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Linear Sum Capacity for Gaussian Multiple Access
Channels with Feedback

Ehsan Ardestanizadeh, Michèle A. Wigger, Young-Han Kim, and Tara Javidi

Abstract—The capacity region of theN -sender additive white
Gaussian noise (AWGN) multiple access channel (MAC) with
feedback is not known in general, despite significant contributions
by Cover, Leung, Ozarow, Thomas, Pombra, Ordentlich, Kramer,
and Gastpar. This paper studies the class ofgeneralized linear
feedback codes that includes (nonlinear) nonfeedback codes at
one extreme and the linear feedback codes by Schalkwijk
and Kailath, Ozarow, and Kramer at the other extreme. The
linear sum capacity CL(N, P ), the maximum sum rate achieved
by generalized linear feedback codes, is characterized under
symmetric block power constraints P for all the senders. In
particular, it is shown that Kramer’s linear code achieves this
linear sum capacity. The proof involves the dependence balance
condition introduced by Hekstra and Willems and extended by
Kramer and Gastpar. This condition is not convex in general,and
the corresponding nonconvex optimization problem is carefully
analyzed via Lagrange dual formulation. Based on the properties
of the conditional maximal correlation—an extension of the
Hirschfeld–Gebelein–Renyi maximal correlation—it is further
conjectured that Kramer’s linear code achieves not only the
linear sum capacity, but also the (general) sum capacity, i.e.,
the maximum sum rate achieved byarbitrary feedback codes.

Index Terms—Gaussian MAC with feedback, linear feedback
codes, sum capacity.

I. I NTRODUCTION

Feedback from the receivers to the senders can improve the
performance of the communication systems in various ways.
For example, as first shown by Gaarder and Wolf [1], feed-
back can enlarge the capacity region of memoryless multiple
access channels by enabling the distributed senders to establish
cooperation via coherent transmissions.

In this paper, we study the sum capacity of the additive
white Gaussian noise multiple access channel (AWGN-MAC)
with feedback depicted in Figure 1. ForN = 2 senders,
Ozarow [2] established the capacity region which—unlike
for the point-to-point channel—turns out to be strictly larger
than the one without feedback. The capacity-achieving code
proposed by Ozarow is an extension of the Schalkwijk–Kailath
code [3], [4] for point-to-point AWGN channels.

For N ≥ 3, the capacity region is not known in general. On
one hand, Thomas [5] proved that feedback can at most double
the sum capacity, and later Ordentlich [6] showed that the same
bound holds for the entire capacity region even when the noise
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sequence is not white (cf. Pombra and Cover [7]). On the other
hand, Kramer [8] extended Ozarow’s linear code toN ≥ 3
users. Kramer’s linear code achieves the sum capacity under
the symmetric block power constraintsP for all the senders,
provided that the powerP exceeds a certain threshold (57)
that depends on the number of senders.

In this paper, we focus on the class ofgeneralized lin-
ear feedback codes(or linear codesin short), whereby the
feedback signals are incorporated linearly into the transmitted
signals (see Definition 1 in Section II for the precise defini-
tion). This class of generalized linear feedback codes includes
the linear feedback codes by Schalkwijk and Kailath [3],
Ozarow [2], and Kramer [8] as well as arbitrary (nonlinear)
nonfeedback codes.

This paper characterizes the linear sum capacityCL(N, P ),
which is the maximum sum rate achieved by generalized linear
feedback codes under symmetric block power constraintsP .
The main contribution is the proof of the converse. We first
prove an upper bound onCL(N, P ), which is a multi-letter
optimization problem over Gaussian distributions (cf. Cover
and Pombra [9]). Next, we derive an equivalent optimization
problem over the set of positive semidefinite (covariance)
matrices by considering a dependence balance condition, intro-
duced by Hekstra and Willems [10] and extended by Kramer
and Gastpar [11]. Lastly, we carefully analyze this nonconvex
optimization problem via Lagrange dual formulation [12].

The linear sum capacityCL(N, P ) can be achieved by
Kramer’s linear code. Hence, this rather simple code, which
iteratively refines receiver’s knowledge about the messages,
is sum rate optimal among the class of generalized linear
feedback codes. For completeness, we provide a representation
of Kramer’s linear code and analyze it via properties of
discrete algebraic Riccati recursions (cf. Wu et al. [13]).This
analysis differs from the original approaches by Ozarow [2]
and Kramer [8].

The complete characterization ofC(N, P ), the maximum
sum rate among all feedback codes, still remains open. We
conjecture thatC(N, P ) = CL(N, P ) based on the observation
that linear codes aregreedy optimalfor a multi-letter optimiza-
tion problem which upper boundsC(N, P ). We establish this
fact in Section V by introducing and analyzing the properties
of conditional maximal correlation, which is an extension
of the Hirschfeld–Gebelein–Renyi maximal correlation [14]
to the case where an additional common random variable is
shared.

The rest of the paper is organized as follows. In Section II
we formally state the problem and present our main result.
Section III provides the proof of the converse and Section IV



2

 
 

 

M1

Mj

MN

M̂1, . . . , M̂N

Encoder1

Encoderj

EncoderN

Decoder

X1i

Xji

XNi

Yi

Zi ∼ N(0, 1)

Fig. 1. N -sender AWGN-MAC

gives an alternative proof of achievability via Kramer’s linear
code. Section V concludes the paper with a discussion on the
aforementioned conjecture.

Notation: We follow the notation in [15]. In particular, a ran-
dom variable is denoted by an upper case letter (e.g.X, Y, Z)
and its realization by a lower case letter (e.g.x, y, z). Similarly,
a random column vector and its realization are denoted by bold
face symbols (e.g.X andx). Uppercase letters (e.g.A, B, C)
also denote matrices, which can be differentiated from a ran-
dom variable based on the context. The(i, j)-th element ofA
is denoted byAij and(Ak)ij is used to represent the(i, j)-th
element of a sequence of matrices indexed byk. The transpose
of a matrix A is denotedAT , and its complex transpose
by A′. We use the following short notation for covariance
matrices:KXY := E(XY

′)−E(X)E(Y′) andKX := KXX.
Calligraphic letters (e.g.A,B, C) denote discrete sets. Given
a set of random variables{X1, . . . , XN} and a discrete set
A ⊆ S := {1, . . . , N}, we denote byX(A) the ordered subset
X(A) := {Xj : j ∈ A}. Similarly, for j ∈ {1, . . . , N} and
i ∈ {1, . . . , n}, we defineXi(A) := {Xji : j ∈ A} as a subset
of {Xji}. Finally, L(·) denotes an arbitrary linear function.

II. PROBLEM SETUP AND THE MAIN RESULT

Consider the communication problem over an additive white
Gaussian noise multiple access channel (AWGN-MAC) with
feedback depicted in Figure 1. Each senderj ∈ {1, . . . , N}
wishes to transmit a messageMj ∈ Mj reliably to the
common receiver. At each timei = 1, . . . , n, the output of
the channel is

Yi =
N
∑

k=1

Xji + Zi (1)

where{Zi} is a discrete-time zero-mean white Gaussian noise
process with unit average power, i.e.,E(Z2

i ) = 1, and indepen-
dent ofM1, . . . , MN . We assume that the output symbols are
causally fed back to each sender and the transmitted symbol
Xji from senderj at time i can depend on both the previous
channel output sequenceY i−1 := {Y1, Y2, . . . , Yi−1} and the
messageMj .

We define a(2nR1 , . . . , 2nRN , n) code with power con-
straintsP1, . . . , PN as

1) N message setsMj := {1, . . . , 2nRj}, j = 1, . . . , N ,

2) a set ofN encoders, where encoderj at each timei maps
the pair (mj , Y

i−1) to a symbolXji such that the se-
quenceXj1, . . .Xjn satisfies theblock power constraint

n
∑

i=1

E(X2
ji(mj , Y

i−1)) ≤ nPj , mj ∈ Mj ,

and
3) a decoder map which assigns message estimatesm̂j ∈

Mj , j ∈ {1, . . . , N}, to each received sequenceyn.

We assume throughout thatM(S) := (M1, . . . , MN ) is a
random vector uniformly distributed overM1 × · · · × MN .
The probability of error is defined as

P (n)
e := P{M̂(S) 6= M(S)}.

