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Abstract—This work investigates the downlink of a cloud
radio access network (C-RAN) in which a central processor
communicates with two mobile users through two base stations
(BSs). The BSs act as relay nodes and cooperate with each other
through error-free rate-limited links. We develop and analyze
two coding schemes for this scenario. The first coding scheme
modifies the Liu-Kang scheme (to make it amenable to a rigorous
analysis) and extends it to introduce common codewords and to
apply for downlink C-RAN with BS-to-BS cooperation. This first
coding scheme enables arbitrary correlation among the auxiliary
codewords that are recovered by the BSs. We show that this
scheme improves over previous schemes for various instances of
Gaussian C-RAN channels. In particular, in many scearios, the
scheme can better exploit the possibility of BS-to-BS cooperation
than other schemes. The second coding scheme extends the
distributed decode and forward (DDF) scheme by means of
Gray-Wyner compression and by exploiting the cooperation links
between BSs. In addition and as a separate extension, we provide
an improved capacity approximation for the DDF strategy for
the capacity of a general N -BS L-user C-RAN model in the
memoryless Gaussian case.

Index Terms—Broadcast relay networks, cloud radio access
networks, compression, conferencing relays, data sharing, dis-
tributed decode–forward, Gaussian networks.

I. INTRODUCTION

Cloud radio access networks (C-RANs) are promising
candidates for fifth generation (5G) wireless communication
networks. In a C-RAN, the base stations (BSs) are connected
to a central processor through digital fronthaul links. Compre-
hensive surveys on C-RANs can be found in [1], [2]. The 2-BS
2-user case is depicted in Figure 1. Two common approaches
for coding over downlink C-RANs are:
• Data-sharing: The central processor splits each message

into independent submessages and conveys these indepen-
dent submessages to one or multiple BSs. The BSs map
the received submessages into codewords and transmit these
codewords over the interference network. The mobile users
decode their intended message parts by treating interference
as noise. If there are N BSs, in general there can be up to
2N − 1 submessages, each of which is sent to a specific
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Fig. 1. Downlink C-RAN with 2 base stations and 2 mobile users.

subset of BSs. Two special cases have been considered in
the literature: Zakhour and Gesbert [3] studied the 2-BS 2-
user case; and Dai and Yu [4] focused on BS clustering for
general C-RANs wherein messages are sent as a whole to
subsets of BSs and there is no message splitting.
• Compression of Signals: The central processor precalculates

virtual channel inputs and describes compressed versions
thereof over the rate-limited fronthaul links to the BSs.
The BSs reconstruct the compressed signals and transmit
them over the interference network. Compression schemes
were first investigated by Park et al. [5] for the memoryless
Gaussian case. More recently, Yu [6] showed that this
scheme is actually subsumed by Lim et al.’s [7] distributed
decode and forward (DDF) strategy when this latter is
specialized to the C-RAN network.

A main distinguishing feature between the two approaches is
that in data-sharing the BSs’ transmit signals directly corre-
spond to codewords, whereas under the compression approach
the BSs send signals that are only compressed versions of such
codewords.

Another interesting scheme is reverse compute–forward
proposed by Hong and Caire [8], which uses nested lattice
codes to perform precalculations in a finite field. The reverse
compute–forward scheme can enhance the performance under
the condition of weak fronthaul links, but it suffers from non-
integer penalty and thus is less competitive than the first two
approaches when the fronthaul links are strong.

In this paper, we study the downlink of a C-RAN with two
BSs and two mobile users. Recently, Liu and Kang [9] pro-
posed a coding scheme generalizing the data-sharing approach.
In their scheme, the central processor maps the message pair
(M1,M2) into “2-dimensional” Marton codewords: codewords
Un1 , U

n
2 for message M1 and codewords V n1 , V

n
2 for message

M2. It then describes codewords Un1 , V
n
1 to BS 1 and code-

words Un2 , V
n
2 to BS 2, where the descriptions are obtained

by enumerating all possible pairs of codewords (Un1 , V
n
1 ) and

(Un2 , V
n
2 ). We view this scheme as a generalization of the
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data-sharing approach, because the BSs transmit codewords
and not compressed versions therefore. Liu and Kang showed
that their scheme in some scenarios improves over all previous
schemes [9]; their performance analysis is however flawed due
to an erroneous application of the mutual covering lemma (at
beginning of p. 1009 when analyzing Pr(ξ0)), and it is unclear
whether the claimed performance is indeed achievable.

In this paper, we slightly modify the code construction of
the Liu-Kang scheme and analyze the modified code. Even
though a bit worse than the performance conjectured in [10],
the modified scheme improves over all previously proposed
schemes in some regimes. We also generalize the new scheme
by introducing common codewords Un0 , V

n
0 that the central

processor enumerates and describes to both BSs. Introducing
such common codewords is of interest also for the more
general scenario of downlink C-RAN with BS cooperation
where BSs can communicate with each other over dedicated
rate-limited cooperation links before communicating over the
interference network with the mobile users. In practice such a
BS-to-BS communication can take place over the traditional
backhaul links that connect BSs. In fact, a prominent line of
research advocates that performance of 5G systems can be
improved by employing heterogeneous access techonologies
[11]–[13]. The reasons include: practical difficulties for in-
stalling high-rate fiber-optic fronthaul links, BSs that are closer
to each other than to cloud processors, heterogeneous traffic
conditions, or economical considerations regarding installation
and maintenance of the different access networks.

The more general setup with direct BS-to-BS cooperation
is the main focus of this paper.

Finally, using the DDF scheme, this paper characterizes
the capacity region of a general N -BS L-user C-RAN model
under the memoryless Gaussian model to within a constant
gap, independent of power, that is smaller than the general
gap proved in [7].

The main contributions of this work can be summarized as
follows:
1) We modify the Liu–Kang scheme [9] so as to be able to an-

alyze it, and we introduce common codewords. We use the
cooperation links to exchange parts of common codewords
and to redirect private codewords for asymmetric link or
channel conditions. This new cooperative generalized data-
sharing (G-DS) scheme subsumes the data-sharing scheme
proposed in [3]. (Sometimes when the capacities of the
BS-to-BS cooperation links C12 = C21 = 0, we refer to
our new scheme simply as G-DS.)

2) We introduce Gray-Wyner coding [14] to DDF for C-RAN
and extend the scheme to the scenario with BS-to-BS coop-
eration. This new cooperative generalized compression (G-
compression) scheme subsumes the previous compression
schemes in [5] and in [6]. (When C12 = C21 = 0, we refer
to this scheme also as G-compression scheme.)

3) Under the memoryless Gaussian model, we show that
DDF for C-RAN with BS-to-BS cooperation achieves the
capacity region of a downlink N -BS L-user C-RAN to
within a gap of L

2 + min{N,L logN}
2 bits per dimension.

This improves the previous gap result in [7], which was
L+N

2 bits per dimension.

4) We show that without BS-to-BS cooperation, under the
memoryless Gaussian model, the G-DS scheme outper-
forms the G-compression scheme in the low-power regime
and when the channel gain matrix is ill-conditioned. Fur-
thermore, the cooperative G-DS scheme benefits more from
BS-to-BS cooperation than the cooperative G-compression
scheme and often improves over the latter when the coop-
eration rates are sufficiently large.

The paper is organized as follows. In Section II, we provide
the problem formulation for the 2-BS 2-user case. Section III
is devoted to the cooperative G-DS scheme, in which we
describe the detailed coding scheme and consider three repre-
sentative special cases and two examples with simpler network
topologies. Section IV is devoted to the cooperative com-
pression scheme. In this section, we describe the cooperative
G-compression scheme and state the improved gap-result.
Finally, in Section V we compare the cooperative G-DS and
cooperative G-compression schemes through examples and
evaluation for the memoryless Gaussian model. The lengthy
proofs are deferred to appendices.

A. Notations

Random variables and their realizations are represented by
uppercase letters (e.g., X) and lowercase letters (e.g., x),
respectively. Matrices are represented by uppercase letters in
sans-serif font (e.g., M) and vectors are in boldface font (e.g.,
v). We use calligraphic symbols (e.g., X ) and the Greek
letter Ω to denote sets. The probability distribution of a
random variable X is denoted by pX . Denote by | · | the
cardinality of a set and by 1{·} the indicator function of
an event. We denote [a] := {1, 2, · · · , bac} for all a ≥ 1,
Xk := (X1, X2, · · · , Xk), and X(Ω) = (Xi : i ∈ Ω).
Throughout the paper, all logarithms are to the base two.

The usual notation for entropy, H(X), and mutual infor-
mation, I(X;Y ), is used. We follow the ε–δ notation in [15]
and the robust typicality introduced in [16]: For X ∼ pX
and ε ∈ (0, 1), the set of typical sequences of length k with
respect to the probability distribution pX and the parameter ε
is denoted by T (k)

ε (X), which is defined as

T (k)
ε (X) :={
xk ∈ X k :

∣∣∣∣#(a|xk)

k
− pX(a)

∣∣∣∣ ≤ εpX(a),∀a ∈ X
}
, (1)

where #(a|xk) is the number of occurrences of a in xk.
Finally, the total correlation among the random variables X(Ω)
is defined as

Γ(X(Ω)) :=
∑
i∈Ω

H(Xi)−H(X(Ω)). (2)

II. PROBLEM STATEMENT

Consider the downlink 2-BS 2-user C-RAN with BS co-
operation depicted in Figure 2. The network consists of
one central processor, two BSs, and two mobile users. The
central processor communicates with the two BSs through
individual noiseless bit pipes of finite capacities. Denote by
Ck the capacity of the link from the central processor to
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Fig. 2. Downlink C-RAN with BS cooperation: 2 base stations and 2 mobile
users.

