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Abstract—THIS PAPER IS ELIGIBLE FOR THE STUDENT
PAPER AWARD. This paper studies the problem of distributed
detection (binary hypothesis testing) over a discrete memoryless
channel (DMC) under the constraint that an eavesdropping
adversary should not be able to determine whether communication
is ongoing or not, i.e., communication over the DMC has to
remain covert. The main contribution of the paper is an upper
bound on the largest possible Stein exponent, showing that it
cannot exceed the largest exponent achievable under zero-rate
communication over a noise-free link. In interesting special cases,
the upper bound is achieved by a local test at the decision
center that completely ignores the communication. In these cases,
the covertness constraint thus renders communication useless for
improving the Stein exponent.

Index Terms—Hypothesis testing, covert communication, error
exponents.

I. INTRODUCTION

Distributed binary hypothesis testing problems have been
widely investigated in the information-theory literature, fo-
cusing on the single-sensor and single-decision center setup
(see Figure 1 without the external warden). In this setup,
both terminals observe correlated sources, whose underlying
joint distribution depends on a binary hypothesis. The sensor
communicates to the decision center over a perfect link or
a memoryless channel, and the decision center guesses the
underlying hypothesis based on the communicated symbols and
its local observations.

For certain classes of source distributions, Ahlswede and
Csiszàr [1], and later Rahman and Wagner [2], derived the
optimal Stein exponent when communication is over a noise-
free but rate-limited link. The Stein exponent refers to the
largest possible exponential decay-rate of the probability of
error under the alternative hypothesis given a bound on the
probability of error under the null hypothesis. Such asymmetric
constraints arise in alert systems for which it often suffices to
keep the false-alert error probability below a given threshold
but the miss-detection error probability has to be as small as
possible. Despite these early advances on the problem, the
optimal Stein exponent remains unknown for general source
distributions. Lower bounds on the optimal exponent for such
general source distributions were presented in [3]–[7] and
recently in [8]. Similar results were also reported for the setup
when communication is over a discrete memoryless channel
(DMC) [9], [10].

The setup in Figure 1 with an external warden was considered
in [11]–[15]. In particular, [11], [14], [15] imposed the security
constraint that the external warden is not allowed to learn
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Fig. 1: Distributed binary hypothesis testing system with an
external warden.

too much information (in a distortion or equivocation sense)
about the sensor’s source observation. The recent work [15]
determined the largest possible Stein exponent for this setup
under the Ahlswede-Csiszár source distributions, and showed
that with the eavesdropping constraint the Stein exponent
depends on the probability of error allowed under the null
hypothesis. This was not the case without security constraint,
neither for the DMC nor for noise-free links [1], [16], where a
strong converse result holds.

A somehow separate line of work [4], [17], [18] considered
the distributed hypothesis testing problem where the sensor can
send only a sublinear (in the observation blocklength) number
of bits over a noise-free link to the decision center. In this
case, the sensor’s optimal strategy [4], [17] is to send a single
bit indicating whether its observed source sequence is typical
according to the distribution under the null hypothesis. The
decision center then declares this null hypothesis if also its
own observation is typical according to the distribution under
the null hypothesis, and it declares the alternative hypothesis
in all other cases.

In this paper, we impose a covertness constraint, i.e., we im-
pose the somewhat stronger security constraint that the warden
is not allowed to determine whether communication is ongoing
or not. Technically, the output distributions at the warden
under the null and the alternative hypotheses are required to
be similar to the output distribution induced when the sensor
sends the same predefined zero-symbol consistently during the
entire transmission, indicating the absence of communication.
For standard data transmission such a covertness constraint
implies that the capacity is zero and the number of information
bits that can reliably be sent over the channel without being
detected by the warden only grows as square-root of n, for n
denoting the blocklength of communication [19]–[21]. These
results were extended for various other data communication



scenarios, e.g., for multi-access and broadcast communications
[22]–[24], for state-dependent communication [25]–[28], or
to mixed networks allowing both for covert and non-covert
users [29]. Recently the impact of covertness constraints has
also been analyzed for sensing systems [30]–[32] and other
communication systems whose task goes beyond pure data
communication [33].

