
dominant corner point is given by

(84a)

(84b)

If both (78) and (80) hold, then we choose and
. The corner point as dened in (84) lies

in because:
1) The rate satises (73a) and (73b) when in these con-
straints is replaced by : Constraint (73a)
holds by (84a) and the choice ; and Constraint
(73b) by (73a), by assumption (80), and by and

.
2) The sum-rate satises (73f) and (73e) when
in these constraints is replaced by : Con-

(76a)

(76b)

(77a)

(77b)

(85)
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straint (73f) follows immediately by (84) and our choice
and ; and Constraint (73e) follows by

(73f), by (75), and because and .
3) The rate satises (73c) and (73d) when are
replaced by because

and because (75) implies

Before presenting our choice of when (78) and (81)
hold, we recall that in this case inequalities (85) at the bottom
of the previous page hold. Moreover, since

and since the right-hand side of (85) is strictly decreasing in

(86)

By continuity of the expressions in (86), there exists a
such that

(87)

We can now present our choice of when (78) and (81)
hold. In this case we choose and . The rate pair

as dened in (84) lies in because:
1) The rate satises (73a) and (73b) if is re-
placed by : Constraint (73a) holds trivially by
(84a) and by ; and Constraint (73b) holds by
(73a), by (87), and because and .

2) The sum-rate satises (73e) and (73f) if
is replaced by . In fact, Constraint (73f)

holds because

(88)

where the inequality follows because and
; and Constraint (73e) follows by (88), by (87), by
and , and because .

3) The rate satises both (73c) and (73d) if is
replaced by because (87) implies



BROSS et al.: DIRTY-PAPER CODING FOR THE GAUSSIAN MULTIACCESS CHANNEL WITH CONFERENCING 5655

APPENDIX B
ON VECTORS UNIFORMLY DISTRIBUTED OVER -SPHERES
We present some auxiliary results on vectors that are inde-

pendently and uniformly drawn over centered unit -spheres.
Recall that for and we denote by the
surface area of a spherical cap of half-angle on a unit -sphere
(see Section II).
The proofs of the following auxiliary lemmas are based on

results in [22] and omitted.

Lemma B.1: Let be uniformly distributed over the cen-
tered unit -sphere and a deterministic unit-length vector in
. Then

(89)

Lemma B.2: For

(90)

Lemma B.3: Let be so that

(91)

exists and . Then

if
if (92)

Lemma B.4: For

(93)

whereas for

(94)

We consider independent random vectors ,
, and that are uniformly distributed over centered

unit -spheres and study properties of the vector in and
the vector in that are closest to .

Lemma B.5: Let and be given. Let ,
and let and be independent random vectors
uniformly distributed over the centered unit -sphere. Then, if

(95)

whereas if :

(96)

Proof: We condition on . By the independence of
the vectors , and

(97)

By the uniform distribution of and by Lemma B.1

(98)
irrespective of the unit-length vector . Inserting (98) into (97)
and taking expectation with respect to , we obtain

(99)

In the following, we distinguish the cases
and . We rst treat the case ,
where

and therefore by Lemma B.2

(100)



5656 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 58, NO. 9, SEPTEMBER 2012

Notice that the probability in (99) can be upper bounded as

(101)

where we used that and thus the

mapping is decreasing in .
The desired limit (95) follows then by (100), (101), and Lemma
B.3.
In contrast, if , then

and therefore by Lemma B.2:

(102)

We choose so that

(103)

and notice that for sufciently large the probability in (99) can
be lower bounded as

(104)

The desired limit (96) follows then by combining (103), (104),
and Lemma B.3.

Lemma B.6: Let and , be given, and let the
vectors , , and be IID random
vectors uniformly distributed over the centered unit -sphere.
Let be a random variable taking value in and
a random variable taking value in so that

(105)

(106)

For every , so that ,
and , and for every

and every :

(107)

Proof: Choose so that

(108)

(109)

(110)

Since it is always
possible to nd such .
Dene the vectors and

, and decompose them into compo-
nents that are orthogonal to and components that are parallel
to , i.e., decompose into

and into

By the orthogonality of the components and because has unit
norm

We notice that if the inner product lies in the in-
terval , if the term lies in ,
and if lies in , then the inner product

lies in . We thus obtain the bound (111) at the
bottom of the page, and notice that to establish the lemma it suf-
ces to prove the limits

(112)

(113)

where and are dened in (111). We rst prove limit
(113). To this end, notice that the inner products and

are independent, because and are inde-
pendent of each other and of the unit-length vector and they
are IID uniformly distributed over the centered unit -sphere.
Hence