A rate-tuple(R1, . . . , RN ) is called achievable if there exists
a sequence of(2nR1 , . . . , 2nRN , n) codes such thatP (n)

e → 0
as n → ∞. The capacity regionC is defined as the closure
of the set of achievable rate-tuples and the sum capacityC is
defined as

C := max

{

N
∑

j=1

Rj : (R1, . . . , RN ) ∈ C

}

.

We refer toR =
∑N

j=1 Rj as the sum rate of a given code.
Definition 1: A (2nR1 , . . . , 2nRN , n) code is called agen-

eralized linear feedback codeif the encoding maps can be
decomposed as follows.

1) Nonfeedback (nonlinear) mappings: The messageMj is
mapped to a vectorΘj ∈ Rk for somek ∈ {1, . . . , n},
which we refer to as the message point.

2) Linear feedback mappings: At each timei, the pair
(Θj , Y

i−1) is mapped to a symbolXji such thatXji =
Lji(Θj , Y

i−1) is linear in (Θj , Y
i−1).

As mentioned earlier, any nonfeedback code is a generalized
linear feedback code by pickingk = n andΘj ∈ Rn to be the
codeword of thej-th user. On the other hand, by pickingk = 1
we can get the linear codes by Schalkwijk and Kailath [3] and
Ozarow [2]. For Kramer’s linear code [8], the message points
are2-dimensional and we needk = 2. Note that this subclass
of linear codes, for whichk is independent ofn, does not
include the nonfeedback codes (cf. [16]).

The linear capacity regionCL is defined as the closure of
the set of rate-tuples achievable by linear codes and the linear
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sum capacityCL is defined as

CL := max

{

N
∑

j=1

Rj : (R1, . . . , RN ) ∈ CL

}

.

The following theorem characterizesCL(N, P ), the linear
sum capacity under symmetric block power constraintsP for
all the N senders.

Theorem 1:For the AWGN-MAC with symmetric block
power constraintsPj = P , we have

CL(N, P ) =
1

2
log(1 + NPφ(N, P )) (2)

where φ(N, P ) ∈ R is the unique solution in the interval
[1, N ] to

(1 + NPφ)N−1 = (1 + Pφ(N − φ))
N

. (3)

Proof: The proof of the converse is provided in Sec-
tion III. It is known [8] that Kramer’s linear code achieves the
sum rate (2). For completeness, a simple analysis for Kramer’s
code is presented in Section IV.

Note thatφ(N, P ) ∈ [1, N ] captures the ultimate amount
of cooperation which can be established among the senders,
such thatφ = 1 corresponds to no cooperation andφ = N
corresponds to full cooperation. For a fixedN , φ(N, P ) is
increasing (more power allows more cooperation) and concave
in P as depicted in Figure 2.

Corollary 1: Consider the case of low signal-to-noise ratio
(SNR). From (3) we can see that asP → 0, φ(N, P ) → 1
irrespective of the number of sendersN , and thus

CL(N, P ) − 1

2
log(1 + NP ) → 0

which means that the linear sum capacity approaches the sum
capacity without feedback. Hence, in the low SNR regime
almost no cooperation is possible.

Corollary 2: Consider the case of high SNR. Again
from (3) we can see that asP → ∞, φ(N, P ) → N and

CL(N, P ) − 1

2
log(1 + N2P ) → 0.

Thus, the linear sum capacity approaches the sum capacity
with full cooperation where all the transmitted signals are
coherently aligned with combined SNR equal toN2P .

III. PROOF OF THECONVERSE

In this section we show that under the symmetric block
power constraintsP for all senders, the linear sum capacity
CL(N, P ) is upper bounded as

CL(N, P ) ≤ 1

2
log(1 + NPφ(N, P )) (4)

where φ(N, P ) ∈ R is the unique solution in the interval
[1, N ] to

(1 + NPφ)N−1 = (1 + Pφ(N − φ))
N

.

The proof can be summarized in four steps. First, we
derive an upper bound on the linear sum capacity based
on Fano’s inequality, and we prove that in the resulting
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Fig. 2. φ(N, P ) for N = 5

multi-letter optimization problem we can limit ourselves to
Gaussian distributions (see Lemma 1). Second, we use a
dependence balance condition [10], [11] and the Gaussianity
of the involved random variables to derive an equivalent
optimization problem (see (12)) over positive semidefinite
matrices. This optimization problem is nonconvex due to the
introduced dependence balance condition. Third, we upper
bound the solution to this optimization problem using the
Lagrange dual formulation and the symmetry of the involved
functions. The so obtained upper bound depends on the choice
of the Lagrange multipliers, and for each choice it is again
a nonconvex optimization problem but involving only two
optimization variables (see Lemma 4). Finally, using a few
technical tricks and strong duality, we show that there exists
a set of Lagrange multipliers for which this upper becomes
equal to the right hand side of (4) (see Lemma 5).

Details are as follows.
Step 1: We provide an upper bound on the linear sum

capacity based on Fano’s inequality. Then we use linearity of
the code and a conditional version of the maximum entropy
theorem [5, Lemma 1] to show that it is sufficient to consider
only Gaussian distributions.

Lemma 1:The linear sum capacityCL(N, P ), under sym-
metric block power constraintsP for all N senders, is bounded
as

CL(N, P ) ≤ lim
n→∞

Cn(P )

where

Cn(P ) := max
1

n

n
∑

i=1

I(X1i, . . . , XNi; Yi|Y i−1). (5)

Here the maximization is over all inputsXji of the form

Xji = Lji(Vj , Y
i−1), i = 1, . . . , n (6)

n
∑

i=1

E(X2
ji) ≤ nP, j = 1, . . . , N

where eachVj ∈ Rn ∼ N(0, KVj
) is Gaussian and indepen-

dent ofZn and{Vj′ : j′ 6= j}.
Remark 1:Although the functions that will be defined in

the rest of the paper depend on the number of sendersN , for
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simplicity of the notation, we avoid includingN explicitly,
e.g.,Cn(P ).

Proof: For any achievable rate-tuple(R1, . . . , RN ), the
sum rateR can be upper bounded as follows.

nR = n
N
∑

k=1

Rj = H(M(S))

≤ I(M(S); Y n) + nǫn (7)

≤ I(Θ(S); Y n) + nǫn (8)

≤
n
∑

i=1

I(Xi(S); Yi|Y i−1) + nǫn (9)

where{ǫn} denotes a sequence such thatǫn → 0 asn → ∞.
Inequality (7) follows from Fano’s inequality [17],

H(M(S)|Y n) ≤ 1 + nP (n)
e

N
∑

k=1

Rj =: nǫn,

and the fact thatP (n)
e → 0 asn → ∞. Inequalities (8) and (9)

follow from the data processing inequality and the memoryless
property of the channel.

From (9), we upper bound the linear sum capacity as

CL(N, P ) ≤ lim
n→∞

max
1

n

n
∑

i=1

I(Xi(S); Yi|Y i−1) (10)

where the maximization is over all linear codes which satisfy
the the symmetric power constraintsP , i.e.,

Xji = Lji(Θj , Y
i−1), i = 1, . . . , n

n
∑

i=1

E(X2
ji) ≤ nP, j = 1, . . . , N.

We next prove that message pointsΘ1, . . . ,ΘN can be
replaced by Gaussian random variablesV1, . . . ,VN with the
same covariance matrix. Given a linear code with message
pointsΘ(S), let

V(S) ∼ N(0, KΘ(S)).

We useV(S) with the same linear functions as in the given
code to generate

X̃ji = Lji(Vj , Ỹ
i−1)

whereỸi is the output of the AWGN-MAC corresponding to
X̃i(S). It is not hard to see that

(X̃i(S), Ỹ i) ∼ N(0, KXi(S),Y i).

Therefore, by the conditional maximum entropy theorem [5,
Lemma 1] we have

I(Xi(S); Yi|Y i−1) ≤ I(X̃i(S); Ỹi|Ỹ i−1). (11)

Combining (10) and (11) completes the proof.
Step 2:We show that the optimization problem defining

Cn(P ) in (5) is equivalent to the following optimization

problem

maximize 1
n

∑n
i=1 f1(Ki)

subject to Ki � 0, i = 1, . . . , n
∑n

i=1(Ki)jj ≤ nP, j = 1, . . . , N
∑n

i=1 f1(Ki) − f2(Ki) ≤ 0

(12)

where

f1(Ki) :=
1

2
log
(

1 +
∑

j,j′

(Ki)jj′

)

(13)

and

f2(Ki) :=
1

2(N − 1)

N
∑

j=1

log

[

1 +
∑

j′,j′′

(Ki)j′j′′

−

(

∑

j′(Ki)jj′

)2

(Ki)jj

]

. (14)

Before proving the equivalence we state two useful lemmas.
Lemma 2:The functionsf1(K) andf2(K) in (13) and (14)

are concave inK.
Proof: See Appendix A.