Our contributions: In this work, we consider a commu-
nication network whose final task is distributed hypothesis
testing. Specifically, for this setup we show that the largest
Stein exponent that is achievable over a binary DMC under
a covertness constraint cannot exceed the Stein exponent of
the setup where communication is over a noise-free but zero-
rate link. For example, for the testing against independence
setup, our converse implies that no positive error exponent is
possible under a covertness constraint, while without such a
covertness constraint the largest Stein exponent can be large.
Our converse result depends only on some mild assumptions
on the source distribution (all source pairs have positive prob-
abilities under the alternative hypothesis) and the DMC (the
zero-output distribution at the warden cannot be simulated by
other inputs) and holds for all sublinear key-lengths. We further
compare our results to a trivial lower bound achieved when
the sensor does not communicate anything, i.e., always sends
the non-detection zero-symbol, and the decision center guesses
the binary hypothesis solely based on its local observation.
This trivial lower bound matches our upper bound on Stein’s
exponent in some special cases, thus establishing that the
covertness constraint completely eliminates the benefit of the
communication for the Stein exponent. Without the covertness
constraint, a much better exponent can be achieved when the
sensor transmits a quantized version of its local observation to
the decision center.

While the converse result is rather intuitive, the mathematical
proof is somehow technical and requires combining tools from
converses on covert communication with techniques to establish
converse results for hypothesis testing. Additional new proof
steps are required to show that one can limit attention to
inputs with Hamming weight slightly less than linear in the
blocklength, and to account for the secret key in the hypothesis
testing converse steps.

A. Notation
We mostly follow standard notation. In particular, random

variables are denoted by upper case letters (e.g., X), while their
realizations are denoted by lowercase (e.g. x). We abbreviate
(x1, . . . , xn) by xn and (xt+1, . . . , xn) by xn

t+1. To indicate
the Hamming weight, we use wH(·) and for the Hamming
distance we use dH(·, ·). We further abbreviate independent and
identically distributed as i.i.d. and probability mass function as
pmf. Also, we denote by πxnyn the joint type of the sequences
(xn, yn):

πxnyn(a, b) ≜
nxn,yn(a, b)

n
, (1)

and we use T (n)
µ (PXY ) to denote the jointly strongly-typical set

as in [34, Definition 2.9], and accordingly T (n)
0 (PXY ) the set

of all sequence of constant type PXY . We use Landau notation
o(1) to indicate any function that tends to 0 for blocklengths
n → ∞.

Throughout this manuscript, {µn}∞n=1 is a sequence of small
positive numbers satisfying1,

lim
n→∞

µn = 0 (2a)

lim
n→∞

n · µ2
n = ∞. (2b)

II. PROBLEM SETUP

Consider the distributed hypothesis testing problem in Fig-
ure 1 where for a given blocklength n, a sensor observes
a sequence Un and a secret-key S, and communicates to a
decision center, which also knows the secret key S in addition
to its local observations V n. The secret-key S is uniform over
a given finite set K, which grows sub-exponentially in the
blocklength:2

lim
n→∞

1

n
log |K| = 0. (3)

The distribution of the observations (Un, V n) depends on a
binary hypothesis H ∈ {0, 1}:

if H = 0: (Un, V n) i.i.d. ∼ PUV ; (4a)
if H = 1: (Un, V n) i.i.d. ∼ QUV , (4b)

for given pmfs PUV and QUV over the product alphabet U×V ,
where we assume that QUV (u, v) > 0 for all (u, v) ∈ U × V .
Let PU and PV denote the marginal pmfs of PUV .

The sensor communicates with a decision center over n
uses of a discrete memoryless channel DMC, and we assume
that communication needs to remain undetected to an external
warden. We thus have a third hypothesis H = −1 which models
the absence of communication, and the goal of the warden is
to distinguish whether H = −1 or H ∈ {0, 1}. In contrast, the
sensor and the decision center are aware of when hypothesis
H = −1 occurs. However, in case H = −1 is not valid,
they do not know whether H = 0 or H = 1. In fact, the
decision center’s goal is exactly to distinguish between these
two hypotheses.

