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Abstract—The capacity region of the N-sender additive white
Gaussian noise (AWGN) multiple access channel (MAC) with
feedback is not known in general, despite significant conthutions
by Cover, Leung, Ozarow, Thomas, Pombra, Ordentlich, Krame,
and Gastpar. This paper studies the class ofeneralized linear
feedback codes that includes (nonlinear) nonfeedback codes at
one extreme and the linear feedback codes by Schalkwijk
and Kailath, Ozarow, and Kramer at the other extreme. The
linear sum capacity CL(N, P), the maximum sum rate achieved
by generalized linear feedback codes, is characterized ued
symmetric block power constraints P for all the senders. In
particular, it is shown that Kramer’s linear code achieves tis
linear sum capacity. The proof involves the dependence bailae
condition introduced by Hekstra and Willems and extended by
Kramer and Gastpar. This condition is not convex in general and
the corresponding nonconvex optimization problem is careflly
analyzed via Lagrange dual formulation. Based on the propdies
of the conditional maximal correlation—an extension of the
Hirschfeld—Gebelein—Renyi maximal correlation—it is further
conjectured that Kramer’'s linear code achieves not only the
linear sum capacity, but also the (general) sum capacity, i.e.,
the maximum sum rate achieved byarbitrary feedback codes.

Index Terms—Gaussian MAC with feedback, linear feedback
codes, sum capacity.

I. INTRODUCTION

sequence is not white (cf. Pombra and Cover [7]). On the other
hand, Kramer [8] extended Ozarow’s linear codeNo> 3
users. Kramer's linear code achieves the sum capacity under
the symmetric block power constraints for all the senders,
provided that the poweP exceeds a certain threshold (57)
that depends on the number of senders.

In this paper, we focus on the class géneralized lin-
ear feedback codefor linear codesin short), whereby the
feedback signals are incorporated linearly into the tratteth
signals (see Definition 1 in Section Il for the precise defini-
tion). This class of generalized linear feedback codesided
the linear feedback codes by Schalkwijk and Kailath [3],
Ozarow [2], and Kramer [8] as well as arbitrary (nonlinear)
nonfeedback codes.

This paper characterizes the linear sum capaCityN, P),
which is the maximum sum rate achieved by generalized linear
feedback codes under symmetric block power constrdihts
The main contribution is the proof of the converse. We first
prove an upper bound o' (N, P), which is a multi-letter
optimization problem over Gaussian distributions (cf. &ov
and Pombra [9]). Next, we derive an equivalent optimization
problem over the set of positive semidefinite (covariance)
matrices by considering a dependence balance conditiwo; in

Feedback from the receivers to the senders can improve €€ed by Hekstra and Willems [10] and extended by Kramer
performance of the communication systems in various wayld Gastpar [11]. Lastly, we carefully analyze this nonexnv
For example, as first shown by Gaarder and Wolf [1], fee@pPtimization problem via Lagrange dual formulation [12].
back can enlarge the capacity region of memoryless multipleThe linear sum capacity’ (N, P) can be achieved by
access channels by enabling the distributed senders taliskta Kramer’s linear code. Hence, this rather simple code, which

cooperation via coherent transmissions.

iteratively refines receiver’'s knowledge about the message

In this paper, we study the sum capacity of the additijé sum rate optimal among the class of generalize_d linear
white Gaussian noise multiple access channel (AWGN-MAdgedback codes. For completeness, we provide a repreisentat

with feedback depicted in Figure 1. Fd¥ = 2 senders,

of Kramer's linear code and analyze it via properties of

Ozarow [2] established the capacity region which—unlikdiscrete algebraic Riccati recursions (cf. Wu et al. [13])is

for the point-to-point channel—turns out to be strictlyger

analysis differs from the original approaches by Ozarow [2]

than the one without feedback. The capacity-achieving coggd Kramer [8]. o _
proposed by Ozarow is an extension of the Schalkwijk—Khilat The complete characterization 6f(V, P), the maximum

code [3], [4] for point-to-point AWGN channels.

sum rate among all feedback codes, still remains open. We

For N > 3, the capacity region is not known in general. Ogonjecture tha€’'(N, P) = CL(V, P) based on the observation
one hand, Thomas [5] proved that feedback can at most doutlat linear codes argreedy optimafor a multi-letter optimiza-
the sum capacity, and later Ordentlich [6] showed that theesation problem which upper bounds(V, P). We establish this
bound holds for the entire capacity region even when theenof@ct in Section V by introducing and analyzing the propertie
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of conditional maximal correlationwhich is an extension
of the Hirschfeld—Gebelein—Renyi maximal correlation][14
to the case where an additional common random variable is
shared.

The rest of the paper is organized as follows. In Section Il
we formally state the problem and present our main result.
Section Il provides the proof of the converse and Section IV
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Fig. 1. N-sender AWGN-MAC

gives an alternative proof of achievability via Kramersdar  2) a set ofN encoders, where encodgat each time maps
code. Section V concludes the paper with a discussion on the the pair(m;,Y"~!) to a symbolX; such that the se-

aforementioned conjecture. guenceX i, ... X, satisfies theblock power constraint
Notation: We follow the notation in [15]. In particular, ara n

dom variable is denoted by an upper case letter (.97, Z) Z E(Xfi(mjv Yith) < nPj, mj; € M,

and its realization by a lower case letter (e:gy, z). Similarly, im1

a random column vector and its realization are denoted hy bol
face symbols (e.gX andx). Uppercase letters (e.d\, B, C)
also denote matrices, which can be differentiated from a ran
dom variable based on the context. Tlgj)-th element of4

is denoted byA;; and(Ay),; is used to represent the, j)-th
element of a sequence of matrices indexed byhe transpose
of a matrix A is denotedA”, and its complex transpose

and
3) a decoder map which assigns message estimajes
M;, jeA{l,...,N}, to each received sequenge.
We assume throughout thdi/ (S) := (My,...,My) is a
random vector uniformly distributed ovevt; x --- x My.
The probability of error is defined as

by A’. We use the following short notation for covariance Pe(”> — p{]\}[(s) £ M(S)}.

matrices:Kxvy := E(XY’) — E(X) E(Y’) and Kx := Kxx. ) . ) ]
Calligraphic letters (e.g4, B,C) denote discrete sets. Giverf fate-tuple(Rs, ..., Ry) is called achievable if there exists
a set of random variable&X;, ..., Xy} and a discrete set @ sequence of2" ... 2"~ n) codes such thab{™ — 0

ACS:={1,...,N}, we denote byX (A) the ordered subset@sn — co. The capacity regior¥’ is defined as the closure
X(;l) = {X; : j € A}. Similarly, forj € {1,...,N} and of the set of achievable rate-tuples and the sum capé&tity
ie{l,...,n}, we defineX;(A) := {X,, : j € A} as a subset defined as
of {Xj;}. Finally, L(-) denotes an arbitrary linear function. N
C:=max{ Y Rj: (Ri,...,Ry) €€ p.
j=1

— N . I
Consider the communication problem over an additive Whi},é/e refer toR = Zi:l R; as the sum rate of a given code.

