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Abstract—The distributed hypothesis testing (DHT) problem
is considered, in which the joint distribution of a pair of
sequences present at separated terminals, is governed by one
of two possible hypotheses. The decision needs to be made by
one of the terminals (the “decoder”). The other terminal (the
“encoder”) uses a noisy channel in order to help the decoder
with the decision. This problem can be seen as a generalization
of the side-information variant of the DHT problem, where the
rate-limited link is replaced by a noisy channel. A recent work
by Salehkalaibar and Wigger has derived an achievable Stein
exponent for this problem, by employing concepts from the DHT
scheme of Shimokawa et al., and from unequal error protection
coding for a single special message. In this work we extend the
view to a trade-off between the two error exponents, additionally
building on multiple codebooks and two special messages with
unequal error protection. As a by product, we also present
an achievable exponent trade-off for a rate-limited link, which
generalizes Shimokawa et al..

I. INTRODUCTION

The distributed hypothesis testing (DHT) problem enjoys a
renewed interest in recent years. In this problem there are two
hypotheses regarding the distribution of a pair of sequences
Xn and Y n - either independently and identically distributed
(i.i.d.) according to P 0

XY or P 1
XY . The two sequences are

observed by terminals (encoders), which communicate to a
central decision function over links of rates RX and RY .
The decision function outputs one of the two hypotheses,
and as in any hypothesis testing problem, there are two
error probabilities at play. The dependence of these error
probabilities on the rates, and specifically, their exponential
decay rate (error exponents), is of interest.

The general DHT problem turns out to be challenging, and
thus it has been mostly studied under one or more of the
following simplifying assumptions:

1) Side-information (SI) setting: The terminal observing
Y n is collocated with the decision function, so RY = ∞.
Then, the sequence Y n serves as SI.

2) Stein problem: The error probability under P 0
X,Y is not

required to decay exponentially. Thus, we are only interested
in the exponent under P 1

X,Y .
3) Testing against conditional independence: The side in-

formation decomposes as Y = (Ȳ , Z) and P 1
X,Z coincides

with P 0
X,Z and P 1

Ȳ |X,Z coincides with P 0
Ȳ |Z .

Indeed, only when all three assumptions hold, the opti-
mal exponent is known. The state-of-the-art approach is a
quantization-and-binning (Q&B) encoder [1], much like lossy
compression with SI (the Wyner-Ziv problem). It was shown
to be optimal when all three assumptions hold [2], and in
fact when a stronger independence assumption holds a simpler
quantization-only scheme where the encoder ignores the SI
was already shown to be optimal in [3]. The scheme proposed
in [1] is heavily tailored to the Stein problem, in the sense that
any detected a-typicality leads to declaring P 1

XY . For example,
if the encoder observes Xn which is not P 0

XY -typical it sends a
“special message” under which the decoder completely ignores
Y n and decides the hypothesis is that of P 1

XY . Recent works
aim at further generalizing the results. For example, in [4], an
achievable exponent trade-off for any two hypotheses in the
SI setting is derived; the resulting exponents is conjectured to
be optimal for any random-coding Q&B scheme.

In this work, we consider the problem of hypothesis testing
over noisy channels. It can be seen as an extension of the
SI setting, where the rate-limited link (“bit-pipe”) from the
encoder to the decoder is replaced by a noisy channel. Thus, it
is much like the extension from a lossy source coding problem
to joint source-channel coding (JSCC) problem. For this prob-
lem, the optimal Stein exponent for testing against conditional
independence was derived in [5], and an achievable exponent
to the Stein problem was derived in [6]. The approach of
[6] is based upon mapping a Q&B codebook for typical Xn

sequences to a channel codebook. The “special message” of
[1] is mapped to a special channel message, with an unequal
error protection (UEP) mechanism à la [7]. Quite remarkably,
when this special message is ignored, the exponents of [1]
with a rate matching the channel capacity are achievable; it
is possible, however, that error events related to the special
message will reduce that exponent.

Here, we extend the results from the Stein setting to
an exponent trade-off. As a preliminary step, we propose
(Section III) a refined coding scheme for the clean channel
case. Unlike for the Stein setting, in our new scheme the
encoder does not simply assign all P0-atypical Xn sequences
to P 1

XY . Instead, a different Q&B scheme with a tailored
coding rate and specific detection regions is chosen for each
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possible type of the observation Xn. Specializing our scheme
to a degenerate decision region for all types QX 6= P 0

X

recovers the scheme in [1] for the Stein setting. This scheme
is not meant to be competitive with [4], but rather reasonably
amenable to an extension to the noisy channel case, which
is the main contribution of this paper (Section IV). In this
extended scheme, binning is implicit through the channel as
in [8] and multiple codebooks are used as proposed by Csiszár
[9] for lossy JSCC.