BS k. In addition, the two BSs can also communicate with
each other through individual noiseless bit pipes of finite
capacities. Denote by Ckj the capacity of the link from BS
j to BS k. The network from the BSs to the mobile users is
modeled as a discrete memoryless interference channel (DM-
IC) 〈X1×X2, pY1,Y2|X1,X2

,Y1×Y2〉 that consists of four finite
sets X1,X2,Y1,Y2 and a collection of conditional probability
mass functions (pmf) pY1,Y2|X1,X2

.
With the help of the two BSs, the central processor wants

to communicate two messages M1 and M2 to users 1 and 2,
respectively. Assume that M1 and M2 are independent and
uniformly distributed over [2nR1 ] and [2nR2 ], respectively. In
this paper, we restrict attention to information processing on
a block-by-block basis. Each block consists of a sequence of
n symbols. The entire communication is divided into three
successive phases:
1) Central processor to BSs:

The central processor conveys two indices (W1,W2) :=
f0(M1,M2) to BS 1 and BS 2, respectively, where f0 :
[2nR1 ] × [2nR2 ] → [2nC1 ] × [2nC2 ] is the encoder of the
central processor.

2) BS-to-BS conferencing communication:
BS 1 conveys an index W21 := f1(W1) to BS 2, where
f1 : [2nC1 ]→ [2nC21 ] is the conferencing encoder of BS 1.
BS 2 conveys an index W12 := f2(W2) to BS 1, where
f2 : [2nC2 ]→ [2nC12 ] is the conferencing encoder of BS 2.

3) BSs to mobile users:
BS 1 transmits a sequence Xn

1 := g1(W1,W12) over
the DM-IC, where g1 : [2nC1 ] × [2nC12 ] → Xn1 is the
channel encoder of BS 1. BS 2 transmits a sequence
Xn

2 := g2(W2,W21) over the DM-IC, where g2 : [2nC2 ]×
[2nC21 ]→ Xn2 is the channel encoder of BS 2.

Upon receiving the sequence Y n` ∈ Yn` , mobile user ` ∈ {1, 2}
finds an estimate M̂` := d`(Y

n
` ) of message M`, where d` :

Yn` → [2nR` ] is the decoder of user `. The collection of the
encoders f0, f1, f2, g1, g2 and the decoders d1, d2 constitute a
(2nR1 , 2nR2 , n) code.

The average error probability is defined as

P(n)
e := P

(
2⋃
`=1

{M̂` 6= M`}

)
. (3)

A rate pair (R1, R2) is said achievable if there exists a se-
quence of (2nR1 , 2nR2 , n) codes such that limn→∞ P

(n)
e = 0.

The capacity region is the closure of the set of achievable rate
pairs.

Finally, we remark that using the discretization procedure
[15, Section 3.4.1] and appropriately introducing input costs,

our developed results for DM-ICs can be adapted to the
Gaussian interference channel with constrained input power.
The input–output relation of this channel is[

Y1

Y2

]
=

[
g11 g12

g21 g22

] [
X1

X2

]
+

[
Z1

Z2

]
, (4)

where Xk ∈ R is the channel input from BS k, Y` is the
channel output observed at user `, g`k ∈ R is the channel
gain from BS k to user `, and (Z1, Z2) are i.i.d. N (0, 1) and
each BS has to satisfy an average power constraint P , i.e.,
1
n

∑n
i=1 x

2
ki ≤ P for all k ∈ {1, 2}.

III. COOPERATIVE GENERALIZED DATA-SHARING
SCHEME

Before describing our new scheme, it is instructive to briefly
review the encoding of the data-sharing scheme.

A. Preliminary: Data-Sharing Scheme

The conventional data-sharing scheme follows from a rate-
splitting approach: Each message M` is split into three inde-
pendent submessages M`0, M`1, and M`2, where ` ∈ {1, 2}.
The central processor sends the private messages (M1k,M2k)
to BS k, where k ∈ {1, 2}, and the common messages
(M10,M20) to both BSs. The BSs map the received submes-
sages into codewords, i.e., m1j → unj and m2j → vnj , for
all j ∈ {0, 1, 2}, and each BS k ∈ {1, 2} applies a symbol-
by-symbol mapping xk(u0, v0, uk, vk) to map the codewords
(Un0 , V

n
0 , U

n
k , V

n
k ) into channel inputs Xn

k . In the data-sharing
scheme, codewords are generated according to the joint pmf

pU0,U1,U2,V0,V1,V2 = pU0,V0

2∏
j=1

pUj ,Vj |U0,V0
. (5)

Our aim is to develop a coding scheme that allows to
exploit more general joint pmfs pU0,U1,U2,V0,V1,V2

. To this
end, we follow the proposition by Liu and Kang [9]: Each
message, instead of being split into three independent parts,
is now represented by a set of auxiliary index tuples. A
priori, auxiliary indices refer to codewords of independently
generated codebooks, but through joint typicality tests they
indicate coordinated codewords and thus ensure a more general
joint distribution on the set of transmitted codewords than in
(5).

B. Performance

First, let us give a high-level summary of the cooperative
G-DS scheme. The encoding is based on multicoding. We fix
a joint pmf pU0,V0,U1,V1,U2,V2 and independently generate six
codebooks Uj , Vj , j ∈ {0, 1, 2}, from the marginals pUj , pVj ,
j ∈ {0, 1, 2}, respectively. For j ∈ {0, 1, 2}, the codebook Uj
contains 2nRuj codewords and the codebook Vj contains 2nRvj

codewords. Each message m1 ∈ [2nR1 ] is associated with
a unique bin B(m1) of index tuples (k0, k1, k2) ∈ [2Ru0 ] ×
[2Ru1 ]× [2Ru2 ], which are indices to the codebooks U0,U1,U2,
respectively. Similarly, each message m2 ∈ [2nR2 ] is associ-
ated with a unique bin B(m2) of index tuples (`0, `1, `2) ∈
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[2Rv0 ] × [2Rv1 ] × [2Rv2 ], which are indices to the indepen-
dently generated codebooks V0,V1,V2, respectively. Then,
given (m1,m2), we apply joint typicality encoding to find
index tuples (k0, k1, k2) ∈ B(m1) and (`0, `1, `2) ∈ B(m2)
such that (Un0 (k0), Un1 (k1), Un2 (k2), V n0 (`0), V n1 (`1), V n2 (`2))
are jointly typical.

Remark 1: In addition to including the common auxil-
iaries U0 and V0, which was already mentioned in [9], the
main difference of our proposed scheme from the Liu–Kang
scheme is that we do not enumerate the jointly typical pairs
(Un1 (k1), Un2 (k2)) and (V n1 (`1), V n2 (`2)), which renders the
analysis of the success probability of finding jointly typical
tuples (Un1 (k1), Un2 (k2), V n1 (`1), V n2 (`2)) difficult. ♦

The next step is to convey (k0, `0, k1, `1) to BS 1 and
(k0, `0, k2, `2) to BS 2. By taking advantage of the following
facts, we can reduce the conventional sum rate Ru0 + Rv0 +
Ruj +Rvj , j ∈ {1, 2}:
1) Correlated index tuples

The index tuple to be sent represents certain jointly typical
codewords. As long as U0, V0, Uj , Vj are not mutually
independent, some members of [2nRu0 ]×[2nRv0 ]×[2nRuj ]×
[2nRvj ] will never be used. Thus, instead of sending
(k0, `0, kj , `j) separately, we can enumerate all jointly typ-
ical codewords and simply convey an enumeration index.

2) Opportunity of exploiting the cooperation links
In the presence of cooperation links, the BSs do not need
to learn all the information directly over the link from
the central processor, but can learn part of it over the
cooperation link.

Finally, user 1 applies joint typicality decoding to recover
(k0, k1, k2) and then the message m1 can be uniquely iden-
tified. Similarly, user 2 applies joint typicality decoding to
recover (`0, `1, `2) and then the message m2 can be uniquely
identified.

The achieved rate region of the cooperative G-DS scheme
is presented in the following theorem.

Theorem 1: A rate pair (R1, R2) is achievable for the
downlink 2-BS 2-user C-RAN with BS cooperation if there
exist some rates Ruj , Rvj ≥ 0, j ∈ {0, 1, 2}, some joint
pmf pU0,V0,U1,V1,U2,V2

, and some functions xk(u0, v0, uk, vk),
k ∈ {1, 2}, such that for all Ωu,Ωv ⊆ {0, 1, 2} satisfying
|Ωu|+ |Ωv| ≥ 2, the following rate constraints (6)–(11) hold:

1{|Ωu| = 3}R1 + 1{|Ωv| = 3}R2

<
∑
i∈Ωu

Rui +
∑
j∈Ωv

Rvj − Γ(U(Ωu), V (Ωv)); (6)

for all non-empty Ωu,Ωv ⊆ {0, 1, 2},∑
i∈Ωu

Rui < I(U(Ωu);U(Ωcu), Y1) + Γ(U(Ωu)), (7)∑
j∈Ωv

Rvj < I(V (Ωv);V (Ωcv), Y2) + Γ(V (Ωv)); (8)

and∑
i∈{0,1}

Rui +
∑

j∈{0,1}

Rvj < C1 + C12 + Γ(U0, V0, U1, V1), (9)

∑
i∈{0,2}

Rui +
∑

j∈{0,2}

Rvj < C2 + C21 + Γ(U0, V0, U2, V2), (10)

2∑
i=0

Rui +

2∑
j=0

Rvj < C1 + C2 + Γ(U0, V0, U1, V1)

+Γ(U0, V0, U2, V2)− Γ(U0, V0).

