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Feedback and Partial Message Side-Information on
the Semideterministic Broadcast Channel

Annina Bracher and Michèle Wigger, Senior Member, IEEE

Abstract— The capacity of the semideterministic discrete mem-
oryless broadcast channel (SD-BC) with partial message side-
information (P-MSI) at the receivers is established. In the setting
without a common message, it is shown that P-MSI to the
stochastic receiver alone can increase capacity, whereas P-MSI
to the deterministic receiver can only increase capacity if also
the stochastic receiver has P-MSI. The latter holds only for the
setting without a common message: if the encoder also conveys
a common message, then P-MSI to the deterministic receiver
alone can increase capacity. These capacity results are used to
show that feedback from the stochastic receiver can increase the
capacity of the SD-BC without P-MSI and the sum-rate capacity
of the SD-BC with P-MSI at the deterministic receiver. The link
between P-MSI and feedback is a feedback code, which—roughly
speaking—turns feedback into P-MSI at the stochastic receiver,
and hence helps the stochastic receiver mitigate experienced
interference. For the case, where the stochastic receiver has full
MSI (F-MSI) and can thus fully mitigate experienced interference
also in the absence of feedback, it is shown that feedback cannot
increase capacity.

Index Terms— Channel capacity, feedback, partial message
side-information, semideterministic broadcast channel.

I. INTRODUCTION

WE DERIVE the capacity region of the semideterministic
discrete memoryless broadcast channel (SD-BC) with

partial message side-information (P-MSI) (Theorem 2). In this
setting each receiver knows part of the message intended for
the other receiver already before the transmission begins. Our
capacity result generalizes that of [1], [2] for the SD-BC
without MSI. The capacity region of the general BC with full
MSI (F-MSI), where each receiver knows the entire message
intended for the other receiver, was established in [3] and [4].
The work of Kramer and Shamai [4] also considers
P-MSI and establishes the capacity region of the BC with
P-MSI and degraded message sets. The three-receiver BC
with P-MSI is studied in [5]. Independently of our work,
Asadi, Ong, and Johnson proposed a coding scheme for gen-
eral two-receiver BCs with P-MSI [6]. One can show that—
for a judicious choice of the auxiliary random variables—their

Manuscript received August 7, 2015; revised October 3, 2016; accepted
May 3, 2017. Date of publication May 29, 2017; date of current version
July 12, 2017. This paper was presented at the 2015 IEEE International
Symposium on Information Theory, Hong Kong, China.

A. Bracher is with Swiss Reinsurance Company Ltd., 8022 Zürich,
Switzerland (e-mail: annina_bracher@swissre.com).

M. Wigger is with LTCI, Télécom ParisTech, Université Paris-Saclay,
75013 Paris, France (e-mail: michele.wigger@telecom-paristech.fr).

Communicated by S. S. Pradhan, Associate Editor for Shannon Theory.
Color versions of one or more of the figures in this paper are available

online at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TIT.2017.2709758

scheme achieves the capacity region of the SD-BC. Their work
does not, however, provide a converse.1

Generally speaking, P-MSI reduces the effect of self-
interference on the BC and hence enables more efficient
communication (see, e.g., [4]). More specifically, in the current
paper we show that on the SD-BC P-MSI affects the capacity
region as follows:

• P-MSI at the deterministic receiver can increase capacity
if, and only if, one of the following two holds: 1) also the
stochastic receiver has P-MSI; or 2) the encoder conveys
also a common message (Remark 7).

• P-MSI at the stochastic receiver can increase capacity
(Remark 8); and this holds irrespective of whether or
not the deterministic receiver has P-MSI or the encoder
conveys a common message.

To establish these findings we use our capacity result for the
SD-BC with P-MSI. Of particular interest to us is the latter
finding, which we shall use to design a feedback code for
the SD-BC with or without P-MSI that can improve over the
channel’s no-feedback capacity.

Feedback on the BC was first studied in [10], where
it is shown that even perfect feedback does not increase
the capacity region of the physically-degraded BC [10].
It was later proved that feedback can, however, increase
the capacity region of several BCs that are not physically
degraded [11]–[16]; and achievable rate regions for the BC
with feedback were established in [12]–[16]. An intuition
for the gain due to feedback is that feedback allows the
transmitter to create a common message that is useful to
both receivers [11], [14]. Typically, transmitting one common
message is more efficient than transmitting two private mes-
sages, because in the latter case the transmissions of the two
private messages intefere with each other. In prominent previ-
ous examples where feedback increases the BC’s capacity—
e.g., in Dueck’s example [11]—the common message is built
up of past noise symbols. It is not clear how the idea of
constructing a common message using past noise symbols
should be adapted to the SD-BC, which is the focus of
this paper; one receiver of the SD-BC is deterministic, and
hence it is not clear why information that is constructed

1Somewhat similar to P-MSI is decoder cooperation on the BC, which
allows the decoders to exchange information via finite-capacity links. The
capacity region of the SD-BC with one-sided cooperation via a link from
the deterministic to the stochastic receiver is established in [7]. In fact, as it
is shown in [7], this network is operationally equivalent to a class of relay-
broadcast channels whose capacity region is established in [8]. The physically-
degraded BC with parallel conferencing and the BC with conferencing and
degraded message sets are studied in [9].

0018-9448 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



BRACHER AND WIGGER: FEEDBACK AND PARTIAL MESSAGE SIDE-INFORMATION ON THE SEMIDETERMINISTIC BROADCAST CHANNEL 5053

only from previous noise symbols should be useful to this
receiver.

In the current paper we show that—notwithstanding the
above observations—feedback can increase the capacity region
of the SD-BC (Theorem 17). To establish this result, we
use the feedback to create an improved situation where the
stochastic receiver has P-MSI. (As mentioned before, P-MSI
at the stochastic receiver can increase the SD-BC’s capacity.)
More precisely, we use the idea that the encoder can create
from the feedback a new message that is useful to the
deterministic receiver and can be created (and hence is known)
at the stochastic receiver. A similar idea was previously used
by Wu and Wigger to construct a coding scheme for the
general BC with rate-limited feedback [16], though their work
does not make the connection to the BC with P-MSI explicit.
They use the scheme to show that feedback can increase the
capacity of a large class of stochastically- (but not physically-)
degraded BCs as well as the capacity of a class of BCs
that consist of a binary symmetric channel and a binary
erasure channel [16]. The argument is particularly intuitive
for the class of stochastically-degraded BCs that satisfy that
one receiver is stronger than the other: it is shown in [16]
that for any BC in this class the encoder can create a new
message that is useful to the stronger receiver and can be
created at the weaker receiver, and that the encoder can send
this message without reducing the rates at which the fresh
message-information is transmitted.

Unlike the above class of stochastically-degraded BCs, on
the SD-BC there is a tradeoff between the rates at which
fresh message-information and the message that the encoder
constructs from the feedback are sent. Hence—even with the
results of [16] at hand—showing that feedback can increase
the capacity region of the SD-BC is nontrivial. We show by
means of an example that—with a judicious choice of the rates
at which the fresh and the feedback information are sent—we
can increase the overall rates at which the messages are sent
to the receivers (Example 18). From this we conclude that
feedback can increase the capacity region of the SD-BC.

As already mentioned, in [16] the connection between the
coding idea and the BC with P-MSI is not made explicit.
We make the connection explicit, and this allows us to readily
extend our feedback coding scheme for the SD-BC to the
case where the receivers have P-MSI. Using this extension
of the feedback code, we show that if the deterministic
receiver has P-MSI, then feedback can increase the sum-rate
capacity of the SD-BC (Theorem 17). For the case where
the stochastic receiver has F-MSI, we show that feedback
cannot increase capacity, irrespective of whether or not the
deterministic receiver has P-MSI (Theorem 19).

The rest of this paper is structured as follows. We conclude
this section by introducing some notation. Section II describes
the channel model. Section III contains the results for the
SD-BC with P-MSI, and Section IV studies the effect of
feedback on the SD-BC with and without P-MSI.

A. Notation and Preliminaries

We use calligraphic letters to denote finite sets and | · |
for their cardinality, e.g., X and |X |. Random variables are

denoted by upper-case letters and their realizations by lower-
case letters, e.g., X and x . By X j

i and x j
i we denote the tuples

(Xi , . . . , X j ) and (xi , . . . , x j ), where j > i ; and we drop the
subscript i = 1, e.g., we write Xn instead of Xn

1 . Sequences
are in bold lower- or upper-case letters depending on whether
they are deterministic or random, e.g., x denotes an n-length
codeword.

By Q ∼ Unif[1 : n] we indicate that the random vari-
able Q is uniformly drawn from the set {1, . . . , n}, and
by S ∼ Ber(p), where p ∈ [0, 1], we indicate that S is a
Bernoulli-p random variable. We denote the binary entropy
function by hb(·) and its inverse on [0, 1/2] by h−1

b (·).
A joint probability mass function (PMF), its marginal PMF,

and its conditional PMF are all denoted by the same function
p(·), with the exact meaning specified by the subscripts or
arguments, e.g., pX,Y (0, 1) denotes the probability of the event
(X, Y ) = (0, 1) and p(x |y) the probability that X = x given
Y = y.

We denote the set of ε-typical length-n sequences defined
in [17, Ch. 2] by T (n)

ε . By δ(ε) we denote any function of ε
that converges to 0 as ε approaches 0; and {εn} can stand for
any sequence of numbers that converges to 0 as n tends to
infinity.

We shall use the following lemma, which is proved, e.g.,
in [18]:

Lemma 1 (Functional Representation Lemma): Given two
random variables X and Y of finite support, there exist a
chance variable S of finite support S that is independent of
X and a function g : X × S → Y such that Y = g(X, S).

II. CHANNEL MODEL

We consider the SD-BC of transition law

W (y, z|x) = �{y= f (x)} W (z|x),

where we assume that the channel-input alphabet X and the
channel-output alphabets Y and Z are finite. Transmitting an
n-tuple Xn , the encoder wants to convey the message-pairs
(M, MY ) and (M, MZ ) to the deterministic receiver Y and
the stochastic receiver Z , respectively, where M denotes the
common message and MY and MZ the private messages.
We assume that M , MY , and MZ are independent, that
M is uniformly drawn from a size-2nR set, and that for each
ν ∈ {Y,Z} message Mν is uniformly drawn from a size-2nRν

set. We study the SD-BC with P-MSI, and we thus assume
that each private message comprises two parts, i.e.,

Mν = (
M(p)

ν , M(c)
ν

)
, ν ∈ {Y,Z},

that Receiver Y knows M(c)
Z and decodes (M, MY ) from

(Y n, M(c)
Z ), and that Receiver Z knows M(c)

Y and decodes

(M, MZ ) from (Zn, M(c)
Y ). For each ν ∈ {Y,Z} we assume

that M(p)
ν and M(c)

ν are independent of each other and uni-

formly drawn from sets of size2 2nR(p)
ν and 2nR(c)

ν , respectively,

2For simplicity, when we write 2n R , for some n, R ≥ 0, we implicitly
assume that it is an integer value. It would be more precise to write �2n R�
instead. However, the ratio between the two expressions tends to 1 when
n → ∞, which is the regime of interest in this paper.
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Fig. 1. SD-BC with P-MSI and feedback.

where

RY = R(p)
Y + R(c)

Y and RZ = R(p)
Z + R(c)

Z .

Note the extreme cases:
• (R(p)

Y , R(c)
Y ) = (RY , 0) ⇐⇒ no MSI at Receiver Z

• (R(p)
Y , R(c)

Y ) = (0, RY ) ⇐⇒ F-MSI at Receiver Z
• (R(p)

Z , R(c)
Z ) = (RZ , 0) ⇐⇒ no MSI at Receiver Y

• (R(p)
Z , R(c)

Z ) = (0, RZ) ⇐⇒ F-MSI at Receiver Y .

A rate-tuple (R, R(p)
Y , R(c)

Y , R(p)
Z , R(c)

Z ) is achievable if there
exists a sequence of encoders and decoders so that at each
receiver the probability of a decoding error tends to zero as
n tends to infinity. The capacity region is the closure of the
set of all achievable rate-tuples.

We study the SD-BC with P-MSI in the absence and in
the presence of feedback. In the absence of feedback, the
encoder selects the channel-input sequence as a function of
the triple (M, MY , MZ ), i.e., Xn = φ(M, MY , MZ ). This
setting corresponds to that of Figure 1 without the dashed
links. We denote its capacity region by CP-MSI, and in the
special case without MSI by C .

When there is feedback, it is assumed to be one-sided
from the stochastic receiver Z only. (Feedback from the
deterministic receiver Y is useless, because the encoder can
always compute Y n from Xn .) We consider perfect and rate-
limited feedback. Perfect feedback allows the encoder to form
the Time-i input also as a function of Zi−1, i.e.,

Xi = φi (M, MY , MZ , Zi−1), i ∈ [1 : n].
Rate-limited feedback of rate RFB allows Receiver Z to trans-
mit after Transmission i a feedback signal Wi = h(Zi , M(c)

Y ) ∈
Wi to the encoder, and in turn the encoder can form the
Time-i input also as a function of W i−1, i.e.,

Xi = φi (M, MY , MZ , W i−1), i ∈ [1 : n].
The rate-limitation implies that

n∏

i=1

|Wi | ≤ 2nRFB . (1)

The SD-BC with P-MSI and perfect feedback (rate-limited
feedback) corresponds to the setting of Figure 1 when the
dashed links transport the feedback signal Zi (Wi ). Note that
perfect feedback is more powerful than rate-limited feedback:
any rate-tuple that is achievable with rate-limited feedback

can also be achieved with perfect feedback. Rate-limited and
perfect feedback are equally powerful when RFB ≥ log |Z|.

III. THE SD-BC WITH P-MSI

In this section, we assume that there is no feedback.

A. Capacity Region and Optimal Coding Scheme

Theorem 2 (Capacity With P-MSI): The capacity region
CP-MSI of the SD-BC with P-MSI is the set of rate-tuples

(R, R(p)
Y , R(c)

Y , R(p)
Z , R(c)

Z ) satisfying

R + RY ≤ H (Y ) (2a)

R + RZ ≤ I (U ; Z) (2b)

R + RY + R(p)
Z ≤ I (V ; Y ) + H (Y |U) + I (U ; Z |V ) (2c)

R + R(p)
Y + RZ ≤ H (Y |U) + I (U ; Z) (2d)

2R + RY + RZ ≤ I (V ; Y ) + H (Y |U) + I (U ; Z) (2e)

for some PMF of the form

p(v, u, x, y, z) = p(v, u) p(x |u) W (y, z|x). (3)

W.l.g., one can restrict X to be a function of (Y, U).
Proof: See Appendix A. �

In the following we sketch and discuss the proof of the
direct part. The capacity-achieving code is described rig-
orously in Appendix A. Use Marton’s code construction
(see [17, Sec. 8.4]) to encode the “common message-tuple”(
M, M(c)

Y , M(c)
Z

)
into a cloud-center V n and the private mes-

sages M(p)
Y and M(p)

Z into satellites Y n and Un , respectively.

Receiver Y decodes
(
M, M(c)

Y , M(c)
Z

)
and M(p)

Y jointly, while

taking into account its knowledge of M(c)
Z ; and likewise

Receiver Z decodes
(
M, M(c)

Y , M(c)
Z

)
and M(p)

Z jointly, while

taking into account its knowledge of M(c)
Y .