The DMC is described by the finite input and output alpha-
bets X , Y , and Z , and a transition law ΓY Z|X , where Y denotes
the output at the legitimate receiver (the decision center) and Z
the output at the warden. It is assumed that the warden’s output
distribution induced by the zero-input cannot be simulated by
any linear combination of the other symbols, i.e., there are no
convex weights {λx}x∈X such that:

∑

x∈X
λxΓZ|X(z|x) = ΓZ|X(z|0), ∀z ∈ Z, (5)

where ΓZ|X is the conditional marginal obtained from ΓY Z|X .
Under the hypothesis H = −1, the sensor sends the all-zero

sequence
Xn = 0n, (6)

where we assume that 0 ∈ X . In this case, the decision center is
aware of hypothesis H = −1 and does not produce any guess.
The warden observes an output sequence Zn that follows the
product distribution

PZn|H=−1 = Γ⊗n
Z|X(·|0n). (7)

1Condition (2b) ensures that the probability of the strongly typical set
T (n)
µn (PXY ) under P⊗n

XY tends to 1 as n → ∞ [34, Remark to Lemma 2.12].
2Notice that sub-exponential key sizes have been proved to be sufficient [21]

for standard covert communication.



Under hypotheses H = 0 or H = 1, the sensor sends an
input sequence

Xn = f (n)(Un, S) ∈ Xn (8)

over the channel, where f (n)(·, ·) is an encoding function on
appropriate domains. The decision center observes the corre-
sponding outputs Y n of the DMC ΓY Z|X and the warden the
outputs Zn, where depending on the hypothesis this sequence
follows the distribution

PZn|H=0 =
1

|K|
∑

s∈K

∑

un∈Un

P⊗n
U (un)Γ⊗n

Z|X(·|f (n)(un, s)), (9)

or

PZn|H=1 =
1

|K|
∑

s∈K

∑

un∈Un

Q⊗n
U (un)Γ⊗n

Z|X(·|f (n)(un, s)).

(10)
Based on the received sequence V n, its observations Y n, and
the shared secret key S, the decision center produces a guess
of the hypothesis:

Ĥ = g(n)(V n, Y n, S) ∈ {0, 1} (11)

for an appropriate guessing function g(n).
Covertness under hypothesis H = H ∈ {0, 1} is measured

by the Kullback-Leibler divergence:

δn,H := D(PZn|H=H∥PZn|H=−1), H ∈ {0, 1}. (12)

Definition 1: Given ϵ ∈ [0, 1), a miss-detection error expo-
nent θ > 0 is called ϵ-achievable under a covertness constraint
if there exists a sequence of encoding and decision functions
{(f (n), g(n))}∞n=1 satisfying

lim
n→∞

Pr
[
Ĥ = 1|H = 0

]
≤ ϵ (13a)

lim
n→∞

− 1

n
log Pr

[
Ĥ = 0|H = 1

]
≥ θ. (13b)

and under both hypotheses H ∈ {0, 1}:

lim
n→∞

δn,H = 0. (13c)

Theorem 1 (Converse): Given ϵ ∈ [0, 1) and any key set
satisfying (3), a miss-detection error exponent θ is not ϵ-
achievable if it satisfies

θ > min
πUV :
πU=PU
πV =PV

D(πUV ∥QUV ). (14)

Remark 1: Our converse result Theorem 1 remains valid also
when covertness, i.e., constraint (13c), is imposed only under
H = 0 but not necessarily under H = 1. This can model
a practically relevant situation where one wishes to keep the
distributed detection system invisible for an adversary under
normal circumstances. In contrast, under alert situations one
only cares about the alert itself and not about keeping the
distributed detection system invisible. (In certain situations one
even wishes the opposite: alerts should be accompanied by loud
or highly visible alert signals.)

Theorem 2 (Achievability): Given ϵ ∈ [0, 1), a miss-detection
error exponent θ is ϵ-achievable if it satisfies

θ < D(PV ∥QV ). (15)

The performance in (15) can even be achieved with |K| = 1.
Proof: The exponent is achieved by the following scheme.