TRt . nR nR i
Gaussian noise multiple access channel (AWGN-MAC) with Definition 1A (277, 277, n) code is called @en-
feedback depicted in Figure 1. Each sendez {1,..., N} eralized linear feedback codi the encoding maps can be

wishes to transmit a messagd; € M; reliably to the decomposed as follows.

Il. PROBLEM SETUP AND THE MAIN RESULT

common receiver. At each time= 1,...,n, the output of 1) Nonfeedback (nonlinear) mappings: The messafeis

the channel is mapped to a vecto®; € R* for somek € {1,...,n},
N which we refer to as the message point.

- - . 2) Linear feedback mappings: At each timie the pair

Y= ;X-” 2 @) (©;,Y""1) is mapped to a symbaX;; such thatX;; =

L;i(®;,Y"1) is linear in(©;, Y1),

where{Z;} is a discrete-time zero-mean white Gaussian noiseAs mentioned earlier, any nonfeedback code is a generalized
process with unit average power, i.B(Z?) = 1, and indepen- |inear feedback code by picking=n and®, € R" to be the
dent of My, ..., M. We assume that the output symbols argodeword of thej-th user. On the other hand, by pickihg= 1
causally fed back to _each sender and the transmitted ;ym@gl can get the linear codes by Schalkwijk and Kailath [3] and
Xji from senderj at timei can depend on both the previousyzarow [2]. For Kramer’s linear code [8], the message points

channel output sequend& ™" := {Y1,Y>,....Yi1} and the 5169 dimensional and we need— 2. Note that this subclass

messagé\/;. of linear codes, for whichk is independent of., does not
We define a(2",..., 2" n) code with power con- jnclude the nonfeedback codes (cf. [16]).

straintsPy, ..., Py as The linear capacity regiofsi is defined as the closure of

1) N message set81; := {1,...,2"%} j=1,...,N, the set of rate-tuples achievable by linear codes and teardin



sum capacityC is defined as 5

N
CL = maX{ZRj . (Ry,...,RN) e?ﬁ}.
j=1

The following theorem characteriz€3 (N, P), the linear
sum capacity under symmetric block power constrainttor b
all the NV senders.

Theorem 1:For the AWGN-MAC with symmetric block
power constraints”?; = P, we have

1,,
1
CL(N, P) = 5 log(1 + NP(N, P)) )
0 103
where ¢(N, P) € R is the unique solution in the interval P
[1,N] to
N Fig. 2. ¢(N,P) for N =5
(1+NP)N = (1+Po(N —¢))" . ®)

Proof: The proof of the converse is provided in Sec-

. : : ) multi-letter optimization problem we can limit ourselves t
tion Ill. It is known [8] that Kramer’s linear code achievéset . pHimiz: P
. : Gaussian distributions (see Lemma 1). Second, we use a
sum rate (2). For completeness, a simple analysis for Kramer - T
) . : dependence balance condition [10], [11] and the Gausgianit
code is presented in Section IV.

Note thaté(N, P) € [1, N] captures the ultimate amountOf the involved random variables to derive an equivalent

of cooperation which can be established among the sendé) Stlmlzanon problem (see (12)) over positive semidefinite

such thatp — 1 corresponds to no cooperation agd— N matrices. This optimization problem is nonconvex due to the

corresponds to full cooperation. For a fixéd, o(N, P) is introduced dependence balance condition. Third, we upper

. : . bound the solution to this optimization problem using the
increasing (more power allows more cooperation) and cancaV. ; .
. . - agrange dual formulation and the symmetry of the involved
in P as depicted in Figure 2.

Corollary 1: Consider the case of low signal-to-noise raticf)unctlons. The so obtained upper bound depends on the choice

(SNR). From (3) we can see that & — 0, (N, P) — 1 of the Lagrange multipliers, and for each choice it is again

. . a nonconvex optimization problem but involving only two
irrespective of the number of sende¥s and thus L P P : 9 only
optimization variables (see Lemma 4). Finally, using a few

CL(N,P) — llog(l £ NP) =0 technical tricks and strqng duality, we shoyv that theretexis
2 a set of Lagrange multipliers for which this upper becomes
which means that the linear sum capacity approaches the seawal to the right hand side of (4) (see Lemma 5).
capacity without feedback. Hence, in the low SNR regime Details are as follows.

almost no cooperation is possible. Step 1:We provide an upper bound on the linear sum
Corollary 2: Consider the case of high SNR. Agaircapacity based on Fano’s inequality. Then we use lineafity o
from (3) we can see that @ — oo, ¢(N, P) — N and the code and a conditional version of the maximum entropy
1 theorem [5, Lemma 1] to show that it is sufficient to consider

CL(N,P) — 3 log(1 + N2P) — 0. only Gaussian distributions.

_Lemma 1:The linear sum capacit¢ (N, P), under sym-

Thus, the linear sum capacity approaches the sum capagif¥iric plock power constraint® for all N senders, is bounded
with full cooperation where all the transmitted signals argg

coherently aligned with combined SNR equalXG P. CL(N, P) < lim Cy(P)

n—oo

IIl. PROOF OF THECONVERSE where

In this section we show that under the symmetric block 1 & .
power constraints” for all senders, the linear sum capacity ~ Cn(P) = max — S I(Xyi,. . Xy YY), (5)
CL(N, P) is upper bounded as =1
Here the maximization is over all inpufs;; of the form

1
CL(N7P)§§10g(1+NP¢(N7P)) (4) in:Lji(Vj,Yi_l), 2:1,,n (6)

where ¢(N, P) € R is the unique solution in the interval n
[1,N] to > E(XZ)<nP j=1,....N
i=1

N-1 N
(1+NPg) =1+ PV =9))". where eachV; € R™ ~ N(0, Kv,) is Gaussian and indepen-
The proof can be summarized in four steps. First, wéent of Z" and{V, : j’ # j}.
derive an upper bound on the linear sum capacity basedRemark 1:Although the functions that will be defined in
on Fano’s inequality, and we prove that in the resultinthe rest of the paper depend on the number of sendlerfer



simplicity of the notation, we avoid includingy explicitly, problem

e.g.,Cn(P). 1
Proof: For any achievable rate-tuplg?s, ..., Ry), the ma>.<|m|ze Zl 1 1K)
sum rateR can be upper bounded as follows. subjectto K; =0, i=1,...,n (12)
N Z?:l(Ki)jj STLP, jzl,,N
nR=n) R;=HM(S) Sy fa(K) — oK) <0
k=1
< I(M( ) ) + ne, (7) Where
1
- I
<Y (XS YY) +ne, (9
< ; D R T C) R
where{e,,} denotes a sequence such that— 0 asn — occ. K)) log |1+ P
Inequality (7) follows from Fano’s inequality [17], f2(K:) Z o8 Z;
N 2
(K0
HM(S)[Y™) < 1+nPM™ > " R; = ne,, _(Zﬂ()”) (9
k=1 (K355

and the fact thaP™ — 0 asn — . Inequalities (8) and (9) Before proving the equivalence we state two useful lemmas.
follow from the data processing inequality and the memayle Lemma 2:The functionsf; (K) and f>(K) in (13) and (14)

property of the channel. are concave ing. _
From (9), we upper bound the linear sum capacity as Proof: See Appendix A.
From [10], [11] we know the following dependence balance
vviel condition.
CL(N, P) < nh—»ngo maxe ZI Sy YilY'™) (10) Lemma 3 ([11], Theorem 1)tet X;; for i = 1,...,n,