The tentative code can achieve all rate-tuples
(R, R(p)

Y , R(c)
Y , R(p)

Z , R(c)
Z ) that for some PMF of the

form (3) satisfy (2) and

R(p)
Y ≤ H (Y |V ) (4a)

R(p)
Z ≤ I (U ; Z |V ) (4b)

R(p)
Y + R(p)

Z ≤ H (Y |U) + I (U ; Z |V ). (4c)

Note that this achievable region differs from the capacity

region CP-MSI of the SD-BC with P-MSI in that the rates R(p)
Y

and R(p)
Z must also satisfy (4). As we show in Appendix B,

the region is—in general—strictly contained in CP-MSI.3

To get rid of the constraints (4) and hence achieve the
entire capacity region CP-MSI, a fix is needed: the encoder
must be able to convey more information about M(p)

Y and

M(p)
Z by allowing the cloud-center V n to depend not only

on the triple (M, M(c)
Y , M(c)

Z ) but also on M(p)
Y and M(p)

Z .
To this end we use the following code construction, which

3To show this, we shall use Corollary 5 ahead.
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Fig. 2. Code construction without a common message.

is depicted in Figure III-A for the setting without a com-
mon message. (In Figure III-A each dot represents an n-
length codeword.) Fix some PMF p(v, u, x, y, z) of the
form (3). For each triple (m, m(c)

Y , m(c)
Z ) we generate a

bin containing 2nR̃(c)
n-tuples v, which are drawn indepen-

dently of each other and each from the PMF
∏n

i=1 p(vi ).
(In Figure III-A the light-blue row represents all bins and

codewords that are associated with m(c)
Y = 2nR(c)

Y − 1,
and the light-green column represents all bins and code-

words that are associated with m(c)
Z = 2nR(c)

Z − 1.) For
each cloud-center-bin we generate two satellite codebooks:
one to encode M(p)

Y and one to encode M(p)
Z . (Figure III-A

depicts the satellite codebooks corresponding to the pair

(m(c)
Y , m(c)

Z ) = (3, 2nR(c)
Z − 1): that for M(p)

Y on the right, and

that for M(p)
Z on the left.) For each m(p)

Y the first 2n(R̃Y−R̃(c))

y-codewords in the satellite codebook corresponding to any
pair (m(c)

Y , m(c)
Z ) are superpositioned on the first codeword in

the corresponding cloud-center-bin; the following 2n(R̃Y−R̃(c))

codewords in each satellite codebook are superpositioned on
the second codeword in the corresponding cloud-center-bin;

and so on. That is, the first 2n(R̃Y−R̃(c)) y-codewords are
drawn according to the conditional PMF

∏n
i=1 p(yi |v(1)

i ),
where v

(1)
i denotes the i -th component of the first codeword in

the corresponding clound-center-bin; the following 2n(R̃Y−R̃(c))

y-codewords are drawn according to the conditional PMF∏n
i=1 p(yi |v(2)

i ), where v
(2)
i denotes the i -th component of

the second codeword in the corresponding clound-center-
bin; and so on. The u-codewords in the satellite code-
books for M(p)

Z are drawn similarly. (In Figure III-A
the uppermost row on the right, which is framed in
red, and the uppermost row on the left, which is

Fig. 3. Enhanced BC with P-MSI.

framed in lilac, correspond to the first codeword in the

(3, 2nR(c)
Z −1)-cloud-center-bin.) The codewords in each satel-

lite codebook are partitioned into as many different bins
as there are possible realizations of the message M(p)

Y or

M(p)
Z , respectively, and each such bin is associated with a

different realization m(p)
Y or m(p)

Z , respectively. (In Figure 3
the orange column represents the bin that is associated with

m(p)
Y = 2nR(p)

Y − 1, and the purple column represents the bin

that is associated with m(p)
Z = 2nR(p)

Z − 1. Note that each

bin comprises multiple subbins: one for each (3, 2nR(c)
Z − 1)-

cloud-center-codeword, where (m(c)
Y , m(c)

Z ) = (3, 2nR(c)
Z − 1)

is the “common message-pair” to which the depicted satellite
codebooks correspond.)

To transmit the message-tuple (m, m(p)
Y , m(c)

Y , m(p)
Z , m(c)

Z ),
the encoder first looks for n-tuples v, y, and u in the
bins corresponding to (m, m(c)

Y , m(c)
Z ), m(p)

Y , and m(p)
Z , respec-

tively, satisfying that (v, y, u) are jointly typical. It then
generates the channel input Xn from the product distribu-
tion

∏n
i=1 p(xi |yi , ui ). Receiver Y decodes (M, M(c)

Y , M(c)
Z )

and M(p)
Y jointly, while restricting attention to the column
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TABLE I

SPECIAL CASES OF THEOREM 2.

of the cloud-center that corresponds to the message M(c)
Z ,

which Receiver Y knows. Likewise, Receiver Z decodes
(M, M(c)

Y , M(c)
Z ) and M(p)

Z jointly, while restricting atten-
tion to the row of the cloud-center that corresponds to the
message M(c)

Y , which Receiver Z knows.4

As we explain in Appendix A, the effect of binning
the cloud-center is the same as that of rate-splitting (see
Remark 22 ahead). If we were to use rate-splitting instead of
binning, then we would not bin the cloud-center, but instead
we would divide the messages M(p)

Y and M(p)
Z into two parts

each, i.e.,

M(p)
ν = (M(p)

ν,s , M(p)
ν,c ), ν ∈ {Y,Z}.

Of these parts we would associate only M(p)
Y,s and M(p)

Z,s with
the satellites Y n and Un , respectively, whereas we would
encode M(p)

Y,c and M(p)
Z,c in the cloud-center. The benefit of bin-

ning the cloud-center is that it necessitates only one auxiliary
rate: the rate at which the cloud-center is binned. In contrast,
rate-splitting necessitates two auxiliary rates: the rates R(p)

Y,c

and R(p)
Z,c associated with M(p)

Y,c and M(p)
Z,c , respectively.

We next specialize Theorem 2 to cases where one or
both of the receivers have no MSI or F-MSI, Table I illus-
trates to which.5 These corollaries help understand when
P-MSI increases capacity (see Subsection III-B).

Corollary 3 (No MSI at Z): For each R(p)
Z ∈ [0, RZ ], the

capacity region of the SD-BC without a common message and
without MSI at Receiver Z (R = 0 and R(p)

Y = RY ) is the set

of rate-tuples (0, RY , 0, R(p)
Z , R(c)

Z ) satisfying

RY ≤ H (Y ) (5a)

RZ ≤ I (U ; Z) (5b)

RY + RZ ≤ H (Y |U) + I (U ; Z) (5c)

for some PMF of the form

p(u, x, y, z) = p(u, x) W (y, z|x). (6)

W.l.g., one can restrict X to be a function of (Y, U).
Proof: Let V be deterministic. In this case, and because

R = 0 and R(p)
Y = RY , Constraints (2c) and (2e) are redundant

in view of Constraint (2d). Hence, (5) is an inner bound on
the capacity region. That (5) is also an outer bound follows
from (2a), (2b), and (2d). �

4It is well-known that, without a cloud-center, this scheme achieves the
capacity region of the SD-BC without a common message and without MSI
(see, e.g., [17, Secs. 8.3.1–8.3.2]).

5Corollary 3 ahead is only for the setting without a common message
(R = 0).

Corollary 4 (F-MSI at Y): For each R(p)
Y ∈ [0, RY ], the

capacity region of the SD-BC with F-MSI at Receiver Y
(R(p)

Z = 0) is the set of rate-tuples (R, R(p)
Y , R(c)

Y , 0, RZ )
satisfying

R + RY ≤ H (Y ) (7a)

R + RZ ≤ I (U ; Z) (7b)

R + R(p)
Y + RZ ≤ H (Y |U) + I (U ; Z) (7c)

for some PMF of the form

p(u, x, y, z) = p(u, x) W (y, z|x). (8)
Proof: For V = U the constraints in (2) and (7)

are equivalent, and hence (7) is an inner bound on the
capacity region. That (7) is also an outer bound follows
from (2a), (2b), and (2d). �

Corollary 5 (F-MSI at Z): For each R(p)
Z ∈ [0, RZ ], the

capacity region of the SD-BC with F-MSI at Receiver Z
(R(p)

Y = 0) is the set of rate-tuples (R, 0, RY , R(p)
Z , R(c)

Z )
satisfying

R + RY ≤ H (Y ) (9a)

R + RZ ≤ I (X; Z) (9b)

R + RY + R(p)
Z ≤ I (X; Y, Z) (9c)

for some PMF of the form

p(x, y, z) = p(x) W (y, z|x). (10)
Proof: See Appendix C. �

From Corollary 5 we see that if both receivers have F-MSI,
i.e., when

R(p)
Y = 0 and R(p)

Z = 0,

then (9c) is redundant. Consequently, we recover:
Corollary 6 (F-MSI at Y and Z From [4, Th. 1])6: The

capacity region of the SD-BC with F-MSI at both receivers
(R(p)

Y = 0 and R(p)
Z = 0) is the set of rate-tuples (R, RY , RZ )

satisfying

R + RY ≤ H (Y ) (11a)

R + RZ ≤ I (X; Z) (11b)

for some PMF of the form

p(x, y, z) = p(x) W (y, z|x). (12)

B. How P-MSI Affects Capacity

In this section we study how P-MSI at the receivers affects
the capacity region of the SD-BC.

Remark 7 (P-MSI at Y): P-MSI at the deterministic
receiver Y can increase capacity if, and only if, the stochastic
receiver Z has P-MSI (R(p)

Y < RY ) or a common message is
transmitted (R > 0).

In particular, the “only if”-direction implies:

(0, RY , 0, R(p)
Z , R(c)

Z ) ∈ CP-MSI ⇐⇒ (0, RY , RZ) ∈ C ,

(13)

6For the setting without a common message, the capacity region of the
general BC with F-MSI at both receivers was established in [4, Th. 1]. This
result readily extends to the setting with a common message.
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where C denotes the capacity region of the SD-BC
without MSI.

Proof: The “only-if” direction follows from Corollary 3.
The “if-direction” follows from Examples 9 and 10 ahead.
More specifically, Example 9 shows that F-MSI at Receiver Y
can increase capacity if Receiver Z already has F-MSI; and
Example 10 shows that F-MSI at Receiver Y can increase
capacity if a common message is transmitted.7 �

Remark 8 (P-MSI at Z): P-MSI at the stochastic
receiver Z can increase the capacity region of the SD-BC;
and this holds irrespective of whether or not the deterministic
receiver has P-MSI or the encoder transmits a common
message.

Proof: Assume no common message (R = 0).
By Corollary 3 the capacity region without MSI at Receiver Z
does not depend on whether or not Receiver Y has P-MSI
(R(p)

Z ∈ [0, RZ ]), and hence we obtain from Example 9 ahead
that F-MSI at Receiver Z can increase capacity, irrespective
of whether or not Receiver Y has P-MSI.8 Continuity consid-
erations imply that the statement also holds with a common
message, i.e., for some R > 0. �

Example 9 (P-MSI Without a Common Message): Consi-
der the SD-BC with binary input X and binary outputs

Y = X and Z = X ⊕ S, (14)

where S ∼ Ber(p) is independent of X, and where p ∈
(0, 1/2). Assume that the transmitter conveys only private
messages (R = 0).

Using the capacity results of Section III-A, we can char-
acterize the capacity region of the SC-BC (14) for the cases
where no receiver has MSI and where the stochastic receiver Z
has F-MSI:

• Assume no MSI (R(p)
Y = RY and R(p)

Z = RZ ). As shown
in [17, Sec. 5.4.2], the capacity region C without
MSI is the set of all rate-pairs (RY , RZ ) that for some
α ∈ [0, 1/2] satisfy

RY ≤ hb(α) (15a)

RZ ≤ 1 − hb(α + p − 2αp). (15b)

In particular, (15) implies that without MSI the sum-rate
is at most 1, and that it is strictly smaller than 1 whenever
RZ > 0.

• Assume F-MSI at Z (R(p)
Y = 0). By Corollary 5 (with

X ∼ Ber(1/2)) the capacity region CP-MSI with F-MSI
at Receiver Z is the set of rate-tuples (0, RY , R(p)

Z , R(c)
Z )

that satisfy

RZ ≤ 1 − hb(p) (16a)

RY + R(p)
Z ≤ 1. (16b)

7Continuity considerations imply that it is not necessary to assume F-MSI
(R(p)

Y = 0 or R(p)
Z = 0), but that the statements also hold for P-MSI of the

form R(p)
Y ∈ (0, RY ) or R(p)

Z ∈ (0, RZ ).
8Continuity considerations imply that it is not necessary to assume

F-MSI (R(p)
Y = 0), i.e., that the statement also holds for P-MSI of the form

R(p)
Y ∈ (0, RY ).

For the case where Receiver Y has no MSI and
Receiver Z has F-MSI (R(p)

Y = 0 and R(p)
Z = RZ ),

Constraints (16) imply that the sum-rate is at most 1 but
can also be 1 when RZ > 0.
For the case where both receivers have F-MSI (R(p)

Z =
R(p)
Y = 0), Constraints (16) imply that the sum-rate can

exceed 1.
From the above observations we see that the capacity of the

studied SD-BC (14) satisfies the following two:

1) The capacity region without MSI is strictly contained in
the capacity region without MSI at Receiver Y and with
F-MSI at Receiver Z .

2) The capacity region without MSI at Receiver Y and with
F-MSI at Receiver Z is strictly contained in the capacity
region with F-MSI at both receivers.

Example 10 (P-MSI With a Common Message): Consider
the SD-BC with input X = (X1, X2), where X1 and X2 are
binary, and with outputs

Y = X1 + X2 and Z =
{

X2 S = 0,

? S = 1,
(17)

where S ∼ Ber(p) is independent of X, and where p ∈ (0, 1).
In Appendix D we prove the following facts on the maximum

sum-rate that is achievable on the SD-BC (17):
• Assume F-MSI at Y and no MSI at Z (R(p)

Y = RY
and R(p)

Z = 0). Denote the set of PMFs p(u, x, y, z)
satisfying (8) by Pu. The maximum achievable sum-rate
R + RY + RZ is

max
p(u,x,y,z)∈Pu

{
H (Y |U) + I (U ; Z)

}

= 1 − p +
[

p hb

(
1

1 + 21/p

)
+ 21/p

1 + 21/p

]
. (18)

Let P�
u denote the set of PMFs p(u, x, y, z) ∈ Pu

that maximize the LHS of (18). W.r.t. every PMF
p(u, x, y, z) ∈ P�

u

I (U ; Y ) < min
{

H (Y ), I (U ; Z)
}
. (19)

Moreover, the largest common-message rate R�
F-MSI@Y

for which the maximum sum-rate is achievable is

R�
F-MSI@Y = max

p(u,x,y,z)∈P�
u

min
{

H (Y ), I (U ; Z)
}
. (20)

(Note that—by continuity and because the set P�
u is

compact—the maxima in (18) and (20) are attained.)
• Assume no MSI (R(p)

Y = RY and R(p)
Z = RZ ). The

maximum achievable sum-rate is again (18), and it can be
achieved only if p(u, x, y, z) ∈ Pu. Let P�

uv denote the set
of PMFs p(u, v, x, y, z) that for some p(u, x, y, z) ∈ P�

u
are of the form

p(u, v, x, y, z) = p(v|u) p(u, x, y, z).

