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Abstract—In this paper, we characterize the fundamental
limits of a communication system with three users (i.e., three
transmitters) and a single receiver where communication from
two covert users must remain undetectable to an external warden.
Our results show a tradeoff between the highest rates that are
simultaneously achievable for the three users. They further show
that the presence of a non-covert user in the system can enhance
the capacities of the covert users under stringent secret-key
constraints. To derive our fundamental limits, we provide an
information-theoretic converse proof and present a coding scheme
that achieves the performance of our converse result. Our coding
scheme is based on multiplexing different code phases, which
seems to be essential to exhaust the entire tradeoff region between
the rates at the covert and the two non-covert users. This property
is reminiscent of the setup with multiple non-covert users, where
multiplexing is also required to exhaust the entire rate-region.

Index Terms—Physical Layer Security, Covert Communica-
tion, Undetectable Communication, IoT

I. INTRODUCTION

Guaranteeing privacy and security of Internet of Things
(IoT) and sensor networks is a major challenge for

future wireless systems [1]. In many IoT applications, devices
are resource-constrained and transmit sporadically a small
number of bits while remaining silent for most of the time.
Such transmissions can be secured through the paradigm of
covert communication, a physical layer security technique,
where users convey information without being detected by
external wardens. It was shown in [2] that it is possible to
communicate covertly as long as the number of communicated
bits scales like O(

√
n), for n the number of channel uses,

which is compliant with IoT scenarios. Covert-rates were first
characterized according to this so-called square-root law over
AWGN channels in [2]. Several subsequent works [3]–[5],
made this square-root law become the de-facto standard limit
of covert communication for most scenarios and channels.
Extensions to Broadcast Channels (BCs) and Multiple Access
Channels (MACs) were proposed in [6]–[9].

This paper generalizes our previous work [9] to a Discrete
Memoryless Multiple Access Channel (DM-MAC) with two
covert users communicating with a legitimate receiver without
being detected by an external warden, while a third non-
covert user is not subject to any such covertness constraint.
We establish the fundamental limits of all achievable tuples of
non-covert rate, covert rates, and secret-key rates.
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Fig. 1: MAC setup with 2 covert users and a non-covert user
in the presence of an external warden.

Our results show a fundamental tradeoff between the rates
achievable by all users. They also confirm our previous conclu-
sions in [9] on the fundamental role of multiplexing different
code strategies to exhaust the fundamental tradeoff between
the covert and non-covert rates, and on the benefits of the
non-covert user to improve the covert users’ capacity under a
secret-key rate constraint.

II. NOTATION

We follow standard notations in [9]–[11]. In particular,
we denote a random variable by X and its realization by
x. We write Xn and xn for the tuples (X1, . . . , Xn) and
(x1, . . . , xn), respectively, for any positive integer n > 0.
For a distribution P on X , we note its product distribution
on Xn by P⊗n(xn) =

∏n
i=1 P (xi). For two distributions P

and Q on X , D(P∥Q) =
∑

x∈X P (x) log(P (x)
Q(x) ) denotes the

Kullback-Leibler divergence between P and Q.

III. PROBLEM STATEMENT

Consider the three-user single-receiver setup in Figure 1
where an external warden should not be able to detect com-
munication from Users 1 and 2. Communication from User
3 has no detectability constraints, and we can even allow the
warden to know its transmitted message.1 We model our setup

1Providing the warden with the message of User 3 makes the warden only
stronger. The rates that are achievable under such a strong warden remain
also achievable under weaker assumptions on the warden.



using two hypotheses H = 0 and H = 1, where under H = 0
only User 3 is transmitting while under H = 1 all three users
transmit, and the warden wishes to guess the true hypothesis.
Details are as follows. For simplicity of illustration, we assume
that Users 1 and 2 produce inputs in the binary alphabets
X1 = X2 = {0, 1} and we consider that 0 is the "off-symbol",
i.e. the symbol transmitted by Users 1 and 2 under H = 0.
User 3’s input alphabet X3 is finite but arbitrary otherwise. The
legitimate receiver and the warden observe channel outputs in
the finite alphabets Y and Z . Define the message and key sets