=t and j = 1,...,N, be defined by the (causal) functional

where the maximization is over all linear codes which sgtistelationship in (6). Then,
the the symmetric power constraint i.e.,

n

: I(X;(S); vyt
XﬁzLMQﬁW*Li:Luwn E:( CURCL AN
=1
n N
E(X%)<nP, j=1,...,N. <~ ! i1
Z < o D 2 TSI X,
We next prove that message poir@®,...,®y can be (15)
replaced by Gaussian random variab¥és ..., Vy with the Proof: See Appendix B.
same covariance matrix. Given a linear code with message&remark 2: The proof of Lemma 3 relies only on the inde-
points ©(S), let pendence ofV; € R" from Z" and {V;: : j' # j}. Thus,

Lemma 3 remains valid also in the more general case where
the inputsX;;, = f;;(V;,Y*"1) are obtained using arbitrary
We useV(S) with the same linear functions as in the givefunctions{f;;} and non-GaussiaW (S).
code to generate We now prove the equivalence of the optimization prob-
lems (5) and (12). Since random vectof¥;} in (6) are
Xji = Lju(V;, Y jointly Gaussian and the functiods ;; } are linear, the random

~ variables (X™(S),Y™) generated according to (6) are also

whereY; is the output of the AWGN-MAC corresponding tojointly Gaussian and we can replace the mutual information

V(S) ~ N(0, Kg(s))-

X,(S). It is not hard to see that terms in condition (15) with functions of the covariance

N - matrices. Specifically, 1eX; = (Xy;,..., Xn:)T ~ N(0, K;)

(Xi(8),Y") ~ N(0, Kx,(s),v+)- where
Therefore, by the conditional maximum entropy theorem [5, K; = Kx, = 0. (16)
Lemma 1] we have
Then
I(X:(S): Y|V < I(X(S); ;| Y1), 11 .
(Xi(8); YalY'™) < I(X4(S); Ya[Y'™7) (11) I(Xui, . Xn YilY1) = f(K)

Combining (10) and (11) completes the proof. [ ]

N
1 . i
Step 2:We show that the optimization problem defining 7 ZI(Xi(S\{J});mY L XGi) = fa(Kq).
Cn(P) in (5) is equivalent to the following optimization j=1



Hence, the condition (15) reduces to and

S A — fo(K) < 0. a7 Gl gl g s
=t Ca(z, ¢) == AN-1) log(1 4+ (N = ¢)zg).  (22)
Recall that the condition (17) follows from the functional
relationship (6). Hence, adding the condition (17) to the Proof: First, we show that there exists a matfix of the
optimization problem (5), as an additional constraint, dloéollowing form
not decrease the maximum. Finally, note that given the

% log(1 + Nxzo)

1
functional relationship in (6), the objective function atice P f z ﬁ
power constraints can also be represented only in terms of 1
K=z-| P P p (23)

the covariance matrice§K;}" ,. Therefore, the functional
relationship translates to the constraints tét = 0 be oo -
positive semidefinite for ali, and the equivalence between pop p 1

the optimization problems (5) and (12.) follows. which achieves the maximum in (19). Towards this end, we
Notice that even though both functiorfs(K) and f2(K)  shall consider a covariance matig’ (not necessarily of the
are concave (see Lemma 2), their differerfeei’) — f2(K)  from in (23)) that achieves the maximum in (19), and construc

is neither concave nor convex. Hence, the optimization proh mayrix i as in (23) with objective function at least as large
lem (12) is nonconvex [12] due to the constraint (17). as the original matrixi’:

Step 3:Using Lagrange multipliers, v > 0, we provide a N
general upper bound (A, ) for the solution of the optimiza- _ _ _
tion problem given in (12). We further simplify this upper (L= f1(K) +7f2(K) +/\Z(P— Kjj)
bound exploiting symmetry. =t N
For the optimization problem (12), consider the Lagrange
duml foncion i P (12) IANGE (1) fu(K") + 1 fo(K) + XD (P~ Kfy). (24)
j=1
B 1 & Fix a covariance matri¥ that achieves the maximum in (19)
LX) = ey Z [fl(Ki) +(fa(Ks) = f1(K3)) and letK be the arithmetic average over &/l matrices that
N can be obtained from the original matr&’ through simulta-
T )‘(ZP —(K); )] (18) neous permutation of its rows and columns. That means:
t)37
j=1

NI
_ 1
= — me(K'),
with equal Lagrange multipliers; =X >0, j € {1,...,N} N! ; oK)
for the power constraints 3" P — (K;);; > 0, j € B . .
0 ]\F;} and the Lag?azn:éélmultirglierajg_o forjthe wherer, ..., 7y denote allN! possible permutations on the
) - set of indiceq(1, ..., N} and wherer(K') denotes the matrix

constraint: 7" | fo(K;) — f1(K;) > 0.

It is easy to see that for any Lagrange multipliarsy > 0,
the solution to the optimization problem (12) is upper baeohd
by the Lagrange dual functiah(, v), see [12]. Moreover, the
right hand side of (18) is an average of some functioof
and can further be upper bounded by the maximum

that is obtained by permuting the rows and the column& of
according to the permutation.

It is easily seen that the so obtained mafixas the desired
form (23) and it remains to prove the inequality (24). To this
end, we first notice that since the functign(K) depends on
the matrix K only via the sum of its entries:

N

N ’
U\, 7) ::%1&;5(1_»y)fl(K)+7f2(K)+,\Z(P_ij), 1K) = fi(K'), (25)
B J=l1 and similarly,
(19) N N
A K.=X K. 26
Thus, for any),~y > 0, the termU(),~) upper bounds the — ; 7 (26)

solution of the optimization problem (12). ) _

Next, we simplify the upper boundi (), ~) exploiting the Also, by symmetry it follows that for each permutation for
properties of the functiong, (K) and f2(K). t=1,...,Nt

Lemma 4:Let A,y > 0. Then, the upper boun@(\,~) fa(me(K")) = fa( K"). (27)

can be simplified as follows.
Therefore, by concavity of(K) in K (see Lemma 2) and

U(\7) = max Og;zXNg(% x,$) + AN(P — ). (20) Jensen’s inequality we can conclude that
f2(K) > fa( K'). (28)

Combining (25), (26), and (28) yields the desired inequal-

where



Thus, we continue our analysis with matrices of the form  Proof: See Appendix D.

in (23) and by defining
p=1+(N—-1)p
we have
Hi(K) = Ci(z, )
fo(K) = Ca(x, 9).