(114)

By (109), (110), and the assumptions on and in the lemma
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Hence, by Lemma B.5, the two factors on the right-hand side of
(114) both tend to 1 as tends to innity; this establishes the
desired limit (113).
We now prove limit (112). To this end, we notice that

conditional on and on ,
the vectors and are independent and uniformly
distributed over centered -dimensional spheres of
radii and . Thus, by Lemma B.1,
for and , inequality
(116) at the bottom of the page holds. where the last in-
equality follows because is monotonically
decreasing in . Since lower bound (116) is
independent of and of , taking expectation over

and results
in inequality (117) at the bottom of the page. By Lemma B.4
and because whereas

, the right-hand side of
(117) tends to 1 as the blocklength tends to innity. This

establishes the desired limit (112), and thus concludes the
proof.

APPENDIX C
PROOF OF LEMMA V.1

We prove Lemma V.1 in Appendix C-D. We rst recall the
setup and the notation of our single-user dirty-paper scheme
in Appendix C-A. The notation and the assumptions are valid
throughout this appendix. We then present some denitions in
Appendix C-B and auxiliary lemmas in Appendix C-C.

A) Setup and Notation: We briey recall the notation in
the single-user dirty-paper scheme of Section V and the assump-
tions of Lemma V.1.
Recall that the scheme has parameters , ,
, , and , and that we dened . By
the assumptions in the lemma, the parameter and the

(111)

(115)

(116)

(117)
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parameters , , , and are chosen
in a way that (23) and (24) are satised and that there exists
a number satisfying conditions (25)�–(27). In the
following, let be such a number.
Recall that denotes the dirty-paper codeword pro-

duced by the encoder (see Section V-B), and that , , and
denote the vectors obtained when the input symbols, the output
symbols, the noise symbols, and the interference symbols are
stacked on top of each other. Also, recall that the inputs and
outputs of our scheme can be written as and

.
B) Some Denitions: The following denitions and

choices will be used in Sections C and D of this Appendix.
Choose an such that

(118)

where is dened as

(119)

By condition (25) such an always exists. For brevity, in the
following, we also write instead of .
Choose an such that

(120)

By (120) and because satises (23)

(121)

Dene the inner products

(122)

(123)

and the interval

(124)

C) Auxiliary Lemmas: The following three auxiliary
lemmas will be useful when proving Lemma V.1 in Section
D of this appendix. The lemmas establish that for large block-
lengths with very high probability, the chosen dirty-paper
codeword satises the following three properties.
1) The angle between and is close to

(Lemma C.1).
2) The angle between and is close to (Lemma
C.2).

3) The angle between and is smaller than
(Lemma C.3).

Lemma C.1: Let be dened as in (122) and let
be dened as in (124) for an satisfying (120). Then,

Proof: By the symmetry of the code construction and the
encoding, the probability that lies in the interval does
not depend on the value of . Thus

(125)
and it sufces to show that the right-hand side of (125) tends to
1 as the blocklength tends to innity.

To this end, notice that the vectors

and are IID random vectors uniformly distributed over
the centered unit -sphere, and thus, by the way the encoder
chooses , by the denition of and , by assump-
tion (121), and by Lemma B.5 (see Appendix B), limit (126)
at the bottom of the page follows. Combined with (125), this
concludes the proof.

Lemma C.2: For every

Proof: We only prove

(126)
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(127)
limit

follows then immediately from (127) and the symmetry of
and .
Fix , and choose depending on sufciently

small as will be described later. Dene the inner product

and the intervals

(128)

(129)

where recall that by assumption , and thus and
are well dened.

In the following, we condition on the event
, and therefore, is given by . We upper bound

the probability that the inner product exceeds
by (130) at the bottom of the page, where the rst inequality
follows by the law of total probability and dropping one of the
terms; and the second inequality follows because for all events
and : . By Lemma

C.1, the probability tends to
1 as tends to innity. Thus, to establish (127), it sufces to
show the limits

(131)

and

(132)

where and are dened at the bottom of the page.
We rst show (131). To this end, we decompose the vectors
and into a part that is parallel to and a part that is orthogonal
to , i.e., we write , where

and we write , where

The inner product of interest can then be expressed as the sum

(133)

In the following, we condition on the tuple
for some

-dimensional vector of norm , some , some
, and some so that . Then

(134)

(130)
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(135)