The sensor always sends Xn = 0 and thus communication
is covert. The decision center ignores the channel outputs and
produces Ĥ = 0 if V n lies in T (n)

µn (PV ), and it produces Ĥ = 1
otherwise.

In certain cases our converse and achievability results in The-
orems 1 and 2 do coincide.

Corollary 3 (Exact Exponent): Consider pmfs PUV and QUV

satisfying
∑

v

PV (v)QU |V (u|v) = PU (u), ∀u ∈ U . (16)

Then, for any ϵ ∈ [0, 1), a miss-detection error exponent θ is
ϵ-achievable if, and only if, it satisfies

θ ≤ D(PV ∥QV ). (17)

In particular, for testing against independence (QUV = PU ·PV )
no positive exponent is possible.

The performance in (17) can even be achieved with |K| = 1.
Proof: Achievability follows directly from Theorem 2. To

see that the converse follows from Theorem 1 notice that

D(πUV ∥QUV ) = D(πV ∥QV ) + EπV
[D(πU |V ∥QU |V )] (18)

≥ D(πV ∥QV ), (19)

where the inequality holds with equality if, and only if πU |V =
QU |V . Notice that this choice is admissible if, and only if,
Condition (16) holds.

III. PROOF OF THEOREM 1

We shall show a converse result under the stronger setup
where the decision center directly observes the DMC inputs
Xn instead of the outputs Y n. Based on the inputs, it can
itself (if it wishes) generate outputs Ỹ n that are equivalent to
the outputs Y n observed in the original setup. The new setup
is thus stronger than the original setup and a converse result
for the new setup applies also a converse for the old setup.

Thus, we assume in the following that (11) can be replaced
by

Ĥ = g(n)(V n, Xn, S) ∈ {0, 1}. (20)

Covertness Constraint Implies Low-Weight Inputs: In this part,
we shall define a set X̃n ⊆ X with only low-weight vectors,
and show that the covertness constraint implies the following
two properties

lim
n→∞

Pr
[
Xn /∈ X̃n|H = 0

]
= 1 (21)

lim
n→∞

1

n
log
∣∣∣X̃n

∣∣∣ = 0. (22)

In the remaining of the proof we can then restrict to channel
inputs xn ∈ X̃n.

Start by noting that for the random tuple Zn ∼ PZn|H=0 in
(9), we have:

D(PZn|H=0∥PZn|H=−1)

= −H(Zn) + EZn

[
log

(
1

Γ⊗n
Z|X(Zn|0n)

)]
(23)



(a)

≥ −
n∑

i=1

H(Zi) + EZi

[
log

(
1

ΓZ|X(Zi|0)

)]
(24)

(b)
=

n∑

i=1

D
( ∑

x∈X\{0}

βxα
0
n,iΓZ|X(· | x)

+(1− α0
n,i)ΓZ|X(· | 0)∥ ΓZ|X(· | 0)

)
(25)

where (a) holds because conditioning reduces entropy; and (b)
by defining

α0
n,i := Pr[Xi ̸= 0|H = 0], i ∈ {1, . . . , n}, (26)

and

βx := Pr[Xi = x|Xi ̸= 0,H = 0]. (27)

By the covertness constraint (13c) for H = 0 and the non-
negativity of Kullback-Leibler divergence, we deduce that each
summand on the right-hand side of (25) must vanish, and thus

lim
n→∞

α0
n,i = 0, i ∈ {1, . . . , n}, (28)

and

lim
n→∞

1

n

n∑

i=1

α0
n,i = 0. (29)

Define next for each n:

an :=

√√√√ 1

n

n∑

i=1

α0
n,i, (30)

so that an vanishes but slowlier than 1
n

∑n
i=1 α

0
n,i. Define the

set of all low-weight inputs

X̃n := {xn ∈ Xn : wH(x
n) < an · n}, (31)

and notice that
n∑

i=1

α0
n,i = E[wH(X

n)|H = 0] (32)