Mℓ ≜ {1, . . . ,Mℓ}, ∀ℓ ∈ {1, 2, 3}, (1)
Kℓ ≜ {1, . . . ,Kℓ}, ∀ℓ ∈ {1, 2}, (2)

for given numbers M1, M2, M3, K1, and K2 and let the
messages W1, W2, W3 and the keys S1 and S2 be independent
of each other and uniform over M1,M2, M3, K1 and K2,
respectively. For each ℓ ∈ {1, 2}, the key Sℓ is known to User
ℓ and to the legitimate receiver, while message Wℓ is known
to User ℓ only. In contrast W3 is known to User 3 and is given
to the warden.
Under H = 0: Users 1 and 2 send the all-zero sequences

Xℓ
n = 0n, ∀ℓ ∈ {1, 2}, (3)

whereas User 3 applies an encoding function x
(n)
3 : M3 → Xn

3

to its message W3 and sends the resulting codeword

Xn
3 = x

(n)
3 (W3) (4)

over the channel.
Under H = 1: For each ℓ ∈ {1, 2}, User ℓ applies an encoding
function xℓ

(n) : Mℓ × Kℓ → Xℓ
n to its message Wℓ and to

the secret key Sℓ and sends the resulting codeword

Xℓ
n = xℓ

(n)(Wℓ, Sℓ), ∀ℓ ∈ {1, 2}, (5)

over the channel. User 3, unaware of whether H = 0 or H = 1,
constructs its channel inputs as in (4).

The legitimate receiver, which knows the hypothesis H,
decodes the desired messages W3 (under H = 0) or
(W1,W2,W3) (under H = 1) based on its knowledge of
the secret-keys (S1, S2) and its observed outputs Y n =
(Y1, . . . , Yn) which are generated by a discrete memoryless
channel ΓY |X1X2X3

from the input sequences Xn
1 , X

n
2 , X

n
3 .

That means, if Xn
1 = xn

1 , Xn
2 = xn

2 , and Xn
3 = xn

3

then the i-th output symbol Yi is generated from the i-th
inputs x1,i, x2,i, x3,i according to the conditional channel law
ΓY |X1X2X3

(·|x1,i, x2,i, x3,i) for any i ∈ {1, . . . , n}.
Under H = 0, the decoder uses a decoding function

g
(n)
0 : Yn → M3 to produce the single guess

Ŵ3 = g
(n)
0 (Y n) (6)

and under H = 1 it uses a decoding function g
(n)
1 : Yn×K1×

K2 → M1 ×M2 ×M3 to produce the triple of guesses

(Ŵ1, Ŵ2, Ŵ3) = g
(n)
1 (Y n, S1, S2). (7)

The decoder performance associated with a tuple of encoding
and decoding functions (x

(n)
1 , x

(n)
2 , x

(n)
3 , g

(n)
0 , g

(n)
1 ) is mea-

sured by the error probabilities under the two hypotheses:

Pe,0 ≜ Pr
(
Ŵ3 ̸= W3

∣∣∣H = 0
)
, (8)

Pe,1 ≜ Pr

(
3⋃

ℓ=1

Ŵℓ ̸= Wℓ

∣∣∣H = 1

)
. (9)

On the other side, the warden observes the message W3

and the channel outputs Zn, which are generated from inputs
Xn

1 , X
n
2 , X

n
3 according to an arbitrary but given discrete and

memoryless channel law ΓZ|X1X2X3
. By the uniform nature

of the messages and the secret-keys, for each w3 ∈ M3 and
W3 = w3, the warden’s output distribution under H = 1 is

Q̂n
C,w3

(zn) ≜
1

M1M2K1K2

[ ∑

(w1,s1)

∑

(w2,s2)

Γ⊗n
Z|X1X2X3

(zn|xn
1 (w1, s1), x

n
2 (w2, s2), x

n
3 (w3))

]
, (10)

and under H = 0, it is

Γ⊗n
Z|X1X2X3

(zn|0n, 0n, xn
3 (w3)). (11)

For any w3 ∈ M3, the covertness constraint at the warden is
defined by means of the divergence

δn,w3
≜ D

(
Q̂n

C,w3

∥∥Γ⊗n
Z|X1X2X3

(·|0n, 0n, xn
3 (w3))

)
. (12)

This divergence can be related to the warden’s detection error
probabilities by standard arguments [10, Section 11.8].