(136)

and the vector is uniformly distributed over the centered

-sphere of radius independent
of . We combine these observations with (133) to obtain ex-
pression (137) at the bottom of the page, where the rst equality
follows by (133) and (136), and the second by the uniform distri-
bution of , by Lemma B.1 (see Appendix B), and by (134)
and (135).
Notice that the expression on the right-hand side of (137)

only depends on , , and , but not on . Further, notice
that the mapping is monotonically de-
creasing for and the mapping is mono-
tonically increasing for . We can thus lower bound
the right-hand side of (137) if we replace , , and by
the corresponding boundary points of the intervals , ,
and . Taking then expectation with respect to ,

, , and results in the bound (138) at the
bottom of the page. When is chosen sufciently small,
the argument of the is negative, and consequently, the

lies in the interval . Hence by Lemma B.4 (see
Appendix B), for sufciently small , the right-hand side
of (138) tends to 1 as tends to innity, which establishes (131).
It remains to prove (132). To this end, notice that if the noise

vector satises both

and

then , i.e.,

Thus, the event that both and are

satised, includes the event that both
and are satised. Therefore

(139)

where the last equality follows because by symmetry of the code
construction and the encoding, the law of the pair does
not depend on the pair .
Since, by Assumptions (26) and (27) in LemmaV.1, for every

(140)

(137)

(138)
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the desired limit (132) follows.

Lemma C.3: Let be dened as in (119) for some
so that (118) holds, and let be dened as in (123).

Then

Proof: Fix an so that

(141)
By (118), such an always exists.
To prove Lemma C.3, we rst notice that by the law of total

probability and dropping, one of the terms (142) at the bottom of
the page is obtained. We can thus prove the lemma by showing
that the two terms and in (142) tend to 1 as the
blocklength tends to innity. We rst show that

(143)

By Lemmas C.1 and C.2, the probabilities of events
and tend to 1 as tends to innity.

Further, by assumptions (26) and (27) in Lemma V.1 on the
noise vector and by the symmetry of the code construction
also the conditional probabilities of events
and given tend to 1 as tends
to innity. Limit (143) then follows by combining these four
limits.
It remains to prove limit

(144)

We show that conditional on , on
on on and on
, for arbitrary blocklength

(145)

holds with probability 1, which establishes (144). The inner
product is given by (146) at the bottom of the page. Notice
that the right-hand side of (146) is monotonically increasing
in and monotonically decreasing in

and . Hence, conditioned on ,
on , on , on ,
and on

(147)
Combining (147) with (141), we conclude that conditioned on

, on , on ,
on , and on , for every ,
inequality (145) holds with probability 1. This establishes Limit
(144), and thus combined with (143) and (142) the proof of the
lemma.

D) Proof of Lemma V.1: We rst prove that the probability
of error tends to 0 as the block-length tends to innity. By
the symmetry of the code construction and the encoding, we
can assume without loss of generality that .
Then, the error event is given by , which by

(142)

(146)
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the nearest neighbor decoding rule in Section V-D is equivalent
to the event

Thus, Limit (148) at the bottom of the page establishes the de-
sired claim on the probability of error. To prove (148), we rst
bound the probability as in inequality (149) at the bottom of the
page, where , and are dened in the pre-
vious Section C of this appendix. By Lemmas C.1 and C.3, the
terms and tend to 0 as the blocklength tends to
innity, i.e.,

(150)

(151)

It thus remains to prove limit

(152)

For and , we dene
the unit-norm vectors

(153)

Not conditioned on the pair , these vectors are
independent and uniformly distributed over the cen-
tered unit -sphere. That means their density5 over
the unit -sphere is given by . Conditioned on

however, this is not true anymore. In
the following, we condition on and on

, for some -dimen-
sional vector with norm , some , some

, and some -dimensional vector . Conditional on
and ,

the vectors , for pairs not equal to , are
still independent, but for some vectors the density over the
centered unit -sphere has changed. Whereas the vectors

, for , are still uniformly distributed over the
entire centered unit -sphere, the vectors , for ,
are uniformly distributed only over the centered unit -sphere
without the spherical cap of half-angle centered at
. Since the surface area of the sphere without this cap equals

, which for all is larger
than , we obtain that for all vectors where

, the conditional density on the centered unit
-sphere is upper bounded by .
With this upper bound and with LemmaB.1 (see Appendix B)

we obtain the rst inequality in (154) at the bottom of the next
page, independent of , , and . The last inequality
in (154) follows because and thus the difference

lies in the open interval and the

5Here, we abuse terminology. In fact it is not a density with respect to the
Lebesgue measure, but only with respect to the measure induced by the uniform
distribution over the centered unit -sphere.