≥ an · n · Pr[Xn /∈ X̃n|H = 0], (33)

which by (30) implies that

Pr
[
Xn /∈ X̃n|H = 0

]
≤

1
n

∑n
i=1 α

0
n,i

an
≤

√√√√ 1

n

n∑

i=1

α0
n,i. (34)

By (29) this proves (21).
To see that the size of X̃n does not grow exponentially, we

notice that this set can be described as the union over all type-
classes (i.e., sets of sequences with same type) for types that
assign frequency larger or equal to 1 − an to the 0 symbol.
Since the type-class for type π is of size at most 2nH(π) and
since the number of type-classes is bounded by (n+1)|X |, we
have:

|X̃n| ≤ (n+ 1)|X |2nmaxπ H(π), (35)

where the maximum is over all types π with π(0) ≥ 1 − an.
Since an vanishes as n → ∞ and by the continuity of the
entropy functional, we obtain

lim
n→∞

1

n
log
∣∣∣X̃n

∣∣∣ ≤ lim
n→∞

[
|X |
n

log(n+ 1) + max
π :

π(0)≥1−an

H(π)

]

= 0. (36)

Simplified Acceptance Region under Low-Weight Inputs: In
this part, we determine a square region over Un and Vn and
show that each of the two components has large probability
under PU and PV respectively, while the error exponent under
the alternative hypothesis is only slightly decreased compared
to the original decision regions.

Start by noting that since
∑

xn∈X̃n

Pr
[
Ĥ = 0, Xn = xn|H = 0

]

= Pr
[
Ĥ = 0|H = 0

]
−

∑

xn /∈Xn

Pr
[
Ĥ = 0, Xn = xn|H = 0

]

(37)
≥ 1− ϵ− Pr[Xn /∈ X̃n|H = 0], (38)

for any η ∈ (0, ϵ) and sufficiently large n we have
∑

xn∈X̃n

Pr
[
Ĥ = 0, Xn = xn|H = 0

]
≥ 1− ϵ− η. (39)

In particular, there must be a special sequence x̄n ∈ X̃n and a
key s̄ ∈ K so that:

Pr
[
Ĥ = 0, Xn = x̄n

∣∣∣H = 0, S = s̄
]
≥ 1− ϵ− η

|X̃n|
. (40)

Pick now an arbitrary P̃UV with marginals P̃U = PU and
P̃V = PV and define the sets

C̄ := {un ∈ Un : f (n)(un, s̄) = x̄n} (41)
D̄ := {vn ∈ Vn : g(n)(vn, x̄n, s̄) = 0}. (42)

Note that (40) is equivalent to

P⊗n
UV (C̄ × D̄) ≥ 1− ϵ− η

|X̃n|
, (43)

and thus, because P̃U = PU and P̃V = PV , we have

P̃⊗n
U (C̄) = P⊗n

U (C̄) ≥ 1− ϵ− η

|X̃n|
(44a)

and

P̃⊗n
V (D̄) = P⊗n

V (D̄) ≥ 1− ϵ− η

|X̃n|
. (44b)

In the following we shall slightly blow up (enlarge) the sets C̄
and D̄ to obtain Ĉ and D̂, and then show that these enlarged sets
contain a large portion of the typical set T (n)

µn (P̃UV ). To this
end, let {ℓn}n≥1 be a sequence satisfying limn→∞ ℓn/

√
n =

∞ and limn→∞ ℓn/n = 0, and define the blown up regions

Ĉ :=
{
ũn : ∃un ∈ C̄ s.t. dH(ũ

n, un) ≤ ℓn
}

(45)
D̂ :=

{
ṽn : ∃vn ∈ C̄ s.t. dH(ṽ

n, vn) ≤ ℓn
}
.

(46)

By (44) and the blowing-up lemma [35, remark on p. 446]:

P̃⊗n
U (Ĉ) ≥ 1− λn, (47a)

P̃⊗n
V (D̂) ≥ 1− λn, (47b)

for some sequence λn that tends to 0 as n → ∞.