(11)

Unfortunately, the rate region in Theorem 1 is hard to
evaluate. Besides, we find it insightful to learn the effects
of different code components. Thus, now we present three
corollaries to Theorem 1 where we restrict the correlation
structure:

1) Corollary 1: Uj = Vj = ∅ and Ruj = Rvj = 0,
j ∈ {1, 2}. Each of the two messages M1 and M2 is
encoded into a common codeword Un0 and V n0 , which
are then transmitted simultaneously by both BSs. Thus,
here the two BSs fully cooperate in their transmission to
the mobile users.

2) Corollary 2: pU0,V0,U1,V1,U2,V2
=
∏2
j=0 pUjpVj . This is

equivalent to splitting messages M1,M2 into three parts,
one common and two private parts, and to independently
transmitting the two common parts by both BSs and each
of the private parts by only one of the BSs.

3) Corollary 3: U0 = V0 = ∅ and Ru0 = Rv0 = 0. In this
third corollary there are no cloud center codewords.

In all the corollaries, the auxiliaries (Ruj , Rvj : j ∈
{0, 1, 2}) are eliminated through the Fourier–Motzkin elimi-
nation.1 We remark that the first two correlation structures can
also be realized through the rate-splitting approach mentioned
in Section III-A.

Corollary 1 (Scheme I): A rate pair (R1, R2) is achievable
for the downlink 2-BS 2-user C-RAN with BS cooperation if

R1 < I(U0;Y1), (12)
R2 < I(V0;Y2), (13)

R1 +R2 < I(U0;Y1) + I(V0;Y2)− I(U0;V0), (14)
R1 +R2 < min{C1 + C12, C2 + C21, C1 + C2}, (15)

for some joint pmf pU0,V0
and some functions xk(u0, v0), k ∈

{1, 2}.
Corollary 2 (Scheme II): A rate pair (R1, R2) is achievable

for the downlink 2-BS 2-user C-RAN with BS cooperation if

R1 < C1 + C12 + I(U2;Y1|U0, U1), (16)
R1 < C2 + C21 + I(U1;Y1|U0, U2), (17)
R1 < I(U0, U1, U2;Y1), (18)
R2 < C1 + C12 + I(V2;Y2|V0, V1), (19)
R2 < C2 + C21 + I(V1;Y2|V0, V2), (20)
R2 < I(V0, V1, V2;Y2), (21)

R1 +R2 < C1 + C2, (22)
R1 +R2 < C1 + C12 + I(U2;Y1|U0, U1)

+I(V2;Y2|V0, V1), (23)
R1 +R2 < C2 + C21 + I(U1;Y1|U0, U2)

+I(V1;Y2|V0, V2), (24)
R1 + 2R2 < C1 + C2 + C12 + C21 + I(V1, V2;Y2|V0), (25)

1In this paper, all Fourier–Motzkin eliminations are performed using the
software developed by Gattegno, et al. [17].
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2R1 +R2 < C1 + C2 + C12 + C21 + I(U1, U2;Y1|U0), (26)
2R1 + 2R2 < C1 + C2 + C12 + C21 + I(U1, U2;Y1|U0)

+I(V1, V2;Y2|V0), (27)

for some joint pmf
∏2
j=0 pUjpVj and some functions

xk(u0, v0, uk, vk), k ∈ {1, 2}.
When applied to the memoryless Gaussian model (4),

Corollary 2 with C12 = C21 = 0 recovers the rate region
of the scheme of Zakhour and Gesbert [3, Proposition 1].

Corollary 3 (Scheme III): A rate pair (R1, R2) is achievable
for the downlink 2-BS 2-user C-RAN with BS cooperation if

R1 < C1 + C12 + I(U2;U1, Y1)− I(U2;U1, V1),(28)
R1 < C2 + C21 + I(U1;U2, Y1)− I(U1;U2, V2),(29)
R1 < I(U1, U2;Y1)

+ min

 0,
I(V1;V2, Y2)− I(V1;U1, U2),
I(V2;V1, Y2)− I(V2;U1, U2)

 ,

(30)
R2 < C1 + C12 + I(V2;V1, Y2)− I(V2;U1, V1), (31)
R2 < C2 + C21 + I(V1;V2, Y2)− I(V1;U2, V2), (32)
R2 < I(V1, V2;Y2)

+ min

 0,
I(U2;U1, Y1)− I(U2;V1, V2),
I(U1;U2, Y1)− I(U1;V1, V2)

 ,

(33)
R1 +R2 < I(U1, U2;Y1) + I(V1, V2;Y2)

−I(U1, U2;V1, V2), (34)
R1 +R2 < C1 + C2 − I(U1, V1;U2, V2), (35)
R1 +R2 < C1 + C12 − I(U1, V1;U2, V2)

+ min



I(U2;U1, Y1) + I(V2;V1, Y2)
−I(U2;V2),
2I(U2;U1, Y1) + I(V1, V2;Y2)
−I(U2;V1)− I(U2;V2)
+I(V1;V2),
I(U1, U2;Y1) + 2I(V2;V1, Y2)
−I(U1;V2)− I(U2;V2)
+I(U1;U2)


,

(36)
R1 +R2 < C2 + C21 − I(U1, V1;U2, V2)

+ min



I(U1;U2, Y1) + I(V1;V2, Y2)
−I(U1;V1),
2I(U1;U2, Y1) + I(V1, V2;Y2)
−I(U1;V1)− I(U1;V2)
+I(V1;V2),
I(U1, U2;Y1) + 2I(V1;V2, Y2)
−I(U1;V1)− I(U2;V1)
+I(U1;U2)


,

(37)

for some joint pmf pU1,V1,U2,V2 and some functions
xk(uk, vk), k ∈ {1, 2}, such that

I(U1;V1) < I(U1;U2, Y1) + I(V1;V2, Y2), (38)
I(U2;V2) < I(U2;U1, Y1) + I(V2;V1, Y2), (39)

I(U1;V2) < I(U1;U2, Y1) + I(V2;V1, Y2), (40)
I(U2;V1) < I(U2;U1, Y1) + I(V1;V2, Y2). (41)

C. Examples
Now let us consider two special cases with simpler topolo-

gies.
Example 1 (1 BS and 2 users): The downlink 1-BS 2-user C-

RAN can be considered as a special case of the downlink 2-BS
2-user C-RAN with C2 = C12 = C21 = 0 and pY1,Y2|X1,X2

=
pY1,Y2|X1

. We fix a joint pmf pU,V and substitute (U1, V1) =
(U, V ), Uj = Vj = ∅, and Ruj = Rvj = 0, j ∈ {0, 2}, in
Theorem 1. Then, after removing Ru1 and Rv1 by the Fourier–
Motzkin elimination, we have the following corollary.

Corollary 4: A rate pair (R1, R2) is achievable for the
downlink 1-BS 2-user C-RAN if there exist some pmf pU,V
and some function x1(u, v) such that

R1 < I(U ;Y1), (42)
R2 < I(V ;Y2), (43)

R1 +R2 < I(U ;Y1) + I(V ;Y2)− I(U ;V ), (44)
R1 +R2 < C1. (45)

Thus, the achieved rate region is essentially Marton’s inner
bound [18] with the additional constraint (45) due to the fact
that the digital link is of finite capacity. ♦

Example 2 (2 BSs and 1 user): The downlink 2-BS 1-user
C-RAN is a class of diamond networks [10], [19], which can
be considered as a special case of the downlink 2-BS 2-user
C-RAN by setting R2 = 0. We fix a joint pmf pU,X1,X2

and
substitute (U0, U1, U2) = (U,X1, X2), Vj = ∅, and Rvj =
0, j ∈ {0, 1, 2}, in Theorem 1. Then, after removing Ru0,
Ru1, and Ru2 by the Fourier–Motzkin elimination, we have
the following corollary.

Corollary 5: Any rate R1 is achievable for the downlink
2-BS 1-user C-RAN with BS cooperation if there exists some
pmf pU,X1,X2 such that

R1 < min



C1 + C2 − I(X1;X2|U),
C1 + C12 + I(X2;Y1|U,X1),
C2 + C21 + I(X1;Y1|U,X2),
I(X1, X2;Y1),
1
2 [C1 + C2 + C12 + C21

+I(X1, X2;Y1|U)− I(X1;X2|U)]


. (46)

Remark 2: Considering diamond networks with an orthogo-
nal broadcast channel, the proposed G-DS scheme recovers the
achievability results in [10, Theorem 2] and [19, Theorem 1].
It is shown in [19] that the achievability is optimal when the
second hop is the binary-adder multiple-access channel, i.e.,
X1 = X2 = {0, 1}, Y1 = {0, 1, 2}, and Y1 = X1 + X2. Fur-
thermore, the proposed cooperative G-DS scheme recovers the
achievability result in [20, Theorem 2] in which cooperation
between relays is also included in the network model.

♦

D. Coding Scheme
Codebook generation: Fix a joint pmf pU0,V0,U1,V1,U2,V2

and functions xj(u0, v0, uj , vj), j ∈ {1, 2}. Randomly and
independently generate sequences
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Fig. 3. Illustration of the encoding operation at the central processor in the
G-DS scheme.

• un0 (k0), each according to
∏n
i=1 pU0(u0i), for k0 ∈ [2nRu0 ];

• un1 (k1), each according to
∏n
i=1 pU1

(u1i), for k1 ∈ [2nRu1 ];
• un2 (k2), each according to

∏n
i=1 pU2

(u2i), for k2 ∈ [2nRu2 ];
• vn0 (`0), each according to

∏n
i=1 pV0

(v0i), for `0 ∈ [2nRv0 ];
• vn1 (`1), each according to

∏n
i=1 pV1

(v1i), for `1 ∈ [2nRv1 ];
• vn2 (`2), each according to

∏n
i=1 pV2(v2i), for `2 ∈ [2nRv2 ].