SinceK is positive semidefinitey > 0 and—1/(N —1) <
p < 1, where the lower bound op comes from the fact that
Zf\_[jzl K;; is nonnegative forK' > 0. Hence,0 < ¢ < N
and (19) reduces to (20). []

(29)

The form of K in (23) was also considered in [5], [8].where

Remark 3:As pointed out earlier, fory > 1, g(v,z,¢)
is not concave in both, ¢ in general. However, this lemma

shows thay(~, z, ¢* (v, x)) is concave inz for all v > 0 and
this is sufficient for the rest of the proof.

By concavity ofg (v, x, ¢*(vy, z)) and Slater’s condition [12]

we have strong duality as follows.

minmax (7, 2, 6" (7,)) + AN(P — )
= glgagg(%x,sb (v,2))

=g(v, P,¢" (v, P))

last equality follows from

(33)

the the fact that

However, in those cases the objective function was concayes, x, ¢*(v,z)) is increasing in: (see Lemma 7). Combining
In our case ify > 1 the objective function is not necessarily(32) and (33) we have
concave and proving this claim needs further treatmentdoase

on the symmetry of the functions (see (25)—(27)).

Step 4:We complete the proof of the converse by Sho"‘tastly

ing that there exists Lagrange multipliefd*,~*) such that
U(X*,v*) becomes equal to (4).
Lemma 5:There exists\*,v* > 0 such that

= %10g(1 + NP¢(N, P))

U(v) =g(v, P, ¢ (v, P)). (34)

we findy* > 0 such thatU(y*) = C1(P, ¢(N, P))

Lemma 8:For a fixedz > 0, the equationCsy(z, ¢)
Ci(z,¢) = 0 has a unique solution < ¢(N,z) < N.
Moreover,

(2¢(N’ CC) — N)(l + Nx¢(N7 x))
(N = 1)(1 + 2¢(N,z)(N — ¢(N,z)))
Proof: See Appendix E.

1+ >0. (35)

where ¢(N, P) € R is the unique solution in the interval

Let (N, P) € [1, N] be the unique solution t6¢; (P, ¢) =
A G(N.P) € [LN] q (P.0)

C>(P, ¢), which is equivalent to the equation (3). Givén
and P, we picky*(P, ¢(N, P)) such that it satisfies (31) for
xz = P and ¢* = ¢(N,P). It is easy to check that* :=
v*(P,¢(N, P)) > 0 is greater than zero by plugging= P
in (35). Since we pickedy* such thaty*, P and ¢(N, P)
satisfy (31) we conclude that*(~v*, P), the positive solution
of (31), is equal tap(N, P). Pluggingy* > 0 and ¢*(~*, P)
into (34) we have

U)
=g9(y*, P,¢* (v, P))
(1 =~")Ci(P,¢" (7", P)) + 7" Ca(P,¢™ (7", P))
= (1 =7")C1(P,¢(N, P)) +v*Ca(P,¢(N, P))  (36)
= C1(P,¢(N, P)) (37)

where (36) and (37) follow fromp*(y*, P) = ¢(N, P) and

(1+ NPV = (1+ Pop(N — o))"

Proof: Consider the optimization problem ovér, ¢)
which definesU (), v) in (20). Note thatg(v, x, ¢) given by
(21) is neither concave or convex {m, ¢) for v > 1. Let

Uy) =UN(7),7) = rglzigU(Am)- (30)

where\*(v) is the minimizer corresponding tp. We use the
following lemma to findU ().
Lemma 6: The functiong(~, z, ¢) is concave iny for fixed
z,v > 0.
Proof: See Appendix C.
By concavity ofg(v, z, ¢) in ¢ for fixed v andz, the inner
maximum in (20) happens @t< ¢*(v,z) < N such that

dg(v,x,4) 0 C1(P,¢) = Co(P, ¢), respectively. Hence, by picking* =

T o A(7%) (see (30)), we hav&/(A*,7*) = C1(P,§(N, P)). m

(1—7)(N —1) ~(2¢* — N) Combining the previous four steps we hatg(N, P) <
T+ Nogw ~ Ttae (N —o7) (31) (P, ¢(N,P)), and the proof of the converse is complete.

or at the boundaries™ (v, z) € {0, N}. Therefore, IV. ACHIEVABILITY VIA THE KRAMER LINEAR CODE

Uly) = minmax max g(7,%,¢) + AN(P —z)

= minmax (7,2, ¢"(7, ) + AN (P — z).
for any v > 0. To evaluate the last expression we use the
following lemma. A. Code representation:
Lemma 7:Let v,z > 0 and ¢*(vy,x) > 0 be the positive
solution to (31). Theng(~,z,¢*(vy,x)) is increasing and
concave inz.

In this section we present an equivalent representation for
the Kramer linear code [8] and analyze it based on the

(32) properties of discrete algebraic Riccati equations (DARE)

Recall that a linear code has a nonfeedback mapping

M; -0, cRF  j=1,...N.



We pick k = 2 such that®; € C = R2. With slight abuse  Lemma 9:For the sequencé&’,, we have
of notation we represer®®; < C as a scalar and reserve the

vector notation for® := (©4,...,05)T. We also assume Kn— K >0 asn—oo (42)
that the transmitted signal¥;; < C are complex (each sentyyhere &k is the unique positive-definite solution to the follow-
over two transmissions). _ _ ing discrete algebraic Riccati equation (DARE)
Message setd et M; = (M;1, M;2) be a two dimensional
message, where K =AKA — (AKB)(1+ B'KB)"'(AKB).  (43)
(Mj1, Mjs) ~ Unif ({1,.. L2nRiy s {1 _72nRJ}) . Proof: From (39) we have
Nonfeedback mappindivide the square with corners at K = AK(xi—Xi)A/ (44)
(£1 £ i) on the complex planei{ = —1) into 22*%% equal
where
sub-squares and map; = (mj1,m;2) to the center of the
corresponding sub-square. The distance between neigigbori K(X;X}) = Kx, — meK;,lKgc,y, (45)
points is =X , Y Vi
n is the error covariance matrix for the linear MMSE estimate
A=2.27"1Y (38) of X, givenY;. SinceY; = BTX, + Z;, where
in each direction. BT =[11... (nx1) (46)
Linear feedback mappingLet the transmissions by all
the senders at timeé be denoted by the vectoK; := We have
X AT i ina i
(X14, X2i, ..., XnNi)" . Then, the linear feedback mapping is K(xﬁxi) — K; — (K:B)(1 + B'K:B)"\(K:B). (47)
X0 =0, A Combining (44) and (47) we have the following Riccati
X, =A- (Xi,1 — Xifl(}/ifl)), 1> 1 (39) recursion [19] forK;:
where Kiy1 = AK;A' — (AK,;B)(1+ B'K;B) " *(AK;B)'. (48)
Prwr 00 ... 0 Since A has no unit-circle eigenvalue and the p@it, B) is
e 0 fawz 0 ... 0 (40) detectable [18], that is, there exists a matfixc R'*" such
B : : o : ’ that all the eigenvalues of — BC lie inside the unit circld,
0 0 0 ... OBywy we can use Lemma Il.4 in [20] to show that (42_) holdsm
. ) o . o Probability of error: The following lemma provides a suf-
in whichwy, ..., wx are distinct points on the unit circle andsicient condition such thaP{™ — 0 asn — oo.
0G1,-.., 0N > 1 are real coefficients, and Lemma 10:If R; < log(8;),j =1,...,N, thenPe(") =0
N E(Xi—lyi/—l) asn — oo.
Xi-1(Yi1) = E(lY._12) Yioa Proof: Let the difference vector be
(IYia]?)
is the linear minimum mean square error (MMSE) estimate of D,=0-0,.