The product Ĉ × D̂ is the desired set because we have:

Pr[Ĥ = 0|H = 1] ≥ Pr[Ĥ = 0|H = 1, S = s] · 1

|K|
≥ Q⊗n

UV

(
C̄ × D̄

)
· 1

|K| (48)

≥ Q⊗n
UV

(
Ĉ × D̂

)
· 2−nξn · 1

|K| , (49)

where

ξn := Hb(ℓn/n) +
ℓn
n

log(|U||V|)− ℓn
n

log min
(u,v)

QUV (u, v)︸ ︷︷ ︸
>0

,

(50)
and the last inequality is obtained by simple counting arguments
and because 2nHb(ℓn/n) upper bounds the set of all binary
vectors with Hamming weight ℓn/n. Notice that the terms
2−nξn and 1

|K| both do not grow exponentially in n and thus
will not affect the error exponent.

Change of Measure: We will restrict the acceptance region
found in the previous paragraph to ensure that the source
sequences in the new region have joint type close to P̃UV .
That means, we define the new set:

Ên ≜ {(un, vn) ∈ T (n)
µn

(P̃UV ) : u
n ∈ Ĉ, vn ∈ D̂}. (51)

Denote the probability of this set under P⊗
UV by ∆n,

∆n := P⊗n
UV

(
Ên
)
, (52)

and define the tuple (Ũn, Ṽ n) to be of joint pmf

PŨnṼ n(u
n, vn) =

P⊗n
UV (u

n, vn)

∆n
· 1{(un, vn) ∈ Ên}. (53)

Inequalities (47) and typicality arguments imply the follow-
ing bound on the normalization factor in (53).

Lemma 1: It holds that

∆n =

(
1− 2λn − |U||V|

4µ2
nn

)
· 2−n(D(P̃UV ∥PUV )+o(1)), (54)

and thus

lim
n→∞

1

n
log∆n := −D(P̃UV ∥PUV ). (55)

Proof: See Appendix A.

Bound on the Exponent: Since Ê is a subset of Ĉ × D̂, we
continue from (49) to obtain:

− 1

n
log Pr[Ĥ = 0|H = 1]

≤ − 1

n
logQ⊗n

UV (E) + ξn +
1

n
log |K| (56)

(a)
=

1

n
PŨnṼ n (E) log PŨnṼ n (E)

Q⊗n
UV (E) + ξn +

1

n
log |K| (57)

(b)

≤ 1

n
D
(
PŨnṼ n∥Q⊗n

UV

)
+ ξn +

1

n
log |K| (58)

(c)

≤ 1

n

∑

(un,vn)∈E

PŨnṼ n(u
n, vn) log

P⊗n
UV (u

n, vn)

Q⊗n
UV (u

n, vn)

− 1

n
log(∆n · |K|) + ξn (59)

=
1

n

n∑

i=1

∑

(un,vn)∈E

PŨnṼ n(u
n, vn) log

PUV (ui, vi)

QUV (ui, vi)

− 1

n
log(∆n|K|) + ξn (60)

=
1

n

n∑

i=1

∑

ui,vi

PŨiṼi
(ui, vi) log

PUV (ui, vi)

QUV (ui, vi)

− 1

n
log(∆n · |K|) + ξn (61)

=
∑

u,v

PŨT ṼT
(u, v) log

PUV (u, v)

QUV (u, v)

− 1

n
log(∆n · |K|) + ξn, (62)

where T is a uniform random variable over {1, . . . , n} inde-
pendent of (Ũn, Ṽ n). In above inequalities, (a) holds because
PŨnṼ n is only defined on Ê and thus PŨnṼ n(Ê) = 1; (b)
holds by the data processing inequality and because (57) is
the KL-divergence between the two binary distributions ob-
tained by applying PŨnṼ n and Q⊗n

UV to the indicator function
1{(un, vn) ∈ E} and its complement event; and (c) holds by
the definition of PŨnṼ n .