The largest common-message rate R�
no-MSI for which the

maximum sum-rate is achievable satisfies

R�
no-MSI ≤ max

p(u,v,x,y,z)∈P�
uv

I (V ; Y ). (21)
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We can use the above observations to compare R�
no-MSI and

R�
F-MSI@Y :

R�
no-MSI

(a)≤ max
p(u,v,x,y,z)∈P�

uv

I (V ; Y )

(b)≤ max
p(u,x,y,z)∈P�

u

I (U ; Y )

(c)
< max

p(u,x,y,z)∈P�
u

min
{

H (Y ), I (U ; Z)
}

(d)= R�
F-MSI@Y , (22)

where (a) follows from (21); (b) holds by definition of P�
uv ;

(c) follows from (19); and (d) follows from (20). The compar-
ison reveals that for the SD-BC (17) the capacity region with
F-MSI at Receiver Y and without MSI at Receiver Z strictly
contains that without MSI.

C. Intuition on the Results

In this section we provide some intuition on the results of
Section III-B. To keep the exposition simple we consider only
the case without a common message.

When a transmitter sends two independent messages over
a BC to two receivers, then the transmission to each of the
receivers is interfered by the transmission to the other receiver.
Since the transmitter knows the two messages, it knows the
two transmissions acausally and can thus partially mitigate
the interference experienced at each receiver (see Marton’s
scheme [1]).

Suppose now that a receiver has P-MSI. Such a receiver has
partial knowledge of the transmission to the other receiver, and
in general knowing interference at both the transmitter and the
receiver is better (in terms of achievable rates) than knowing
it only at the transmitter (cf. the state-dependent single-user
channel with acausal state-information (SI) at the transmitter).
Consequently, P-MSI at a receiver allows to better mitigate
interference on the BC and hence to achieve larger rates. This
provides some intuition for our finding that—in the setting
without a common message—P-MSI at the SD-BC’s stochastic
receiver only can increase capacity.

In contrast, we have seen that—in the setting without
a common message—P-MSI at the SD-BC’s deterministic
receiver only cannot increase capacity. Also for this result
we can obtain some intuition from the single-user channel
whose transmission is subject to interference. Indeed, if the
single-user channel’s outputs can be computed from its inputs
and the interference, then knowing the interference only at the
transmitter is as beneficial as knowing it also at the receiver.9

Interference can be mitigated more efficiently if both
receivers have P-MSI. For example, if both receivers have
F-MSI (R(p)

Y = 0 and R(p)
Z = 0) and, moreover, R(c)

Y = R(c)
Z ,

9To see this, consider a deterministic state-dependent single-user channel
W (y|x, s), whose output is a function of its input and the state. That the
capacity of this channel with acausal SI at the encoder does not depend on
whether or not the state is revealed to the receiver can be seen as follows.
If the receiver does not observe the state, then the capacity is given by the
Gelfand-Pinsker formula [19]

C = max
p(u,x|s) I (U; Y ) − I (U; S),

then the transmitter can send the “x-or” of the messages M(c)
Y

and M(c)
Z as a “common message” to both receivers, and

each receiver can recover its message by first recovering the
common message and then subtracting the message for the
other receiver, which it knows. This provides some intuition
for our finding that on the SD-BC P-MSI at both receiver’s
is better (in terms of achievable rates) than P-MSI at the
stochastic receiver only.

IV. FEEDBACK ON THE SD-BC

This section investigates how feedback can be used on
the SD-BC. The feedback that we consider is perfect or rate-
limited, and it is only from the stochastic receiver Z . (Recall
that feedback from the deterministic receiver Y is useless.) For
simplicity of exposition, we assume that there is no common
message (R = 0). But our ideas easily extend to the common-
message setting.

A. Preliminaries: An Enhanced BC

Consider the enhanced BC with P-MSI of Figure 3, which
is obtained from the SD-BC with P-MSI by revealing the
stochastic outputs {Zi } also to the deterministic receiver Y .
It plays an important role in the feedback code that we present
in the next section.

The capacity region of the enhanced BC is defined similarly
as that of the SD-BC (see Section II). We denote it by C (enh)

P-MSI,
and in the special case without MSI by C (enh).

Proposition 11 (Enhanced BC With P-MSI): The capacity
region C (enh)

P-MSI of the enhanced BC with P-MSI is the set of
rate-tuples (R(p)

Y , R(c)
Y , R(p)

Z , R(c)
Z ) satisfying

RZ ≤ I (U ; Z) (23a)

RY + R(p)
Z ≤ I (X; Y, Z) (23b)

R(p)
Y + RZ ≤ I (X; Y, Z |U) + I (U ; Z) (23c)

for some PMF of the form

p(u, x, y, z) = p(u, x) W (y, z|x). (24)
Proof: The result is an immediate consequence of

[4, Th. 3], which characterizes the capacity region of the BC
with P-MSI and degraded message sets. This holds because,
as we argue next, the capacity region of the enhanced BC
remains unchanged if the stronger receiver Y must decode
also the pair (M(p)

Z , M(c)
Z ). To see this, note that a coding

scheme is reliable on the enhanced BC with P-MSI if, and
only if, the following two conditions hold: 1) Receiver Z can
decode (M(p)

Z , M(c)
Z ) reliably from M(c)

Y and the outputs Zn ;

and 2) Receiver Y can decode (M(p)
Y , M(c)

Y ) reliably from

M(c)
Z and the outputs (Y n, Zn). But these two conditions are

which for U = Y (X, S) evaluates to maxp(x|s) H (Y |S). If the receiver
observes the state, then the capacity is

C = max
p(x|s) I (X; Y |S),

which is equivalent to maxp(x|s) H (Y |S), because Y = Y (X, S). This, and
the fact that the receiver can always ignore the state that it observes, prove
the claim.
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equivalent to the conditions that result when in 2) we require
that Receiver Y can—in addition to (M(p)

Y , M(c)
Y )—decode

also the pair (M(p)
Z , M(c)

Z ) reliably. �
Corollary 12 (Enhanced BC Without MSI): The capacity

region C (enh) of the enhanced BC without MSI (R(p)
Y = RY

and R(p)
Z = RZ ) is the set of rate-tuples (RY , 0, R(p)

Z , R(c)
Z )

satisfying

RY ≤ I (X; Y, Z |U) (25a)

RZ ≤ I (U ; Z) (25b)

for some PMF of the form (24).
From Proposition 11 and Corollary 12 it follows that on

the enhanced BC P-MSI at Receiver Y only cannot increase
capacity:

Corollary 13 (Enhanced BC Without MSI at Z): If Recei-
ver Z has no MSI (R(p)

Y = RY ), then, irrespective of

R(p)
Z ∈ [0, RZ ],

(RY , 0, R(p)
Z , R(c)

Z ) ∈ C (enh)
P-MSI ⇐⇒ (RY , RZ) ∈ C (enh).

B. Coding Scheme With Rate-Limited Feedback

Assume that the feedback is rate-limited (see Figure 1 when
the dashed links transport the feedback signal Wi ).10 We first
describe our feedback scheme for the SD-BC without MSI at
the stochastic receiver Z . Later, we shall generalize it to the
case with P-MSI at both receivers.

The scheme has two phases: for some fixed α ∈ (0, 1),
Phase 1 comprises the first αn channel uses [1 : αn], and
Phase 2 comprises the remaining (1 − α)n channel uses
[αn +1 : n]. We next describe Phase 1 and Phase 2, beginning
with Phase 1.

Phase 1: In Phase 1 the transmitter codes for the enhanced
BC with P-MSI at the deterministic receiver Y at rates

(
R̃(p)
Y , 0, R̃(p)

Z , R̃(c)
Z

) ∈ C (enh)
P-MSI. (26a)

At the end of the phase the stochastic receiver Z decodes its

intended rate-(R̃(p)
Z , R̃(c)

Z ) messages. Moreover, it compresses
its Phase-1 channel-outputs and uses the rate-limited feedback-
link to send the compression index that it obtains to the
encoder.11 The deterministic receiver Y performs no action
in Phase 1.

Phase 2: In Phase 2 the encoder transmits the compression
index, which Receiver Z sent over the feedback link in
Phase 1, along with fresh message-information. It transmits

10Recall from Section II that perfect feedback is equivalent to rate-limited
feedback of rate RFB ≥ log |Z|.

11Receiver Z uses the feedback link only between the two phases, i.e.,
only at Time αn, and for every i 
= αn the feedback signal Wi thus takes
value in a size-1 set Wi . This allows the Receiver Z to choose the Time-αn
feedback Wαn from a size-2n RFB set Wαn while guaranteeing that the rate-
limitation (1) be met. By using B instances of the two phases, and by starting
the transmission with sufficiently many instances of Phase 1, one could use
the feedback link more evenly and (for B → ∞) guarantee that each alphabet
Wi , i ∈ [1 : n] be of size at most 2RFB .

the compression index at rate R(c)
Y and the fresh message-

information at rates (R(p)
Y , 0, R(p)

Z , R(c)
Z ), where

(R(p)
Y , R(c)

Y , R(p)
Z , R(c)

Z ) ∈ CP-MSI. (26b)

Note that Receiver Z knows the rate-R(c)
Y compression-index

and can thus use it as P-MSI. At the end of the phase
Receiver Z decodes its intended rate-(R(p)

Z , R(c)
Z ) messages;

and Receiver Y performs the following actions:

1) Based on its Phase-2 channel-outputs Y n
αn+1, it decodes

the rate-R(p)
Y message and the rate-R(c)

Y compression-
index that were sent to it in Phase 2.

2) Based on its estimate of the compression index and its
Phase-1 channel-outputs Y αn , it decodes Receiver Z’s
Phase-1 channel-outputs Zαn .

3) Based on its Phase-1 channel-outputs Y αn and its esti-
mate of Receiver Z’s Phase-1 channel-outputs Zαn , it
decodes the rate-R̃(p)

Y message that was sent to it in
Phase 1.

By (26a) and (26b) we can guarantee that the probability
of a decoding error tend to 0 as n tends to infinity when-
ever Receiver Y can recover Receiver Z’s Phase-1 channel-
outputs Zαn . As we argue next, we can guarantee that—with
probability tending to 1 as n tends to infinity—the latter hold
whenever the feedback-rate RFB and the rate R(c)

Y at which
the compression index is sent in Phase 2 satisfy

αH (Z |Y ) < (1 − α)R(c)
Y (26c)

(1 − α)R(c)
Y ≤ RFB, (26d)

where the conditional entropy H (Z |Y ) is computed w.r.t. some
PMF p(u, x, y, z) of the form (24) for which the rate-tuple

(R̃(p)
Y , 0, R̃(p)

Z , R̃(c)
Z ) satisfies (23). Indeed, Condition (26c)

guarantees that—with probability tending to 1 as n tends
to infinity—Receiver Y can decode Receiver Z’s Phase-1
channel-outputs Zαn from its own Phase-1 channel-outputs
and the compression index that is sent to it in Phase 2, and
Condition (26d) guarantees that the compression index can
be sent over the feedback link. To see this, recall that the
compression index is sent in Phase 2, and that the rate R(c)

Y at
which it is sent is thus computed w.r.t. the (1 − α)n channel
uses that Phase 2 comprises. Moreover, we can guarantee
that—with probability tending to 1 as n tends to infinity—
Receiver Y can decode Receiver Z’s Phase-1 channel-outputs
Zαn based on the compression index and its own Phase-1
channel-outputs Y n whenever the rate of the compres-
sion index—computed w.r.t. the first αn channel uses—
exceeds H (Z |Y ).

From the above we conclude that our feedback code
achieves any rate-tuple of the form

α(R̃(p)
Y , 0, R̃(p)

Z , R̃(c)
Z ) + (1 − α)(R(p)

Y , 0, R(p)
Z , R(c)

Z ) (27)

for which Conditions (26) hold. A more detailed analysis of
the scheme can be found in Appendix E.

We can easily adapt the above feedback code to allow
P-MSI also at the stochastic receiver Z , i.e., R(p)

Y ∈ [0, RY ]
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and R(p)
Z ∈ [0, RZ ]. To this end we modify the code as

follows:
• In Phase 1 the encoder codes for the enhanced BC with

P-MSI at both receivers.
• In Phase 2 the compression index that is sent to the

deterministic receiver constitutes additional P-MSI at the
stochastic receiver, i.e., P-MSI beyond the one that the
stochastic receiver already had in the beginning.

In Phase 1 of the adapted code the encoder thus codes at rates

(R̃(p)
Y , R̃(c)

Z , R̃(p)
Z , R̃(c)

Z ) ∈ C (enh)
P-MSI; (28a)

and in Phase 2 the encoder sends fresh message-information
at rates (R(p)

Y , R̂(c)
Y , R(p)

Z , R(c)
Z ), where

R̂(c)
Y ≤ R(c)

Y − α

1 − α
H (Z |Y ), (28b)

and

(R(p)
Y , R(c)

Y , R(p)
Z , R(c)

Z ) ∈ CP-MSI. (28c)

The adapted feedback code achieves any rate-tuple of the form

α(R̃(p)
Y , R̃(c)

Y , R̃(p)
Z , R̃(c)

Z ) + (1 − α)(R(p)
Y , R̂(c)

Y , R(p)
Z , R(c)

Z )

for which Conditions (26d) and (28) hold.
The following proposition summarizes which rate-tuples our

feedback scheme can achieve:
Proposition 14 (Performance of the Feedback Code): Fix

any PMF p(u, x, y, z) of the form (24), and let (R̃(p)
Y ,

R̃(c)
Y , R̃(p)

Z , R̃(c)
Z ) be any rate-tuple that—for the fixed PMF

p(u, x, y, z)—satisfies (23). In addition, pick any rate-tuple
(R(p)

Y , R(c)
Y , R(p)

Z , R(c)
Z ) ∈ CP-MSI, any nonnegative number

α ≤ min

{
R(c)
Y

R(c)
Y + H (Z |Y )

,
RFB

H (Z |Y )

}
, (29)

where the conditional entropy H (Z |Y ) is computed w.r.t. the
fixed PMF p(u, x, y, z), and any nonnegative rate

R̂(c)
Y ≤ R(c)

Y − α

1 − α
H (Z |Y ). (30)

The capacity region of the SD-BC with P-MSI and rate-limited
feedback of rate RFB from the stochastic receiver Z contains
the rate-tuple

α(R̃(p)
Y , R̃(c)

Y , R̃(p)
Z , R̃(c)

Z ) + (1 − α)(R(p)
Y , R̂(c)

Y , R(p)
Z , R(c)

Z ).
Proof: See Appendix E. �

Our feedback code can be generalized along the following
guidelines:

• To obtain a feedback code for the general BC, in Phase 2
one can replace the capacity-achieving code for the
SD-BC with P-MSI by a “good” code for the general
BC with P-MSI, e.g., by the code of [6].

• Instead of recovering Zαn losslessly, after Phase 2
Receiver Y could recover a lossy version of these out-
puts.12 To allow for this generalization, the enhanced BC
would have to be adapted so that Receiver Y does not

12In particular, this generalization would allow us to extend the feedback
code to continuous output alphabets Z .

observe Receiver Z’s output but only a lossy version of
it. In general, the capacity of such an enhanced BC (with
P-MSI) is unknown; and hence the encoder would have
to use a “good” rather than a capacity-achieving code for
it, e.g., the code of [6] for the general BC with P-MSI.

• Instead of partitioning the transmission into two phases,
one could use a block-Markov framework as in [16].