Next, we generate dictionaries:

D0 = {(k0, `0) ∈ [2nRu0 ]× [2nRv0 ] :

(un0 (k0), vn0 (`0)) ∈ T (n)
ε′ }, (47)

and for all (k0, `0) ∈ D0 :

D1(k0, `0) =

{(k1, `1) ∈ [2nRu1 ]× [2nRv1 ] :

(un1 (k1), vn1 (`1)) ∈ T (n)
ε′ (U1, V1|un0 (k0), vn0 (`0))}, (48)

D2(k0, `0)

{(k2, `2) ∈ [2nRu2 ]× [2nRv2 ] :

(un2 (k2), vn2 (`2)) ∈ T (n)
ε′ (U2, V2|un0 (k0), vn0 (`0))}. (49)

Every index tuple in the dictionaries is assigned a unique
reference label by means of the functions

δ0 : D0 → {1, . . . , |D0|} (50)

and for all (k0, `0) ∈ D0:

δ1(·|k0, `0) : D1(k0, `0)→ {1, . . . , |D1(k0, `0)|}, (51)
δ2(·|k0, `0) : D2(k0, `0)→ {1, . . . , |D2(k0, `0)|}. (52)

Let δ−1
0 , δ−1

1 (·|k0, `0), and δ−1
2 (·|k0, `0) denote the corre-

sponding inverse maps.
Finally, we randomly and independently assign an index

m1(k0, k1, k2) to each index tuple (k0, k1, k2) ∈ [2nRu0 ] ×
[2nRu1 ] × [2nRu2 ] according to a uniform pmf over [2nR1 ].
Similarly, we randomly and independently assign an index
m2(`0, `1, `2) to each index tuple (`0, `1, `2) ∈ [2nRv0 ] ×
[2nRv1 ]× [2nRv2 ] according to a uniform pmf over [2nR2 ]. We
refer to each subset of index tuples with the same index mj

as a bin Bj(mj), j ∈ {1, 2}.

Central Processor: Upon seeing (m1,m2), the central pro-
cessor finds (k0, k1, k2) ∈ B1(m1) and (`0, `1, `2) ∈ B2(m2)
such that

(un0 (k0), un1 (k1), un2 (k2), vn0 (`0), vn1 (`1), vn2 (`2)) ∈ T (n)
ε′ . (53)

If there is more than one such tuple, choose an arbi-
trary one among them. If no such tuple exists, choose
(k0, k1, k2, `0, `1, `2) = (1, 1, 1, 1, 1, 1). Then, the central
processor splits δ0(k0, `0) into three subindices w(0)

0 , w(1)
0 ,

and w
(2)
0 of rates R00, R01, and R02, respectively. Also, for

j ∈ {1, 2}, the central processor splits δj(kj , `j |k0, `0) into
two subindices w(1)

j and w
(2)
j of rates Rj1 and Rj2, respec-

tively. Finally, the central processor sends the index tuple
(w

(0)
0 , w

(1)
0 , w

(1)
1 , w

(1)
2 ) to BS 1 and (w

(0)
0 , w

(2)
0 , w

(2)
1 , w

(2)
2 )

to BS 2. The encoding operation at the central processor is
illustrated in Figure 3.

Basestations: BS 1 forwards (w
(1)
0 , w

(1)
2 ) to BS 2 over the

cooperation link. BS 2 forwards (w
(2)
0 , w

(2)
1 ) to BS 1 over the

cooperation link. Both BSs apply the inverse mapping δ−1
0 to

the received triple (w
(0)
0 , w

(1)
0 , w

(2)
0 ) to recover the common

indices (k0, `0):

(k0, `0) = δ−1
0 (w

(0)
0 , w

(1)
0 , w

(2)
0 ). (54)

Then, BS j ∈ {1, 2}, applies the inverse mapping δ−1
j (·|k0, `0)

to the obtained (w
(1)
j , w

(2)
j ) to recover its private indices

(kj , `j):
(kj , `j) = δ−1

j (w
(1)
j , w

(2)
j |k0, `0). (55)

Finally, BS j transmits the symbol
xji(u0i(k0), v0i(`0), uji(kj), vji(`j)) at each time i ∈ [n].

Mobile users: Let ε > ε′. User 1 declares that m̂1 is sent
if it is the unique message such that for some (k0, k1, k2) ∈
B1(m̂1) it holds that

(un0 (k0), un1 (k1), un2 (k2), yn1 ) ∈ T (n)
ε ; (56)

otherwise it declares an error. User 2 declares that m̂2 is sent
if it is the unique message such that for some (`0, `1, `2) ∈
B2(m̂2) it holds that

(vn0 (`0), vn1 (`1), vn2 (`2), yn2 ) ∈ T (n)
ε ; (57)

otherwise it declares an error.
Analysis of error probability: Let (M1,M2) be the mes-

sages and let (K0,K1,K2, L0, L1, L2) be the indices chosen
at the encoder. In order to have a lossless transmission over
the digital links,

R00 +R01 +R11 +R21 ≤ C1, (58)
R00 +R02 +R12 +R22 ≤ C2, (59)

R01 +R21 ≤ C21, (60)
R02 +R12 ≤ C12. (61)

Also, we note that

R00 +R01 +R02 = log |D0|, (62)
R11 +R12 = log |D1(K0, L0)|, (63)
R21 +R22 = log |D2(K0, L0)|. (64)
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Thus, after applying Fourier-Motzkin elimination to remove
R00 and (Rj1, Rj2), j ∈ {0, 1, 2}, from (58)–(61)

log |D0|+ log |D1(K0, L0)| ≤ C1 + C12, (65)
log |D0|+ log |D2(K0, L0)| ≤ C2 + C21, (66)

log |D0|+ log |D1(K0, L0)|
+ log |D2(K0, L0)| ≤ C1 + C2. (67)

We denote by A the intersection of the random
events (65), (66), and (67). From Lemma 1 proved in
Appendix A, the random event A happens with high
probability as n→∞ if

C1 + C12 ≥ Ru0 +Rv0 − I(U0;V0) +Ru1 +Rv1

−I(U1;V1)− I(U0, V0;U1, V1), (68)
C2 + C21 ≥ Ru0 +Rv0 − I(U0;V0) +Ru2 +Rv2

−I(U2;V2)− I(U0, V0;U2, V2), (69)
C1 + C2 ≥ Ru0 +Rv0 − I(U0;V0) +Ru1 +Rv1

−I(U1;V1)− I(U0, V0;U1, V1)

+Ru2 +Rv2 − I(U2;V2)− I(U0, V0;U2, V2).

(70)

Besides the error event Ac, the decoding at User 1 fails if
one or more of the following events occur:

Es = {(Un0 (k0), Un1 (k1), Un2 (k2),

V n0 (`0), V n1 (`1), V n2 (`2)) /∈ T (n)
ε′

for all (k0, k1, k2) ∈ B1(M1), (`0, `1, `2) ∈ B2(M2)},
(71)

Ed0 = {(Un0 (K0), Un1 (K1), Un2 (K2), Y n1 ) /∈ T (n)
ε }, (72)

Ed1 = {(U0(K0), Un1 (k1), Un2 (K2), Y n1 ) ∈ T (n)
ε

for some k1 6= K1}, (73)
Ed2 = {(U0(K0), Un1 (K1), Un2 (k2), Y n1 ) ∈ T (n)

ε

for some k2 6= K2}, (74)
Ed3 = {(U0(K0), Un1 (k1), Un2 (k2), Y n1 ) ∈ T (n)

ε

for some k1 6= K1, k2 6= K2}, (75)
Ed4 = {(U0(k0), Un1 (K1), Un2 (K2), Y n1 ) ∈ T (n)

ε

for some k0 6= K0}, (76)
Ed5 = {(U0(k0), Un1 (k1), Un2 (K2), Y n1 ) ∈ T (n)

ε

for some k0 6= K0, k1 6= K1}, (77)
Ed6 = {(U0(k0), Un1 (K1), Un2 (k2), Y n1 ) ∈ T (n)

ε

for some k0 6= K0, k2 6= K2}, (78)
Ed7 = {(U0(k0), Un1 (k1), Un2 (k2), Y n1 ) ∈ T (n)

ε

for some k0 6= K0, k1 6= K1, k2 6= K2}. (79)

Thus, the average error probability for M1 is upper bounded
as

P({M̂1 6= M1}) ≤ P(Es) + P(Ac) + P(Ed0 ∩ Ecs ∩ A)

+

7∑
i=1

P(Edi). (80)

From Lemma 2 proved in Appendix B, the term P(Es) tends
to zero as n→∞ if∑

i∈Ωu

Rui +
∑
j∈Ωv

Rvj

> 1{Ωu = {0, 1, 2}}R1 + 1{Ωv = {0, 1, 2}}R2

+Γ(U(Ωu), V (Ωv)), (81)

for all Ωu,Ωv ⊆ {0, 1, 2} such that |Ωu|+ |Ωv| ≥ 2.
Next, due to the codebook construction and the conditional

typicality lemma [15, p. 27], P(Ed0 ∩Ecs ∩A) tends to zero as
n→∞. Finally, using the joint typicality lemma [15, p. 29],∑7
i=1 P(Edi) tends to zero as n→∞ if

Ru1 < I(U1;U0, U2, Y1)− δ(ε), (82)
Ru2 < I(U2;U0, U1, Y1)− δ(ε), (83)