IV. CODING SCHEME, MAIN RESULT, AND NUMERICAL
SIMULATIONS

A. Coding Scheme

Our coding scheme multiplexes τ different2 phases and
codes t = 1, 2, . . . , τ . The need of multiple phases stems
from the multi-objective nature of our communication that not
only wishes to minimize various error probabilities but also
the divergence between the output distribution observed at the
warden under the two hypotheses (so as to reduce the warden’s
detection capability). While certain phases will provide small
probabilities of error, others will induce small divergences.
The combined scheme over all phases then induces an optimal
overall-tradeoff between small probabilities of error and small
divergences.

Code construction: Our code construction has the following
parameters:

• a sequence of positive numbers {ωn}n∈N satisfying

lim
n→∞

ωn = 0, (13a)

lim
n→∞

(
ωn

√
n− log n

)
= ∞; (13b)

• a probability distribution PT over {1, . . . , τ};
• non-negative values {ρ1,t, ρ2,t}τt=1;

2We will see that τ = 6 suffices.



• conditional probability distributions PX3|T=t over X3, for
t = 1, . . . , τ .

For any blocklength n we split the entire blocklength n into
τ transmission phases t = 1, 2, . . . , τ , where the t-th phase is
of length nt := ⌊n · PT (t)⌋.

We pick pairs of non-detectable multiple-access codes [12]
{C1,t, C2,t} for t = 1, . . . , τ , for the transmission of the two
covert messages W1 and W2. By construction [9], [12], [13],
codebooks C1,t and C2,t contain codewords

{
xnt
1,t(W1, S1)

}

and
{
xnt
2,t(W2, S2)

}
that depend on the respective messages

as well as the corresponding secret-keys S1 and S2.
An important parameter of the covert-communication codes

C1,t and C2,t is the average number of 1-symbols in the code-
words. For each t = 1, . . . , τ , we choose each codebook C1,t
to consist of codewords containing approximately ρ1,tωn

√
nt

1-symbols and C2,t to consist of codewords containing approx-
imately ρ2,tωn

√
nt 1-symbols.

Standard (non-covert) single-user codes C3,t, for t =
1, . . . , τ are used for the transmission of the non-covert
message W3 in the different phases. The codewords xnt

3,t(W3)
depend only on message W3. A key parameter of these codes
is again the frequency of the various symbols in the codewords,
which we call PX3|T=t for codebook C3,t. It is fixed and
independent of the blocklength.

Encoding: User 3 forms the concatenation of codewords

x3
3(W3) := xn1

3,1(W3), x
n2
3,2(W3), . . . , x

nτ
3,τ (W3) (14)

and sends the resulting string over the channel.
Under H = 0, Users 1 and 2 send the all-zero sequences

xn
1 = 0n and xn

2 = 0n. Under H = 1, Users 1 and 2
concatenate the codewords from the different codebooks

xn
ℓ (Wℓ, Sℓ) :=

xn1

ℓ,1(Wℓ, Sℓ), x
n2

ℓ,2(Wℓ, Sℓ), . . . , x
nτ

ℓ,τ (Wℓ, Sℓ),

∀ℓ ∈ {1, 2} (15)

and send the resulting strings over the channel.
The encoding process under H = 1 is depicted in Figure 2.

Notice that the number of 1-symbols varies from one user to
the other and it also varies over the τ phases. In particular, the
covertness constraint imposes on Users 1 and 2 to transmit a
limited number of 1-symbols thereby making the codewords
sparse, which is not the case for User 3.

Decoding: The legitimate receiver employs the following
successive decoding procedure:

1) The receiver first decodes the non-covert message W3

based on the entire output sequence Y n and using all
τ codebooks C3,1, . . . , C3,τ , and assuming that Users 1
and 2 send the all-zero sequences. Various decoding
algorithms can be employed, for example joint typicality
decoding or a maximum likelihood decoding rule based
on all the τ codebooks.
During this decoding steps it is assumed that both Users
1 and 2 send the all-zero codewords, irrespective of
whether H = 0 or H = 1. In fact, even under H = 1
this assumption will not distort the problem too much
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Fig. 2: Our encoding process under H = 1 for binary input
alphabets at all users. Under H = 0, the covert users 1 and 2
send the all-zero sequence.
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because the number of 1-symbols is small (in the order
of ωn

√
n) anyways.