II. NOTATION AND PROBLEM DEFINITION

Notation conventions:Deterministic vectors and scalars will
be denoted by lower case letters, e.g., xn = (x1, . . . , xn),
and random vectors and scalars by upper case letters Xn =
(X1, . . . X

n). In general, distributions related to the source
will be denoted by P,Q and types related to the chan-
nel by Φ,Γ. Joint, conditional and marginal distributions
are denoted as QX,Y = QXQY |X , and QY = [QX,Y ]Y .
The type class of a type QX at blocklength n will be
denoted by Tn(QX). The set of all type classes of vectors
from Xn will be denoted by Pn(X), and the probability
simplex will be denoted by P(X) which is the closure of
P(X) ,

⋃∞
n=1 Pn(X). The Q-shell of xn for QY |X will

be denoted by Tn(QY |X , x
n). For a given QX ∈ Pn(X),

the conditional types QY |X such that Tn(QY |X , x
n) is not

empty when xn ∈ Tn(QX) will be denoted by Pn(Y, QX).
The empirical type of a vector xn will be denoted by Q̂xn .
Information-theoretic quantities will be denoted as a func-
tion of the distribution, e.g., H(QXY ), H(QY |X |QX) for
entropy and conditional entropy, I(QXY ), I(QXY |Z |QZ) for
mutual information and conditional mutual information, and
D(QX ||PX), D(QX|Z ||PX|Z |QZ), for KL divergence and
conditional KL divergence, respectively. The cardinality of a
set A will be denoted by |A|. The shorthands [t]+ , max{t, 0}
and [k] , {1, 2, . . . , k} will be utilized. Integer constraints
on large numbers, e.g., 2nR, will be ignored as they are
inconsequential. Finally, the log(·) function is with respect
to base 2 and we use the notation an≤̇bn to indicate that
limn→∞ log(an/bn) ≤ 1.

In the SI-DHT problem, the transmitter observes source
sequence Xn and the receiver a source sequence Y n. The
hypotheses are given by:

H = i : (Xn, Y n) i.i.d. ∼ P iXY , i ∈ {0, 1}, (1)

for P 0
XY , P

1
XY ∈ P(X×Y). The transmitter can communicate

with the receiver over m uses of a discrete memoryless channel
(W,V, PV |W ) where W (resp. V) denotes the input (resp.
output) alphabet, |W|, |V| < ∞. If we take m = bρnc for
a fixed ρ, we can index both source and channel sequences
using n. A scheme for this problem comprises of a (possibly
stochastic) encoding function

f (n) : Xn →Wm (2)

and a decoding function

g(n) : Vm × Yn → {0, 1}. (3)

Specifically, the transmitter feeds inputs Wm = f (n)(Xn) to
the channel; the decoder observes the outputs V m, where for
a given input Wm = wm,

V m ∼
m∏
t=1

ΓV |W (vt|wt). (4)

Based on this sequence and the source sequence Y n, the
decoder produces an estimate Ĥ = g(n)(V m, Y n).

Denote for brevity ī = 1 − i for i ∈ {0, 1}. The error
probabilities at a given blocklength n are given by

εin , Pr[Ĥ = ī|H = i], i = 0, 1, (5)

where the dependence upon the source and channel distri-
butions, ρ, the encoder and the decoder remain implicit. An
exponent pair (θ0, θ1) is said to be achievable, if there exists
a sequence of encoding and decoding functions {(f (n), g(n))}
such that the corresponding error probabilities satisfy

− lim
n→∞

1

n
log εin ≥ θi, i = 0, 1. (6)

The optimal exponent trade-off region is the closure of all
achievable pairs; our goal is to find an achievable region, i.e.,
an inner bound on this region. An extreme version of this
problem is when only one of the probabilities is required to
decay exponentially, while the other only has to only decay
sub-exponentially. The optimal exponents for this problem are
known as Stein exponent, and are the corner points of the
achievable region.1

III. CLEAN CHANNEL

In this section, we propose an achievable scheme to the
classic DHT scenario in which Xn must be compressed at rate
R, and the decoder receives the compressed message without
any noise. It can be noted that this scenario falls into the
framework of Section II when the channel is a clean binary
channel, i.e. W = V = {0, 1}, ΓV |W (v|w) = 1 iff v = w and
ρ = R. Nonetheless, it will be more convenient to denote the
encoding operation by f (n) : Xn → [2nR].