Ru1 +Ru2 < I(U1, U2;U0, Y1)

+I(U1;U2)− δ(ε), (84)
Ru0 < I(U0;U1, U2, Y1)− δ(ε), (85)

Ru0 +Ru1 < I(U0, U1;U2, Y1)

+I(U0;U1)− δ(ε), (86)
Ru0 +Ru2 < I(U0, U2;U1, Y1)

+I(U0;U2)− δ(ε), (87)
Ru0 +Ru1 +Ru2 < I(U0, U1, U2;Y1) + I(U0;U1, U2)

+I(U1;U2)− δ(ε). (88)

The average error probability for M2 can be bounded in a
similar manner and then we have the additional rate conditions

Rv1 < I(V1;V0, V2, Y2)− δ(ε), (89)
Rv2 < I(V2;V0, V1, Y2)− δ(ε), (90)

Rv1 +Rv2 < I(V1, V2;V0, Y2)

+I(V1;V2)− δ(ε), (91)
Rv0 < I(V0;V1, V2, Y2)− δ(ε), (92)

Rv0 +Rv1 < I(V0, V1;V2, Y2)

+I(V0;V1)− δ(ε), (93)
Rv0 +Rv2 < I(V0, V2;V1, Y2)

+I(V0;V2)− δ(ε), (94)
Rv0 +Rv1 +Ru2 < I(V0, V1, V2;Y2)

+I(V0;V1, V2) + I(V1;V2)− δ(ε). (95)

Finally, the theorem is established by letting ε tend to zero.

IV. COOPERATIVE GENERALIZED COMPRESSION SCHEME

This section is devoted to compression-based schemes,
where our contributions are as follows:
• For the downlink 2-BS 2-user C-RAN, we introduce

Gray-Wyner coding [14] to the DDF scheme [7] for C-
RAN [6] and extend the resulting scheme to BS-to-BS
cooperation. Also, we derive a single-letter rate region
for general discrete memoryless channels on the second
hop.

• We show that under the memoryless Gaussian model,
the original DDF scheme for C-RAN with BS-to-BS
cooperation achieves within a constant gap (independent
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of transmission power) from the capacity region. This
constant gap is smaller than the constant gap provided in
[7] for general relay networks.

A. Performance and Coding Scheme

We start with a high-level summary of the proposed co-
operative compression scheme. The encoding is based on
superposition coding and multicoding. Each message mj ,
j ∈ {1, 2}, is associated with a set of independently generated
codewords Unj (mj , `j) of size 2nR̃j . Then, we introduce Gray-
Wyner source coding [14]. That means, we generate three
codebooks X0,X1,X2 using superposition coding: the code-
book X0 contains the cloud centers Xn

0 (k0) and the codebooks
X1 and X2 contain the satellite codewords Xn

1 (k1|k0) and
Xn

2 (k2|k0), respectively.
Given (m1,m2), we apply joint typicality encoding

to find an index tuple (k0, k1, k2, `1, `2) such that
(Un1 (m1, `1), Un2 (m2, `2), Xn

0 (k0), Xn
1 (k1|k0), Xn

2 (k2|k0))
are jointly typical. In words, we jointly apply Marton channel
coding on the messages m1 and m2 and Gray-Wyner source
coding on the resulting codewords.

The next step is to convey (k0, k1) to BS 1 and (k0, k2) to
BS 2, during which the cooperation links are used to reduce
the workload of the digital links from the central processor to
the BSs. Finally, each user j ∈ {1, 2} applies joint typicality
decoding to recover the auxiliary Unj (mj , `j) and thus can
recover the desired message mj .

Theorem 2: A rate pair (R1, R2) is achievable for the
downlink 2-BS 2-user C-RAN with BS cooperation if

R1 < I(U1;Y1)

+ min

 0,
C1 + C12 − I(U1;X0, X1),
C2 + C21 − I(U1;X0, X2)

 , (96)

R2 < I(U2;Y2)

+ min

 0,
C1 + C12 − I(U2;X0, X1),
C2 + C21 − I(U2;X0, X2)

 , (97)

R1 +R2 < I(U1;Y1) + I(U2;Y2)− I(U1;U2)

+ min


0,
C1 + C12 − I(U1, U2;X0, X1),
C2 + C21 − I(U1, U2;X0, X2),
C1 + C2 − I(U1, U2;X0, X1, X2)
−I(X1;X2|X0)

 ,

(98)
2R1 +R2 < I(U1;Y1) + I(U2;Y2)− I(U1;U2)

+C1 + C2 + C12 + C21

−I(U1, U2;X0, X1, X2)− I(X1;X2|X0),

+I(U1;Y1)− I(U1;X0), (99)
R1 + 2R2 < I(U1;Y1) + I(U2;Y2)− I(U1;U2)

+C1 + C2 + C12 + C21

−I(U1, U2;X0, X1, X2)− I(X1;X2|X0),

+I(U2;Y2)− I(U2;X0), (100)
2R1 + 2R2 < I(U1;Y1) + I(U2;Y2)− I(U1;U2)

T
(n)

²0T
(n)

²0

BS 1BS 1 BS 2BS 2

k0k0

Fig. 4. Illustration of the encoding operation at the central processor in the
G-Compression scheme.

+C1 + C2 + C12 + C21

−I(U1, U2;X0, X1, X2)− I(X1;X2|X0)

+I(U1;Y1) + I(U2;Y2)

−I(U1;U2)− I(U1, U2;X0), (101)

for some joint pmf pU1,U2,X0,X1,X2
.

Proof: We describe and analyze a coding scheme achiev-
ing the desired rate region.

Codebook generation: Fix a joint pmf pU1,U2,X0,X1,X2
. For

j ∈ {1, 2}, randomly and independently generate sequences
unj (mj , `j), according to

∏n
i=1 pUj (uji), for (mj , `j) ∈

[2nRj ] × [2nR̃j ]. Randomly and independently generate se-
quences xn0 (k0), according to

∏n
i=1 pX0(x0i), for k0 ∈

[2nR
′
0 ]. Finally, for j ∈ {1, 2}, randomly and indepen-

dently generate sequences xnj (kj |k0), each according to∏n
i=1 pXj |X0

(xji|x0i(k0)), for (k0, kj) ∈ [2nR
′
0 ]× [2nR

′
j ].

Central processor: Upon seeing (m1,m2), the central pro-
cessor finds an index tuple (k0, k1, k2, `1, `2) such that

(un1 (m1, `1), un2 (m2, `2),

xn0 (k0), xn1 (k1|k0), xn2 (k2|k0)) ∈ T (n)
ε′ . (102)

If there is more than one such tuple, choose an arbi-
trary one among them. If no such tuple exists, choose
(k0, k1, k2, `1, `2) = (1, 1, 1, 1, 1). Then, the central processor
splits k0 into three subindices k(0)

0 , k(1)
0 , and k

(2)
0 of rates

R′00, R′01, and R′02, respectively. Also, for j ∈ {1, 2}, the
central processor splits kj into two subindices k(1)

j and k(2)
j of

rates R′j1 and R′j2, respectively. Finally, the central processor
sends the index tuple (k

(0)
0 , k

(1)
0 , k

(1)
1 , k

(1)
2 ) to BS 1 and

(k
(0)
0 , k

(2)
0 , k

(2)
1 , k

(2)
2 ) to BS 2. The encoding operation at the

central processor is illustrated in Figure 4.
Base stations: BS 1 forwards (k

(1)
0 , k

(1)
2 ) to BS 2 over the

cooperation link. BS 2 forwards (k
(2)
0 , k

(2)
1 ) to BS 1 over the

cooperation link. Thus, BS j ∈ {1, 2} learns the value of
(k0, kj) and transmits xnj (kj |k0).

Mobile users: Let ε > ε′. For j ∈ {1, 2}, upon see-
ing ynj , user j finds the unique pair (m̂j , ˆ̀

j) such that
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(unj (m̂j , ˆ̀
j), y

n
j ) ∈ T (n)

ε and declares that m̂j is sent; oth-
erwise it declares an error.

Analysis of Error Probability: Let (M1,M2) be the mes-
sages and let (K0,K1,K2, L1, L2) be the indices chosen at
the central processor. In order to have a lossless transmission
over the digital links, it requires that

R′00 +R′01 +R′11 +R′21 ≤ C1, (103)
R′00 +R′02 +R′12 +R′22 ≤ C2, (104)

R′01 +R′21 ≤ C21, (105)
R′02 +R′12 ≤ C12. (106)

Note that R′00 + R′01 + R′02 = R′0 and R′j1 + R′j2 = R′j ,
j ∈ {1, 2}.

Assuming the above conditions are satisfied, the decoding
at user 1 fails if one or more of the following events occur:

E0 = {(Un1 (M1, `1), Un2 (M2, `2),

Xn
0 (k0), Xn

1 (k1|k0), Xn
2 (k2|k0)) /∈ T (n)

ε′

for all (k0, k1, k2, `1, `2)}, (107)
E1 = {(Un1 (M1, L1), Y n1 ) /∈ T (n)

ε }, (108)
E2 = {(Un1 (m1, `1), Y n1 ) ∈ T (n)

ε

for some (m1, `1) 6= (M1, L1)}. (109)

The average error probability for M1 is upper bounded as

P({M̂1 6= M1}) ≤ P(E0) + P(E1 ∩ Ec0) + P(E2). (110)

By extending [15, Lemma 14.1, p. 351], it can be shown
that the term P(E0) tends to zero as n → ∞ if R̃1 + R̃2 >
I(U1;U2) + δ(ε′) and

R′0 +
∑
k∈S

R′k +
∑
j∈D

R̃j

> I(U(D);X0, X(S)) + 1{S = {1, 2}}I(X1;X2|X0)

+1{D = {1, 2}}I(U1;U2) + δ(ε′), (111)

for all D,S ⊆ {1, 2}. Next, due to the codebook construction
and the conditional typicality lemma [15, p. 27], P(E1 ∩ Ec0)
tends to zero as n → ∞. Finally, using the joint typicality
lemma [15, p. 29], P(E2) tends to zero as n→∞ if

R1 + R̃1 < I(U1;Y1)− δ(ε). (112)

The average error probability for M2 can be bounded in a
similar manner and then we have the additional rate condition

R2 + R̃2 < I(U2;Y2)− δ(ε). (113)

Using the Fourier–Motzkin elimination to project out R̃1, R̃2,
and R′0j , R

′
j , j ∈ {0, 1, 2}, we obtain the rate conditions in

Theorem 2. Finally, the theorem is established by letting ε→
0.