2) Having decoded the message W3, the receiver proceeds
with decoding either message W1 or message W2.
Assume it starts by decoding W1 using a standard
decoding rule based on all τ covert-codes {C1,t}. For
this decoding step the receiver can assume that xn

2 = 0n.
A potential decoding rule is to combine the likelihoods
of the τ codewords to take a decision on the transmitted
message W1. A second alternative is to look for an index
j satisfying

log

(
Γ⊗n
Y |X1X2X3

(Y n|xn
1 (j, S1), 0

n, Xn
3 (Ŵ3))

Γ⊗n
Y |X1X2X3

(Y n|0n, 0n, Xn
3 (Ŵ3))

)
> η1,

(16)
for a suitably chosen constant η1. Here, Ŵ3 denotes the
receiver’s guess of W3.
If such an index exists and is unique, the receiver
declares W1 to be equal to this index. Otherwise it
declares and error and stops.

3) The receiver proceeds to decode the second covert
message W2 in a way that is analogous to the decoding
of message W1, but now xn

1 (and not xn
2 ) is assumed to

be the all-zero codeword.
Steps 2) and 3) can be inverted or even be ran in parallel.

It is however important that Step 1) is executed first. The
decoding process is also depicted in Figure 3.

B. Generalization of the Coding Scheme

We propose a slight generalization of our coding scheme
including two new parameters ϕ1, ϕ2 ∈ (0, 1]. In our descrip-



tion, we assume ϕ1 ≥ ϕ2, otherwise we will switch the roles
of Users 1 and 2.

In the generalized scheme, communication at Users 1 and 2
is only over a fraction ϕ1 of each phase; during the remaining
(1 − ϕ1) fraction of each phase both users simply send the
all-zero symbols. User 3 acts as before. Specifically, during
the first ϕ1 fraction of each phase, User 1 communicates
as described in the previous section, and accordingly, the
codebooks {C1,t} contain codewords of lengths ntϕ1. Instead,
codebooks {C2,t} contain codewords of length ntϕ2 < ntϕ1.
In fact, User 2 sends the appropriate codeword from these
codebooks during the first ntϕ2 channel uses of each phase,
and during the next nt(ϕ1 − ϕ2) channel uses it sends i.i.d.
symbols {X2,i} drawn according to the same distribution as
used in the code construction of the phase. This ensures a
homogeneous expected divergence at the warden under the two
hypotheses during the first ntϕ1 channel uses of each phase.
During the last (1−ϕ1) fraction of each phase the divergence
is zero because under both hypotheses Users 1 and 2 both
send the all-zero symbol.

It can be shown that the described modifications yield a
factor ϕ1 for the logarithmic message size that can be reliably
transmitted at User 1 and for the divergence, while they yield a
factor ϕ2 for the logarithmic message size that can be reliably
sent by User 2.

C. Main Results

For ease of notation, define

ΓY
x1x2x3

(y) ≜ ΓY |X1X2X3
(y | x1, x2, x3), (17)

ΓZ
x1x2x3

(z) ≜ ΓZ|X1X2X3
(z | x1, x2, x3), (18)

and

D
(1)
Y (x3) ≜ D

(
ΓY
10x3

|| ΓY
00x3

)
, (19)

D
(2)
Y (x3) ≜ D

(
ΓY
01x3

|| ΓY
00x3

)
, (20)

D
(1)
Z (x3) ≜ D

(
ΓZ
10x3

|| ΓZ
00x3

)
, (21)

D
(2)
Z (x3) ≜ D

(
ΓZ
01x3

|| ΓZ
00x3

)
, (22)

D
(ℓ)
Z−Y (x3) ≜ D

(ℓ)
Z (x3)−D

(ℓ)
Y (x3), ∀ℓ ∈ {1, 2}. (23)