From [10], [11] we know the following dependence balance
condition.

Lemma 3 ([11], Theorem 1):Let Xji for i = 1, . . . , n,
and j = 1, . . . , N, be defined by the (causal) functional
relationship in (6). Then,

n
∑

i=1

I(Xi(S); Yi|Y i−1)

≤ 1

N − 1

n
∑

i=1

N
∑

j=1

I(Xi(S\{j}); Yi|Y i−1, Xji).

(15)

Proof: See Appendix B.
Remark 2:The proof of Lemma 3 relies only on the inde-

pendence ofVj ∈ Rn from Zn and {Vj′ : j′ 6= j}. Thus,
Lemma 3 remains valid also in the more general case where
the inputsXji = fji(Vj , Y

i−1) are obtained using arbitrary
functions{fji} and non-GaussianV(S).

We now prove the equivalence of the optimization prob-
lems (5) and (12). Since random vectors{Vj} in (6) are
jointly Gaussian and the functions{Lji} are linear, the random
variables(Xn(S), Y n) generated according to (6) are also
jointly Gaussian and we can replace the mutual information
terms in condition (15) with functions of the covariance
matrices. Specifically, letXi = (X1i, . . . , XNi)

T ∼ N(0, Ki)
where

Ki := KXi
� 0. (16)

Then

I(X1i, . . . , XNi; Yi|Y i−1) = f1(Ki)

1

N − 1

N
∑

j=1

I(Xi(S\{j}); Yi|Y i−1, Xji) = f2(Ki).
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Hence, the condition (15) reduces to

n
∑

i=1

f1(Ki) − f2(Ki) ≤ 0. (17)

Recall that the condition (17) follows from the functional
relationship (6). Hence, adding the condition (17) to the
optimization problem (5), as an additional constraint, does
not decrease the maximum. Finally, note that given the
functional relationship in (6), the objective function andthe
power constraints can also be represented only in terms of
the covariance matrices{Ki}n

i=1. Therefore, the functional
relationship translates to the constraints thatKi � 0 be
positive semidefinite for alli, and the equivalence between
the optimization problems (5) and (12) follows.

Notice that even though both functionsf1(K) and f2(K)
are concave (see Lemma 2), their differencef1(K) − f2(K)
is neither concave nor convex. Hence, the optimization prob-
lem (12) is nonconvex [12] due to the constraint (17).

Step 3:Using Lagrange multipliersλ, γ ≥ 0, we provide a
general upper boundU(λ, γ) for the solution of the optimiza-
tion problem given in (12). We further simplify this upper
bound exploiting symmetry.

For the optimization problem (12), consider the Lagrange
dual function [12]

L(λ, γ) = max
Ki�0

1

n

n
∑

i=1

[

f1(Ki) + γ(f2(Ki) − f1(Ki))

+ λ
(

N
∑

j=1

P − (Ki)jj

)

]

(18)

with equal Lagrange multipliersλj = λ ≥ 0, j ∈ {1, . . . , N}
for the power constraints1n

∑n
i=1 P − (Ki)jj ≥ 0, j ∈

{1, . . . , N}, and the Lagrange multiplierγ ≥ 0 for the
constraint1n

∑n
i=1 f2(Ki) − f1(Ki) ≥ 0.

It is easy to see that for any Lagrange multipliersλ, γ > 0,
the solution to the optimization problem (12) is upper bounded
by the Lagrange dual functionL(λ, γ), see [12]. Moreover, the
right hand side of (18) is an average of some function ofKi,
and can further be upper bounded by the maximum

U(λ, γ) := max
K�0

(1 − γ)f1(K) + γf2(K) + λ

N
∑

j=1

(P − Kjj).

(19)

Thus, for anyλ, γ > 0, the termU(λ, γ) upper bounds the
solution of the optimization problem (12).

Next, we simplify the upper boundU(λ, γ) exploiting the
properties of the functionsf1(K) andf2(K).

Lemma 4:Let λ, γ ≥ 0. Then, the upper boundU(λ, γ)
can be simplified as follows.

U(λ, γ) = max
x≥0

max
0≤φ≤N

g(γ, x, φ) + λN(P − x). (20)

where

g(γ, x, φ) := (1 − γ)C1(x, φ) + γC2(x, φ). (21)

and

C1(x, φ) :=
1

2
log(1 + Nxφ)

C2(x, φ) :=
N

2(N − 1)
log(1 + (N − φ)xφ). (22)

Proof: First, we show that there exists a matrixK of the
following form

K = x ·















1 ρ ρ . . . ρ
ρ 1 ρ . . . ρ
ρ ρ 1 . . . ρ
...

...
...

. . .
...

ρ ρ ρ . . . 1















(23)

which achieves the maximum in (19). Towards this end, we
shall consider a covariance matrixK ′ (not necessarily of the
from in (23)) that achieves the maximum in (19), and construct
a matrixK̄ as in (23) with objective function at least as large
as the original matrixK ′:

(1 − γ)f1(K̄) + γf2(K̄) + λ

N
∑

j=1

(P − K̄jj)

≥(1 − γ)f1(K
′) + γf2(K

′) + λ

N
∑

j=1

(P − K ′
jj). (24)

Fix a covariance matrixK ′ that achieves the maximum in (19)
and letK̄ be the arithmetic average over allN ! matrices that
can be obtained from the original matrixK ′ through simulta-
neous permutation of its rows and columns. That means:

K̄ :=
1

N !

N !
∑

ℓ=1

πℓ(K
′),

whereπ1, . . . , πN ! denote allN ! possible permutations on the
set of indices{1, . . . , N} and whereπ(K ′) denotes the matrix
that is obtained by permuting the rows and the columns ofK ′

according to the permutationπ.
It is easily seen that the so obtained matrixK̄ has the desired

form (23) and it remains to prove the inequality (24). To this
end, we first notice that since the functionf1(K) depends on
the matrixK only via the sum of its entries:

f1(K̄) = f1(K
′), (25)

and similarly,

λ

N
∑

j=1

K ′
jj = λ

N
∑

j=1

K̄jj . (26)

Also, by symmetry it follows that for each permutationπℓ, for
ℓ = 1, . . . , N !:

f2(πℓ(K
′)) = f2(K

′). (27)

Therefore, by concavity off2(K) in K (see Lemma 2) and
Jensen’s inequality we can conclude that

f2(K̄) ≥ f2(K
′). (28)

Combining (25), (26), and (28) yields the desired inequal-
ity (24).
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Thus, we continue our analysis with matrices of the form
in (23) and by defining

φ = 1 + (N − 1)ρ

we have

f1(K) = C1(x, φ)

f2(K) = C2(x, φ). (29)

SinceK is positive semidefinite,x ≥ 0 and−1/(N −1) ≤
ρ ≤ 1, where the lower bound onρ comes from the fact that
∑N

i,j=1 Kij is nonnegative forK � 0. Hence,0 ≤ φ ≤ N
and (19) reduces to (20).

The form of K in (23) was also considered in [5], [8].
However, in those cases the objective function was concave.
In our case ifγ > 1 the objective function is not necessarily
concave and proving this claim needs further treatment based
on the symmetry of the functions (see (25)–(27)).

Step 4:We complete the proof of the converse by show-
ing that there exists Lagrange multipliers(λ∗, γ∗) such that
U(λ∗, γ∗) becomes equal to (4).

Lemma 5:There existsλ∗, γ∗ ≥ 0 such that

U(λ∗, γ∗) = C1(P, φ(N, P ))

=
1

2
log(1 + NPφ(N, P ))

where φ(N, P ) ∈ R is the unique solution in the interval
[1, N ] to

(1 + NPφ)N−1 = (1 + Pφ(N − φ))N .

Proof: Consider the optimization problem over(x, φ)
which definesU(λ, γ) in (20). Note thatg(γ, x, φ) given by
(21) is neither concave or convex in(x, φ) for γ > 1. Let

U(γ) := U(λ∗(γ), γ) = min
λ≥0

U(λ, γ). (30)

whereλ∗(γ) is the minimizer corresponding toγ. We use the
following lemma to findU(γ).