The scheme is based on [1], for which the encoding is based
on Q&B, and decoding is based on a two stage process. In the
first decoding stage, given the bin index and the SI, the decoder
decides on the specific quantized source vector within the bin.
This is done by a universal metric, as the decoder is unaware
of the hypothesis governing the source, and thus cannot use
the optimal rule. In the second stage, a test decides on one of
the hypotheses, based only on the joint type of the quantized
source vector and the SI.

More formally, our proposed scheme is defined as follows.
Let δ > 0 be an arbitrary small constant.
• Parameters: Choose a quantization alphabet S, where,

w.l.o.g., |S| ≥ |X|. For each QX ∈ Pn(X), choose a test chan-
nel PS|X(QX) ∈ Pn(S, QX), and choose detection regions
A0(QX) ⊆ P(S× Y) and A1(QX) , P(S× Y) \A0(QX).

1In ordinary hypothesis testing, for which strong converse exists, the Stein
exponent is also the optimal exponent under the more stringent constraint that
the second probability only has to remain bounded away from 1. For DHT
problems, there might be a distinction.
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• Codebooks construction: For each QX ∈ Pn(X), draw
the codebook Cn(QX) uniformly at random over the set of
codebooks of rate I(QXPS|X(QX)) + δ that have constant
type QS = [QXPS|X(QX)]S and where for each xn ∈
Tn(QX) there exists at least one codeword sn such that
(xn, sn) ∈ Tn(QXPS|X(QX)) For a given type QX of
the source xn, let hquan : Tn(QX) → Cn(QX) denote the
quantization operation that maps xn to one of the codewords
sn in Cn(QX) satisfying (xn, sn) ∈ Tn(QXPS|X(QX)). 2

Given the source type QX , let further hbin : Cn(QX)→ [2nR]
denote the random binning operation that maps each codeword
of Cn(QX) uniformly at random to an index in [2nR], in case
I(QXPS|X(QX)) ≥ R − δ, and maps each codeword to a
different index in [2nR], in case I(QXPS|X(QX)) < R− δ.
The scheme operates on (xn, yn) ∈ Tn(QX,Y ) as follows:
• Encoding: The encoder sends an index of QX in an enu-

meration of Pn(X) and then sends f(xn) = hbin(hquan(xn)).
• Decoding: Using the received message, the decoder is

aware of the type QX . It then performs the following steps:
1) Chooses a codeword s̃n which minimizes

H(Q̂sn|yn |Q̂yn) over all sn with hbin(sn) = f(xn).
2) If Q̂s̃n,yn ∈ A0

n(QX) it outputs Ĥ = 0, and otherwise
it outputs Ĥ = 1.

Theorem 1. Given a choice of parameters, the exponent pair
(θ0, θ1) is achievable, where θi , min(θstd,i, θbin,i) is given
by:

θstd,i , min
QS,X,Y :

QS|X=PS|X(QX)

QS,Y ∈Aī
n(QX)

D(QS,X,Y ‖P iS,X,Y ), (7)

θbin,i , min
QS,X,Y :

QS|X=PS|X(QX)

I(QS,X)≥R

{
D(QS,X,Y ‖P iS,X,Y )+

min
Q′

S,Y ∈D(QX,Y )∩Aī(QX)

[I(Q′S,Y )− I(QS,X) +R]+

}
,

(8)

where P iS,X,Y = PS|X(P iX)PX,Y and

D(QX,Y ) ,
{
Q′S,Y ∈ P(S× Y) : Q′S =

[
QXPS|X(QX)

]
S

Q′Y = QY , H(Q′S|Y |Q
′
Y ) ≤ H(QS|Y |QY )

}
.

(9)

Proof outline: Since the number of types is polynomial
in n, |Pn(X)| ≤ 2nδ for all n sufficiently large and so the
encoding rate is less than R.3 The type covering implied by
the codebook construction is possible due to the type-covering
lemma [10, Lemma 9.1].