In the absence of MSI, extending our feedback code along
the above guidelines results in the feedback code of [16],
which—in the absence of MSI—is thus more general than
our code.13

Using Proposition 14, we next identify sufficient conditions
for feedback to increase the capacity of the SD-BC. For
simplicity we assume that the stochastic receiver Z has no
MSI, i.e., that R(p)

Y = 0. Proposition 15 treats the case where

Receiver Y has P-MSI (R(p)
Z < RZ ), and Proposition 16 treats

the case without MSI (R(p)
Z = RY ).

Proposition 15 (Sufficient Conditions With P-MSI at Y):
Consider an SD-BC with P-MSI only at the deterministic
receiver Y (R(p)

Y = RY and R(p)
Z ∈ [0, RZ )). If there exists a

rate-triple (R(p)
Y , R(p)

Z , R(c)
Z ) satisfying

(R(p)
Y , R(p)

Z + R(c)
Z ) ∈ (

∂C ∩ (Cenh \ ∂Cenh)
)
, (31)

and if, for some PMF p(u, x, y, z) of the form (6), Condi-
tions (5) and

RY < H (Y ) and 0 < I (U ; Y ) (32)

hold, then, irrespective of RFB > 0, (R(p)
Y , R(p)

Z , R(c)
Z ) is in

the interior of the feedback capacity region, and feedback thus
increases the capacity region.

Proof: See Appendix F. �
Proposition 16 (Sufficient Conditions Without MSI): Con-

sider an SD-BC without MSI (R(p)
Y = RY and R(p)

Z = RZ ).
If there exists a rate-pair (RY , RZ ) satisfying

(RY , RZ ) ∈ (
∂C ∩ (Cenh \ ∂Cenh)

)
, (33)

and if, for some PMF p(v, u, x, y, z) of the form (3),
Conditions (5) and

RY < H (Y ) and 0 < I (V ; Y ) − I (V ; Z) (34)

hold, then, irrespective of RFB > 0, (RY , RZ ) is in the interior
of the feedback capacity region, and feedback thus increases
the capacity region.

Proof: See Appendix F. �
Proposition 16 is used in the analysis of Example 18 ahead

(see Appendix G), which proves that feedback can increase
the capacity of the SD-BC without MSI. In this analysis one
chooses U = V , which turns Marton coding into the simpler
superposition coding with no satellite for Receiver Z . There
are other SD-BCs for which one has to apply Proposition 16
with full Marton coding, i.e., with U 
= V , in order to
show that feedback increases their capacity (see Remark 25
in Appendix G).

13In particular, in the absence of MSI the rate region that is achievable with
our feedback code is contained in the rate region that is achievable with the
feedback code of [16].
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It is perhaps surprising that Proposition 16 can be used to
show that feedback can increase the capacity of the SD-BC
without MSI: The boundary points of the no-feedback capacity
region of the SD-BC without MSI are known to be achievable
using only satellites but no cloud-center, i.e., with V = ∅.
This notwithstanding, Proposition 16 relies on the assumption
that one can achieve boundary points using full Marton coding
with a cloud-center, i.e., with V 
= ∅ (see (34)).

C. How Feedback Affects Capacity

We use the sufficient conditions of Propositions 15 and 16
to show that feedback can increase the capacity of the SD-BC
without P-MSI and the sum-rate capacity of the SD-BC with
P-MSI at the deterministic receiver Y . (The assumption that
the stochastic receiver Z has no MSI is made for simplicity.)
Key to the proof are the following two observations:

1) P-MSI to the stochastic receiver can increase the capac-
ity of the SD-BC.

2) The capacity of the enhanced BC (with P-MSI) is
typically larger than that of the SD-BC (with P-MSI).

Theorem 17 (Feedback Can Help): If the stochastic
receiver Z has no MSI (R(p)

Y = RY ), then, irrespective
of whether or not the deterministic receiver Y has P-MSI
(R(p)

Z ∈ [0, RZ ]), rate-limited feedback of any positive rate
can increase the capacity region of the SD-BC. In particular,
it can increase the sum-rate capacity if Receiver Y has P-MSI
(R(p)

Z < RZ ).
The theorem follows from the following example, which we

analyze in Appendix G:
Example 18 (Feedback Helps): Consider the SD-BC whose

input is X = (X1, X2), where X1 and X2 are binary, and
whose outputs are Y = X1 + X2 and

Z =
{

X2 S = 0,

? S = 1,

where S ∼ Ber(p), p ∈ (0, 1) is independent of X. If
the deterministic receiver Y has P-MSI (R(p)

Z < RZ ) and

the stochastic receiver Z has no MSI (R(p)
Y = RY ), then

rate-limited feedback of any positive rate increases the sum-
rate capacity. If no receiver has MSI (R(p)

Z = RZ and

R(p)
Y = RY ) and p > 1/2, then such feedback increases the

capacity region.
As our next result shows, the setting where the stochastic

receiver Z has F-MSI is different:
Theorem 19 (With F-MSI at Z , Feedback is Useless):

If the stochastic receiver Z has F-MSI (R(p)
Y = 0), then,

irrespective of whether or not the deterministic receiver Y
has P-MSI (R(p)

Z ∈ [0, RZ ]), even perfect feedback cannot
increase the capacity region of the SD-BC.

Proof: See Appendix H. �
From Theorems 17 and 19 it follows that whether feedback

can increase the capacity of the SD-BC with P-MSI depends
on the P-MSI. Of course, it also depends on the SD-BC.
The following is an example of an SD-BC—which does not
consists of two noninterfering single-user channels and is nei-
ther deterministic nor physically-degraded—whose capacity

without MSI at the stochastic receiver Z cannot be increased
by feedback, irrespective of whether or not the deterministic
receiver Y has P-MSI. The example is analyzed in Appendix I.

Example 20 (Also Without MSI at Z , Feedback Can be
Useless): Consider the SD-BC with input X ∈ X and outputs

Y = f (X) and Z =
{

X if S = 0,

? if S = 1,
(35)

where S ∼ Ber(p) is independent of X, where p ∈ (0, 1), and
where ? /∈ X . Let p̄ = 1 − p and

Xy = {
x ∈ X : f (x) = y

}
, y ∈ Y.

For the case where the stochastic receiver Z has no MSI
(R(p)

Y = RY ), we show the following statement in Appendix I.

Irrespective of R(p)
Z ∈ [0, RZ ], the capacity region is the set

of rate-tuples (RY , 0, R(p)
Z , R(c)

Z ) satisfying

RY ≤ H (Y ) (36a)

RZ ≤ p̄ I (U ; Y ) + p̄
∑

y∈Y
p(y) log |Xy | (36b)

RY + RZ ≤ H (Y ) − pI (U ; Y ) + p̄
∑

y∈Y
p(y) log |Xy | (36c)

for some PMF p(u, x, y, z) of the form (6) under which X is a
function of (Y, U). Further, we show that this holds also in the
presence of feedback. These observations imply that feedback
cannot increase the capacity region of the considered SD-BC
without MSI at Receiver Z .

D. Strictly Causal SI on the State-Dependent SD-BC

In this section we consider the state-dependent SD-BC,
whose transition law is governed by an IID state-sequence
of finite support S, i.e.,

W (y, z|x, s) = �{y= f (x)} W (z|x, s), s ∈ S.

We study how strictly-causal SI at the encoder affects the
capacity of this channel. Because the setting with strictly-
causal SI at the encoder is related to that with feedback, for the
state-dependent SD-BC with strictly-causal SI at the encoder
we can easily obtain results that are equivalent to those of
Theorems 17 and 19 for the SD-BC with feedback.

Theorem 21 (Strictly-Causal SI): Consider the state-
dependent SD-BC

W (y, z|x, s) = �{y= f (x)} W (z|x, s), s ∈ S.

If the stochastic receiver Z has no MSI (R(p)
Y = RY ), then,

irrespective of whether or not the deterministic receiver Y
has P-MSI (R(p)

Z ∈ [0, RZ ]), strictly-causal SI can increase
the capacity region of the SD-BC. In particular, it can increase
the sum-rate capacity if Receiver Y has P-MSI (R(p)

Z < RZ ).

If Receiver Z has F-MSI (R(p)
Y = 0), then, irrespective of

whether or not Receiver Y has P-MSI (R(p)
Z ∈ [0, RZ ]),

strictly-causal SI cannot increase capacity.
Proof: The Functional Representation lemma (Lemma 1)

allows us to view the state-less SD-BC W (y, z|x) as a state-
dependent SD-BC W (y, z|x, s) whose stochastic output Z can
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be computed from its input and state. If the state is revealed
strictly-causally to the encoder, then the encoder can compute
Receiver Z’s past channel outputs from the past states and
channel inputs, and hence feedback cannot be better than
strictly-causal SI. Consequently, the first two claims of the
theorem follow as a corollary to Theorem 17.

The last claim of the theorem (i.e., that if Receiver Z
has F-MSI (R(p)

Y = 0), then, irrespective of whether or

not Receiver Y has P-MSI (R(p)
Z ∈ [0, RZ ]), strictly-causal

SI cannot increase capacity) can be established along the line
of argument in the proof of Theorem 19. �

APPENDIX A
PROOF OF THEOREM 2

A. Direct Part

1) Codebook Generation: Fix positive real numbers ε̃ >
ε > 0, a PMF p(v, u, x) = p(v, u) p(x |u), and rates

R̃(c), R̃Y , R̃Z > 0 for which R̃(c) ≤ min{R̃Y , R̃Z }. For
each (m, m(c)

Y , m(c)
Z ) ∈ M × M(c)

Y × M(c)
Z draw 2nR̃(c)

n-tuples v from the product distribution
∏n

i=1 p(vi ), label
them by k ∈ [1 : 2nR̃(c)], where v(k) denotes the n-tuple
labelled by k, and place them in a bin B(m, m(c)

Y , m(c)
Z ).

For each n-tuple v draw 2n(R̃Y−R̃(c)) n-tuples y ∈ Yn

independently of each other and each from the product
distribution

∏n
i=1 p(yi |vi ), and label them by 	 ∈ [1 :

2n(R̃Y−R̃(c))], where y(k, 	) denotes the 	-th n-tuple corre-
sponding to v(k). Randomly allocate the 2nR̃Y n-tuples to

2nR(p)
Y bins BY (m, m(c)

Y , m(c)
Z , m(p)

Y ), where m(p)
Y ∈ M(p)

Y .

Similarly, for each n-tuple v draw 2n(R̃Z−R̃(c)) n-tuples u ∈
Un independently of each other and each from the product
distribution

∏n
i=1 p(ui |vi ), and label them by j ∈ [1 :

2n(R̃Z−R̃(c))], where u(k, j) denotes the j -th n-tuple u cor-
responding to v(k). Randomly allocate the 2nR̃Z n-tuples to

2nR(p)
Z bins BZ (m, m(c)

Y , m(c)
Z , m(p)

Z ), where m(p)
Z ∈ M(p)

Z .

2) Encoding: If there are n-tuples v ∈ B(M, M(c)
Y ,

M(c)
Z ), y∈BY (M, M(c)

Y , M(c)
Z , M(p)

Y ), and u ∈ BZ(M, M(c)
Y ,

M(c)
Z , M(p)

Z ) for which (v, y, u) ∈ T (n)
ε (V , Y, U), then the

encoder draws the length-n channel-input-sequence Xn from
the product distribution

∏n
i=1 p(xi |yi , ui ). Otherwise the

encoding is unsuccessful.
3) Decoding: Upon observing

(
Y n, M(c)

Z
)
, Receiver Y

decodes (m, mY) if it is the unique element of M×MY for
which Y n ∈ BY (m, m(c)

Y , M(c)
Z , m(p)

Y ) ∩ T (n)
ε̃ (Y ). Otherwise

it declares an error. Upon observing
(
Zn, M(c)

Y
)
, Receiver Z

decodes (m, mZ) if it is the unique element of MZ for which

Bin BZ(m, M(c)
Y , m(c)

Z , m(p)
Z ) contains an n-tuple u satisfying

(u, Zn) ∈ T (n)
ε̃ (U, Z). Otherwise it declares an error.

4) Analysis of the Error Probability: We first analyze the
probability that the encoding is unsuccessful. By symmetry,
this probability does not depend on the messages’ realizations,
and we thus assume w.l.g. that M = M(p)

Y = M(c)
Y =

M(p)
Z = M(c)

Z = 1. For ease of notation, let B = B(1, 1, 1),
BY = BY (1, 1, 1, 1), and BZ = BZ(1, 1, 1, 1). Note that

the encoder can choose one out of

N =
∑

k,	, j

�
(v(k),y(k,	),u(k, j ))∈T (n)

ε
�y(k,	)∈BY�u(k, j )∈BZ

triples (v, y, u), where k ∈ [1 : 2nR̃(c)], 	 ∈ [1 : 2n(R̃Y−R̃(c))],
and j ∈ [1 : 2n(R̃Z−R̃(c))]. The encoding is unsuccessful if
N = 0. As in the proof of the mutual covering lemma [17,
Lemma 8.1], we obtain from Chebyshev’s inequality that

P[N = 0] ≤ P

[(
N − E[N])2 ≥ E[N]2

]
≤ Var(N)

E[N]2 . (37)

To conclude that—on average over the realization of the
code—the encoding is with high probability successful, it thus
suffices to show that

Var(N)

E[N]2 → 0 (n → ∞).