X;_1 givenY;_;. Note that the linear feedback mapping (39

is stationary and recursive zionsidering (38), the probability of error can be bounded as

Decoding At time n, the decoder forms an estimate p) < p (U {IDn(j)I < 9-nR; })
n—1 J
©,=> A7X; (41) N
= <> P({DaGI>27")) @)
j=1

and decode®); to the nearest point 0B (5).

Theorem 2:Under the symmetric block power constraints
P; = P, the linear code described above achieves any sum
rate R < C (N, P). ]

Proof: Proof follows from Lemma 10 and Lemma 11 inwhere (49) and (50) follow from the union bound and the

2" E(IDn (5)1?), (50)

WE

<.
Il
-

Section IV-B. m Chebyshev inequality, respectively.
To find E(|D,,(5)|?), note that from the encoding rule (39)
) we have
B. Analysis: n—1 -
First, using control theoretic tools [18], we analyze the Xn =A"60 — ZA X;.

. . . =0
behavior of the sequence of covariance matrices !
IFor a diagonal matrixA = diag([\1 ... Ax]) and a column vector
B = [b1...bn], the pair (A,B) is detectable if and only if all the unstable

. . . eigenvalues)\;, i.e. the ones on or outside the unit-circle, are distinct tre
whereX,, is the transmitted vector at time correspondingy; are nonzero.

Kn = Kxn



Comparing this form ofX,, with the decoding estimate Before presenting the proof, we show that for this symmetric

rule (41), we can rewrit®,, as follows, choice of A, the matrix K is completely characterized by
n as follows.
Dy = A7 X, Lemma 12:Let A and]B be of the form (40) and (46) with
Hence,Kp, = A~"K,(A’)"" and the diagonal elements of3; = § andw; = e*™ “¥. Then the unique positive-definite
Kp, are solution K >~ 0 of the following discrete algebraic Riccati
equation

K=AKA — AKB(1+ B'KB) '(AKBY,
PluggingE(|D,,(5)|?) into (50) we get

is circulant with real eigenvalues satisfying

N
(n) i) . 92n(R;—log(B;) 1
PV <y Ka(g,d) -2 sl%), (51) A= ghion,
7j=1
From Lemma 9 we know thalimsup,, . Kn(j,j) < oo. fori =2,...,N. The largest eigenvalug, satisfies
Therefore, it follows from (51) tha’, — 0 asn — oo if 14+ N =320 (53)
R; <log(B;) forj=1,...,N. [ ] A
Asymptotic power allocatiorFor the linear code described (1 + A (N - ]—(—)) = N0, (54)

above, the asymptotic power of usgis 77

. . Proof: See Appendix F.
.1 .1 We use this lemma to prove Lemma 11.
lim — Y E(X%)= lim — Y (K;)j;
ri00 11 ; (X50) om0 1y ;( )i Proof of Lemma 11From (53) we have
> 1
= Kjj 3 log(1 4+ NXy) = Nlog(B).

where K is the unique solution to (43) and the last equalit
follows from the Cesaro mean theorem and Lemma 9. dnd thus by (52)

Thus, a rate-tupléR;, . .., Ry) is achievable with the code llog(l + NX) < CL(N, P) = llog(l + NPg(N, P)).
described above if for somgd,, ..., Gy) satisfying 2 2

log(Bj) > R;

we can find a set ofw, . .. ,w_N) such _that the corresponding
asymptotic power allocatiofiKy1, ..., Ky ) strictly satisfies On the other hand, from (53) and (54) we have

the power constraints, i.e., No1 ALY
(1+N)\1) :<1+/\1(N——)> :
Kijj

We can hence conclude that
A1 < Po(N, P). (55)

[_(jj<Pj j=1,...,N.

The strict condition above makes sure that the power canstrg2nd hence by the definition of the functigitV. -) in Theo-
is satisfied for sufficiently large. rem 1,

The following Iemma shovx_/s that for every sum rate< A = Kj;0(N, Kjj). (56)
CL(P, N), there exists a choice of the coefficie{ts;} and o
{w;} such thaty""  log(3;) > R and the corresponding Combining (55) and (56) we get
asymptotic matri_xf( strictly satisfies the symmetric power K;;6(N,Kj;) < P¢(N, P)
constraints, i.e.K;; < P. Thus, the lemma establishes the o
achievability of the sum capacity, (N, P) and concludes our @nd the monotonicity op(.V, -) completes the proof.
analysis.

Lemma 11:Given a sum rate? < C (N, P), let A be of V. DIsCussION
the form (40) with coefficients It is still unknown whether the linear sum capacity

. CL(N, P) is in general equal to the sum capaci{(N, P)

Bi=pB, j=1,...,N, under symmetric power constraint® for all N senders.

for some choice o3 > 1 satisfying However, we know [8] that they .coi_ncide if .the powet
exceeds the thresholéL.(V) > 0, which is the unique solution

R < NlOg(ﬁ) < CL(Pv N)a (52) to
and with coefficients (1+N2P/2)N"1 = (14 N?2P/4)N. (57)
wj :eQﬁi(jEl), j=1,...,N. We show that the condition (57) corresponds to the case

where the the linear sum capaci€y (N, P) coincides with

Then, the unique positive definite solutidd > 0 of the the following cutset upper bound [5] on the sum capacity,

discrete algebraic Riccati equation (43) satisfies

K, <P C(N, P) gmgxmin{Cl(P,qS),Cg(P,qS)}. (58)



ot
ot
ot

¢

Fig. 4. C1(P,¢) (dashed) and’z(P, ¢) for N = 10 and (a)P = 2 (b) P =20 (c) P = 200

Here, the functiong; (P, ¢), C2(P, ¢) are same as in (22). We extend this notion of maximal correlation ¢onditional
Towards this end, note that( NV, P) defined in Theorem 1, maximal correlationas follows. Let the random variables
is the unique solution ta (P, ¢) = Cy(P,¢) for fixed N ©,,0,,Y be given. The conditional maximal correlation

and P, and the linear sum capacity is between©; and ©, given a common random variabl€ is
CL(N, P) = C1(P, 6(N, P)) = Cs(P, 6(N, P)). defined as
Since the functions; (P, ) and C»(P, ¢) are concave inp p*(01,02]Y) = sup E(g1(01,Y)g2(02,Y))  (61)

91,92

(see Appendix A) and’; (P, ¢) is increasing ing, the inter- _ _
section point of the two functions and the max-min in (58yhere the supremum is over all functiogs g» such that
coincides if and only ifC2 (P, ¢) is nonincreasing ab(N, P) B B o 2y
(see Fig. 3 (a,b) and Fig. 4 (b,c)), that is, E(g1]Y) =E(g2lY) =0 and E(g7) = E(g2) = 1.