We now turn to bound the error exponent assuming that
H = i. Let Sn denote the quantization codeword picked at

2For simplicity, the dependence on the type and codebook is omitted.
3For QX such that either A0

n(QX) or A1
n(QX) is empty, sending the bin

index is redundant since the decoder decision is fixed. However, sending it
causes no harm as the total rate does not increase.

the encoder and S̃n the codeword picked at the decoder. We
decompose the error event into the two disjoint events

Estd,i := {S̃n = Sn and Ĥ = ī}, (10)

and
Ebin,i := {S̃n 6= Sn and Ĥ = ī}. (11)

The probability of the first event can be upper bounded by a
standard method-of-types argument as

Pr
[
Estd,i

∣∣∣H = i
]
≤̇

∑
QS,X,Y :

QS|X=PS|X(QX)

QS,Y ∈Aī
n(QX)

2−nD(QS,X,Y ||P i
S,X,Y )

(12)
which leads to θstd,i.

For the second event, we have:

Pr
[
Ebin,i

∣∣H = i
]

=
∑

QS,X,Y

Pr
[
Q̂SnXnY n = QS,X,Y

∣∣∣H = i
]

·Pr
[
Ebin,i

∣∣∣Q̂SnXnY n = QS,X,Y , H = i
]
. (13)

The first term in each summand is positive only if
QS|X = PS|X(QX) and the second term is positive only if
I(QXPS|X(QX)) > R, because otherwise there is no binning
and event Ebin,i has zero conditional probability. The sum
can thus be constrained to types QS,X,Y satisfying these two
conditions. For such types, the first conditional probability in
(13) can be bounded as in (12) and the second as:

Pr
[
Ebin,i

∣∣∣Q̂SnXnY n = QS,X,Y ,H = i
]

≤
∑

S′n 6=Sn

Pr
[
hbin(S′n) 6= hbin(Sn),

H(Q̂S′n|Y n |Q̂Y n) ≤ H(Q̂Sn|Y n |Q̂Y n),

Q̂S′nY n ∈ Aī(QX)∣∣∣Q̂SnXnY n = QS,X,Y ,H = i
]

(14)

≤̇2n(I(QS,X)+δ) · 2−nR ·
∑

Q′
S,Y ∈D(QX,Y )

2−nI(Q
′
S,Y ), (15)

where the sum in (14) is over all codewords except the one
chosen by the encoder. The asymptotic inequality (15) holds
because there are 2n(I(QS,X)+δ) codewords and each of them
is uniform over the type class Tn(Qs) and uniformly assigned
to one of 2nR bins. The proof is then concluded by clipping
the upper bound by 1 and then taking n→∞ and δ → 0.
Theorem 1 may be particularized by special choices of
{Ai(QX)}QX∈P(QX). Two natural choices are:

1) The likelihood ratio test (LRT) between P 0
X,Y and P 1

X,Y :
For some choice of a threshold t ∈ R, and all QX ∈ P(QX)

A0(QX) ,
{
D(QS,Y ‖P 1

S,Y )−D(QS,Y ‖P 0
S,Y ) ≥ t

}
. (16)

2) Typicality-based set: For all QX such that
D(QX ||P 0

X) ≤ εn

A0(QX) =
{
QS,Y : D

(
QS,Y ||

[
P 0
X,Y PS|X

]
S,Y

)
≤ εn

}
(17)
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where εn → 0, and A0(QX) = φ otherwise. In this case, the
scheme reduces to the scheme of [1]. With this choice, the
binning exponent dominates the standard one and the bound
of [1] is recovered.

Let us elucidate the rational behind these choices. If the
word chosen in the first stage is the correct codeword, then
the LRT is optimal. It should be taken into account, however,
that there is an probability (of finite exponent) that the second
stage test is performed on the wrong codeword. Attributing
“doubtful” cases to the hypothesis that needs better “protec-
tion”, can increase the total exponent. In the extreme Stein
case, the test in [1] only attributes to P 0 the typical set, i.e.,
types that must be included in order to have non-trivial error
probability under P 0.

Finding a test that strikes an optimal balance outside the
Stein case seems to be complicated. However, a family of
tests which includes the LRT and the typicality test in [1] as
special cases, may be obtained by enforcing both a threshold
on the difference of type-class likelihoods and on the absolute
likelihood:

tdiff ≤ D(QS,Y ‖P 1
S,Y )−D(QS,Y ‖P 0

S,Y ) (18a)

tabs ≥ D(QS,Y ‖P 0
S,Y ), (18b)

or a similar absolute criterion with respect to P 1.