Lemma 6:The functiong(γ, x, φ) is concave inφ for fixed
x, γ ≥ 0.

Proof: See Appendix C.
By concavity ofg(γ, x, φ) in φ for fixed γ andx, the inner

maximum in (20) happens at0 < φ∗(γ, x) < N such that

∂g(γ, x, φ)

∂φ
= 0

⇔ (1 − γ)(N − 1)

1 + Nxφ∗
=

γ(2φ∗ − N)

1 + xφ∗(N − φ∗)
(31)

or at the boundariesφ∗(γ, x) ∈ {0, N}. Therefore,

U(γ) = min
λ≥0

max
x≥0

max
0≤φ≤N

g(γ, x, φ) + λN(P − x)

= min
λ≥0

max
x≥0

g(γ, x, φ∗(γ, x)) + λN(P − x). (32)

for any γ ≥ 0. To evaluate the last expression we use the
following lemma.

Lemma 7:Let γ, x ≥ 0 and φ∗(γ, x) > 0 be the positive
solution to (31). Then,g(γ, x, φ∗(γ, x)) is increasing and
concave inx.

Proof: See Appendix D.
Remark 3:As pointed out earlier, forγ > 1, g(γ, x, φ)

is not concave in bothx, φ in general. However, this lemma
shows thatg(γ, x, φ∗(γ, x)) is concave inx for all γ ≥ 0 and
this is sufficient for the rest of the proof.

By concavity ofg(γ, x, φ∗(γ, x)) and Slater’s condition [12]
we have strong duality as follows.

min
λ≥0

max
x

g(γ, x, φ∗(γ, x)) + λN(P − x)

= max
x≤P

g(γ, x, φ∗(γ, x))

= g(γ, P, φ∗(γ, P )) (33)

where the last equality follows from the fact that
g(γ, x, φ∗(γ, x)) is increasing inx (see Lemma 7). Combining
(32) and (33) we have

U(γ) = g(γ, P, φ∗(γ, P )). (34)

Lastly, we findγ∗ ≥ 0 such thatU(γ∗) = C1(P, φ(N, P )).
Lemma 8:For a fixed x ≥ 0, the equationC2(x, φ) −

C1(x, φ) = 0 has a unique solution1 ≤ φ(N, x) ≤ N .
Moreover,

1 +
(2φ(N, x) − N)(1 + Nxφ(N, x))

(N − 1)(1 + xφ(N, x)(N − φ(N, x)))
> 0. (35)

Proof: See Appendix E.
Let φ(N, P ) ∈ [1, N ] be the unique solution toC1(P, φ) =

C2(P, φ), which is equivalent to the equation (3). GivenN
andP , we pick γ∗(P, φ(N, P )) such that it satisfies (31) for
x = P and φ∗ = φ(N, P ). It is easy to check thatγ∗ :=
γ∗(P, φ(N, P )) > 0 is greater than zero by pluggingx = P
in (35). Since we pickedγ∗ such thatγ∗, P and φ(N, P )
satisfy (31) we conclude thatφ∗(γ∗, P ), the positive solution
of (31), is equal toφ(N, P ). Pluggingγ∗ > 0 andφ∗(γ∗, P )
into (34) we have

U(γ∗)

= g(γ∗, P, φ∗(γ∗, P ))

= (1 − γ∗)C1(P, φ∗(γ∗, P )) + γ∗C2(P, φ∗(γ∗, P ))

= (1 − γ∗)C1(P, φ(N, P )) + γ∗C2(P, φ(N, P )) (36)

= C1(P, φ(N, P )) (37)

where (36) and (37) follow fromφ∗(γ∗, P ) = φ(N, P ) and
C1(P, φ) = C2(P, φ), respectively. Hence, by pickingλ∗ =
λ∗(γ∗) (see (30)), we haveU(λ∗, γ∗) = C1(P, φ(N, P )).

Combining the previous four steps we haveCL(N, P ) ≤
C1(P, φ(N, P )), and the proof of the converse is complete.

IV. A CHIEVABILITY VIA THE KRAMER L INEAR CODE

In this section we present an equivalent representation for
the Kramer linear code [8] and analyze it based on the
properties of discrete algebraic Riccati equations (DARE).

A. Code representation:

Recall that a linear code has a nonfeedback mapping

Mj → Θj ∈ R
k, j = 1, . . . , N.
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We pick k = 2 such thatΘj ∈ C = R2. With slight abuse
of notation we representΘj ∈ C as a scalar and reserve the
vector notation forΘ := (Θ1, . . . , ΘN)T . We also assume
that the transmitted signalsXji ∈ C are complex (each sent
over two transmissions).

Message sets: Let Mj = (Mj1, Mj2) be a two dimensional
message, where

(Mj1, Mj2) ∼ Unif
(

{1, . . . , 2nRj} × {1, . . . , 2nRj}
)

.

Nonfeedback mapping: Divide the square with corners at
(±1 ± i) on the complex plane (i2 = −1) into 22nRj equal
sub-squares and mapmj = (mj1, mj2) to the center of the
corresponding sub-square. The distance between neighboring
points is

∆ = 2 · 2−nRj (38)

in each direction.
Linear feedback mapping: Let the transmissions by all

the senders at timei be denoted by the vectorXi :=
(X1i, X2i, . . . , XNi)

T . Then, the linear feedback mapping is

X0 = Θ,

Xi = A · (Xi−1 − X̂i−1(Yi−1)), i > 1 (39)

where

A =











β1ω1 0 0 . . . 0
0 β2ω2 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . βNωN











, (40)

in which ω1, . . . , ωN are distinct points on the unit circle and
β1, . . . , βN > 1 are real coefficients, and

X̂i−1(Yi−1) =
E(Xi−1Y

′
i−1)

E(|Yi−1|2)
· Yi−1

is the linear minimum mean square error (MMSE) estimate of
Xi−1 givenYi−1. Note that the linear feedback mapping (39)
is stationary and recursive.

Decoding: At time n, the decoder forms an estimate

Θ̂n =
n−1
∑

i=0

A−i
X̂i (41)

and decodesΘj to the nearest point of̂Θ(j).
Theorem 2:Under the symmetric block power constraints

Pj = P , the linear code described above achieves any sum
rateR < CL(N, P ).

Proof: Proof follows from Lemma 10 and Lemma 11 in
Section IV-B.

B. Analysis:

First, using control theoretic tools [18], we analyze the
behavior of the sequence of covariance matrices

Kn := KXn

whereXn is the transmitted vector at timen.

Lemma 9:For the sequenceKn we have

Kn → K̄ ≻ 0 asn → ∞ (42)

whereK̄ is the unique positive-definite solution to the follow-
ing discrete algebraic Riccati equation (DARE)

K = AKA′ − (AKB)(1 + B′KB)−1(AKB)′. (43)

Proof: From (39) we have

Ki+1 = AK(Xi−X̂i)
A′ (44)

where

K(Xi−X̂i)
= KXi

− KXiYi
K−1

Yi
K ′

XiYi
(45)

is the error covariance matrix for the linear MMSE estimate
of Xi given Yi. SinceYi = BT

Xi + Zi, where

BT = [11 . . . 1](N×1) (46)

we have

K(Xi−X̂i)
= Ki − (KiB)(1 + B′KiB)−1(KiB)′. (47)

Combining (44) and (47) we have the following Riccati
recursion [19] forKi:

Ki+1 = AKiA
′ − (AKiB)(1 + B′KiB)−1(AKiB)′. (48)

SinceA has no unit-circle eigenvalue and the pair(A, B) is
detectable [18], that is, there exists a matrixC ∈ R1×N such
that all the eigenvalues ofA −BC lie inside the unit circle1,
we can use Lemma II.4 in [20] to show that (42) holds.

Probability of error: The following lemma provides a suf-
ficient condition such thatP (n)

e → 0 asn → ∞.
Lemma 10:If Rj < log(βj), j = 1, . . . , N , thenP

(n)
e → 0

asn → ∞.
Proof: Let the difference vector be

Dn = Θ − Θ̂n.