B. Improved Constant-Gap Result

Since downlink C-RAN is a special instance of memoryless
broadcast relay networks, the DDF scheme achieves any point
in the capacity region of an N -BS L-user C-RAN to within a
gap of (1+N+L)/2 bits per dimension under the memoryless
Gaussian model [7, Corollary 8]. The following theorem

M1M1 ProcessorProcessor
CentralCentral BS 1BS 1 User 1User 1 M̂1M̂1

C1C1 pY1jX1
pY1jX1

Fig. 5. The system considered in Example 3.

tightens this gap for downlink C-RANs. The proof is deferred
to Appendix C.

Theorem 3: Consider the downlink of any N -BS L-user C-
RAN with BS cooperation. Under the memoryless Gaussian
model, the DDF scheme for broadcast achieves within L

2 +
min{N,L logN}

2 bits per dimension from the capacity region.
A tighter gap might be obtained by considering our exten-

sion of DDF that includes also cloud center codewords.

V. COMPARISON AND NUMERICAL EVALUATIONS

In this section, we evaluate and compare our cooperative
G-DS scheme and our cooperative T-compression scheme at
hand of some examples. We start with examples without BS-
to-BS cooperation. In the first example, the G-DS scheme
(as well as the data-sharing scheme) is optimal, whereas the
G-compression scheme is strictly suboptimal. In the second
example the opposite is true. In the second part of this section,
we provide numerical results for the memoryless Gaussian
model.

A. Examples

Example 3 (One BS and One User): Consider the special
case with only one BS and one user, as depicted in Figure 5.
(Our model reduces to this scenario when the DM-IC is of
the form pY1,Y2|X1,X2

= pY1,Y2|X1
and when C2 = R2 = 0.)

Decode-and-forward [21] is optimal in this special case and
rate R1 is achievable whenever

R1 < min

{
C1,max

pX1

I(X1;Y1)

}
. (114)

Furthermore, compress-and-forward [21] is also optimal since
the first hop is noiseless. To see this, notice that for this
simple setup the rate achieved with compress-and-forward
is R1 ≤ I(X̃1; Ŷ1|X1) where X̃n

1 describes the bits sent
over the fronthaul link and where the pmf pX̃1X2Ŷ1

has to
decompose as pX̃1

pX1pỸ1|X̃1X1
and satisfy C1 ≤ H(X̃1) and

I(X1;Y1) ≥ I(X̃1; Ŷ1|X1). Picking Ŷ1 = X̃1 uniform over
min{C1,maxpX1

I(X1;Y1)} independent of X1 and picking
X1 to achieve capacity over the channel from the BS to
the mobile user, establishes the desired achievability result.
This performance is also recovered by the G-DS scheme; see
Corollary 4 specialized to R2 = 0 and the choice of auxiliaries
V = ∅ and X1 = U .

The compression scheme and the DDF scheme for broadcast
achieve any rate R1 that satisfies:

R1 < I(U1;Y1), (115)
R1 < C1 + I(U1;Y1)− I(U1;X1)

= C1 − I(U1;X1|Y1), (116)

for some pmf pU1,X1
s.t. U1 (−− X1 (−− Y1 form a Markov

chain.
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X1X1

X2X2

Y1Y1

Y2Y2

Fig. 6. The system considered in Example 4.

If the second hop is deterministic, i.e., Y1 is a deter-
ministic function of X1, then the compression scheme with
U1 = Y1 achieves capacity. However, if the second hop is
not deterministic, then setting U1 = Y1 violates the Markov
condition U1 (−− X1 (−− Y1. In general, compression
schemes are suboptimal. To see this, consider a discrete
memoryless channel satisfying pY1|X1

(y1|x1) < 1 for all
(x1, y1) ∈ X1×Y1, i.e., for all inputs x1 ∈ X1, the output Y1

is not a deterministic function of x1. Then, for every pmf pX1
,

the corresponding joint pmf pX1,Y1
is indecomposable.2 Next,

let us assume that 0 < C1 < maxpX1
I(X1;Y1). Now we

show that the compression scheme is not capacity achieving
by contradiction.

If the compression scheme is capacity achieving, then it
holds that the capacity-achieving distribution pU1,X1 satisfies
that I(U1;X1|Y1) = 0, i.e., U1 (−− Y1 (−− X1 form a
Markov chain. However, since U1 (−− X1 (−− Y1 also form
a Markov chain, the indecomposability of the joint pmf pX1,Y1

implies that the capacity-achieving distribution pU1,X1
satisfies

that U1 is independent of (X1, Y1) (see [22, Problem 16.25,
p. 392]) and thus I(U1;Y1) = 0, which contradicts that the
joint pmf pU1,X1

achieves the capacity C1 > 0. ♦
Example 4 (Z-Interference Channel): Consider the setup

without BS-to-BS cooperation where C1 = C2 = 1, C12 =
C21 = 0, X1 = X2 = {0, 1}, Y1 = X1, and Y2 = X1 ⊕X2.
The system is depicted in Figure 6. Now we show that the
rate pair (R1, R2) = (1, 1), which is on the boundary of the
capacity region, is achievable by the G-compression scheme
but not by the G-DS scheme.

The following scheme achieves the desired rate pair
(R1, R2) = (1, 1). Fix a blocklength n and denote by Bn` :=
(B`,1, . . . , B`,n) the n-bits representation of M`, ` ∈ {1, 2}.
The central processor sends all bits Bn1 to BS 1, and it sends
the x-or bits Bn⊕ := (B1,1 ⊕B2,1, . . . , B1,n ⊕B2,n) to BS 2.
BS 1 sends inputs Xn

1 = Bn1 over the DM-IC and BS 2 sends
inputs Xn

2 = Bn⊕.
The same performance is achieved by the compression

scheme when the auxiliaries (U1, U2) are chosen i.i.d.
Bernoulli(1/2), and X0 = ∅, X1 = U1, and X2 = U1 ⊕ U2.

Now let us investigate the G-DS scheme. We consider the
following relaxed conditions, where the inequalities do not
need to be strict:

R1 +R2

(a)

≤ I(U0, U1, U2;Y1) + I(V0, V1, V2;Y2)

2A joint pmf pX,Y is said to be indecomposable [22, Problem 15.12, p.
345] if there are no functions f and g with respective domains X and Y so
that 1) P(f(X) = g(Y )) = 1 and 2) f(X) takes at least two values with
non-zero probability.

−I(U0, U1, U2;V0, V1, V2), (117)

2R1 +R2

(b)

≤ C1 + C2 + C12 + C21 + I(U1, U2;Y1|U0)

−I(U1, V1;U2, V2|U0, V0), (118)

where (a) follows by combining (6), (7), and (8) with Ωu =
Ωv = {0, 1, 2} and (b) follows by combining two times of
(6) with (Ωu,Ωv) = ({0, 1, 2}, {0, 1, 2}) and (Ωu,Ωv) =
({0, 1, 2}, ∅), (7) with Ωu = {1, 2}, (9), and (10).

If (R1, R2) = (1, 1) is achievable by the G-DS scheme, then
there must exist a joint pmf pU0,V0,U1,V1,U2,V2

and functions
xk(u0, v0, uk, vk), k ∈ {1, 2}, such that
1) I(U0, U1, U2;V0, V1, V2) = 0;
2) I(U1, V1;U2, V2|U0, V0) = 0;
3) I(U0, U1, U2;Y1) = 1;
4) I(V0, V1, V2;Y2) = 1;
5) I(U1, U2;Y1|U0) = 1.
However, the above constraints cannot be satisfied simultane-
ously. To see this, let us assume that the first four conditions
hold, which imply that
1) (U0, U1, U2) is independent of (V0, V1, V2);
2) the Markov chains U1 (−− U0 (−− U2 and V1 (−−

V0 (−− V2 hold; and
3) H(X1|U0, U1, U2) = H(X1 ⊕X2|V0, V1, V2) = 0.
Thus,

I(X1;V0, V1|U0, U1) = I(X1, U0, U1;V0, V1) (119)
≤ I(X1, U0, U1, U2;V0, V1) (120)
(a)
= I(U0, U1, U2;V0, V1) = 0,(121)

where (a) follows since H(X1|U0, U1, U2) = 0. Since X1

is a function of (U0, V0, U1, V1) by construction, we have
H(X1|U0, U1) = H(X1|U0, V0, U1, V1) = 0, i.e., X1 is a
function of (U0, U1). Finally, it holds that

0 = H(X1 ⊕X2|V0, V1, V2) (122)
≥ H(X1 ⊕X2|U0, U2, V0, V1, V2) (123)
= H(X1|U0, U2, V0, V1, V2) (124)
(a)
= H(X1|U0), (125)

where (a) follows since X1 is a function of (U0, U1);
(U0, U1, U2) is independent of (V0, V1, V2); and U1 (−−
U0 (−− U2 form a Markov chain. From all above we obtain
that constraint 5) cannot be satisfied since Y1 is a function
of U0, which concludes that the G-DS scheme cannot achieve
the rate pair (1, 1). ♦

B. Numerical Evaluation for the Memoryless Gaussian Model

In this subsection, we compare the achieved sum rates of
the various coding schemes under the memoryless Gaussian
model. For simplicity, we consider the symmetric case, i.e.,

C1 = C2 = C

C12 = C21 = Ccoop

g11 = g22 = 1

|g12| = |g21|.
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Then, the achievable sum rate R1 +R2 can be upper bounded
using the cut-set bound as

R1 +R2 < min{2C,R?sum}, (126)

where R?sum denotes the optimal sum rate assuming C = ∞,
which can be computed by evaluating the corresponding
Gaussian MIMO broadcast channel. We will use the cut-set
bound (126) as a reference for comparison. To date, no better
converse bound is known, except when there is only a single
mobile user [19].