IV. NOISY CHANNEL

In this section, we move on to consider the noisy channel
case. We focus on ρ = 1; the extension to general ρ is
straightforward. In case of a noisy channel, the codewords
of the per-type source codebooks Cn(QX) are mapped into
channel codewords rather to an index, where a different
codebook can be used for each QX . However, here the rate is
not explicitly constrained, and is a parameter to be designed.
For our analysis it turns out that there is no loss in:

1) Choosing a channel codebook with a single codeword
for all types QX that are attributed entirely to one of the
hypotheses. Hence, we will have two special input sequences,
mn,0 and mn,1, corresponding to each of the hypotheses.

2) Choosing the codebook rate I(QXPS|X(QX)) for all
other types.
Notice that our scheme does not use explicit binning, i.e., each
of the quantizer indices is mapped to an independently chosen
channel codeword. In this case, the decoder is effectively
observes channel-induced “bins” and then chooses a codeword
within the bin using the SI. Such strategy was coined “virtual
binning” in [8] and used for JSCC for broadcast channels with
side information. Another justification for this choice are the
random-coding exponents of JSCC with SI [11], which also
cannot be improved by binning. Notice that in [6] binning
is used for the Stein case, thus we can conclude that in this
special case the performance remains the same. Nonetheless,
observing that a special codeword is also conceptually an
extreme kind of binning - distant source sequences group
together to the same channel codeword - one may wonder
why they are still used in our scheme. The reason is, that

special codewords are different than zero-rate codebooks since
two codewords can be chosen judiciously, and not just drawn
uniformly over a type class. Then, the regular messages can
be drawn in a conditional fashion, “far” from the two special
ones. This is, indeed, the idea behind the UEP scheme in [7].
The scheme we propose is defined by the following:

• Parameters: Choose a quantization alphabet S, where,
w.l.o.g., |S| ≥ |X|. Choose two disjoint subsets M0,M1 ∈
P(X) and denote M = P(X)\(M0∪M1). Choose a joint type
for the special messages φM0M1 ∈ P(W×W). For each QX /∈
{M0 ∪M1} choose a quantization test channel PS|X(QX) ∈
Pn(S, QX), a conditional channel input type φW |M0,M1(QX).
For each QY choose special-codewords biases t0(QY ) and
t1(QY ). Choose detection regions A0 ⊆ P(S×Y)×P(V×W)
and A1 , P(S× Y)× P(V×W) \A0.
• Codebooks construction: For each QX ∈ Pn(X), draw

a codebook Cn(QX) uniformly at random over the set of
codebooks of rate I(QXPS|X(QX)) + δ that have fixed type
[QXPS|X(QX)]S and where for each xn ∈ Tn(QX) there
exists sn ∈ Cn(QX) such that (xn, sn) ∈ Tn(QXPS|X(QX))
Let hquan : Tn(QX) → Cn(QX) denote the quantiza-
tion operation mapping xn to a codeword sn of joint type
QXPS|X(QX).

Choose two special codewords (mn,0,mn,1) ∈ QM0M1 .
Then, for any QX ∈ Pn(X)\(M0 ∪ M1) draw a channel
codebook C̃n(QX) of same size as Cn(QX), and where
each codeword is picked uniformly at random over the set
of vectors that have conditional typeφW |M0,M1(QX) given
(mn,0,mn,1). We denote the mapping from quantization to
channel codewords by hmap : Cn(QX)→ C̃n(QX).

Assuming that the source has emitted (xn, yn) ∈
Tn(QX,Y ). The scheme operates as follows:

• Encoding: If the source type is in QX ∈Mi, the encoder
sends the corresponding mn,i, i ∈ [0, 1]. Otherwise, it sends
wn = hmap(hquan(xn)).
• Detection: The detector follows the stages:
1) For each sn ∈ ∪QX

Cn(QX) computes the metric

−H(Q̂sn|yn |Q̂yn) + I(Q̂wn,vn) (19)

where wn = hmap(sn), and for mn,i it computes the metrics

−ti(Q̂yn) + I(Q̂mn,i,vn). (20)

It then chooses the pair (s̃n, w̃n) or mn,i according to the
maximal metric.