Considering (38), the probability of error can be bounded as

P (n)
e ≤ P

(

⋃

j

{

|Dn(j)| > 2−nRj
}

)

≤
N
∑

j=1

P

(

{

|Dn(j)| > 2−nRj
}

)

(49)

≤
N
∑

j=1

22nRj E(|Dn(j)|2), (50)

where (49) and (50) follow from the union bound and the
Chebyshev inequality, respectively.

To find E(|Dn(j)|2), note that from the encoding rule (39)
we have

Xn = An
Θ −

n−1
∑

i=0

An−i
X̂i.

1For a diagonal matrixA = diag([λ1 . . . λN ]) and a column vector
B = [b1 . . . bN ]′, the pair (A,B) is detectable if and only if all the unstable
eigenvaluesλi, i.e. the ones on or outside the unit-circle, are distinct and the
correspondingbi are nonzero.
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Comparing this form ofXn with the decoding estimate
rule (41), we can rewriteDn as follows,

Dn = A−n
Xn.

Hence,KDn
= A−nKn(A′)

−n and the diagonal elements of
KDn

are

E(|Dn(j)|2) = β−2n
j Kn(j, j).

PluggingE(|Dn(j)|2) into (50) we get

P (n)
e ≤

N
∑

j=1

Kn(j, j) · 22n(Rj−log(βj). (51)

From Lemma 9 we know thatlim supn→∞ Kn(j, j) < ∞.
Therefore, it follows from (51) thatPe → 0 asn → ∞ if
Rj < log(βj) for j = 1, . . . , N .

Asymptotic power allocation:For the linear code described
above, the asymptotic power of userj is

lim
n→∞

1

n

n
∑

i=1

E(X2
ji) = lim

n→∞

1

n

n
∑

i=1

(Ki)jj

= K̄jj

whereK̄ is the unique solution to (43) and the last equality
follows from the Cesàro mean theorem and Lemma 9.

Thus, a rate-tuple(R1, . . . , RN ) is achievable with the code
described above if for some(β1, . . . , βN ) satisfying

log(βj) > Rj

we can find a set of(ω1, . . . , ωN ) such that the corresponding
asymptotic power allocation(K̄11, . . . , K̄NN ) strictly satisfies
the power constraints, i.e.,

K̄jj < Pj j = 1, . . . , N.

The strict condition above makes sure that the power constraint
is satisfied for sufficiently largen.

The following lemma shows that for every sum rateR <
CL(P, N), there exists a choice of the coefficients{βj} and
{ωj} such that

∑N
j=1 log(βj) > R and the corresponding

asymptotic matrixK̄ strictly satisfies the symmetric power
constraints, i.e.,K̄jj < P. Thus, the lemma establishes the
achievability of the sum capacityCL(N, P ) and concludes our
analysis.

Lemma 11:Given a sum rateR < CL(N, P ), let A be of
the form (40) with coefficients

βj = β, j = 1, . . . , N,

for some choice ofβ > 1 satisfying

R < N log(β) < CL(P, N), (52)

and with coefficients

ωj = e2πi (j−1)
N , j = 1, . . . , N.

Then, the unique positive definite solution̄K ≻ 0 of the
discrete algebraic Riccati equation (43) satisfies

K̄jj < P.

Before presenting the proof, we show that for this symmetric
choice ofA, the matrixK̄ is completely characterized byβ
as follows.

Lemma 12:Let A andB be of the form (40) and (46) with
βj = β andωj = e2πi (j−1)

N . Then the unique positive-definite
solution K̄ ≻ 0 of the following discrete algebraic Riccati
equation

K = AKA′ − AKB(1 + B′KB)−1(AKB)′,

is circulant with real eigenvalues satisfying

λi =
1

β2
λi−1,

for i = 2, . . . , N . The largest eigenvalueλ1 satisfies

1 + Nλ1 = β2N (53)
(

1 + λ1

(

N − λ1

K̄jj

)

)

= β2(N−1). (54)

Proof: See Appendix F.
We use this lemma to prove Lemma 11.
Proof of Lemma 11:From (53) we have

1

2
log(1 + Nλ1) = N log(β).

and thus by (52)

1

2
log(1 + Nλ1) < CL(N, P ) =

1

2
log (1 + NPφ(N, P )) .

We can hence conclude that

λ1 < Pφ(N, P ). (55)

On the other hand, from (53) and (54) we have
(

1 + Nλ1

)N−1

=

(

1 + λ1

(

N − λ1

K̄jj

)

)N

,

and hence by the definition of the functionφ(N, ·) in Theo-
rem 1,

λ1 = K̄jjφ(N, K̄jj). (56)

Combining (55) and (56) we get

K̄jjφ(N, K̄jj) < Pφ(N, P )

and the monotonicity ofφ(N, ·) completes the proof.

V. D ISCUSSION

It is still unknown whether the linear sum capacity
CL(N, P ) is in general equal to the sum capacityC(N, P )
under symmetric power constraintsP for all N senders.
However, we know [8] that they coincide if the powerP
exceeds the thresholdPc(N) ≥ 0, which is the unique solution
to

(1 + N2P/2)N−1 = (1 + N2P/4)N . (57)

We show that the condition (57) corresponds to the case
where the the linear sum capacityCL(N, P ) coincides with
the following cutset upper bound [5] on the sum capacity,

C(N, P ) ≤ max
φ

min
{

C1(P, φ), C2(P, φ)
}

. (58)
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(c)

Fig. 3. C1(P, φ) (dashed) andC2(P, φ) for P = 2 and (a)N = 2 (b) N = 5 (c) N = 10

0
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1 10φ
(a)

0

5

1 10φ
(b)

0

5

1 10φ
(c)

Fig. 4. C1(P, φ) (dashed) andC2(P, φ) for N = 10 and (a)P = 2 (b) P = 20 (c) P = 200

Here, the functionsC1(P, φ), C2(P, φ) are same as in (22).
Towards this end, note thatφ(N, P ) defined in Theorem 1,

is the unique solution toC1(P, φ) = C2(P, φ) for fixed N
andP , and the linear sum capacity is

CL(N, P ) = C1(P, φ(N, P )) = C2(P, φ(N, P )).

Since the functionsC1(P, φ) and C2(P, φ) are concave inφ
(see Appendix A) andC1(P, φ) is increasing inφ, the inter-
section point of the two functions and the max-min in (58)
coincides if and only ifC2(P, φ) is nonincreasing atφ(N, P )
(see Fig. 3 (a,b) and Fig. 4 (b,c)), that is,

∂C2(P, φ)

∂φ

∣

∣

∣

φ(N,P )
≤ 0. (59)

Considering (22), the condition (59) is equivalent to

φ(N, P ) ≥ N/2

and pluggingφ(N, P ) = N/2 into (3) gives (57).
For P < Pc, we conjecture that we still haveC(N, P ) =

CL(N, P ) based on the properties of Hirschfeld–Gebelein–
Rényi maximal correlation [14]. In the following we provide
some insights.

Let ρ∗(Θ1, Θ2) denote the maximal correlation between two
random variablesΘ1 andΘ2 as defined in [14]:

ρ∗(Θ1, Θ2) = sup
g1,g2

E (g1(Θ1)g2(Θ2)) (60)

where the supremum is over all functionsg1, g2 such that

E(g1) = E(g2) = 0 and E(g2
1) = E(g2

2) = 1.

We extend this notion of maximal correlation toconditional
maximal correlationas follows. Let the random variables
Θ1, Θ2, Y be given. The conditional maximal correlation
betweenΘ1 and Θ2 given a common random variableY is
defined as

ρ∗(Θ1, Θ2|Y ) = sup
g1,g2

E (g1(Θ1, Y )g2(Θ2, Y )) (61)

where the supremum is over all functionsg1, g2 such that

E(g1|Y ) = E(g2|Y ) = 0 and E(g2
1) = E(g2

2) = 1.

The assumptionE(g1|Y ) = E(g2|Y ) = 0 is crucial; otherwise,
g1 andg2 can be picked asY andρ∗(Θ1, Θ2|Y ) = 1 trivially.
For conditional maximal correlation we have the following
lemma.