Define

Ek,	, j = �
(v(k),y(k,	),u(k, j ))∈T (n)

ε
�y(k,	)∈BY�u(k, j )∈BZ (38a)

T k,	, j = �
(v(k),y(k,	),u(k, j ))∈T (n)

ε
, (38b)

and note that

E
[
N2] =

∑

k,	, j

∑

k′,	′, j ′
E

[
Ek,	, j Ek′,	′, j ′]

(39)

=
∑

k,	, j

∑

k′ 
=k,	′, j ′
E

[
Ek,	, j Ek′,	′, j ′]

+
∑

k,	, j

∑

	′ 
=	, j ′ 
= j

E

[
Ek,	, j Ek,	′, j ′]

+
∑

k,	, j

∑

j ′ 
= j

E

[
Ek,	, j Ek,	, j ′]

+
∑

k,	, j

∑

	′ 
=	

E

[
Ek,	, j Ek,	′, j

]

+
∑

k,	, j

E

[
Ek,	, j

]
, (40)

where we used that Ek,	, j Ek,	, j = Ek,	, j . If k 
= k ′, then
Ek,	, j and Ek′,	′, j ′

are independent and

∑

k,	, j

∑

k′ 
=k,	′, j ′
E

[
Ek,	, j Ek′,	′, j ′]

=
∑

k,	, j

∑

k′ 
=k,	′, j ′
E

[
Ek,	, j

]
E

[
Ek′,	′, j ′]

(41)

≤
(∑

k,	, j

E

[
Ek,	, j

])2

(42)

= E[N]2. (43)
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If k = k ′, 	 
= 	′, and j 
= j ′, then

∑

k,	, j

∑

	′ 
=	, j ′ 
= j

E

[
Ek,	, j Ek,	′, j ′]

(a)≤ 2−2n(R(p)
Y +R(p)

Z )
∑

k,	, j

∑

	′ 
=	, j ′ 
= j

E

[
T k,	, j T k,	′, j ′]

(44)

(b)≤ 2−2n(R(p)
Y +R(p)

Z )
∑

k,	, j

∑

	′ 
=	, j ′ 
= j

2−n(2I (Y ;U |V )−δ(ε)) (45)

= 2n(2R̃Y−2R(p)
Y +2R̃Z−2R(p)

Z −3R̃(c)−2I (Y ;U |V )+δ(ε)), (46)

where (a) holds because �y(k,	)∈BY , �u(k, j )∈BZ , �y(k,	′)∈BY ,
and �u(k, j ′)∈BZ are independent of each other and of

T k,	, j T k,	′, j ′
, and because

E
[
�y(k,	)∈BY

] = 2−nR(p)
Y

E
[
�u(k, j )∈BZ

] = 2−nR(p)
Z ;

and where (b) holds because of the properties of typical
sequences. (Recall that δ(·) denotes any function of ε that
converges to 0 as ε approaches 0.) If k = k ′, 	 = 	′, and
j 
= j ′, then

∑

k,	, j

∑

j ′ 
= j

E

[
Ek,	, j Ek,	, j ′]

(a)≤ 2−n(R(p)
Y +2R(p)

Z )
∑

k,	, j

∑

j ′ 
= j

E

[
T k,	, j T k,	, j ′]

(47)

(b)≤ 2−n(R(p)
Y +2R(p)

Z )
∑

k,	, j

∑

j ′ 
= j

2−n(2I (Y ;U |V )−δ(ε)) (48)

= 2n(R̃Y−R(p)
Y +2R̃Z−2R(p)

Z −2R̃(c)−2I (Y ;U |V )+δ(ε)), (49)

where (a) holds because �y(k,	)∈BY�y(k,	)∈BY = �y(k,	)∈BY
and because �y(k,	)∈BY , �u(k, j )∈BZ , and �u(k, j ′)∈BZ are
independent of each other and of T k,	, j T k,	, j ′

; and where
(b) follows from the properties of typical sequences. Similarly,
if k = k ′, j = j ′, and 	 
= 	′, then

∑

k,	, j

∑

	′ 
=	

E

[
Ek,	, j Ek,	′, j

]

= 2n(2R̃Y−2R(p)
Y +R̃Z−R(p)

Z −2R̃(c)−2I (Y ;U |V )+δ(ε)). (50)

Finally, if k = k ′, j = j ′, and 	 = 	′, then

∑

k,	, j

E
[
Ek,	, j ] = E[N]. (51)

Using that Var(N) = E
[
N2

] − E[N]2, we obtain from (37),
(40), (43), (46), (49), (50), and (51) that

P[N = 0] → 0 (n → ∞)

holds whenever the RHS of each of the equations (46), (49),
(50), and (51) is—asymptotically—negligibly-small compared

to E[N]2. Note that

E[N] =
∑

k,	, j

E

[
Ek,	, j

]
(52)

(a)= 2−n(R(p)
Y +R(p)

Z )
∑

k,	, j

E

[
T k,	, j

]
(53)

(b)≥ 2−n(R(p)
Y +R(p)

Z )
∑

k,	, j

2−n(I (Y ;U |V )+δ(ε)) (54)

= 2n(R̃Y−R(p)
Y +R̃Z−R(p)

Z −R̃(c)−I (Y ;U |V )−δ(ε)), (55)

where (a) is true because �y(k,	)∈BY and �u(k, j )∈BZ are inde-

pendent of each other and of T k,	, j ; and where (b) holds for
all sufficiently-large n by the properties of typical sequences.
This proves that—on average over the realization of the code—
the probability that the encoding is unsuccessful converges
to 0 as n tends to infinity whenever

R̃(c) > 3δ(ε) (56a)

R̃Y − R(p)
Y > 3δ(ε) (56b)

R̃Z − R(p)
Z > 3δ(ε) (56c)

R̃Y − R(p)
Y + R̃Z − R(p)

Z − R̃(c) > I (Y ; U |V ) + δ(ε). (56d)

Suppose now that the encoding was successful. Under this
assumption, we next analyze the probability that the decoding
is unsuccessful. Because Receiver Y observes the n-tuple y

that the encoder selected, and because T (n)
ε (Y ) ⊆ T (n)

ε̃ (Y ),

it is clear that Y n ∈ BY (M, M(c)
Y , M(c)

Z , M(p)
Y ) ∩ T (n)

ε̃ (Y ).
Hence, the pair (M, MY ) satisfies the decoding requirements.
Moreover, for all sufficiently-large n it holds with high prob-

ability that (Un, Zn) ∈ T (n)
ε̃ (PU,Z ), and hence that the pair

(M, MZ ) satisfies the decoding requirements. From this we
conclude that we need to worry only about the event that
also other message-pairs (m, mY) ∈ M × MY \ {

(M, MY )
}

or (m, mZ) ∈ M × MZ \ {
(M, MZ )

}
satisfy the decoding

requirements. For Receiver Y this can happen if an n-tuple
y that corresponds to the same length-n sequence v as Y n

satisfies the decoding requirements, or if an n-tuple y that
corresponds to a different length-n sequence v than Y n satisfies
the decoding requirements; and similarly for Receiver Z .
Hence, by the properties of typical sequences, the probability
that the decoding is unsuccessful converges to 0 as n tends to
infinity if

R̃Y − R̃(c) < H (Y |V ) − δ(ε̃) (57a)

R̃Y + R + R(c)
Y < H (Y ) − δ(ε̃) (57b)

R̃Z − R̃(c) < I (U ; Z |V ) − δ(ε̃) (57c)

R̃Z + R + R(c)
Z < I (U ; Z) − δ(ε̃). (57d)

Now let ε and ε̃ tend to 0. Then, also δ(ε) and δ(ε̃)
tend to 0, and hence we conclude that a rate-tuple
(R, R(p)

Y , R(c)
Y , R(p)

Z , R(c)
Z ) is achievable if there exist rates
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R̃(c), R̃Y , and R̃Z for which

−R̃(c) < 0 (58a)

R(p)
Y − R̃Y < 0 (58b)

R(p)
Z − R̃Z < 0 (58c)

R(p)
Y + R(p)

Z + R̃(c) − R̃Y − R̃Z < −I (Y ; U |V ) (58d)

R̃(c) − R̃Y < 0 (58e)

−R̃(c) + R̃Y < H (Y |V ) (58f)

R + R(c)
Y + R̃Y < H (Y ) (58g)

R̃(c) − R̃Z < 0 (58h)

−R̃(c) + R̃Z < I (U ; Z |V ) (58i)

R + R(c)
Z + R̃Z < I (U ; Z). (58j)

A Fourier-Motzkin elimination reveals that the above inequali-
ties hold if the rate-tuple (R, R(p)

Y , R(c)
Y , R(p)

Z , R(c)
Z ) lies in the

interior of CP-MSI.
At first sight, it is perhaps surprising that we bin the

cloud-center. As the following remark shows, this is simply
an equivalent alternative to rate-splitting. The benefit is that
binning the cloud-center requires only one auxiliary rate,
namely R̃(c), whereas rate-splitting requires two auxiulary

rates, namely one for each rate R(p)
Y and R(p)

Z .
Remark 22: The effect of binning the cloud-center is that

of rate-splitting. More precisely, instead of generating 2nR̃(c)

cloud-centers v for each triple (m, m(c)
Y , m(c)

Z ), we could

execute the following three stepts: 1) divide the messages
M(p)

Y and M(p)
Z into two parts, i.e., M(p)

Y = (M(p)
Y,s , M(p)

Y,c)

and M(p)
Z = (M(p)

Z,s , M(p)
Z,c); 2) generate for each tuple

(m, m(c)
Y , m(c)

Z , m(p)
Y,c, m(p)

Z,c) a cloud-center v; and 3) allocate

the associated satellites y and u to 2nR(p)
Y,s and 2nR(p)

Z,s instead

of 2nR(p)
Y and 2nR(p)

Z bins, respectively.
To see that binning the cloud-center is tantamount to rate-

splitting, note that with rate-splitting we generate 2n(R(p)
Y,c+R(p)

Z,c)

cloud-centers v per triple (m, m(c)
Y , m(c)

Z ), namely one for each

pair (m(p)
Y,c, m(p)

Z,c). Therefore, we can identify R(p)
Y,c + R(p)

Z,c

in the rate-splitting code with R̃(c) in the code where we
also bin the cloud-center. Moreover, associating every cloud-
center v that corresponds to some triple (m, m(c)

Y , m(c)
Z ) with

a different pair (m(p)
Y,c, m(p)

Z,c) and allocating the satellites y

and u to 2nR(p)
Y,s and 2nR(p)

Z,s bins, respectively, is tantamount to
not associating the cloud-center with anything while allocating

the satellites y and u to 2nR(p)
Y and 2nR(p)

Z bins, respectively.
From these observations it follows that the only difference
between binning the cloud-center and rate-splitting is that
for the latter R̃(c) = R(p)

Y,c + R(p)
Z,c must satisfy the upper

bound R̃(c) ≤ R(p)
Y + R(p)

Z . This upper bound is not, however,

restrictive: if R̃(c) > R(p)
Y + R(p)

Z , then we have more cloud-

centers v than message-tuples (m, m(p)
Y , m(c)

Y , m(p)
Z , m(c)

Z ); and

this cannot be better than having for each message-tuple a
different cloud-center.

B. Converse

Let Q ∼ Unif[1 : n] be independent of (M, MY , MZ ), and
introduce

VQ = (
M, M(c)

Y , M(c)
Z , Y n

Q+1, Z Q−1), (59a)

UQ = (
M, M(c)

Y , MZ , Y n
Q+1, Z Q−1), (59b)

V = (VQ , Q), U = (UQ, Q), (59c)

X = X Q , Y = YQ , Z = Z Q . (59d)

Note that V , U , X , and (Y, Z) form a Markov chain in that
order, i.e., that their PMF is of the form (3).

The rate of the message-pair (M, MY ) intended to
Receiver Y satisfies

R + RY − εn
(a)≤ 1

n
I
(
M, MY ; Y n, M(c)

Z
)

(60)

(b)= I
(
M, MY ; YQ

∣
∣M(c)

Z , Y Q−1, Q
)

(61)
(c)≤ H (Y ), (62)

where (a) follows from Fano’s inequality; (b) follows from
the chain-rule and the independence of (M, MY ) and M(c)

Z ;
and (c) holds because conditional entropy is nonnegative and
conditioning cannot increase entropy.

The rate of the message-pair (M, MZ ) intended to
Receiver Z satisfies

R + RZ − εn
(a)≤ 1

n
I
(
M, MZ ; Zn, M(c)

Y
)

(63)

(b)= I
(
M, MZ ; Z Q

∣
∣M(c)

Y , Z Q−1, Q
)

(64)
(c)≤ I (U ; Z), (65)

where (a) follows from Fano’s inequality; (b) holds because
of the chain-rule and because (M, MZ ) and M(c)

Y are inde-
pendent; and (c) is true because conditioning cannot increase
entropy.

We prove the sum-rate constraints using Csiszár’s sum-
identity, which states that, for every tuple (An, Bn, T ),

0 = 1

n

n∑

i=1

[
I (An

i+1; Bi |Bi−1, T ) − I (Bi−1; Ai |An
i+1, T )

]

= I (An
Q+1; BQ |B Q−1, T, Q) − I (B Q−1; AQ |An

Q+1, T, Q),

where Q ∼ Unif[1 : n] is independent of (An, Bn, T ). The
first sum-rate constraint that we prove is that

R + R(p)
Y + RZ − εn

(a)≤ 1

n

[
I
(
M(p)

Y ; Y n, M, M(c)
Y , MZ

)

+ I
(
M, MZ ; Zn, M(c)

Y
)]

(66)

(b)= I
(
M(p)

Y ; YQ
∣
∣M, M(c)

Y , MZ , Y n
Q+1, Q

)

+ I
(
M, MZ ; Z Q

∣
∣M(c)

Y , Z Q−1, Q
)

(67)
(c)= I

(
M(p)

Y ; YQ
∣
∣M, M(c)

Y , MZ , Y n
Q+1, Z Q−1, Q

)

− I
(
Z Q−1; YQ

∣
∣M, MY , MZ , Y n

Q+1, Q
)

+ I
(
Z Q−1; YQ

∣
∣M, M(c)

Y , MZ , Y n
Q+1, Q

)
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+ I
(
M, M(c)

Y , MZ , Y n
Q+1, Z Q−1, Q; Z Q

)

− I
(
M(c)

Y , Z Q−1, Q; Z Q
)

− I
(
Y n

Q+1; Z Q
∣
∣M, M(c)

Y , MZ , Z Q−1, Q
)

(68)
(d)≤ I

(
M(p)

Y ; YQ
∣
∣M, M(c)

Y , MZ , Y n
Q+1, Z Q−1, Q

)

+ I
(
M, M(c)

Y , MZ , Y n
Q+1, Z Q−1, Q; Z Q

)
(69)

(e)≤ H
(
YQ

∣
∣M, M(c)

Y , MZ , Y n
Q+1, Z Q−1, Q

)

+ I
(
M, M(c)

Y , MZ , Y n
Q+1, Z Q−1, Q; Z Q

)
(70)

( f )= H (Y |U) + I (U ; Z), (71)

where (a) follows from Fano’s inequality; (b) follows from the
chain-rule and the independence of M , M(p)

Y , M(c)
Y , and MZ ;

(c) follows from the chain-rule; (d) holds because of Csiszár’s
sum-identity and because mutual information is nonnegative;
(e) holds because conditional entropy is nonnegative; and
( f ) follows from (59). Similarly, we obtain the sum-rate
constraint

R + RY + R(p)
Z − εn

(a)≤ 1

n

[
I
(
M, M(c)

Y ; Y n, M(c)
Z

)

+ I
(
M(p)

Y ; Y n, M, M(c)
Y , MZ

)

+ I
(
M(p)

Z ; Zn, M, M(c)
Y , M(c)

Z
)]

(72)

(b)= I
(
M, M(c)

Y ; YQ
∣
∣M(c)

Z , Y n
Q+1, Q

)

+ I
(
M(p)

Y ; YQ
∣
∣M, M(c)

Y , MZ , Y n
Q+1, Q

)

+ I
(
M(p)

Z ; Z Q
∣
∣M, M(c)

Y , M(c)
Z , Z Q−1, Q

)
(73)

(c)= I
(
M, M(c)

Y , M(c)
Z , Y n

Q+1, Z Q−1, Q; YQ
)

− I
(
M(c)

Z , Y n
Q+1, Q; YQ

)

− I
(
Z Q−1; YQ

∣
∣M, M(c)

Y , M(c)
Z , Y n

Q+1, Q
)

+ I
(
M(p)

Y ; YQ
∣
∣M, M(c)

Y , MZ , Y n
Q+1, Z Q−1, Q

)

− I
(
Z Q−1; YQ

∣
∣M, MY , MZ , Y n

Q+1, Q
)

+ I
(
Z Q−1; YQ

∣
∣M, M(c)

Y , MZ , Y n
Q+1, Q

)

+ I
(
M(p)

Z ; Z Q
∣∣M, M(c)

Y , M(c)
Z , Y n

Q+1, Z Q−1, Q
)

− I
(
Y n

Q+1; Z Q
∣
∣M, M(c)

Y , MZ , Z Q−1, Q
)

+ I
(
Y n

Q+1; Z Q
∣
∣M, M(c)

Y , M(c)
Z , Z Q−1, Q

)
(74)

(d)≤ I
(
M, M(c)

Y , M(c)
Z , Y n

Q+1, Z Q−1, Q; YQ
)

+ I
(
M(p)

Y ; YQ
∣
∣M, M(c)

Y , MZ , Y n
Q+1, Z Q−1, Q

)

+ I
(
M(p)

Z ; Z Q
∣
∣M, M(c)

Y , M(c)
Z , Y n

Q+1, Z Q−1, Q
)

(75)
(e)≤ I

(
M, M(c)

Y , M(c)
Z , Y n

Q+1, Z Q−1, Q; YQ
)

+ H
(
YQ

∣
∣M, M(c)

Y , MZ , Y n
Q+1, Z Q−1, Q

)

+ I
(
M(p)

Z ; Z Q
∣
∣M, M(c)

Y , M(c)
Z , Y n

Q+1, Z Q−1, Q
)

(76)
( f )= I (V ; Y ) + H (Y |U) + I (U ; Z |V ), (77)

where (a) follows from Fano’s inequality; (b) holds because
of the chain-rule and because M , M(p)

Y , M(c)
Y , M(p)

Z , and

M(c)
Z are independent; (c) follows from the chain-rule; (d) is

obtained by using Csiszár’s sum-identity twice and by using
that mutual information is nonnegative; (e) holds because
conditional entropy is nonnegative; and ( f ) follows from (59).
Our last sum-rate constraint is that

2R + RY + RZ − εn
(a)≤ 1

n
I
(
M, M(c)

Y ; Y n, M(c)
Z

) + H (Y |U) + I (U ; Z) (78)

(b)≤ I
(
M, M(c)

Y ; YQ
∣
∣M(c)

Z , Y n
Q+1, Q

) + H (Y |U) + I (U ; Z)

(c)≤ I (V ; Y ) + H (Y |U) + I (U ; Z), (79)

where (a) follows from Fano’s inequality and (71); (b) follows
from the chain-rule and the independence of M , M(c)

Y , and

M(c)
Z ; and (c) holds because conditioning cannot increase

entropy.
So far, we have shown that the set of rate-tuples satisfying

(2) for some PMF of the form (3) is an outer bound on the
capacity region of the SD-BC with P-MSI. To conclude, it
remains to establish that we can w.l.g. restrict X to be a
function of (Y, U). To this end we note that, by the Functional
Representation lemma (Lemma 1), there exists some Û that
is of finite support and independent of (Y, U) for which X
is a function of (Y, U, Û ). Further, we note that the RHS of
each constraint in (2) is either unaffected or increases if we
replace U by the pair (U, Û). From this we conclude that we
can w.l.g. restrict X to be a function of (Y, U).