(148)

(149)
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mapping is decreasing in .
Since the function is monotonically de-
creasing in , for all inequality (154) is

further upper bounded by ,
and therefore, taking expectation with respect to ,

, and results in (155) at the bottom of the
page. Notice that because

by [2, eq. (54)], and since the constant factor 2 in the logarithm
does not change the limit

(156)

The desired limit (152) follows then by Lemma B.3 (see
Appendix B) and by inequalities (155) and (156).
We next consider the probability that the input sequence

violates the average block-power constraint . By
symmetry, again this probability does not depend on the value
of and , and we can assume . Thus, we
wish to prove that

(157)

Notice that

(158)

(159)

and by Lemma C.1

(160)

Combining (158) with (160) establishes (157) and thus con-
cludes the proof.

APPENDIX D
PROOF OF THEOREM IV.1

We show that every rate satisfying the conditions in
Theorem IV.1 is achievable. To this end, we present for every
rate below a choice of parameters so that our scheme in
Section V communicates at this rate with vanishing probability
of error and with an average transmit power no larger than .
This establishes the theorem.
We x a rate satisfying the conditions in Theorem

IV.1. Then, we x a sufciently small and corresponding
and so that assumptions 1�–3 in the theorem are

met. We now describe the choice of parameters for which we
apply our scheme in Section V. We choose

(161)

and sufciently close to such that

(162)

and

(163)

where recall that .
Notice that such a choice of always exists, as proved by the

following three observations:

(154)

(155)
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1) Every rate that satises condition (16) in the theorem for
arbitrary small must be smaller than .
This holds because for and
the left-hand side of (16) equals its right-hand side; be-
cause the left-hand side of (16) is independent of and
decreasing in ; and because its right-hand side is inde-
pendent of and increasing in .

2) Therefore, by (161) and by continuity, inequality (162)
holds for all that are sufciently close to .

3) Also inequality (163) holds for all that are sufciently
close to . This follows again by condition (16) in the
theorem, by the continuity of the expressions involved in
(16), and because the right-hand side of (16) is decreasing
in .

We also choose

(164)

In the following, we show that our choice of parameters
satises the conditions in Lemma V.1 for

the chosen . By Lemma V.1 and Remark V.3, this then
establishes that the probability of error of our scheme and the
probability of violating the average block-power constraint
tend to 0 as the blocklength tends to innity.
We rst notice that conditions (23) and (24) in Lemma V.1

follow from (162) and (164), from the fact that is positive,
and from simple algebraic manipulations. Moreover, conditions
ii) and iii) in Lemma V.1 hold trivially because they coincide
with conditions 2 and 3 in the theorem. Finally, condition i) in
Lemma V.1 follows from (163) and because by (161) and (164)

APPENDIX E
PROOF OF LEMMAS VI.3 AND VI.6

Before proving Lemmas VI.3 and VI.6 in Sections B and C
of this Appendix, we recall the setup and notation of Section VI,
and we present some denitions and lemmas in Section A of this
Appendix.
Consider the dirty-paper MAC with conferencing in

Section III-B where the transmitters have powers and
, the interference vector is uniformly distributed over a

centered -sphere of radius , the noise vector has IID
zero-mean variance- Gaussian components, and the two
transmitters have access to noise-free pipes of rates and

. We consider the scheme in Section VI. That means, we
assume that in a rst stage the two transmitters exchange the
common parts of their messages and over the pipes,
and in a second stage the transmitters and the receiver apply

the scheme in Section VI-A for some choice of parameters
, , , .

Let, in the following, the parameters ,
, , and be xed. Given these

parameters, let , , , , , , and , ,
be the powers, the noise variances, and the interference vari-
ances as dened in Section VI-A1; let , , and , ,
be the interference and noise sequences experienced in the var-
ious decoding steps as dened in Sections VI-A1 and VI-A5; let

be the rates dened through (40)�–(45);
let , , and be the dirty-paper
codewords and , , and the corresponding dirty-paper
sequences as dened in Sections VI-A2 and VI-A3.

A) Some Denitions and Auxiliary Lemmas:
Denition E.1: For xed , dene the fol-

lowing 14 events.
1) Let denote the event that

2) For , let denote the event that

3) For , let denote the event that

4) Let denote the event that

5) Let denote the event that

6) For , let denote the event that

7) Let denote the event that

8) For , let denote the event that
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9) Let denote the event that

10) Let denote the event that

Lemma E.2: Given parameters ,
, , and , , , there

exist positive , ,
with the following properties:

i) The probability that all 14 events in Denition E.1 simul-
taneously occur tends to 1 as the blocklength tends to
innity for all and all satisfying

(165)
(166)
(167)

ii) For xed , , :
1) as
2) as
3) as .