0C5(P, ¢) 9 The assumptioli(g;]Y") = E(g2]Y") = 0 is crucial; otherwise,
BY) S(N,P) — (59) g1 andg, can be picked a¥ andp*(01,0,|Y) = 1 trivially.
Considering (22), the condition (59) is equivalent to For conditional maximal correlation we have the following
' lemma.
¢(N,P) = N/2 Lemma 13:1f (©1,0,,Y) are jointly Gaussian, then
and pluggings(N, P) = N/2 into (3) gives (57). p*(01,0:]Y) = p(O1,0,]Y)

For P < P., we conjecture that we still haw@ (N, P) =
CL(N, P) based on the properties of Hirschfeld-Gebeleirand linear functiongt, g5 of the form
Rényi maximal correlation [14]. In the following we proed

some insights. g-(©1,Y) = 61 — E(61]Y)
Let p*(©1, ©2) denote the maximal correlation between two \/E ((@1 _ E(@1|Y))2)
random variable®, and©, as defined in [14]: o E(O.Y
p"(©1,02) = sup E(91(01)g2(02)) (60) 95(92’}/) - S (62)
T VE (02 — E©:]Y))?)

where the supremum is over all functions g> such that attain the supremum ip*(©, O5]Y).

E(g1) =E(g2) =0 and E(¢?) = E(g2) = 1. Proof: See Appendix G.
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Based on the conditional maximal correlation, we now APPENDIXA
present an upper bound on the (general) sum capacity. For PROOF OFLEMMA 2

simplicity, we focus onV = 2 and equal per-symbol power Using similar argument as in Bergstrgm’s theorem [17,

constraintsE(X;) < P, for j = 1,2. Also, without loss of Theorem, 17.10.1], we show(K) and f(K) are both
generality, we assume that the messadge € {1,...,2"%} concave ink. where

is mapped to a message pofdj € R and X;; is a function )
of (©,,Y*~1). Note that by picking the identity mapping we fK) ==log (1+ S K,
have®j:Mj. 1( ) 2 g( Z ”)

Lemma 14:A sum rateR, achievable by a code with block
length n and per-symbol power constraini§X?) < P, is and
upper bounded as

3,3

1K) = 57 Zlog 1+ Z Kjijr

R< %ZI(XM,XQi;EIY“lww (63)
G £
S %Z;log (1+2P(1+p (®1i,®2i|yl ))) + €n ij
(64)  Let X(8) = XD(S),P(t =1) = XA =1—P(t = 2),
wheree,, — 0 asn — oc. X(l)(s) ~ N(0, K1), X®(S) ~ N(0,K3) andY =Y =
Proof: See Appendix H. SN, XY+ 2, whereZ ~ N(0,1). AssumeZ, X1, X (?), ¢

Consider the multi-letter maximization problem where thare independent. Under these assumptions, the covariance
objective function is the right hand side of (63). For thecsple Matrix of X (S) is given by K’ = AK; + (1 — A) K> and
class of Gaussian message poifts, ©2) ~ N(0, Ko, 0,) 1
we show that linear functions are greedy optimal for this fi(E) = 5 log(Var(Y)) (65)
maximization problem.

First note that the first term/(X1, X21;Y7) is maxi- and
mized by linear functions, becaug®,,©,) are Gaussian. 1 N
Now, suppose that we have used linear functions up to time f2(K) = AN -1 > log(Var(Y|X;)) (66)

i — 1 and thereforg©;,0,,Y*"!) are Gaussian. Then, by j=1

Lemma 13 we know thﬁ‘f*@la ©2[Y* 1) = p(01,02[Y"" 1) Note that sinceX (S) and Y are jointly Gaussiaar(Y]X)
and Xj; = L;i(©;,Y"""), wherel;; is of the form (62), is 3 constant independent &f;. Consider
achieves the conditional maximal correlation. Hence,tkie

term (X1, X2:; Y;|Y"1) which is upper bounded by (see A logVar(Y(1)|X(1)) a-x 1ogVar(Y(2)|X(-2))
J

Appendlx H) 2

A Ky xol\ 1= Ky x|

=g los o] TR T

2 1og (1 + 2P(1 +0" (O, 92i‘yi71)))

is maximized by linear functions of the form (62). A similar
argument holds for any number of sendéfswhere we have

X |

= Mh(Y DV |XV) — h(Z)

the the following upper bound, +(1- )\)(h(Y(Q)IXJ(-Q)) - h(Z)) (67)
=h(YD|XEt) - h(Z)
1—1
R<— ZI S):Yi[Y™) < h(Y|X;) - h(Z)
3 _ 11 | Ky, x| 68
<—Zlog(1+NP+PZp (©ji, O | Y™ ) ~ 2 Ky (68)
J#k 1

Therefore, in establishing the sum rate optimality of linea — 3 1°8 Var(Y'|X;).

codes, the missing step is as follows. We need to show thath
without loss of optimality we can consider only Gaussia
message points and that linear functions are not only gree %?
optimal but also globally optimal for maximizing the rlght
hand side of (63). Note that using functions which mlgh’f1
hurt the current mutual information terd(X;(S); Y;|Y¢~1)

at time¢, can be potentially advantageous for the future terms APPENDIXB
I(X5(S); Y |Y 1), k > i. Hence, this last step requires an PROOF OFLEMMA 3

analysis which captures the effect of the functions usedette | o

time 4, on the joint distribution of all the random variables

(O(8), X™(S),Y™) in the entire block. X;i=Lu(V;, YY) i=1,....n,j=1,...,N

ere (67) and 868) come form the fact tHat") is jointly

ussian W|thX Thus Var(Y'|X;) is concave inkK for

The same argument holds fafY’). Then, concavity of
) and f2(K) in K follows.



such thatV; € C" is independent of V
We show that

2y # 4} and Z™.

Z ( Y|Yl 1)
i=1
n N
< 7 DS IS\ X)),
=1 j=1
(69)
By independence oV ;'s we have
N
= _Vy) (70)
j=1
Consider
N
0<I(V(S)Y™) =D I(ViY™) (71)
j=1

|

@
Il
A

N
VSV = 3 IVl
Jj=1

M=

= [1(V(S), Xi(S) iy
1=1 N
= IV X VYY)

11

K = 0 with fixed diagonal elementsl — ) f1 (K) + v f2(K)
is concave inK for any~ > 0 and concavity ofy(y, z, ¢) in
¢ for fixed x, v immediately follows.

Let X = X;,..., Xy ~ N(0,K) andY = 3| X, + Z,
whereZ ~ N(0,1) is independent o1, ..., Xy. Then

(1= f1(K) + v f2(K)

h(X;5[Y) —

(X;).