APPENDIX B
BINNING THE CLOUD-CENTER (OR RATE-SPLITTING)

IS NECESSARY TO ACHIEVE THE CAPACITY

REGION OF THEOREM 2

Throughout this section, we consider the case where the
encoder conveys only private messages (R = 0). We show
that with a coding scheme as in Appendix A-A but where
the cloud-center is not binned, we cannot—in general—
achieve the capacity region CP-MSI of the SD-BC with P-MSI.
Recall from the proof-sketch after Theorem 2 that—without
binning the cloud-center—we can achieve every rate-tuple
(R(p)

Y , R(c)
Y , R(p)

Z , R(c)
Z ) that satisfies (2) and (4) for some PMF

p(v, u, x, y, z) of the form (3). Moreover, we can show that
w.l.g. we can restrict X to be a function of (Y, U) (this follows
from the Functional Representation lemma (Lemma 1); a
similar argument can be found in Appendix A-B). Note that
the rate-region that can be achieved without binning the cloud-
center is contained in the capacity region CP-MSI of the SD-BC
with P-MSI. As the following example shows, the containment
can be strict:

Example 23 (Binning the Cloud-Center): Consider the
SD-BC with binary input X and binary outputs Y = X and

Z =
{

X if S = 0,

? if S = 1,
(80)

where S ∼ Ber(p), p ∈ [0, 1] is independent of X,
and assume that the encoder conveys only private messages
(R = 0). By Corollary 5 (with X ∼ Ber(1/2)) the capacity
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region CP-MSI with F-MSI at the stochastic receiver Z (R(p)
Y =

0) is the set of rate-tuples (0, RY , R(p)
Z , R(c)

Z ) that satisfy

RY ≤ 1 (81a)

RZ ≤ 1 − p (81b)

RY + R(p)
Z ≤ 1. (81c)

This implies that, irrespective of p ∈ [0, 1], we can achieve
the rate-tuple

(0, RY , R(p)
Z , R(c)

Z ) = (0, p, 1 − p, 0). (82)

As we argue shortly, if we do not bin the cloud-center, then we
can achieve the rate-tuple (82) only in the degenerate cases
where p ∈ {0, 1}. This implies that, for every p ∈ (0, 1), if we
do not bin the cloud-center, then we can achieve only a strict
subset of the capacity region.

We next show that, if we do not bin the cloud-center,
then we can achieve the rate-tuple (82) only in the degen-
erate cases where p ∈ {0, 1}. To this end recall that—
without binning the cloud-center—the achievable rate-tuples

(R(p)
Y , R(c)

Y , R(p)
Z , R(c)

Z ) are the ones that satisfy (2) and (4)
for some PMF p(v, u, x, y, z) of the form (3), and where one
can w.l.g. restrict X to be a function of (Y, U). Fix some PMF
p(v, u, x, y, z) of the form (3) that satisfies that X is a function
of (Y, U), and assume that p > 0. As we argue shortly, (2c)
implies that, for every p ∈ (0, 1], at least one of the following
two holds:

RY + R(p)
Z < H (X) ≤ 1 or I (U ; X |V ) = 0. (83)

Moreover, it follows from (4b) that

R(p)
Z

(a)≤ I (U ; Z |V ) (84)
(b)= I (U ; Z , S|V ) (85)
(c)= I (U ; Z |S, V ) (86)
(d)= (1 − p)I (U ; X |V ), (87)

where (a) is (4b); (b) holds because S is a function of Z;
(c) holds because S is independent of (V , U); and (d) follows
from (80). From (83) and (87) it follows that, for every
p ∈ (0, 1], at least one of the following two holds:

RY + R(p)
Z < H (X) ≤ 1 or R(p)

Z = 0. (88)

Consequently, for every p ∈ (0, 1], if R(p)
Z is strictly positive,

then RY + R(p)
Z must be strictly smaller than 1. In particular,

this implies that if we do not bin the cloud-center, then we can
achieve the rate-tuple (0, RY , R(p)

Z , R(c)
Z ) = (0, p, 1 − p, 0)

only in the degenerate cases where p ∈ {0, 1}.
To conclude, it remains to show that, for every p ∈ (0, 1],

(2c) implies (83). To this end we observe from (2c) that

RY + R(p)
Z

(a)≤ I (V ; Y ) + H (Y |U) + I (U ; Z |V ) (89)
(b)≤ I (X; Y, Z) (90)
(c)= H (X) (91)
(d)≤ 1, (92)

where (a) is (2c); (b) follows from (102) in the proof of
Corollary 5, which can be found in Appendix C; (c) holds
because Y = X; and (d) holds because X is binary. Note that
(92) can hold with equality only if the following two equalities
hold

I (U ; Y |Z , V ) = I (V ; Z |Y ) = 0. (93)

Indeed, Inequality (d) in the derivation of (102) holds with
equality only if (93) holds, and hence Inequality (b) in the
derivation of (92) holds with equality only if (93) holds. Note
that

I (U ; Y |Z , V )
(a)= I (U ; X |Z , V ) (94)
(b)= (1− p)I (U ; X |X, V ) + p I (U ; X |Z =?, V )

= p I (U ; X |V ), (95)

where (a) holds because Y = X; and (b) follows from (80).
We are now ready to conclude the proof of our claim that, for
every p ∈ (0, 1], (2c) implies (83): We have shown that (2c)
implies (92). Moreover, (92) can hold with equality only if (93)
holds, and by (95) this implies that, for every p ∈ (0, 1], (92)
can hold with equality only if I (U ; X |V ) = 0. Consequently,
(83) holds for every p ∈ (0, 1].

APPENDIX C
PROOF OF COROLLARY 5

For U = X and V = Y the constraints in (2) and (9) are
equivalent. Hence, (9) is an inner bound on the capacity region.
We next argue that (9) is also an outer bound on the capacity
region. To this end fix any PMF of the form (3) satisfying that
X is a function of (Y, U). By (3) U , X , and Z form a Markov
chain in that order, and hence

I (U ; Z) ≤ I (X; Z). (96)

Moreover,

I (V ; Y ) + H (Y |U) + I (U ; Z |V )
(a)= H (Y |U) + I (U ; Y, Z) − I (U ; Y |V )

− I (U ; Z |Y ) + I (U ; Z |V ) (97)
(b)= H (Y |U) + I (U ; Y, Z) − I (U ; Y |V )

− I (X; Z |Y ) + I (U ; Z |V ) (98)
(c)= H (Y |U) + I (U ; Y, Z) − I (U ; Y, Z |V )

− I (V ; Z |Y ) + I (U ; Z |V ) (99)
(d)≤ H (Y |U) + I (U ; Y, Z) (100)
(e)= H (Y ) + I (U ; Z |Y ) (101)
( f )= I (X; Y, Z), (102)

where (a) follows from the chain-rule and the fact that, by (3),
V , U , and Y form a Markov chain in that order; (b) holds
because X is a function of (Y, U) and because, by (3), U , X ,
and Z form a Markov chain in that order; (c) holds because

I (X; Z |Y ) − I (U ; Z |Y, V ) = I (X; Z |Y ) − I (X; Z |Y, V )

= I (V ; Z |Y ), (103)
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where we used that X is a function of (Y, U); (d) holds
because mutual information is nonnegative and because con-
ditioning cannot increase entropy; (e) follows from the chain-
rule; and ( f ) holds because Y is a function of X , because X is
a function of (Y, U), and because of the chain-rule. From (2a),
(2b) and (96), as well as (2c) and (102) we conclude that (9)
is an outer bound on the capacity region.

APPENDIX D
ANALYSIS OF EXAMPLE 10

• Assume F-MSI at Y and no MSI at Z (R(p)
Y = RY and

R(p)
Z = 0). The capacity region is given in Corollary 4,

and it is not hard to see that the maximum achievable
sum-rate R + RY + RZ is

max
p(u,x,y,z)∈Pu

{
H (Y |U) + I (U ; Z)

}
. (104)

In the proof of Example 18 (see Equations (135)–(137)
in Appendix G), the RHS of (104) is shown to equal
the RHS of (18). Further, it is shown that every PMF
p(u, x, y, z) ∈ P�

u satisfies (19). Finally, we obtain (20)
by examining (7).

• Assume no MSI (R(p)
Y = RY and R(p)

Z = RZ ).
By Theorem 2 the capacity region is the set of rate-tuples
(R, RY , RZ) satisfying

R + RY ≤ H (Y ) (105a)

R + RZ ≤ I (U ; Z) (105b)

R + RY + RZ ≤ I (V ; Y ) + H (Y |U)

+ I (U ; Z |V ) (105c)

R + RY + RZ ≤ H (Y |U) + I (U ; Z) (105d)

2R + RY + RZ ≤ I (V ; Y ) + H (Y |U)

+ I (U ; Z) (105e)

for some PMF p(v, u, x, y, z) of the form (3).
From (105d) we see that the maximum achievable sum-
rate cannot be larger than the maximum sum-rate in (104),
and that it can be achieved only if p(u, x, y, z) ∈ Pu .
If we set R = 0 (no common message) and let V be
deterministic, then we see that (104) is achievable, and
hence we obtain that (104) is the maximum achievable
sum-rate. Finally, (21) follows from (105e), because the
maximum achievable sum-rate is (104).

APPENDIX E
PROOF OF PROPOSITION 14

We assume that R(c)
Y > 0, because otherwise the statement

is obvious. We will show that the error probability of the
described code with rate-limited feedback converges to zero as
the blocklength approaches infinity. To this end we introduce
the following three error events:

E0 : Receiver Y cannot recover Zαn (106)

E1 : The messages sent in Phase 1 are not decoded

correctly (107)

E2 : The messages sent in Phase 2 (including the

compression index) are not decoded

correctly. (108)

Using these error events, we can upper-bound the code’s error
probability by

P[error] ≤ P[E0 ∪ E1 ∪ E2] (109)

= P[E2] + P[E0|Ec
2] + P[E1|Ec

0]. (110)

To show that the code’s error probability converges to zero,
we will show that each term on the RHS of (110) converges
to zero. For the third term we have

P[E1|Ec
0] → 0 (n → ∞), (111)

because (R̃(p)
Y , R̃(c)

Y , R̃(p)
Z , R̃(c)

Z ) ∈ C (enh)
P-MSI. Also, because

Event Ec
2 occurs only if Receiver Y recovers the correct

compression index, and because a compression index of rate
H (Z |Y ) is enough for Receiver Y to recover Zαn using also
the side-information Y αn , the second term satisfies

P[E0|Ec
2] → 0 (n → ∞). (112)

Finally, we note that the first term satisfies

P[E2] → 0 (n → ∞), (113)

because
(

R(p)
Y , R̂(c)

Y + α

1 − α
H (Z |Y ), R(p)

Z , R(c)
Z

)
∈ CP-MSI, (114)

where we used (30) and that (R(p)
Y , R(c)

Y , R(p)
Z , R(c)

Z ) ∈ CP-MSI.
(The “rate” α

1−α H (Z |Y ) accounts for the αnH (Z |Y ) compres-
sion bits from Phase 1 that have to be sent during the (1−α)n
channel uses that Phase 2 comprises.)

APPENDIX F
PROOF OF PROPOSITIONS 15 AND 16

Before we prove Propositions 15 and 16, we sketch our
proof of Proposition 15. A first step in the proof is to note
that—under the conditions stated in Proposition 15—it is
possible to identify a rate-triple (R(p)

Y , R(p)
Z , R(c)

Z ) that satisfies
the following two:

1) (R(p)
Y , R(p)

Z + R(c)
Z ) lies on the boundary of the no-

feedback capacity region C of the SD-BC without MSI
and in the interior of the capacity region Cenh of the
enhanced BC without MSI.

2) There exists a strictly-positive rate R(c)
Y for which

(R(p)
Y , R(c)

Y , R(p)
Z , R(c)

Z ) is contained in CP-MSI.
As we argue next, the above conditions guarantee that, irre-
spective of RFB > 0, the feedback code of Section IV-B
achieves a rate-tuple outside the no-feedback capacity region
C of the SD-BC without MSI. By Remark 7 C is also the
no-feedback capacity region of the SD-BC with P-MSI at
Receiver Y only, and hence it follows that the conditions
in Proposition 15 are sufficient for feedback to increase the
capacity region of the SD-BC with P-MSI at Receiver Y only.
It remains to show that the feedback code of Section IV-
B achieves a rate-tuple outside the no-feedback capacity
region C . Condition 1 guarantees that in Phase 1 of the
feedback code, when the encoder codes for the enhanced BC,
message information can be sent at rates (R̃Y , 0, R̃(p)

Z , R̃(c)
Z )

satisfying

R̃Y > R(p)
Y , R̃(p)

Z > R(p)
Z , R̃(c)

Z > R(c)
Z . (115)
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Recall that the deterministic receiver Y needs resolution infor-
mation to decode its Phase-1 message. Condition 2 guarantees
that in Phase 2 of the feedback code the encoder can send the
required resolution information at rate R(c)

Y and, simultane-

ously, fresh message-information at rates (R(p)
Y , 0, R(p)

Z , R(c)
Z ).