Also, we define for each x3 ∈ X3 and ρ1, ρ2 ≥ 0:

χ2(ρ1, ρ2, x3) ≜
∑

z∈Z

[
ρ1

ρ1 + ρ2

ΓZ
10x3

(z)

ΓZ
00x3

(z)

+
ρ2

ρ1 + ρ2

ΓZ
01x3

(z)

ΓZ
00x3

(z)
− 1

]2
. (24)

Theorem 1: Choose an arbitrary set of
• a positive integer τ ;
• a positive real number ϕ1, ϕ2 ∈ [0, 1];
• a joint distribution PX3T over X3 × {1, . . . , τ};
• non-negative numbers {ρ1,t, ρ2,t}τt=1;
• a non-negative sequence {ωn}∞n=1 satisfying (13).

For any ϵ > 0, arbitrary small positive numbers ξm ∈ (0, 1)
for all m ∈ {1, . . . , 6}, and sufficiently large blocklength n, it

is possible to find codes, C1,t, C2,t, C3,t of blocklengths nt =
⌊n · PT (t)⌋, for t = 1, . . . , τ , and message sizes

log(M1) = ϕ1 · (1− ξ1)ωn

√
nEPTX3

[
ρ1,TD

(1)
Y (X3)

]
, (25)

log(M2) = ϕ2 · (1− ξ2)ωn

√
nEPTX3

[
ρ2,TD

(2)
Y (X3)

]
, (26)

log(M3) = (1− ξ3)nI(X3;Y | X1 = 0, X2 = 0, T ). (27)

log(K1) = ϕ1 · (1− ξ4)ωn

√
nEPTX3

[
ρ1,TD

(1)
Z−Y (X3)

]
, (28)

log(K2) = ϕ2 · (1− ξ5)ωn

√
nEPTX3

[
ρ2,TD

(2)
Z−Y (X3)

]
, (29)

so that the encoding/decoding scheme described in the pre-
vious subsection achieves probability of error Pe ≤ ϵ and
average warden divergence

1

M3

M3∑

w3=1

δn,w3

≤ ϕ1(1 + ξ6)
ω2
n

2
E
[
(ρ1,T + ρ2,T )

2 · χ2(ρ1,T , ρ2,T , X3)
]
. (30)

Proof: The proof is omitted. It follows from the schemes
described in the previous sections IV-A and IV-B.

The logarithmic scalings of the covert-message sizes M1 and
M2 are at most square-root-n scalings (because ωn vanishes),
indicating that the number of covert bits that can be transmitted
is only in the order of square-root-n. However, we have
the usual linear-in-n behavior for the logarithmic scaling
of the non-covert-message sizes. Communication of covert
messages is thus of zero-rate while non-covert messages are
communicated at standard positive rates. To obtain meaningful
quantities, we will therefore define classical rates for User
3, while for the covert users we scale the logarithms of the
message sizes by

√
n, and call the resulting asymptotic limits

square-root rates.
The secret-key and covert-message square-root-scalings all

depend on the vanishing sequence ωn. Increasing ωn pro-
portionally increases the permissible covert-message size but
also quadratically increases the average divergence at the war-
den. To eliminate this dependence, we normalize the covert-
message rates and the secret-key rates by the square-root of
the average warden-divergence, leading to

rℓ := lim
n→∞

log(Mℓ)√
nEW3

[δn,W3
]
, ℓ ∈ {1, 2}, (31)

R3 := lim
n→∞

log(M3)

n
(32)

kℓ := lim
n→∞

log(Kℓ)√
nEW3 [δn,W3 ]

, ℓ ∈ {1, 2}. (33)

We then obtain the following asymptotic capacity result for
our setup with mixed covert and non-covert users.