We first consider scenarios without BS-to-BS cooperation,
i.e., Ccoop = 0. Here, we are mainly interested in regimes
where the G-DS scheme outperforms the G-compression
scheme and the reverse compute–forward. Evaluating the G-
DS scheme directly is challenging, so we evaluate the special
cases with restricted correlation structures and then apply time
sharing on them. To summarize, we evaluate the following
schemes

1) G-DS scheme I, II, and III (Corollaries 1, 2, and 3),
2) G-Compression scheme (Theorem 2), and
3) reverse compute–forward with power allocation [8].
Now let us specify our (sub-optimal) choice of auxiliary

random variables for the various schemes.
Let S(k) be a 2 × 1 jointly Gaussian random vector with

zero-mean entries and covariance matrix K(k), for k ∈ {1, 2}.
We assume that S(1) and S(2) are independent. For notational
convenience, we denote g2 =

[
g21 g22

]
.

1) G-DS Scheme I: U0 = S(1), V0 = S(2) + AS(1), and[
X1

X2

]
= S(1) + S(2), where

A = K(2)gT2

(
1 + g2K

(2)gT2

)−1

g2. (127)

Note that Xk = Uk + Vk, k ∈ {1, 2}. We optimize over
the covariance matrices K(1) and K(2) that satisfy the
average power constraints.

2) G-DS Scheme II: The random variables
(U0, V0, U1, V1, U2, V2) are i.i.d. N (0, 1) and
X1 = a1U0 + a2V0 + a3U1 + a4V1 and
X2 = b1U0 + b2V0 + b3U2 + b4V2 for some aj , bj ∈ R,
j ∈ {1, 2, 3, 4}. We optimize over the coefficients
(aj , bj : j ∈ {1, 2, 3, 4}) that satisfy the average power
constraints.

3) G-DS Scheme III:[
U1

U2

]
= S(1), (128)[

V1

V2

]
= S(2) + BS(1), (129)[

X1

X2

]
= (I + B)S(1) + S(2), (130)

where I is the 2×2 identity matrix and B is a 2×2 real-
valued matrix. Note that Xk = Uk + Vk, k ∈ {1, 2}.3

3We remark that since the BSs do not have full information about S(1)

and S(2), setting
[
X1

X2

]
= S(1) + S(2) is not allowed because the resulting

Xk is not a function of (Uk, Vk), k ∈ {1, 2}.
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Fig. 7. Achieved sum-rates of the G-DS schemes I, II, and III un-
der the symmetric memoryless Gaussian model. Here Ccoop = 0 and
[ g11 g12
g21 g22 ] = [ 1 0.5

0.5 1 ].

We optimize over the covariance matrices K(1), K(2) and
the precoding matrix B that satisfy the average power
constraints.

4) G-Compression: U1 = S(1), U2 = S(2) + CS(1), and[
X1

X2

]
= S(1) + S(2) + W, where

C = K(2)gT2

(
1 + g2(K(2) + K(w))gT2

)−1

g2, (131)

and W is a 2 × 1 jointly Gaussian random vector with
zero-mean entries and covariance matrix K(w), indepen-
dent of (S(1),S(2)). Finally, we let X0 be an N (0, 1)
random variable such that X0 and (S(1),S(2),W) are
jointly Gaussian. We optimize over the covariance matri-
ces K(1), K(2), and K(w) that satisfy the average power
constraints and over the covariances of X0 with each of
(S(1),S(2),W).

We first compare the G-DS schemes I–III where we
numerically optimize over the parameters B,K(1), K(2),
a1, a2, a3, a4, b1, b2, b3, b4. In Figures 7 and 8, we fix Ccoop =
0 and g12 = 0.5 and consider (P, g21) ∈ {1, 100} ×
{0.5,−0.5}. From the evaluation results, we make the fol-
lowing observations and remarks for the considered setup:

• In general, the G-DS scheme I using only common code-
words performs well in the strong-fronthaul regime, i.e.,
when C is large. By contrast, the G-DS scheme III using
only private codewords performs well in the weak-fronthaul
regime.
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Fig. 8. Achieved sum-rates of the G-DS schemes I, II, and III un-
der the symmetric memoryless Gaussian model. Here Ccoop = 0 and
[ g11 g12
g21 g22 ] =

[
1 0.5
−0.5 1

]
.

• Introducing correlation among codewords is useful. In fact,
time sharing between the G-DS schemes I and III outper-
forms the G-DS scheme II for all values of link capacity
C.

• The G-DS scheme III is more beneficial in the low-power
regime, i.e., when P is small.

• For the channel matrix in Figures 8(a) and 8(b), the G-
DS scheme II outperforms the G-DS schemes I and III for
certain regimes of link capacity C.

We remark that the achieved sum rate of the G-DS scheme I
can be simply expressed as min{C +Ccoop, 2C,R

?
sum}. Thus,

when Ccoop = 0, the G-DS scheme I is optimal for the regime
where C ≥ R?sum. It is however unclear whether including
common codewords strictly improves the performance of the
DS scheme. The presented numerical results cannot answer
this question, because the complexity of exhaustively search-
ing over all possible choices of the auxiliary random variables
seems too large.

Next, we compare the G-DS scheme (time sharing among
the G-DS schemes I, II, and III) with the G-compression
scheme and the reverse compute–forward scheme. In Fig-
ures 9 and 10, we fix g12 = 0.5 and consider (P, g21) ∈
{1, 10, 100} × {0.5,−0.5}. From the evaluation results, we
make the following observations and remarks for the consid-
ered setup:

• The G-DS scheme achieves the optimal sum rate when the
link capacity C is relatively small or relatively large. The
range of optimality depends on the power and the channel
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Fig. 9. Achieved sum-rates of the G-DS scheme, the G-compression
scheme, and the reverse compute–forward scheme with power control un-
der the symmetric memoryless Gaussian model. Here Ccoop = 0, and
[ g11 g12
g21 g22 ] = [ 1 0.5

0.5 1 ].

conditions. In general, in the low-power regime and/or when
the channel gain matrix is ill-conditioned, the G-DS scheme
has a more apparent advantage over the other two schemes.
• The G-compression scheme achieves a better perfor-

mance in the high-power regime. As P increases, the G-
compression scheme outperforms the other two schemes in
the middle range of link capacity.
• The reverse compute–forward has a good performance when

the link capacity C is relatively small, especially when P is
large. However, the reverse compute–forward suffers from
non-integer penalty and thus its achieved sum rate cannot
reach R?sum even if the link capacity C is large.

Finally, we consider BS cooperation, i.e., the case where
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Fig. 10. Achieved sum-rates of the G-DS scheme, the G-compression
scheme, and the reverse compute–forward scheme with power control un-
der the symmetric memoryless Gaussian model. Here Ccoop = 0, and
[ g11 g12
g21 g22 ] =

[
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]
.

Ccoop > 0.4 Figure 11 plots the achieved sum rates for the
case of (P, g12, g21) = (100, 0.5,−0.5). It turns out that
for the symmetric case, only the cooperative G-DS scheme
can benefit from the cooperation links. In particular, as the
link capacity Ccoop increases to two, the cooperative G-DS
scheme already outperforms the cooperative G-compression
scheme for all values of C. Recall that the G-DS scheme I
achieves the sum rate min{C + Ccoop, 2C,R

?
sum}. Since the

cut-set bound is min{2C,R?sum}, we see that increasing Ccoop
is beneficial when R1 + R2 < C + Ccoop is the dominating
constraint. By contrast, for the symmetric case the cooperative

4We note that the reverse compute–forward has not been extended for the
scenario with BS cooperation. We only include it here as a reference.
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Fig. 11. Achieved sum-rates of the G-DS scheme, the G-Compression
scheme, and the reverse compute–forward scheme with power control un-
der the symmetric memoryless Gaussian model. Here P = 100 and
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G-compression scheme cannot benefit from the cooperation
links because the dominating rate constraints do not involve
C12 and C21:

R1 +R2 < I(U1;Y1) + I(U2;Y2)− I(U1;U2)

+ min

{
0 , C1 + C2 − I(X1;X2|X0)

−I(U1, U2;X0, X1, X2)

}
,

(132)

which can be rewritten as

R1 +R2 < I(U1;Y1) + I(U2;Y2)− I(U1;U2), (133)
R1 +R2 < C1 + C2 − I(U1;X0, X1, X2|Y1)

−I(U2;U1, X0, X1, X2|Y2)− I(X1;X2|X0).