N
- Vlzhxn/

g
nv)(1+ T )
Jj=1
By Lemma 2, we know thak(Y) and h(X,|Y") are con-
cave in K. If the diagonal of K are fixed thenh(X;) =
3 log(2meK;;) is also fixed and as long ag > 0, (1 —
Y)f1(K) + v f2(K) is concave inK.

APPENDIXD
PROOF OFLEMMA 7

Let v,z > 0 and¢*(vy,x) > 0 be the positive solution to

n N
<X [T - 1Yy Th]. (72) (L=NN-1) __126-N) 24
=t =t 1+ Nz 1+ad(N—o) (74)
where inequality (71) follows from (70) and the fact th .
conditioning reduces entropy. aﬁ'heng(%x, ¢"(v,2)), where
Inequality (72) follows from the facts that mutual informa- g(v,z,6) = (1 —7)Ci(z, ) +vCa(x, ¢).
tion is positive and that the following Markov chain holds ) _
- is increasing and concave in
V(S) = (Xi(8),Y") = Y. Let
Adding (N — 1) 37 I(Xi(S); Yi[Y*™!) to both sides in 9(x,¢) := (1 =7)C1(x,¢) +71Ca(x, ¢). (75)

(72) and rearranging terms we have

n

> (1 vy

i=1

1 n N
< T 2 SN X))
APPENDIXC
PROOF OFLEMMA 6
We show
where
C1(z,0) = 5 log(1 + Nuo)
N
Co(z,¢) = N1 log(1+ (N —¢)xg),  (73)
is concave ing for fixed z,~ > 0.
Note thatCy(z,¢) = fi(K) and Caz(z,¢) = fo K) for

symmetric K given in (23) (see (22)). We prove for general

Note thatg(x, ¢) is same agi(v, z, ¢), but for simplicity we
do not includey explicitly.
Similarly, let

¢ (z) := ¢ (7, 2)
Equation (74) can be written as
ap®* +bp+c=0 (76)
where
a=(N+~v—-1+~N)z
b=—-N(N+~—-1)z+2y

—(N+~-1).
Sinceac < 0, there is a unique positive solutiaft (z) > 0,
where
0< ¢*(z) = bt vo© — dac \/215_74“0. (77)
We wish to show that the first derivative of
f(x) = g(z,¢"(2)).



is positive and the its second derivative is negative.
First derivative:Note that (see (31)) fop* (x) which satisfy

(74) we have
9g(z, ¢)

d¢

()
Hence, we have
df(z) _ dg(x,9)
dx ox
_ 9g(z,9)
ox

dg(x, ¢) do
o

z,¢* ()

dz |z,0* ()

PluggingCi(z, ¢) andCs(x, ¢) from (73) ing(z, ¢), we have

df (z)

dx

N¢
14+ Nz¢
No(N —¢)
(N =1)(1 + zp(N - ¢))

=1-9)

+

__No
1+ Nzo¢

(N = ¢)(1 + Nag)

z,¢* ()

: (“””(N—lxumuv—w))

N1 @)
1+ Neg (@)(N — 26 (@)
Z 01

z,0*(z)

(78)
(79)

where equality (78) follows from the fact that (z) satisfies
(74), and inequality (79) follows from the fact thét — ~)
and(2¢*(xz) — N) have the same sign (see (74)).
Second derivativeFor 0 < 4 < 1, the concavity is
immediate sinc€’; (z, ¢) = f1(K) andCs(x, ¢) = fo(K) for
symmetricK given in (23) (see (22)) and; (K) and f2(K)

are concave ik (see Appendix A).

To prove the concavity of (x) for v > 1, we show that

& f ()

5~ <0
From (78) we have
df(z) _ ;
where
f(z) = h(z, ¢*(2))
¢2
M 0) = T Nag) (v —29)"
Therefore it is enough to show that
df(z)
dr < 0.
Consider
df() _ Oh(w9)  Oh(z.9)do
dzr o ox 8¢ dx z,p*(x)
—N¢3

(14 Nzg)?(N — 2¢)
$(N?x¢ +2(N — ¢))
(1+ Nzg)2(N — 26)2

o
du
22 (V226 + 2N = ¢)) = No*(N - 29)

z,¢*(z)

(1 4+ Nz¢)?(N — 2¢)2

z,¢* ()

12

Since¢ > 0 and the denominator is also positive we need to
show

N¢*(N —2¢)
N2x¢p+2(N — ¢)

do* ()
dx

(80)
z,¢* (x)
For the rest of the proof, with abuse of notation, we alterna-
tively use ¢ for ¢*(x), the positive solution of (76). Taking
the derivative of (76) with respect to we have

dg*(z) _ —¢*(a'd + V) 61)
dx 2a¢2 + b
—¢*(d'¢ + V)
- ap? —c
where
ad=N+y—-1+9N
b'=—-N(N+~-1). (82)
are derivatives ofi, b with respect tar. Defining
N+~v-1
o= N

we havea = N(a+7)x, b = —N2ax+2v, c=—aN, a’ =

N(a+7), b = —N2a, and
d¢*(x) _ —¢*(a'p +1)
de a¢®—c

_ N¢*(Na — (a+17)9)
~ (a+7v)Nz¢? +aN
_ N¢*(N - B9)
~ BNz¢?+ N’

(83)

where .
B:=1+ —.
«

It is not hard to see that € (2, N+1) for v > 1. Considering
(83), (80) becomes equivalent to

N — B¢ - BNzg? + N

N—-2¢ ~ N2xp+2(N —¢)

N—-p6 _ N~ pBo+Bo(Nug +1)

—

N—-2¢p N—-20+N(Nzp+1)
N—-pBo B¢
= N—20 <W’ (84)
where (84) follows from the fact that fdr,d > 0,
a c a a—+c
v d 5 brd (85)

Considering (85) again witle = d = 2¢ and noting that
8 > 2, we can see that to prove (84) it is sufficient to show

N-(8-2)¢ _ po
- N

N

N -1

— Sl S Y (86)
2y

To show the last condition, consider

s N+y-—1
(0 = —5— (87)
d¢ > 0. (88)

d.CC x=0
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where (87) follows from (76). Condition (88) follows fromandA = diag([\1, ..., An]) is the matrix with eigenvalues on
(81) and the facts thatag*(0) + b > 0 by (77) and that for its diagonal. We show that the circulant matik = QAQ’
v > 1, d'¢*(0) + b’ < 0. Therefore, condition (86) holds.  with positive \; > 0, such that\; = X\;_1/3* for j > 2,
satisfies the Riccati equation (43). Pluggi@d\Q’ into (43)
APPENDIXE and rearranging we get

PROOF OFLEMMA 8 A = (Q'AQ)A(Q'AQ) — ((Q'AQ) A (Q'B))

We show that for a fixed: > 0, Ca(x,¢) — Ci(x,¢) =0 (1+ B'QAQ'B)"*((Q'AQ) A (Q'B))'.
has a unique solutioh < ¢(N,z) < N. Moreover,
For this symmetric choice oft we have

2¢(N,z) — N)(1 + Nz¢(N, x))