2) If the chosen codeword in the first step is mn,i then it
outputs Ĥ = i. Otherwise, if (Q̂s̃n,yn , Φ̂w̃n,vn) ∈ A0 it outputs
Ĥ = 0, and otherwise it outputs Ĥ = 1.
The performance of the scheme is given as follows. For any
given choice of parameters, let θi be given by the minimum
over the following six exponents:
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θstd,i , minD(QS,X,Y ‖P iS,X,Y )

+D(ΦV |W ||ΓV |W |φW (QX)),

θreg,i , minD(QS,X,Y ‖P iS,X,Y )

+D(ΦMi,W,V ||φMi,W (QX)ΓV |W ),

θreg→opp,i , minD(QS,X,Y ‖P iS,X,Y )

+D(ΦV |W ||ΓV |W |φW (QX))

+
[
I(Q′S,Y ) + I(Φ′W,V )− I(Q′S,X)

]
+
,

θsp→reg,i , minD(QS,X,Y ||P iS,X,Y )

+D(φMiΦV |Mi ||φMiΓV |Mi)

+
[
I(Q′S,Y ) + I(Φ′W,V |Mi |φMi)− I(Q′S,X)

]
+
,

θsp→opp,i , minD(QX,Y ||P iX,Y )

+D(φMi,MiΦV |Mi,Mi ||φMi,MiΓV |Mi),

θopp,i , minD(QX ||P iX), (21)

where the minimizations are over (QS,X,Y ,ΦMi,Mi,W,V ),
(Q′S,X,Y ,Φ

′
Mi,Mi,W,V

) which are consistent with
QXPS|X(QX) and φM0,M1φW |M0,M1(QX), and where
each of the six minimizations is restricted to one of the
following sets, respectively:{
QX ∈M, (QS,Y , φW (QX)ΦW |V ) ∈ Aī

}
,{

QX ∈M,

−H(QS|Y |QY ) + I(ΦW,V ) ≤ −ti(QY ) + I(ΦMi,V )
}
,{

QX ∈M, Q′X ∈M, Q′V,Y = QV,Y , (Q′S,Y ,Φ
′
W,V ) ∈ Aī,

−H(Q′S|Y |Q
′
Y ) + I(Φ′W,V ) ≥

−H(QS|Y |QY ) + I(ΦW,V )
}
,{

QX ∈Mi, Q′X ∈M, Q′V,Y = QV,Y , (Q′S,Y ,Φ
′
W,V ) ∈ Aī

−H(Q′S|Y |Q
′
Y ) + I(Φ′W,V ) ≥ −ti(QY ) + I(ΦMMi,V )

}
,{

QX ∈Mi,

− ti(QY ) + I(ΦMi,V ) ≥ −ti(QY ) + I(ΦMi,V )
}
,{

QX ∈Mi
}
. (22)

Theorem 2. For any given choice of parameters, the exponent
pair (θ0, θ1) is achievable, where θi is given by (21)-(22).

Proof outline: The existence of quantization codebooks
follows as in the clean-channel case. Assume that H = i, and
that the “true” vectors have type pair (QS,X,Y ,ΦMi,Mi,W,V ).
It can be verified that any error event belongs to one of the
following cases:

1) A regular message was sent and decoded correctly, but
an erroneous decision was made at stage 2.

2) A regular message was sent, but the “opposite” special
message i was decoded.

3) A regular message was sent, but another regular message
was decoded, which has a type pair (Q′S,X,Y ,Φ

′
W,V,Mi,Mi

)

that leads to an erroneous decision at stage 2.

4) The “correct” special message i was sent, but a regular
message was decoded, which has a type pair that leads to an
erroneous decision at stage 2.

5) The “correct” special message was sent, but the “oppo-
site” special message was decoded.

6) The “opposite” special message was sent.
The six exponents in the theorem correspond to these six
events, respectively. The exponent of each event is calculated
along similar lines to the clean-channel case, using the (condi-
tionally) independent codebook construction, the encoder and
decoder structure.

As in the clean-channel case, we have left the choice of
decision regions as a design parameter. We note that also
here, one natural choice is the LRT (which is based upon the
source types only, as the channel likelihood is the same under
both hypotheses). For the Stein case, a source- and channel-
typicality region is preferable. Using a single special message,
as one would in this case, we can recover the exponent of
[6]. Of course, one may interpolate between the two in a
manner similar to (18). We have also left the biases t0(QY )
and t1(QY ) unspecified. As these replace the source score
applied to regular messages, a good choice seems to be

ti(QY ) = minD(QX|Y ‖P i(X|Y )|QY ) + t, (23)

where the minimization is over all QX|Y such that QX ∈
Mi and t is a constant. Detailed performance evaluation of
the proposed scheme for specific instances of the noisy DHT
problem, and a comparison between different choices of the
decision regions and the biases is left for future work.
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