Using Lemma 1, the subexponential behaviour of the key
size (3), the fact that ξ→0 as n → ∞, and finally also equality
PŨT ṼT

(u, v) = P̃UV (u, v)+o(1), by taking n → ∞, we obtain:

lim
n→∞

− 1

n
log Pr

[
Ĥ = 1|H = 0

]
(63)

≤
∑

u,v

P̃UV (u, v) log
PUV (u, v)

QUV (u, v)
−D(P̃UV ∥PUV ) (64)

= D(P̃UV ∥QUV ). (65)

Since the inequality holds for any choice of P̃UV with marginals
PU and PV , we have proved the desired converse result.

IV. CONCLUSION

The paper has introduced the problem of distributed detection
over a discrete memoryless channel under a covertness con-
straint. The main contribution is a converse result that shows
that for sublinear key lengths (which are typically employed
in covert communication) the largest possible Stein exponent
cannot exceed the Stein exponent of the distributed detection
problem when communication is over a link that is noise-free
but of zero rate. For certain source distributions, this converse
result matches with the Stein exponent obtained by a local
test at the decision center. For these sources, the covertness
constraint renders communication useless in terms of improving
the Stein error exponent for hypothesis testing.

The question that remains after our work is whether covert
communication can be used to improve Stein exponents (or
other hypothesis testing error exponents) for general sources.
The fact that no positive decoding error exponents are possible
for standard covert data communication [36] hints to a negative
answer for our setup.
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APPENDIX A
PROOF OF LEMMA 1

The proof is inspired by proof steps in [4].
Let (Un, V n) be i.i.d. P̃UV . By the union bound and by (47)

and standard bounds on the probability of the typical set [37]

1− P̃⊗n
UV (Ê)

≤ Pr[Un /∈ Ĉ ∪ V n /∈ D̂ ∪ (Un, V n) /∈ T (n)
µn

(P̃UV )] (66)

≤ Pr[Un /∈ Ĉ] + Pr[V n /∈ D̂] + Pr[(Un, V n) /∈ T (n)
µn

(P̃UV )]

(67)

≤ 2λn +
|U||V|
4µ2

nn
, (68)

and thus

P̃⊗n
UV (Ê) ≥ 1− 2λn − |U||V|

4µ2
nn

. (69)

This probability can be decomposed into the contributions of
the various type-classes. In fact, because Ê ⊆ T (n)

µn (P̃UV ) and
because within a type-class all sequences are equally-likely:

∑

πUV :
|πUV −P̃UV |≤µn

P̃⊗n
UV

(
T (n)
0 (πUV )

)
∣∣∣Ĉ × D̂ ∩ T (n)

0 (πUV )
∣∣∣

∣∣∣T (n)
0 (πUV )

∣∣∣

= 1− 2λn − |U||V|
4µ2

nn
. (70)

Since the sum of probabilities
∑

πUV :
|πUV −P̃UV |≤µn

P̃⊗n
UV

(
T (n)
0 (πUV )

)
≤ 1, (71)

inequality (70) implies the existence of a type π̂UV within
distance µn of P̃UV so that

∣∣∣Ĉ × D̂ ∩ T (n)
0 (π̂UV )

∣∣∣
∣∣∣T (n)

0 (π̂UV )
∣∣∣

≥ 1− 2λn − |U||V|
4µ2

nn
. (72)

We can use this bound on the cardinalities directly to obtain
the desired lower bound on ∆n. In fact, again using the fact
that all sequences in a type-class have same probabilities under
i.i.d. distributions:

∆n ≥ P⊗n
UV

(
C̄ × D̄ ∩ T (n)

0 (π̂UV )
)

(73)

=

∣∣∣Ĉ × D̂ ∩ T (n)
0 (π̂UV )

∣∣∣
∣∣∣T (n)

0 (πUV )
∣∣∣

· P̃⊗n
UV

(
T (n)
0 (π̂UV )

)
(74)

≥
(
1− 2λn − |U||V|

4µ2
nn

)
2−n(D(π̂UV ∥PUV )+o(1)) (75)

Since µn → 0 as n → ∞, the type π̂UV tends to P̃UV and by
continuity of the KL divergence, we obtain

D(π̂UV ∥PUV ) = D(P̃UV ∥PUV ) + o(1), (76)

which proves the lemma.