Theorem 2: There exists a sequence of encodings and
decodings functions satisfying

lim
n→∞

Pe,H = 0, ∀H ∈ {0, 1}, (34a)

lim
n→∞

δn,w3
= 0, ∀w3 ∈ M3, (34b)



if, and only if, for all ℓ ∈ {1, 2}:

rℓ =
√
2βℓ

EPTX3

[
ρℓ,TD

(ℓ)
Y (X3)

]

√
EPTX3

[
(ρ1,T + ρ2,T )

2
χ2(ρ1,T , ρ2,T , X3)

] ,

(35)
R3 ≤ I(X3;Y | X1 = 0, X2 = 0, T ), (36)

kℓ ≥
√
2βℓ

EPTX3

[
ρℓ,TD

(ℓ)
Z−Y (X3)

]

√
EPTX3

[
(ρ1,T + ρ2,T )

2
χ2(ρ1,T , ρ2,T , X3)

] ,

(37)

for some pmf PX3T over X3×{1, . . . , 6}, positive parameters
{ρ1,t, ρ2,t}6t=1, and (β1, β2) ∈ (0, 1]2.

Proof: The “if"-direction follows from Theorem 1 by
choosing ϕ1 = β2

1 and ϕ2 = β1β2 when ϕ1 ≥ ϕ2 and by
setting ϕ2 = β2

2 and ϕ1 = β1β2 otherwise. The “only if"-
direction is sketched in Section V.

D. Numerical examples

Consider binary input alphabets at all users, X1 = X2 =
X3 = {0, 1}, and the following channels to the legitimate
receiver and the warden. Here the various rows correspond to
the different triples (x1, x2, x3) in lexicographic order and the
columns to the six y- or z-values.

ΓY |X1X2X3
=




0.28 0.26 0.02 0.01 0.18 0.25
0.12 0.36 0.29 0.06 0.11 0.06
0.17 0.14 0.25 0.10 0.13 0.21
0.05 0.15 0.31 0.28 0.01 0.20
0.08 0.39 0.02 0.25 0.18 0.08
0.05 0.21 0.13 0.28 0.03 0.30
0.15 0.05 0.10 0.17 0.33 0.20
0.05 0.25 0.10 0.20 0.10 0.30




,

(38)

ΓZ|X1X2X3
=




0.15 0.11 0.57 0.01 0.06 0.10
0.15 0.41 0.12 0.15 0.06 0.11
0.23 0.02 0.01 0.48 0.10 0.16
0.14 0.17 0.21 0.12 0.24 0.12
0.01 0.12 0.19 0.15 0.19 0.34
0.10 0.11 0.15 0.14 0.18 0.32
0.05 0.15 0.15 0.20 0.10 0.35
0.10 0.10 0.27 0.13 0.20 0.20




.

(39)

Figure 4 illustrates the rate-region in Theorem 2 under the
additional constraint on the secret-key rates k1 ≤ 0.8, k2 ≤ 0.8
(solid line) and the corresponding reduced rate-region when
one imposes T = 1 (dashed line), i.e., when in our scheme
communication takes place only over a single phase. The
obtained results prove that the covert capacity, i.e., achievable
square-root rates, is improved when the users can commu-
nicate over different phases and using different codes in the
various phases.

Figure 5 illustrates the maximum covert-user square-root
rate r2 as function of the secret-key rate k2, i.e., when one
optimizes PX3T (solid line). This is compared to scenarios
where non-covert User 3 sends constant symbols X3 = 0
(dashed line) or X3 = 1 (dash-dotted line). The observed
performance underlines that the presence of non-covert User
3 can increase the covert capacity at Users 1 and 2.

Figure 6 illustrates the rate-region in Theorem 2 at different
rates r1 for the covert User 1, showcasing the trade-off
between the different users at secret-key rates k1 ≤ 0.8 and
k2 ≤ 0.8.
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Fig. 4: Rate-region (r2, R3) for secret-key rates k1 ≤ 0.8, k2 ≤
0.8 and r1 = 0.5 (solid line) and a degenerate region when
restricting to |T | = 1 (dashed line).
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Fig. 5: Covert rate r2 as function of secret-key rate k2 when
optimizing over PX3T (solid line) and when choosing X3 = 0
or X3 = 1 deterministically (dashed and dash-dotted lines) for
a covert rate r1 = 0.1 and a secret-key rate k1 ≤ 0.8.
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Fig. 6: Rate-region (r2, R3) for secret-key rates k1 ≤ 0.8, k2 ≤
0.8 and different rates: r1 = 0.75 (dashed line), r1 = 0.5
(dash-dotted line) and r1 = 0.25 (solid line).