Specifically, Proposition 14 implies that, for every sufficiently-
small α, the rate-tuple

α(R̃Y , 0, R̃(p)
Z , R̃(c)

Z ) + (1 − α)(R(p)
Y , 0, R(p)

Z , R(c)
Z ) (116)

is achievable. Since (R(p)
Y , R(p)

Z + R(c)
Z ) lies on the boundary

of the no-feedback capacity region C , we conclude from (115)
that the rate-tuple (116) is not achievable without feedback.
This proves that the feedback code of Section IV-B achieves
a rate-tuple outside the no-feedback capacity region C .

The proof of Proposition 16 is similar: the main difference
is that we set R(c)

Z = R̃(c)
Z = 0.

We next provide the details of the proof of
Propositions 15 and 16. We shall use the following lemma:

Lemma 24: Fix a rate-tuple (R(p)
Y , 0, R(p)

Z , R(c)
Z ) ∈ CP-MSI.

If R(p)
Z < RZ (or, equivalently, R(c)

Z > 0), and if for some
PMF p(u, x, y, z) of the form (6) we have

R(p)
Y < H (Y ) (117a)

R(p)
Z + R(c)

Z ≤ I (U ; Z) (117b)

R(p)
Y + R(p)

Z + R(c)
Z ≤ H (Y |U) + I (U ; Z) (117c)

I (U ; Y ) > 0, (117d)

then there exists some positive rate R(c)
Y > 0 satisfying

(R(p)
Y , R(c)

Y , R(p)
Z , R(c)

Z ) ∈ CP-MSI. (118)

If R(p)
Z = RZ (or, equivalently, R(c)

Z = 0), and if for some
PMF p(v, u, x, y, z) of the form (3) we have (117) and

I (V ; Y ) − I (V ; Z) > 0, (119)

then there exists some positive rate R(c)
Y > 0 satisfying (118).

Proof of Lemma 24: Suppose that (117) holds for
some PMF p(u, x, y, z) of the form (6). A rate-tuple
(
R(p)
Y , R(c)

Y , R(p)
Z , R(c)

Z
)

is in CP-MSI if it satisfies (2) for some
conditional PMF p(v|u) and

p(v, u, x, y, z) = p(v|u) p(u, x, y, z). (120)

By inspection of (2) and (117), we see that this holds if

R(c)
Y ≤ H (Y ) − R(p)

Y (121a)

R(c)
Y ≤ H (Y |U) + I (U ; Z) + I (V ; Y )

− I (V ; Z) − R(p)
Y − R(p)

Z (121b)

R(c)
Y ≤ H (Y |U) + I (U ; Z) + I (V ; Y )

− R(p)
Y − R(p)

Z − R(c)
Z . (121c)

And from (117) it follows that if

I (V ; Z) − I (V ; Y ) < R(c)
Z and I (V ; Y ) > 0, (122)

then there exists some R(c)
Y > 0 for which the rate-tuple

(
R(p)
Y , R(c)

Y , R(p)
Z , R(c)

Z
)

satisfies (121). This proves the claim

for the case where R(p)
Z = RZ (or, equivalently, R(c)

Z = 0),

because in this case (122) and (119) are equivalent. To prove
the claim for the case where R(p)

Z < RZ (or, equivalently,
R(c)
Z > 0), fix ε ∈ (0, 1), let S ∼ Ber(1 − ε) be independent

of (U, X, Y, Z), and choose

V =
{

U S = 0,

? S = 1.
(123)

For this choice of V (122) holds for every sufficiently-small ε,
because

I (V ; Z) = ε I (U ; Z) ≤ ε log |Z| and

0 < I (V ; Y ) = ε I (U ; Y ). (124)

This proves the claim for the case where R(p)
Z < RZ . �

Note that if R(p)
Z < RZ , then Lemma 24 does not ask for

much: By the assumption that (R(p)
Y , 0, R(p)

Z , R(c)
Z ) ∈ CP-MSI,

there must exist some PMF p(u, x, y, z) of the form (6)
for which (117b) and (117c) are satisfied and (117a) holds
with nonstrict inequality (this follows from Remark 7 and
Corollary 3). Hence, all we are asking for is that RY <
H (Y ) and I (U ; Y ) > 0 hold. (Roughly speaking, all we are
asking for is that the transmission of MZ interfere with the
transmission of MY .)

Proof of Proposition 15 and 16: Assume that there exists
some rate-tuple (R(p)

Y , R(c)
Y , R(p)

Z , R(c)
Z ) that satisfies the fol-

lowing three conditions14:

R(c)
Y > 0 (125a)

(R(p)
Y , R(c)

Y , R(p)
Z , R(c)

Z ) ∈ CP-MSI (125b)

(R(p)
Y , R(p)

Z + R(c)
Z ) ∈ (

∂C ∩ (Cenh \ ∂Cenh)
)
. (125c)

Now look for rates

R̃(p)
Y > R(p)

Y , R̃(p)
Z > R(p)

Z , R̃(c)
Z > R(c)

Z (126)

satisfying that (R̃(p)
Y , R̃(p)

Z + R̃(c)
Z ) ∈ Cenh. By Assump-

tion (125c) such rates exist.
Proposition 14 and Assumptions (125a) and (125b) guaran-

tee that, irrespective of RFB > 0, there exists some α ∈ (0, 1)
for which the rate-tuple

α(R̃(p)
Y , 0, R̃(p)

Z , R̃(c)
Z ) + (1 − α)(R(p)

Y , 0, R(p)
Z , R(c)

Z ) (127)

is in the feedback capacity region of the SD-BC with P-MSI
at Receiver Y . Note that (13), (125c), and (126) imply that
the rate-tuple in (127) is not in CP-MSI (see also Footnote 14).
To conclude the proof of Proposition 15, it thus suffices to
show that, under the conditions in Proposition 15, it is possible
to find a rate-tuple (R(p)

Y , R(c)
Y , R(p)

Z , R(c)
Z ) satisfying (125).

But this follows from the first part of Lemma 24.

14In particular, (125c) implies that (R(p)
Y , R(p)

Z , R(c)
Z ) ∈ ∂C

(R(c)
Y =0)

P-MSI ,

where C
(R(c)

Y =0)

P-MSI ⊂ (R+
0 )3 denotes the set of rate-triples (R(p)

Y , R(p)
Z , R(c)

Z )

satisfying (R(p)
Y , 0, R(p)

Z , R(c)
Z ) ∈ CP-MSI (cf. (13)).
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The proof of Proposition 16 is similar. Assume that there
exists some rate-tuple (R(p)

Y , R(c)
Y , R(p)

Z , 0) that satisfies the
following three conditions:

R(c)
Y > 0 (128a)

(R(p)
Y , R(c)

Y , R(p)
Z , 0) ∈ CP-MSI (128b)

(R(p)
Y , R(p)

Z ) ∈ (
∂C ∩ (Cenh \ ∂Cenh)

)
. (128c)

Now look for rates

R̃(p)
Y > R(p)

Y , R̃(p)
Z > R(p)

Z (129)

satisfying that (R̃(p)
Y , R̃(p)

Z ) ∈ Cenh. By Assumption (128c)
such rates exist.

Proposition 14 and Assumptions (128a) and (128b) guaran-
tee that, irrespective of RFB > 0, there exists some α ∈ (0, 1)
for which the rate-pair

α(R̃(p)
Y , R̃(p)

Z ) + (1 − α)(R(p)
Y , R(p)

Z ) (130)

is in the feedback capacity region of the SD-BC with
P-MSI at Receiver Y . Note that (128c) and (129) imply that
the rate-tuple in (130) is not in C . To conclude the proof
of Proposition 16, it thus suffices to show that, under the
conditions in Proposition 16, it is possible to find a rate-tuple
(R(p)

Y , R(c)
Y , R(p)

Z , 0) satisfying (128). But this follows from the
second part of Lemma 24. �

APPENDIX G
ANALYSIS OF EXAMPLE 18

The proof of Example 18 hinges on Propositions 15 and 16,
which state sufficient conditions for feedback to increase the
capacity region of the SD-BC with and without P-MSI at
Receiver Y . It can be roughly outlined as follows: Let p̄ =
1−p. For the SD-BC of Example 18, we first parametrize ∂C ∩{

RZ ∈ [R∗
Z , p̄]} by RZ , where R∗

Z denotes the maximum rate
RZ for which we can achieve the sum-rate capacity without
MSI, and where p̄ is the maximum rate RZ that is achievable
without MSI. We then show that for the boundary point with
RZ = R∗

Z we can satisfy all the conditions in Proposition 15,
and that for some boundary point with RZ ∈ (R∗

Z , p̄) we can
satisfy all the conditions in Proposition 16. This allows us to
conclude from Propositions 15 and 16 that—on the considered
SD-BC—feedback increases the sum-rate capacity with P-MSI
at Receiver Y and the capacity region without MSI.

Recall that the no-feedback capacity region C of the SD-BC
without MSI is the set of rate-tuples satisfying (5) for some
PMF of the form (6), and where we can restrict X to be a
function of (Y, U). For the SD-BC of Example 18, the fact
that X is a function of (Y, U) implies that we can partition
the support U of U into two disjoint sets U0 and U1, where

pX2,Y |U (1, 1|u) = 0, ∀ u ∈ U0 and

pX2,Y |U (0, 1|u) = 0, ∀ u ∈ U1. (131)

For each u ∈ U0 introduce

p0(u) = pX2,Y |U (0, 0|u) (132a)

p1(u) = pX2,Y |U (0, 1|u) (132b)

p2(u) = pX2,Y |U (1, 2|u), (132c)

and note that p0(u) + p1(u) + p2(u) = 1. As we argue next,
we can w.l.g. assume that to each u ∈ U0 there corresponds
some u′ ∈ U1 satisfying pU (u) = pU (u′) and

p0(u) = pX2,Y |U (0, 0|u) = pX2,Y |U (1, 2|u′) (133a)

p1(u) = pX2,Y |U (0, 1|u) = pX2,Y |U (1, 1|u′) (133b)

p2(u) = pX2,Y |U (1, 2|u) = pX2,Y |U (0, 0|u′), (133c)

This allows us to simplify (5b) and (5c) to

RZ ≤ p̄

[
1 − 2

∑

u∈U0

p(u)hb
(

p2(u)
)
]

(134a)

RY + RZ ≤ p̄ + 2
∑

u∈U0

p(u)

[
p hb

(
p2(u)

)

+ (
1 − p2(u)

)
hb

(
p0(u)

p0(u) + p1(u)

)]
. (134b)

To show that to each u ∈ U0 there corresponds some u′ ∈ U1
satisfying pU (u) = pU (u′) and (133), we first note that all u ∈
U0 and u′ ∈ U1 satisfying (133) must satisfy H (X2|U = u) =
H (X2|U = u′) and H (Y |U = u) = H (Y |U = u′). Using
this, that I (U ; Z) = p̄ I (U ; X2), and that entropy is concave,
we can now argue that the claim must hold by symmetry.

Having obtained (134), we are now ready to determine
the sum-rate capacity. First, note that the RHS of (134b) is
maximum only if p0(u) = p1(u) = (

1 − p2(u)
)
/2, and that

in this case (134b) simplifies to

RY + RZ ≤ p̄ + 2
∑

u∈U0

p(u)
[

p hb
(

p2(u)
)

+ (
1 − p2(u)

)]
. (135)

Because the function p2(u) �→ p hb
(

p2(u)
) + (

1 − p2(u)
)

is strictly concave in p2(u), we readily find that the RHS of
(135) is maximum if, and only if, (iff) for all u ∈ U0 we have

p2(u) = 1

1 + 21/p
. (136)

Hence, we find that the sum-rate capacity is obtained by
evaluating the RHS of (135) for the choice (136), and that
every PMF p(u, x, y, z) of the form (6) that achieves the
maximum sum-rate must satisfy the following two:

0 < I (U ; Y ) < I (U ; Z) (137a)

RZ ≤ I (U ; Z) = p̄

[
1 − hb

(
1

1 + 21/p

)]
= R∗

Z , (137b)

where R∗
Z is the maximum rate RZ for which we can achieve

the sum-rate capacity without MSI.
We next parametrize ∂C ∩{

RZ ∈ [R∗
Z , p̄]} by RZ , i.e., for

each RZ ∈ [R∗
Z , p̄] we determine

RY (RZ) = max
{

RY ≥ 0 : (RY , RZ ) ∈ C
}
. (138)

To this end we first show that RY (RZ) + RZ is strictly
decreasing in RZ . Indeed, because C is convex we have for all
ε ∈ (0, RZ − R∗

Z ], for α = ε/(RZ − R∗
Z ), and for ᾱ = 1 − α

RY (RZ − ε) + RZ − ε

≥ ᾱ
(
RY (RZ) + RZ

) + α
(

RY(R∗
Z ) + R∗

Z
)

(139)

> RY (RZ) + RZ , (140)
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where the last inequality holds because RY (RZ) + RZ is
maximum if RZ = R∗

Z and strictly smaller than its maximum
if RZ > R∗

Z . As we argue next, each pair
(
RY (RZ), RZ

)

satisfies

RY (RZ) = H (Y |U) (141a)

RZ = I (U ; Z) (141b)

for some PMF p(u, x, y, z) of the form (6). Note that the claim
holds for RZ = R∗

Z , and hence we assume that R∗
Z < RZ .

Because
(
RY (RZ ), RZ

) ∈ ∂C , Corollary 3 implies that for
some PMF p(u, x, y, z) of the form (6) we must have

RZ ≤ I (U ; Z) (142)

RY (RZ ) = min
{

H (Y |U) + I (U ; Z) − RZ , H (Y )
}
. (143)

For contradiction, assume that RZ < I (U ; Z). Then,

RY(RZ ) + RZ
(a)≥ ᾱ

(
H (Y |U) + I (U ; Z)

)

+ α
(
RY (R∗

Z) + R∗
Z

)
(144)

(b)
> RY (RZ) + RZ , (145)

where (a) holds for α = (
I (U ; Z)− RZ

)
/(I (U ; Z)− R∗

Z) and
ᾱ = 1−α, because RZ = ᾱ I (U ; Z)+α R∗

Z , and because the
capacity region is convex; and (b) is true because RY (RZ) +
RZ ≤ H (Y |U)+ I (U ; Z), because α > 0, and because R∗

Z <
RZ and RY (RZ) + RZ is strictly decreasing in RZ . This is
a contradiction, and hence the claim follows.