Proof: Dene ,
, and as

in (168) at the bottom of the page. By (40) and because

Moreover, by denition, for all

(169)

Similarly, by (41) and (42) and because , for

and for all

(170)
In the following, we prove that since , , satisfy

Inequalities (169) and (170), the probability of all 14 events
in Denition E.1 tends to 1 as tends to innity. This then
establishes the lemma.
By the symmetry of the code construction and of the en-

codings, we can assume without loss of generality that
. Moreover, it sufces to show that the prob-

ability of each individual event tends to 1 as tends to innity.
We rst consider event and notice that it is equivalent

to event

(171)

Since by (40) and by (169)

(172)

the auxiliary Lemma B.5 (see Appendix B) immediately yields

(173)

Similar limits for events and can be proved in the
same way.
We next x an arbitrary and consider the event

. This event is equivalent to event (174) at the
bottom of the next page. Similar to (172), by (41), (42), and
(170), we have

(168a)

(168b)

(168c)
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(175)

Combining the auxiliary Lemma B.6 (see Appendix B) with
(172) and (175), we can conclude that

(176)

Similar limits for events and can be
proved in the same way.
We now prove limit

(177)

Notice that event occurs whenever event occurs.
In fact, whenever occurs, then

and similarly

Thus, limit (176) combined with the last two bounds estab-
lishes (177). Similar limits for events and can
be proved in the same way.
Since , , , and are uniformly dis-

tributed over centered -spheres and independent of , by [2,
eq. (54) and Lemma 4.1], we can conclude that for any
the probability of events , , and
tends to 1 as tends to innity.
Finally, by the ergodicity of and by the weak law of large

numbers, for every

which concludes the proof.

Lemma E.3: Given parameters ,
, , and , if the parame-

ters and satisfy

(178)
(179)

for some specic positive and
, then it is possible to nd

satisfying the following three properties:
1)

(180)

2) for every

(181)

where the events
, and are dened

in Denition E.1;
3)

(182)

Proof: We rst notice that (180) holds whenever

(183)

By (46) and simple algebraic manipulations

(184)
Therefore, since the right-hand side of (184) is increasing in
, since , and by continuity, there exists a positive

(174)
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such that inequality (182) holds for
all that satisfy

(185)

Finally, by Lemma E.2, there exist positive
and that

tend to 0 as and tend to 0, respectively, and such that
Limit (181) holds for all that satisfy

(186)
(187)

By (183)�–(187), we conclude that if

(188)

then it is possible to choose satisfying (180)�–(182).
Since and , and since for xed

, , , and , we can
make and arbitrary
small by choosing and sufciently small, the
lemma follows.

B) Proof of Lemma VI.3: By the denition of

and

Thus, whenever events

(189)

occur for some , then

(190)

and

(191)

Let in the following the parameters be sufciently
small (as a function of ) to satisfy (178) and
(179) in Lemma E.3. Then, by Lemma E.3, we can choose

so as to satisfy conditions (180)�–(182) in Lemma
E.3. By (180) and (182), we can further choose a small
such that

(192)

satises and condition (56) in Lemma VI.3. Moreover,
since (190) and (191) hold whenever the events in (189) occur,
and since by our choice of for all the prob-
ability of these events tends to 1 a [limit (181)], our
choice of in (181) also satises Conditions (57) and (58) in
Lemma VI.3. This concludes the proof.

C) Proof of Lemma VI.6: Notice that whenever events
, , , and occur

for some , then

(193)

and

(194)

Thus, if we choose so that

(195)

(196)

then the channel input sequences and satisfy the block-
power constraints (8) and (9).
In the following, we argue that if are suf-

ciently small (depending on ), then there exists a
choice satisfying (195) and (196) and such that
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for all the probabilities of events , , ,
, and tend to 1 as tends to . This

establishes the lemma.
Recall that by Lemma E.2, there exist ,

, and such that for
every and all satisfying

(197)
(198)
(199)

the probability of events , , , ,
and tends to 1 as tends to innity. Moreover,
for xed , , and
the bounds , ,

tend to 0 as . Thus, there
exist positive , ,

such that whenever
(200)
(201)
(202)

then it is possible to choose that simultaneously
satisfy (195)�–(199). This concludes the proof.
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