V. PROOF OF CONVERSE TO THEOREM 2

Fix a sequence of encodings and decodings satisfying (34).
Recalling the definition of Q̂n

C,w3
(zn) in (10) and denoting



the i-th component of the codeword xn
3 (w3) by x3,i(w3), we

obtain on average over the random code and message W3:

E[δn,W3 ]

(a)
=

n∑

i=1

EW3

[
D
(
Q̂

(i)
C,w3

∥ΓZ|X1X2X3
(·|0, 0, x3,i(W3))]

)]

(40)
(b)

≥ nEPTX3

[
(αn,T,1 + αn,T,2)

2

2
χ2(αn,T,1, αn,T,2, X3,T )

+ o

(
max

ℓ∈{1,2}
{αn,T,ℓ}

)]
, (41)

where T is uniform over {1, . . . , n}. Here, (a) holds by the
memoryless nature of the channel and by defining Q̂

(i)
C,w3

as
the i-th marginal of Q̂n

C,w3
; (b) holds by an extension of [12,

Lemma 1], and upon defining

αn,i,ℓ ≜
1

MℓKℓ

Mℓ∑

wℓ=1

Kℓ∑

sℓ=1

1{xℓ,i(wℓ, sℓ) = 1}, ℓ ∈ {1, 2}.

(42)
Notice that by (40) each αn,i,ℓ → 0 as n → ∞. And thus by
standard arguments and an extension of [12, Lemma 2]:

log(M1) ≤ nEPTX3

[
αn,T,1D

(1)
Y (X3,T ) + o(1)

]
+ 1, (43)

and similarly

log(M2) ≤ nEPTX3

[
αn,T,2D

(2)
Y (X3,T ) + o(1)

]
+ 1. (44)

Moreover for all ℓ ∈ {1, 2},

log(MℓKℓ) ≥ nEPTX3

[
αn,T,ℓD

(ℓ)
Z (X3,T ) + o(1)

]
(45)

Define next

ρn,T,ℓ ≜
αn,T,ℓ

E[αn,T,1 + αn,T,1]
, ℓ ∈ {1, 2}, (46)

and notice that by (41), (43), and (44):

log(Mℓ)√
nEW3

[δn,W3
]

=
βℓEPTX3

[
ρn,T,ℓD

(ℓ)
Y (X3,T )

]

EPTX3

[
(ρn,T,1+ρn,T,2)

2

2 χ2(ρn,T,1, ρn,T,2, X3,T )

] + o(1),

(47)
for some βℓ ∈ [0, 1]. Combined with (43)–(44), this yields:√

nEW3
[δn,W3

] ≤

n

βℓ
EPTX3

[
(ρn,T,1 + ρn,T,2)

2

2
χ2(ρn,T,1, ρn,T,2, X3,T )

]

+o(1) (48)

which can be combined with (45) to establish that

log(MℓKℓ)√
nEW3 [δn,W3 ]

≥

βℓ

EPTX3

[
ρn,T,ℓD

(ℓ)
Z (X3,T )

]

EPTX3

[
(ρn,T,1+ρn,T,2)

2

2 χ2(ρn,T,1, ρn,T,2, X3,T )

] + o(1).

(49)
By standard arguments and since the probabilities that X1,T

and X2,T differ from 0 vanish as n → ∞:
1

n
log(M3) ≤ I(X3,T ;YT |X1,T = 0,X2,T = 0, T ) + o(1).

(50)
Combining all arguments establishes the converse result.

VI. SUMMARY AND DISCUSSION

This paper establishes the fundamental limits of a multi-
access communication setup with two covert users and one
non-covert user communicating to the same receiver in pres-
ence of a warden. Both covert users also share a common
secret-key of fixed key rate with the receiver. Our results
highlight that multiplexing different codes in different phases
is crucial to exhaust the entire tradeoff of achievable covert
and non-covert rates. Moreover, our results also show that the
presence of the non-covert user can potentially improve the
covert-capacity under a stringent secret-key rate constraint.

In a straightforward way, our results can also be extended
to multiple users with arbitrary finite alphabets (i.e., X1 and
X2 not necessarily binary).
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