Lemma 13:If (Θ1, Θ2, Y ) are jointly Gaussian, then

ρ∗(Θ1, Θ2|Y ) = ρ(Θ1, Θ2|Y )

and linear functionsgL
1 , g

L
2 of the form

gL

1(Θ1, Y ) =
Θ1 − E(Θ1|Y )

√

E
(

(Θ1 − E(Θ1|Y ))2
)

gL

2(Θ2, Y ) =
Θ2 − E(Θ2|Y )

√

E
(

(Θ2 − E(Θ2|Y ))2
)

(62)

attain the supremum inρ∗(Θ1, Θ2|Y ).
Proof: See Appendix G.
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Based on the conditional maximal correlation, we now
present an upper bound on the (general) sum capacity. For
simplicity, we focus onN = 2 and equal per-symbol power
constraintsE(X2

ji) ≤ P , for j = 1, 2. Also, without loss of
generality, we assume that the messageMj ∈ {1, . . . , 2nR}
is mapped to a message pointΘj ∈ R andXji is a function
of (Θj , Y

i−1). Note that by picking the identity mapping we
haveΘj = Mj .

Lemma 14:A sum rateR, achievable by a code with block
length n and per-symbol power constraintsE(X2

ji) ≤ P , is
upper bounded as

R ≤ 1

n

n
∑

i=1

I(X1i, X2i; Yi|Y i−1) + ǫn (63)

≤ 1

2n

n
∑

i=1

log
(

1 + 2P
(

1 + ρ∗
(

Θ1i, Θ2i

∣

∣Y i−1
)

))

+ ǫn

(64)

whereǫn → 0 asn → ∞.
Proof: See Appendix H.

Consider the multi-letter maximization problem where the
objective function is the right hand side of (63). For the special
class of Gaussian message points(Θ1, Θ2) ∼ N(0, KΘ1,Θ2),
we show that linear functions are greedy optimal for this
maximization problem.

First note that the first termI(X11, X21; Y1) is maxi-
mized by linear functions, because(Θ1, Θ2) are Gaussian.
Now, suppose that we have used linear functions up to time
i − 1 and therefore(Θ1, Θ2, Y

i−1) are Gaussian. Then, by
Lemma 13 we know thatρ∗(Θ1, Θ2|Y i−1) = ρ(Θ1, Θ2|Y i−1)
and Xji = Lji(Θj , Y

i−1), where Lji is of the form (62),
achieves the conditional maximal correlation. Hence, thei-th
term I(X1i, X2i; Yi|Y i−1) which is upper bounded by (see
Appendix H)

1

2
log
(

1 + 2P
(

1 + ρ∗
(

Θ1i, Θ2i

∣

∣Y i−1
)

))

is maximized by linear functions of the form (62). A similar
argument holds for any number of sendersN , where we have
the the following upper bound,

R ≤ 1

n

n
∑

i=1

I(X(S); Yi|Y i−1)

≤ 1

2n

n
∑

i=1

log
(

1 + NP + P
∑

j 6=k

ρ∗
(

Θji, Θki

∣

∣Y i−1
)

)

.

Therefore, in establishing the sum rate optimality of linear
codes, the missing step is as follows. We need to show that
without loss of optimality we can consider only Gaussian
message points and that linear functions are not only greedy
optimal but also globally optimal for maximizing the right
hand side of (63). Note that using functions which might
hurt the current mutual information termI(Xi(S); Yi|Y i−1)
at timei, can be potentially advantageous for the future terms
I(Xk(S); Yk|Y k−1), k > i. Hence, this last step requires an
analysis which captures the effect of the functions used at each
time i, on the joint distribution of all the random variables
(Θ(S), Xn(S), Y n) in the entire block.

APPENDIX A
PROOF OFLEMMA 2

Using similar argument as in Bergstrøm’s theorem [17,
Theorem, 17.10.1], we showf1(K) and f2(K) are both
concave inK, where

f1(K) =
1

2
log
(

1 +
∑

j,j′

Kjj′

)

and

f2(K) =
1

2(N − 1)

N
∑

j=1

log

[

1 +
∑

j′,j′′

Kj′j′′

−

(

∑

j′ Kjj′

)2

Kjj

]

.

Let X(S) = X(t)(S), P(t = 1) = λ = 1 − P(t = 2),
X(1)(S) ∼ N(0, K1), X

(2)(S) ∼ N(0, K2) andY = Y (t) =
∑N

j=1 X
(t)
j +Z, whereZ ∼ N(0, 1). AssumeZ, X(1), X(2), t

are independent. Under these assumptions, the covariance
matrix of X(S) is given byK = λK1 + (1 − λ)K2 and

f1(K) =
1

2
log(Var(Y )) (65)

and

f2(K) =
1

2(N − 1)

N
∑

j=1

log(Var(Y |Xj)). (66)

Note that sinceX(S) andY are jointly GaussianVar(Y |Xj)
is a constant independent ofXj . Consider

λ

2
log Var(Y (1)|X(1)

j ) +
(1 − λ)

2
log Var(Y (2)|X(2)

j )

=
λ

2
log





∣

∣K
Y (1),X

(1)
j

∣

∣

∣

∣K
X

(1)
j

∣

∣



+
(1 − λ)

2
log





∣

∣K
Y (2),X

(2)
j

∣

∣

∣

∣K
X

(2)
j

∣

∣





= λ(h(Y (1)|X(1)
j ) − h(Z)

+ (1 − λ)(h(Y (2)|X(2)
j ) − h(Z)) (67)

= h(Y (t)|Xt
j , t) − h(Z)

≤ h(Y |Xj) − h(Z)

=
1

2
log

|KY,Xj
|

|KXj
| (68)

=
1

2
log Var(Y |Xj).

where (67) and (68) come form the fact thatY (t) is jointly
Gaussian withX(t)

j . Thus Var(Y |Xj) is concave inK for
all j. The same argument holds forh(Y ). Then, concavity of
f1(K) andf2(K) in K follows.

APPENDIX B
PROOF OFLEMMA 3

Let

Xji = Lji(Vj , Y
i−1), i = 1, . . . , n, j = 1, . . . , N
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such thatVj ∈ Cn is independent of{Vj′ : j′ 6= j} andZn.
We show that

n
∑

i=1

(

I(Xi(S); Yi|Y i−1)

≤ 1

N − 1

n
∑

i=1

N
∑

j=1

I(Xi(S\{j}); Yi|Y i−1, Xji)
)

.

(69)

By independence ofVj ’s we have

h(V(S)) =
N
∑

j=1

h(Vj). (70)

Consider

0 ≤ I(V(S); Y n) −
N
∑

j=1

I(Vj ; Y
n) (71)

=

n
∑

i=1

[

I(V(S); Yi|Y i−1) −
N
∑

j=1

I(Vj ; Yi|Y i−1)
]

=

n
∑

i=1

[

I(V(S), Xi(S); Yi|Y i−1)

−
N
∑

j=1

I(Vj , Xji; Yi|Y i−1)
]

≤
n
∑

i=1

[

I(Xi(S); Yi|Y i−1) −
N
∑

j=1

I(Xji; Yi|Y i−1)
]

. (72)

where inequality (71) follows from (70) and the fact that
conditioning reduces entropy.

Inequality (72) follows from the facts that mutual informa-
tion is positive and that the following Markov chain holds

V(S) → (Xi(S), Y i−1) → Yi.

Adding (N − 1)
∑n

i=1 I(Xi(S); Yi|Y i−1) to both sides in
(72) and rearranging terms we have

n
∑

i=1

(

I(Xi(S); Yi|Y i−1)

≤ 1

N − 1

n
∑

i=1

N
∑

j=1

I(Xi(S\{j}); Yi|Y i−1, Xji)
)

.

APPENDIX C
PROOF OFLEMMA 6

We show

g(γ, x, φ) = (1 − γ)C1(x, φ) + γC2(x, φ).

where

C1(x, φ) =
1

2
log(1 + Nxφ)

C2(x, φ) =
N

2(N − 1)
log(1 + (N − φ)xφ), (73)

is concave inφ for fixed x, γ ≥ 0.
Note thatC1(x, φ) = f1(K) and C2(x, φ) = f2(K) for

symmetricK given in (23) (see (22)). We prove for general

K � 0 with fixed diagonal elements(1− γ)f1(K) + γf2(K)
is concave inK for anyγ ≥ 0 and concavity ofg(γ, x, φ) in
φ for fixed x, γ immediately follows.