From (134), (135), and (141) we obtain that each pair(
RY (RZ ), RZ

)
, RZ ∈ [R∗

Z , p̄] must be of the form

RZ = p̄

[
1 − 2

∑

u∈U0

p(u)hb
(

p2(u)
)
]

(146a)

RY (RZ) = p̄ + 2
∑

u∈U0

p(u)
[

p hb
(

p2(u)
) + 1

− p2(u)
]

− RZ . (146b)

This can also be written as

RZ =
∑

u∈U0

2 p(u) p̄
[
1 − hb

(
p2(u)

)]
(147a)

RY (RZ) =
∑

u∈U0

2 p(u)
[
hb

(
p2(u)

) + 1 − p2(u)
]
, (147b)

where we used that
∑

u∈U0

2 p(u) = 1. (148)

Note that if p2(u) > 1/2, then replacing p2(u) by 1 − p2(u)
in (147) does not affect the value of RZ but increases that of
RY (RZ). Hence, for each u ∈ U0 satisfying that p(u) > 0 we
have p2(u) ∈ [0, 1/2], and hence we can w.l.g. assume that
p2(u) ∈ [0, 1/2] holds for all u ∈ U0. Since hb(·) is invertible
on [0, 1/2] and p̄ is a constant, we can thus write

RZ =
∑

u∈U0

2 p(u)R(u)
Z (149a)

RY (RZ ) =
∑

u∈U0

2 p(u)

[
2 − 1

p̄
R(u)
Z − h−1

b

(
1 − R(u)

Z
p̄

)]
,

(149b)

where R(u)
Z = p̄

[
1 − hb(p2(u))

]
. Note that R(u)

Z can assume
any value in [0, p̄] depending on p2(u) ∈ [0, 1/2]. Since
hb(·) is strictly increasing and strictly concave on [0, 1/2],
its inverse h−1

b (·) is strictly increasing and strictly convex on
[0, 1]. In particular, this implies that the mapping

x �→ 2 − 1

p̄
x − h−1

b

(
1 − x

p̄

)
(150)

is strictly concave on [0, 1]. Recalling that RY (RZ) is the
maximum rate RY that is achievable for a given RZ , we thus
obtain from Jensen’s inequality that for each u ∈ U0 satisfying
that p(u) > 0 we must have R(u)

Z = RZ . This allows us to
parametrize ∂C ∩ {

RZ ∈ [R∗
Z , p̄]} by RZ :

RY (RZ) = 2 − 1

p̄
RZ − h−1

b

(
1 − RZ

p̄

)
,

RZ ∈ [R∗
Z , p̄]. (151)

With (151) at hand, we next argue that for p > 1/2
there exists some rate-pair

(
RY (RZ), RZ

)
with RZ < p̄

satisfying that (5) and (34) of Proposition 16 hold for some
PMF p(u, x, y, z) of the form (6) and for V = U . Because(
RY (RZ), RZ

) ∈ ∂C and because for V = U the PMF
p(v, u, x, y, z) is of the form (3), this is almost enough to
conclude from Proposition 16 that feedback increases the
capacity region without MSI: once we have established the
claim, all that remains to be shown is that the identified rate-
pair satisfies

(
RY (RZ), RZ

) ∈ Cenh \ ∂Cenh. (152)

To establish the claim, let U0 = {u}. In particular, this implies
that U1 = {u′}, where (133) holds and p(u) = p(u′) = 1/2.
For every RZ ∈ [R∗

Z , p̄] set p2(u) = h−1
b (1 − RZ/ p̄) and

1 − p2(u)

2
= pX2,Y |U (0, 0|u) = pX2,Y |U (1, 2|u′) (153a)

1 − p2(u)

2
= pX2,Y |U (0, 1|u) = pX2,Y |U (1, 1|u′) (153b)

p2(u) = pX2,Y |U (1, 2|u) = pX2,Y |U (0, 0|u′). (153c)

For this choice we have

RY (RZ) = H (Y |U) = hb
(

p2(u)
) + 1 − p2(u) (154a)

RZ = I (U ; Z) = p̄
(

1 − hb
(

p2(u)
))

, (154b)

Moreover, it holds that

H (Y ) = hb

(
1 − p2(u)

2

)
+ 1 + p2(u)

2
, (155)

and from (154a) we thus obtain

I (U ; Y ) = H (Y ) − H (Y |U) (156)

= hb

(
1 − p2(u)

2

)
− hb

(
p2(u)

)

+ 3 p2(u) − 1

2
. (157)

Note that for all p2(u) ∈ [
0, 1/(1 + 21/p)

]
we have

RY < H (Y ). (158)
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Moreover, if p > 1/2, then we obtain for p2(u) = 0 that

I (U ; Z) = p̄ <
1

2
= I (U ; Y ). (159)

Since I (U ; Y ) and I (U ; Z) are continuous in p2(u), this
implies that there exists an open interval (0, κ) ⊂ (

0, 1/(1 +
21/p)

)
for which

I (U ; Y ) > I (U ; Z), p2(u) ∈ (0, κ). (160)

Indeed, this implies our claim: for p > 1/2 there exists a rate-
pair

(
RY (RZ), RZ

)
with RZ < p̄ for which (5) and (34) of

Proposition 16 hold for some PMF p(u, x, y, z) of the form (6)
and for V = U .

As we argue next, to conclude the analysis of
Example 18 it now suffices to show that on the enhanced BC(
RY (RZ ), RZ

) ∈ Cenh \ ∂Cenh holds for all RZ ∈ [R∗
Z , p̄).

Indeed, we already showed that this is enough to conclude
from Proposition 16 that feedback increases the capacity
region without MSI. It is, moreover, enough to conclude
from Proposition 15 that feedback increases the sum-rate
capacity with P-MSI at Receiver Y , because

(
RY (R∗

Z), R∗
Z

)

is in ∂C and satisfies (5) and (32) for some PMF of the
form (6), where we used (137a) and (141) to obtain that it
satisfies (32).

To conclude, it now remains to show that on the enhanced
BC

(
RY(RZ ), RZ

) ∈ Cenh\∂Cenh holds for all RZ ∈ [R∗
Z , p̄).

Let U ∼ Ber(1/2) be a binary random variable, and set

1 − p2(u)

2
= pX2,Y |U (0, 0|0) = pX2,Y |U (1, 2|1) (161a)

1 − p2(u)

2
= pX2,Y |U (0, 1|0) = pX2,Y |U (1, 1|1) (161b)

εp2(u) = pX2,Y |U (1, 1|0) = pX2,Y |U (0, 1|1) (161c)

(1 − ε)p2(u) = pX2,Y |U (1, 2|0) = pX2,Y |U (0, 0|1), (161d)

where ε and p2(u) take values in the set [0, 1]. If ε = 0
and p2(u) ∈ [

0, 1/(1 + 21/p)
]
, then, under the above PMF

p(u, x2, y), (5) and (25) both evaluate to (154). Note that

I (U ; Z) = p̄
[
1 − hb

(
p2(u)

)]
(162)

does not depend on ε, but that I (X; Y, Z |U) does. Define

f
(
ε, p2(u)

) = I (X; Y, Z |U), (163)

and note that it satisfiess

f
(
ε, p2(u)

)

= I (X; Y, Z |U) (164)

= p̄ H (X1, X2|U) + p H (Y |U)

= p̄
[
hb

(
p2(u)

) + 1 − p2(u) + p2(u)hb(ε)
]

− p

[
1 − p2(u)

2
log

(
1 − p2(u)

2

)

+
(

1 − (1 − 2ε)p2(u)

2

)
log

(
1 − (1 − 2ε)p2(u)

2

)

+ (1 − ε)p2(u) log
(
(1 − ε)p2(u)

)
]
. (165)

Note that for all p2(u) ∈ (
0, 1/(1 + 21/p)

]
we have

∂ f
(
ε, p2(u)

)

∂ε

= p̄ p2(u) log

(
1 − ε

ε

)

+p p2(u) log

(
2 ε̄ p2(u)

1 − (1 − 2ε)p2(u)

)
(166)

→ ∞ (ε ↓ 0). (167)

In particular, this implies that there exists some ε > 0 so that
f
(
ε, p2(u)

)
> f

(
0, p2(u)

)
. Since the capacity region of the

enhanced BC contains every rate-pair (R̃Y , R̃Z ) that for some
ε > 0 satisfies

R̃Y = I (X; Y, Z |U) (168a)

R̃Z = I (U ; Z), (168b)

this proves our claim that for all RZ ∈ [R∗
Z , p̄) we have(

RY (RZ), RZ
) ∈ Cenh \ ∂Cenh.

Remark 25: To prove that feedback can increase the capac-
ity region of the SD-BC without MSI, we used Proposition 16
with the choice V = U. This raises the question whether
choosing V 
= U can help. It turns out that it can. To see
this extend the SD-BC of Example 18 by a parallel channel
of capacity larger than log 3, and assume that Receiver Z
additionally observes the output of this parallel channel. (E.g.,
assume that, in addition to Z, Receiver Z noiselessly observes
an input X3, which can assume 4 different values.) For the
constructed SD-BC, it is easy to see that a rate-tuple satisfying
(5) for some PMF of the form (6) is a boundary point of C
only if the auxiliary random variable U comprises a capacity-
achieving input to the parallel channel. (E.g., if Receiver Z
observes the pair (Z , X3), then X3 must have a uniform prior
and be deterministic given U.) But this implies that I (U ; Y ) ≤
log 3 < I (U ; Z). Hence, we cannot invoke Proposition 16
with the choice V = U to show that feedback can increase
the capacity region. However, we can invoke Proposition 16
with the following choice of V : choose V to be the random
variable that we obtain when we discard the input to the
parallel channel from U.

APPENDIX H
PROOF OF THEOREM 19

To prove the theorem, we show that every rate-tuple in the
feedback capacity region of the SD-BC with F-MSI at the
stochastic receiver Z satisfies (9) (with R = 0) for some PMF
of the form (10). Let Q ∼ Unif[1 : n] be independent of
(MY , MZ ), and introduce (X, Y, Z) = (X Q , YQ , Z Q).

The rate of message MY satisfies

RY − εn
(a)≤ 1

n
I
(
MY ; Y n, M(c)

Z
)

(169)

(b)≤ H
(
YQ

∣
∣M(c)

Z , Y Q−1, Q
)

(170)
(c)≤ H (Y ), (171)

where (a) follows from Fano’s inequality; (b) holds because

of the chain-rule, because MY and M(c)
Z are independent,
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and because conditional entropy is nonnegative; and (c) holds
because conditioning cannot increase entropy. The rate of
message MZ satisfies

RZ − εn
(a)≤ 1

n
I (MZ ; Zn, MY ) (172)

(b)≤ I (MZ ; Z Q |MY , Z Q−1, Q) (173)
(c)≤ I (X; Z), (174)

where (a) follows form Fano’s inequality; (b) holds because
of the chain-rule, and because MY and MZ are independent;
and (c) holds because conditioning cannot increase entropy,
and because Z , X , and (MY , MZ , Z Q−1, Q) form a Markov
chain in that order.

We next establish the sum-rate constraint. To this end
we first note that if the probability of a decoding error

is small, then—with high probability—MY and M(p)
Z are

computable from (Y n, M(c)
Z ) and (Zn, MY ), respectively,

and hence (MY , M(p)
Z ) is computable from (Y n, Zn, M(c)

Z ).
We thus obtain

RY + R(p)
Z − εn

(a)≤ 1

n
I
(
MY , M(p)

Z ; Y n, Zn, M(c)
Z

)
(175)

(b)= I
(
MY , M(p)

Z ; YQ , Z Q
∣
∣M(c)

Z , Y Q−1, Z Q−1, Q
)

(176)
(c)≤ I (X; Y, Z), (177)

where (a) follows from Fano’s inequality; (b) follows from
the chain-rule and the independence of

(
MY , M(p)

Z
)

and M(c)
Z ;

and (c) holds because conditioning cannot increase entropy,
and because (Y, Z), X , and (MY , MZ , Y Q−1, Z Q−1, Q) form
a Markov chain in that order.

APPENDIX I
ANALYSIS OF EXAMPLE 20

By Remark 7 and Corollary 3, the no-feedback capacity
region without MSI at the stochastic receiver Z is the set
of rate-tuples satisfying (5) for some PMF p(u, x, y, z) of
the form (6), where we can w.l.g. restrict X to be a function
of (Y, U). Note that for the SD-BC of Example 20

I (U ; Z)
(a)= I (U ; Z , S) (178)
(b)= I (U ; Z |S) (179)
(c)= p̄ I (U ; X) (180)
(d)= p̄ I (U ; Y ) + p̄ I (U ; X |Y ) (181)
(e)= p̄ I (U ; Y ) + p̄ H (X |Y ) (182)

= p̄ I (U ; Y ) + p̄
∑

y∈Y
p(y)H (X |Y = y) (183)

( f )≤ p̄ I (U ; Y ) + p̄
∑

y∈Y
p(y) log |Xy |, (184)

where (a) holds because S is computable from Z ; (b) follows
from the chain-rule and the independence of S and U ;
(c) follows from (35); (d) holds because Y is a function

of X , and because of the chain-rule; (e) holds because X is
a function of (Y, U); and ( f ) holds because Y = y implies
that X ∈ Xy , and because the uniform distribution maximizes
entropy. Note that, irrespective of H (Y ) and I (U ; Y ), we can
achieve ( f ) with equality. Using that

H (Y |U) + p̄ I (U ; Y ) + p̄
∑

y∈Y
p(y) log |Xy|

= H (Y ) − p I (U ; Y ) + p̄
∑

y∈Y
p(y) log |Xy|, (185)

we conclude that, indeed, the capacity region without feedback

is the set of rate-tuples (RY , 0, R(p)
Z , R(c)

Z ) satisfying (36) for
some PMF p(u, x, y, z) of the form (6).

Consider now the case with feedback. As we argue next,
the feedback capacity region of any SD-BC without MSI at
the stochastic receiver Z (R(p)

Y = RY ) is contained in the set

of all rate-tuples satisfying (5a) and (5b) (with R = 0) as well
as

RY + RZ ≤ I (X; Y, Z |U) + I (U ; Z) (186)

for some PMF p(u, x, y, z) of the form (6), irrespective of
whether or not the deterministic receiver Y has MSI (R(p)

Z ∈
[0, RZ ]). Indeed, let Q ∼ Unif[1 : n] be independent of
(MY , MZ ), and introduce

UQ = (MZ , Y Q−1, Z Q−1), (187a)

U = (UQ , Q), (187b)

X = X Q , Y = YQ , Z = Z Q . (187c)

Note that—also in the presence of feedback—U , X , and (Y, Z)
form a Markov chain in that order, i.e., that their PMF is of
the form (6). Using Fano’s inequality, it is not hard to show
that

RY − εn ≤ 1

n
I (MY ; Y n, MZ ) ≤ H (Y ) (188)

RZ − εn ≤ 1

n
I (MZ ; Zn) ≤ I (U ; Z) (189)

RY + RZ − εn ≤ 1

n

[
I (MY ; Y n, Zn, MZ ) + I (MZ ; Zn)

]

≤ I (X; Y, Z |U) + I (U ; Z), (190)

which proves the claim.
We are now ready to conclude that feedback cannot increase

the capacity region. To this end we note that for the SD-BC
of Example 20

I (X; Y, Z |U) + I (U ; Z)
(a)= H (Y |U) + I (X; Z |Y, U) + I (U ; Z) (191)
(b)= H (Y |U) + I (X; Z , S|Y, U) + I (U ; Z , S) (192)
(c)= H (Y |U) + I (X; Z |Y, U, S) + I (U ; Z |S) (193)
(d)= H (Y |U) + p̄ H (X |Y, U) + p̄ I (U ; X) (194)
(e)= H (Y |U) + p̄ H (X |Y, U) + p̄ I (U ; Y )

+ p̄ I (U ; X |Y ) (195)

= H (Y ) − p I (U ; Y ) + p̄ H (X |Y, U)

+ p̄ I (U ; X |Y ) (196)
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( f )= H (Y ) − p I (U ; Y ) + p̄ H (X |Y ) (197)
(g)≤ H (Y ) − p I (U ; Y ) + p̄

∑

y∈Y
p(y) log |Xy|, (198)

where (a) holds because of the chain-rule, and because Y is
a function of X ; (b) holds because S is computable from Z ;
(c) follows from the chain-rule and the independence of S
and (U, X); (d) follows from (35); (e) holds because Y is
a function of X , and because of the chain-rule; ( f ) follows
from the chain-rule; and (g) holds because Y = y implies
that X ∈ Xy , and because the uniform distribution maximizes
entropy.
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