1+ >0. (89 1 .
N~ 00+ 2o, — o) O 0100 VN
Let f(¢) = Ca(z,9) — Ci(x, ). We prove there exists a oAQ=p| : : - ) . OB — 0
unique solution by showing(1) > 0, f(N) < 0, andf’(¢) < R :
0 for 1 < ¢ < N. The fact thatf(N) < 0 is immediate. 00 .. 0 1 0
Condition f(1) > 0 is equivalent to 10 0 0
N N—1 Hence,
(1+a(v-1)" = (1+Na) N 0 .
For the above condition to hold it is sufficient that 0 A 0
N1 (QAQAQAQ) =5 . . . :
n k - k Do e
<N>(N_1) 2( k >Na (90) 0 0 )\1
which is true sincg1 — 1/N)* > 1 —k/N for N > 1. 0
Finally, we need to showf’(¢) < 0 which is equivalent to (Q'AQ)A(Q'B) = 0
N —2¢ N-1 :
[T 26N —9) 11 Nag -0 (1) BMVN

and the Riccati equation beconi¢ diagonal equations. The
first N — 1 equations are

No=B* N1, j=1,...,N—-1 (93)

Rearranging the terms we have
1+ Nz¢ — (2¢ + 2¢*> + Nx¢?) < 0,

which holds for any¢ > 1. This completes the proof of

the uniqueness. Moreover, the condition (89) follows fro

plugging¢(N, z) in (91).

APPENDIX F
PROOF OFLEMMA 12

Let A and B be of the form (40) and (46) witfB; =
andw; = e*™ “% We show that the unique positive-definit
solution K - 0 of the following discrete algebraic Riccat

equation

K =AKA — AKB(1+ B'KB) ' (AKBY,

is circulant with real eigenvalues satisfying

A\ = %)\i_l, B'KB) = 1+ N)\;. Hence, the diagonal equations of the
p original Riccati equation
for i = 2,..., N and the largest eigenvalug satisfies o2
Kii—=(PK::—32— 3 96
23 ﬁ 23 6 (1 4 B/KB) ( )
1+ NN =2

ALY g
(1+x (N ij))—ﬁ .

We know that any circulant matrix can be written @4.Q’,

where( is the N point DFT matrix with

Qe = ——e2mili=D(k=1)/N

VN

-Ei-lence,)\l is real and so arg
the form of Q in (92), A\ = o1 where

%nd theN-th equation is

B2AIN

Av =0 = e

(94)

From (93) we see tha; is the largest eigenvalue and; =

B—2(N=1)\;. Combining this with (94) we get

(1+NX) =32,

N
g5 = E Kjk.
k=1

(95)

j,j =2,...,N. Note that from

Moreover, sincekK is circulanto; = o for all j, and (1 +

are equivalent to
52— 14+ NN
o (N - 2

Jj

and by (95) we have
At

(1 + A (N - f(_)) = N1,

Jj
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APPENDIX G APPENDIXH

PROOF OFLEMMA 13 PROOF OFLEMMA 14
We show that for jointly Gaussiaf®:, ©,,Y), we have For a sum rateR achievable by a code with block length
and per-symbol power constrairE$Xfi) < Pforj=1,2,
p*(01,02]Y) = p(©1,0:Y) we show
. . 1 & . i
and linear functiongt, g5 of the form R< o ;bg (1 + 2P(1 + p* (015, 02|V 1))) +en
0, — E(O.]Y 105
(0,v) = 2 ZEON) (105)
\/E((@l —E(61]Y))?) wheree, — 0 asn — oo and p*(O1;,02|Y*"!) is the
O, — E(0,]Y) conditional maximal correlation between message pats
95(02,Y) = (97) and®, given the previous channel outpdg—.
\/E 92 — E(©2[Y))? ) By standard arguments based on Fano’s inequality, we have

attain the supremum ip*(©1, 02|Y).
Let (U,V) be two zero-mean jointly Gaussian random
variables with correlatiop(U, V). It is well known [21] that

1 — .
R< =Y I(X1;, Xe; Y;|YiH n 106
_n; (X1 2 | )+e ( )

1 N
" = — I(Xli,XQi;}/”YZ_l)—FEn (107)
p*(U.V) = p(U, V). (98) n ;
Hence, the maximal correlatiqﬁ(U V) is attained by linear < 1 Z](X”,X% }71-) + € (108)
H L _ _ |4 n <
functionsg;(U) = \/E(T andgs(V) = NCak i=1

Since(01,02,Y) is Gaussian we know that givén =y, where
(01, 62)\Y:y is Gaussian with some correlation i
Xji =X — E(X5|Y"™)

p(01,0:]Y =y)=p forally (99) Y; =Xy + Xoi + Z;

independent of;.. From (98) and (99), we have ande, — 0 asn — oo. The equality (107) holds since
E(X;:|Y""1) is a function ofY*~!, and the inequality (108)
0% (01, ez‘y =y) =p(01,0,]Y =y)=p forally follows from the data processing inequality and the fact tha
(100) Markov chainY; — (X1;, Xo;) — Y~ ! holds.

Notice that by the definition of(ﬁ we have
and therefore

E(XuY"hH =0, i=1,....n, j=1,2. (109)
P1(O10aY) Therefore
:gsll}gE(gl(@laY)gz(@zay)) L B o
E(X5,) =E(E( (X — E(XulY'™)*|Y

E
=E(E(X5|Y"™h) — EX(X;|Y' )
<E(E(X;[Y'™)
E

91,92

= sup Ey (E (91(91,Y =9)g2(02,Y = y)))

IN

Ey <g811.1£ E (91(@1, Y =9)g2(02,Y = y))) (101)

= ('Xj21)
= Ey (p"(01,0:]Y =) <P (110)
=p (102) Wwhere the last inequality follows by the assumption of per-

symbol power constraint®. Using (108), (109) and (110) we
where inequality (101) follows from Jensen’s inequalitydancan further upper bound the sum rdteas follows.
equality (102) follows from (100). It is easy to check that fo

linear functionsgt, g5 of the form (97) we have R< 1 31X, Xois Vi) + en

E(q1]V) = E(galV) = 0,E(g?) =E(g3) =1 (103) o

1 o
<o Z;log (1+2P +2PE (p(%1:, Xa1)) ) + €n
(111)

E(91(01,Y)g2(02,Y)) = p. (104) 1 .
% Zlog (1 + 2P(1 + p* (@11', @2i|yz—l))) + €n

From (102), (103) and (104) we conclude that linear funcion i=1
of the form (97) achieves the supremumgh(©,,0,]Y). (112)

and

IN



where
E 1~ . 2~

VEXZ) (E(X3)
is the correlation coefficient betweeX;; and X,;. The
inequality (111) follows from the maximum entropy theo-
rem [17] and equal per-symbol power constraE(tXfi) < P.
The inequality (112) follows from the definition of conditial

maximal correlation (61), and the fact thaffjl- is some
function of (©;, Y*~!) satisfying the condition (109).

P(XlivXQi) =
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