Let X = X1, . . . , XN ∼ N(0, K) andY =
∑N

j=1 Xj + Z,
whereZ ∼ N(0, 1) is independent ofX1, . . . , XN . Then

(1−γ)f1(K) + γf2(K)

= (1 − γ)h(Y ) +
γ

N − 1

N
∑

j=1

h(Y |Xj)

= (1 − γ)h(Y ) +
γ

N − 1

N
∑

j=1

(

h(Y )

+ h(Xj |Y ) − h(Xj)
)

= h(Y )
(

1 +
γ

N − 1

)

+
γ

N − 1

N
∑

j=1

h(Xj |Y ) − h(Xj).

By Lemma 2, we know thath(Y ) and h(Xj |Y ) are con-
cave in K. If the diagonal ofK are fixed thenh(Xj) =
1
2 log(2πeKjj) is also fixed and as long asγ ≥ 0, (1 −
γ)f1(K) + γf2(K) is concave inK.

APPENDIX D
PROOF OFLEMMA 7

Let γ, x ≥ 0 andφ∗(γ, x) > 0 be the positive solution to

(1 − γ)(N − 1)

1 + Nxφ
=

γ(2φ − N)

1 + xφ(N − φ)
. (74)

Theng(γ, x, φ∗(γ, x)), where

g(γ, x, φ) = (1 − γ)C1(x, φ) + γC2(x, φ).

is increasing and concave inx.
Let

g(x, φ) := (1 − γ)C1(x, φ) + γC2(x, φ). (75)

Note thatg(x, φ) is same asg(γ, x, φ), but for simplicity we
do not includeγ explicitly.

Similarly, let
φ∗(x) := φ∗(γ, x)

Equation (74) can be written as

aφ2 + bφ + c = 0 (76)

where

a = (N + γ − 1 + γN)x

b = −N(N + γ − 1)x + 2γ

c = −(N + γ − 1).

Sinceac < 0, there is a unique positive solutionφ∗(x) > 0,
where

0 < φ∗(x) =
−b +

√
b2 − 4ac

2a
. (77)

We wish to show that the first derivative of

f(x) := g(x, φ∗(x)).
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is positive and the its second derivative is negative.
First derivative:Note that (see (31)) forφ∗(x) which satisfy

(74) we have
∂g(x, φ)

∂φ

∣

∣

∣

x,φ∗(x)
= 0.

Hence, we have

df(x)

dx
=

∂g(x, φ)

∂x
+

∂g(x, φ)

∂φ

dφ

dx

∣

∣

∣

x,φ∗(x)

=
∂g(x, φ)

∂x

∣

∣

∣

x,φ∗(x)

PluggingC1(x, φ) andC2(x, φ) from (73) ing(x, φ), we have

df(x)

dx
= (1 − γ)

Nφ

1 + Nxφ

+ γ
Nφ(N − φ)

(N − 1)(1 + xφ(N − φ))

∣

∣

∣

x,φ∗(x)

=
Nφ

1 + Nxφ

×
(

1 − γ + γ
(N − φ)(1 + Nxφ)

(N − 1)(1 + xφ(N − φ))

)

∣

∣

∣

x,φ∗(x)

=
N(γ − 1)(φ∗(x))2

(1 + Nxφ∗(x))(N − 2φ∗(x))
(78)

≥ 0, (79)

where equality (78) follows from the fact thatφ∗(x) satisfies
(74), and inequality (79) follows from the fact that(1 − γ)
and (2φ∗(x) − N) have the same sign (see (74)).

Second derivative:For 0 ≤ γ ≤ 1, the concavity is
immediate sinceC1(x, φ) = f1(K) andC2(x, φ) = f2(K) for
symmetricK given in (23) (see (22)) andf1(K) andf2(K)
are concave inK (see Appendix A).

To prove the concavity off(x) for γ > 1, we show that

d2f(x)

dx2
< 0.

From (78) we have

df(x)

dx
= N(γ − 1)f̃(x),

where

f̃(x) := h(x, φ∗(x))

h(x, φ) :=
φ2

(1 + Nxφ)(N − 2φ)
.

Therefore it is enough to show that

df̃(x)

dx
< 0.

Consider

df̃(x)

dx
=

∂h(x, φ)

∂x
+

∂h(x, φ)

∂φ

dφ

dx

∣

∣

∣

x,φ∗(x)

=
−Nφ3

(1 + Nxφ)2(N − 2φ)

+
φ(N2xφ + 2(N − φ))

(1 + Nxφ)2(N − 2φ)2
dφ

dx

∣

∣

∣

x,φ∗(x)

= φ ·
dφ
dx

(

N2xφ + 2(N − φ)
)

− Nφ2(N − 2φ)

(1 + Nxφ)2(N − 2φ)2

∣

∣

∣

x,φ∗(x)

Sinceφ > 0 and the denominator is also positive we need to
show

dφ∗(x)

dx
<

Nφ2(N − 2φ)

N2xφ + 2(N − φ)

∣

∣

∣

∣

∣

x,φ∗(x)

(80)

For the rest of the proof, with abuse of notation, we alterna-
tively useφ for φ∗(x), the positive solution of (76). Taking
the derivative of (76) with respect tox we have

dφ∗(x)

dx
=

−φ2(a′φ + b′)

2aφ2 + bφ
(81)

=
−φ2(a′φ + b′)

aφ2 − c
.

where

a′ = N + γ − 1 + γN

b′ = −N(N + γ − 1). (82)

are derivatives ofa, b with respect tox. Defining

α :=
N + γ − 1

N

we havea = N(α+γ)x, b = −N2αx+2γ, c = −αN, a′ =
N(α + γ), b′ = −N2α, and

dφ∗(x)

dx
=

−φ2(a′φ + b′)

aφ2 − c
,

=
Nφ2(Nα − (α + γ)φ)

(α + γ)Nxφ2 + αN

=
Nφ2(N − βφ)

βNxφ2 + N
, (83)

where
β := 1 +

γ

α
.

It is not hard to see thatβ ∈ (2, N +1
)

for γ > 1. Considering
(83), (80) becomes equivalent to

N − βφ

N − 2φ
<

βNxφ2 + N

N2xφ + 2(N − φ)

⇐⇒ N − βφ

N − 2φ
<

N − βφ + βφ(Nxφ + 1)

N − 2φ + N(Nxφ + 1)

⇐⇒ N − βφ

N − 2φ
<

βφ

N
, (84)

where (84) follows from the fact that forb, d > 0,

a

b
<

c

d
⇔ a

b
<

a + c

b + d
. (85)

Considering (85) again withc = d = 2φ and noting that
β > 2, we can see that to prove (84) it is sufficient to show

N − (β − 2)φ

N
≤ βφ

N

⇐⇒ N + γ − 1

2γ
≤ φ. (86)

To show the last condition, consider

φ∗(0) =
N + γ − 1

2γ
. (87)

dφ∗

dx

∣

∣

∣

x=0
> 0. (88)
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where (87) follows from (76). Condition (88) follows from
(81) and the facts that2aφ∗(0) + b > 0 by (77) and that for
γ > 1, a′φ∗(0) + b′ < 0. Therefore, condition (86) holds.

APPENDIX E
PROOF OFLEMMA 8

We show that for a fixedx ≥ 0, C2(x, φ) − C1(x, φ) = 0
has a unique solution1 ≤ φ(N, x) ≤ N . Moreover,

1 +
(2φ(N, x) − N)(1 + Nxφ(N, x))

(N − 1)(1 + xφ(N, x)(N − φ(N, x)))
> 0. (89)

Let f(φ) = C2(x, φ) − C1(x, φ). We prove there exists a
unique solution by showingf(1) ≥ 0, f(N) < 0, andf ′(φ) <
0 for 1 ≤ φ ≤ N . The fact thatf(N) < 0 is immediate.
Conditionf(1) ≥ 0 is equivalent to

(

1 + x(N − 1)
)N

≥
(

1 + Nx
)N−1

.

For the above condition to hold it is sufficient that
(

n

N

)

(N − 1)k ≥
(

N − 1

k

)

Nk, (90)

which is true since(1 − 1/N)k ≥ 1 − k/N for N > 1.
Finally, we need to showf ′(φ) < 0 which is equivalent to

N − 2φ

1 + xφ(N − φ)
− N − 1

1 + Nxφ
< 0. (91)

Rearranging the terms we have

1 + Nxφ − (2φ + xφ2 + Nxφ2) < 0,

which holds for anyφ ≥ 1. This completes the proof of
the uniqueness. Moreover, the condition (89) follows from
pluggingφ(N, x) in (91).

APPENDIX F
PROOF OFLEMMA 12

Let A and B be of the form (40) and (46) withβj = β

andωj = e2πi (j−1)
N . We show that the unique positive-definite

solution K̄ ≻ 0 of the following discrete algebraic Riccati
equation

K = AKA′ − AKB(1 + B′KB)−1(AKB)′,

is circulant with real eigenvalues satisfying

λi =
1

β2
λi−1,

for i = 2, . . . , N and the largest eigenvalueλ1 satisfies

1 + Nλ1 = β2N

(

1 + λ1

(

N − λ1

K̄jj

)

)

= β2(N−1).

We know that any circulant matrix can be written asQΛQ′,
whereQ is theN point DFT matrix with

Qjk =
1√
N

e−2πi(j−1)(k−1)/N , (92)

andΛ = diag([λ1, . . . , λN ]) is the matrix with eigenvalues on
its diagonal. We show that the circulant matrix̄K = QΛQ′

with positive λj > 0, such thatλj = λj−1/β2 for j ≥ 2,
satisfies the Riccati equation (43). PluggingQΛQ′ into (43)
and rearranging we get

Λ = (Q′AQ)Λ(Q′AQ)′ − ((Q′AQ) Λ (Q′B))

(1 + B′QΛQ′B)−1((Q′AQ) Λ (Q′B))′.

For this symmetric choice ofA we have

Q′AQ = β















0 1 0 . . . 0
0 0 1 . . . 0
...

...
. . .

. . .
...

0 0 . . . 0 1
1 0 . . . 0 0















, Q′B =











√
N
0
...
0











.

Hence,

(Q′AQ)Λ(Q′AQ)′ = β2











λ2 0 . . . 0
0 λ3 . . . 0
...

...
. . .

...
0 0 . . . λ1











(Q′AQ)Λ(Q′B) =











0
0
...

βλ1

√
N











and the Riccati equation becomeN diagonal equations. The
first N − 1 equations are

λj = β2λj+1, j = 1, . . . , N − 1 (93)

and theN -th equation is

λN = β2λ1 −
β2λ2

1N

1 + Nλ1
. (94)

From (93) we see thatλ1 is the largest eigenvalue andλN =
β−2(N−1)λ1. Combining this with (94) we get

(1 + Nλ1) = β2N . (95)

Hence,λ1 is real and so areλj , j = 2, . . . , N . Note that from
the form ofQ in (92), λ1 = σ1 where

σj :=

N
∑

k=1

K̄jk.

Moreover, sinceK̄ is circulantσj = σ1 for all j, and (1 +
B′K̄B) = 1 + Nλ1. Hence, the diagonal equations of the
original Riccati equation

Kjj = β2Kjj − β2
σ2

j

(1 + B′K̄B)
(96)

are equivalent to

β2 =
1 + Nλ1

1 + λ1

(

N − λ1

K̄jj

)

and by(95) we have
(

1 + λ1

(

N − λ1

K̄jj

)

)

= β2(N−1).
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APPENDIX G
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We show that for jointly Gaussian(Θ1, Θ2, Y ), we have

ρ∗(Θ1, Θ2|Y ) = ρ(Θ1, Θ2|Y )

and linear functionsgL

1 , g
L

2 of the form

gL

1(Θ1, Y ) =
Θ1 − E(Θ1|Y )

√

E
(

(Θ1 − E(Θ1|Y ))2
)

gL

2(Θ2, Y ) =
Θ2 − E(Θ2|Y )

√

E
(

(Θ2 − E(Θ2|Y ))2
)

(97)

attain the supremum inρ∗(Θ1, Θ2|Y ).
Let (U, V ) be two zero-mean jointly Gaussian random

variables with correlationρ(U, V ). It is well known [21] that

ρ∗(U, V ) = ρ(U, V ). (98)

Hence, the maximal correlationρ∗(U, V ) is attained by linear
functionsgL

1(U) = U√
E(U2)

andgL

2(V ) = V√
E(V 2)

.

Since(Θ1, Θ2, Y ) is Gaussian we know that givenY = y,
(Θ1, Θ2)

∣

∣

Y =y
is Gaussian with some correlation

ρ(Θ1, Θ2

∣

∣Y = y) = ρ for all y (99)

independent ofy. From (98) and (99), we have

ρ∗(Θ1, Θ2

∣

∣Y = y) = ρ(Θ1, Θ2|Y = y) = ρ for all y
(100)

and therefore

ρ∗(Θ1, Θ2|Y )

= sup
g1,g2

E

(

g1(Θ1, Y )g2(Θ2, Y )
)

= sup
g1,g2

EY

(

E

(

g1(Θ1, Y = y)g2(Θ2, Y = y)
)

)

≤ EY

(

sup
g1,g2

E

(

g1(Θ1, Y = y)g2(Θ2, Y = y)
)

)

(101)

= EY

(

ρ∗(Θ1, Θ2

∣

∣Y = y)
)

= ρ (102)

where inequality (101) follows from Jensen’s inequality and
equality (102) follows from (100). It is easy to check that for
linear functionsgL

1 , g
L

2 of the form (97) we have

E(g1|Y ) = E(g2|Y ) = 0, E(g2
1) = E(g2

2) = 1 (103)

and

E (g1(Θ1, Y )g2(Θ2, Y )) = ρ. (104)

From (102), (103) and (104) we conclude that linear functions
of the form (97) achieves the supremum inρ∗(Θ1, Θ2|Y ).

APPENDIX H
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For a sum rateR achievable by a code with block lengthn
and per-symbol power constraintsE(X2

ji) ≤ P for j = 1, 2,
we show

R ≤ 1

2n

n
∑

i=1

log
(

1 + 2P
(

1 + ρ∗
(

Θ1i, Θ2i

∣

∣Y i−1
)

))

+ ǫn

(105)

where ǫn → 0 as n → ∞ and ρ∗
(

Θ1i, Θ2i

∣

∣Y i−1
)

is the
conditional maximal correlation between message pointsΘ1

andΘ2 given the previous channel outputsY i−1.
By standard arguments based on Fano’s inequality, we have

R ≤ 1

n

n
∑

i=1

I(X1i, X2i; Yi|Y i−1) + ǫn (106)

=
1

n

n
∑

i=1

I(X̃1i, X̃2i; Ỹi|Y i−1) + ǫn (107)

≤ 1

n

n
∑

i=1

I(X̃1i, X̃2i; Ỹi) + ǫn (108)

where

X̃ji :=Xji − E(Xji|Y i−1)

Ỹi :=X̃1i + X̃2i + Zi

and ǫn → 0 as n → ∞. The equality (107) holds since
E(Xji|Y i−1) is a function ofY i−1, and the inequality (108)
follows from the data processing inequality and the fact that
Markov chainỸi − (X̃1i, X̃2i) − Y i−1 holds.

Notice that by the definition of̃Xji we have

E(X̃ji|Y i−1) = 0, i = 1, . . . , n, j = 1, 2. (109)

Therefore,

E(X̃2
ji) = E

(

E

(

(Xji − E(Xji|Y i−1))2
∣

∣

∣Y i−1
))

= E
(

E(X2
ji

∣

∣Y i−1) − E
2(Xji|Y i−1)

)

≤ E
(

E(X2
ji

∣

∣Y i−1)
)

= E(X2
ji)

≤ P. (110)

where the last inequality follows by the assumption of per-
symbol power constraintsP . Using (108), (109) and (110) we
can further upper bound the sum rateR as follows.

R ≤ 1

n

n
∑

i=1

I(X̃1i, X̃2i; Ỹi) + ǫn

≤ 1

2n

n
∑

i=1

log
(

1 + 2P + 2P E
(

ρ(X̃1i, X̃2i)
)

)

+ ǫn

(111)

≤ 1

2n

n
∑

i=1

log
(

1 + 2P
(

1 + ρ∗
(

Θ1i, Θ2i

∣

∣Y i−1
)

))

+ ǫn

(112)



15

where

ρ(X̃1i, X̃2i) = E





X̃1i
√

E(X̃2
1i)

· X̃2i
√

E(X̃2
2i)





is the correlation coefficient betweeñX1i and X̃2i. The
inequality (111) follows from the maximum entropy theo-
rem [17] and equal per-symbol power constraintsE(X2

ji) ≤ P .
The inequality (112) follows from the definition of conditional
maximal correlation (61), and the fact that̃Xji is some
function of (Θj , Y

i−1) satisfying the condition (109).
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