(134)
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If the channel gain matrix is asymmetric, the G-
Compression scheme can benefit from the cooperation links,
but the gain eventually saturates as Ccoop increases, again
due to the dominating constraint (132). Figure 12 plots
the achieved sum rates for the case of P = 100 and
[ g11 g12
g21 g22 ] =

[
1 0.25
1 −0.25

]
. As can been seen, as Ccoop increases

from 0.8 to 1.2, there is little improvement for the cooperative
G-compression scheme. By contrast, the G-DS scheme keeps
benefiting from the cooperation links before coinciding with
the cut-set bound, especially when the fronthaul link capacity
C is large.

VI. CONCLUDING REMARKS AND FUTURE DIRECTIONS

This paper presents new coding schemes for downlink C-
RAN without and with BS-to-BS cooperation. Of particular
interest is the (cooperative) G-DS scheme, which improves
over all previous schemes for various channels and regimes.
Moreover, this scheme can well exploit the possibility of BS-
to-BS cooperation links. In the proposed schemes, the BS-to-
BS cooperation links are used for rerouting information, which
can be used to overcome bottlenecks in asymmetric fronthaul
configurations or to free up resources on the fronthaul liks.

The proposed cooperative G-DS scheme introduces com-
mon codewords, for simplicity however without superposition
coding. Extending the analysis in this paper to a superposition
code with common cloud center codewords remains an open
challenge. A similar challenge remains open also for the
cooperative G-compression scheme which applies Gray-Wyner
compression (i.e., superposition coding for compression) but
not superposition coding for Marton’s code.

Finally, again for simplicity, in our numerical simulations
of our G-DS and G-compression schemes, we restricted to
special cases and specific choices of the pmfs. Considering
larger sets of pmfs of course will lead to better results and
more accurate comparisons.
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APPENDIX A
EXPECTED SIZE OF INDEPENDENTLY GENERATED

CODEBOOKS

The following lemma is a simple extension of [15, Problem
3.8, p. 73] (see also [23]).

Lemma 1: Let (U, V,W ) ∼ pU,V,W . Let Wn be gener-
ated according to

∏n
i=1 pW (wi). Consider two independently

generated codebooks C1 = {Un(1), · · · , Un(2nR1)} and
C2 = {V n(1), · · · , V n(2nR2)}. The codewords of C1 are
generated independently each according to

∏n
i=1 pU (ui). The

codewords of C2 are generated independently each according
to
∏n
i=1 pV (vi). Define the set

C = {(un, vn) ∈ C1 × C2 : (un, vn,Wn) ∈ T (n)
ε (U, V,W )}.

(135)

Then, there exists δ(ε) > 0 that tends to zero as ε → 0 such
that

E[|C|] ≤ 2n(R1+R2−I(U ;V )−I(U,V ;W )+δ(ε)). (136)

Proof:

E[|C|]

=

2nR1∑
m=1

2nR2∑
`=1

P((Un(m), V n(`),Wn) ∈ T (n)
ε ) (137)

= 2n(R1+R2)P((Un(1), V n(1),Wn) ∈ T (n)
ε ) (138)

= 2n(R1+R2)
∑

(un,vn,wn)∈T (n)
ε (U,V,W )

pUn(un)pV n(vn)pWn(wn) (139)

≤ 2n(R1+R2)
∑

(un,vn,wn)∈T (n)
ε (U,V,W )

2−n(H(U)+H(V )−2δ(ε))pWn(wn)

(140)

= 2n(R1+R2)
∑

wn∈T (n)
ε

pWn(wn)|T (n)
ε (U, V |wn)|

·2−n(H(U)+H(V )−2δ(ε)) (141)
≤ 2n(R1+R2)2n(H(U,V |W )+δ(ε))2−n(H(U)+H(V )−2δ(ε)) (142)
= 2n(R1+R2−I(U ;V )−I(U,V ;W )+3δ(ε)). (143)

APPENDIX B
MULTIVARIATE COVERING LEMMA WITH NON-CARTESIAN

PRODUCT SETS

Lemma 2: Let (U0, U1, U2, V0, V1, V2) ∼ pU0,U1,U2,V0,V1,V2
.

For j ∈ {0, 1, 2}, randomly and independently gener-
ate sequences Unj (kj), kj ∈ [2nRuj ] , each according to∏n
i=1 pUj (uji). For j ∈ {0, 1, 2}, randomly and independently

generate sequences V nj (`j), `j ∈ [2nRvj ] , each according to∏n
i=1 pVj (vji). Randomly and independently assign an index

m1(k0, k1, k2) to each index tuple (k0, k1, k2) ∈ [2nRu0 ] ×
[2nRu1 ] × [2nRu2 ] according to a uniform pmf over [2nR1 ].
Randomly and independently assign an index m2(`0, `1, `2)
to each index tuple (`0, `1, `2) ∈ [2nRv0 ] × [2nRv1 ] × [2nRv2 ]
according to a uniform pmf over [2nR2 ]. Define for each
sixtuple (k0, k1, k2, `0, `1, `2)

Ẽ(k0, k1, k2, `0, `1, `2)

= (Un0 (k0), Un1 (k1), Un2 (k2), V n0 (`0), V n1 (`1), V n2 (`2)) /∈ T (n)
ε ,

(144)

and for each pair (m1,m2) ∈ [2nR1 ]× [2nR2 ] the event

E(m1,m2) =
⋂

(k0,k1,k2)∈B1(m1)
(`0,`1,`2)∈B2(m2)

Ẽ(k0, k1, k2, `0, `1, `2). (145)

Then, for each (m1,m2), there exists δ(ε) that tends to zero
as ε→ 0 such that limn→∞ P(E(m1,m2)) = 0, if∑

i∈Ωu

Rui +
∑
j∈Ωv

Rvj

> 1{Ωu = {0, 1, 2}}R1 + 1{Ωv = {0, 1, 2}}R2

+Γ(U(Ωu), V (Ωv)), (146)
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for all Ωu,Ωv ⊆ {0, 1, 2} such that |Ωu|+ |Ωv| ≥ 2.
Proof: The proof follows similar steps as the proof of the

multivariate covering lemma. The only difference is that now
the set of index tuples is not the usual Cartesian product. By
symmetry, it suffices to investigate the case (m1,m2) = (1, 1).
For notational convenience, hereafter we denote Bj(1) = Bj ,
j ∈ {1, 2}.

Let

A = {(k0, k1, k2, `0, `1, `2) : (Un0 (k0), Un1 (k1), Un2 (k2),

V n0 (`0), V n1 (`1), V n2 (`2)) ∈ T (n)
ε ,

(k0, k1, k2) ∈ B1, (`0, `1, `2) ∈ B2}. (147)

Then, we have

P(E(1, 1)) = P(|A| = 0)

≤ P
(
(|A| − E[|A|])2 ≥ E[|A|]2

)
(a)

≤ Var(|A|)
E[|A|]2

(148)

where (a) follows from Chebyshev’s inequality. For conve-
nience, denote

φ(k0, k1, k2, `0, `1, `2) =

1{(Un0 (k0), Un1 (k1), Un2 (k2),

V n0 (`0), V n1 (`1), V n2 (`2)) ∈ T (n)
ε }. (149)

Then, the set size |A| conditioned on the random bin assign-
ments B1 and B2 can be expressed as

E[|A||B1,B2] =
∑

(k1,k2)∈B1

∑
(`1,`2)∈B2

φ(k0, k1, k2, `0, `1, `2).

(150)

For a0, a1, a2, b0, b1, b2 ∈ {1, 2}, let

p(a0, a1, a2, b0, b1, b2) (151)
= E[φ(1, 1, 1, 1, 1, 1)φ(a0, a1, a2, b0, b1, b2)], (152)
Q(a0, a1, a2, b0, b1, b2) (153)
=
∣∣{(k0, k1, k2, `0, `1, `2, k

′
0, k
′
1, k
′
2, `
′
0, `
′
1, `
′
2) :

(k0, k1, k2) ∈ B1, (`0, `1, `2) ∈ B2, (k
′
0, k
′
1, k
′
2) ∈ B1,

(`′0, `
′
1, `
′
2) ∈ B2,F (a0)

0 ,F (a1)
1 ,F (a2)

2 ,G(b0)
0 ,G(b1)

1 ,G(b2)
2

}∣∣,
(154)

where F (1)
j =

(
F (2)
j

)c
= {kj = k′j} and G(1)

j =
(
G(2)
j

)c
=

{`j = `′j}, for j ∈ {0, 1, 2}. Then, we have

E[|A||B1,B2] (155)

=
∑

(k0,k1,k2)∈B1

∑
(`0,`1,`2)∈B2

E[φ(k0, k1, k2, `0, `1, `2)] (156)

= Q(1, 1, 1, 1, 1, 1)p(1, 1, 1, 1, 1, 1), (157)

and

E[|A|2|B1,B2] (158)

=
∑

(k0,k1,k2)∈B1

∑
(`0,`1,`2)∈B2

∑
(k′0,k

′
1,k

′
2)∈B1

∑
(`′0,`

′
1,`

′
2)∈B2

E[φ(k0, k1, k2, `0, `1, `2)φ(k′0, k
′
1, k
′
2, `
′
0, `
′
1, `
′
2)] (159)

=
∑

a0,a1,a2,b0,b1,b2

Q(a0, a1, a2, b0, b1, b2)p(a0, a1, a2, b0, b1, b2).

(160)

Hence Equality (161) on top of the next page holds. De-
note I = Γ(U0, U1, U2, V0, V1, V2). By the joint typicality
lemma [15, p. 29], it holds that

p(1, 1, 1, 1, 1, 1) ≥ 2−n(I+δ(ε)), (162)

p(a0, a1, a2, b0, b1, b2) ≤ 2
−n(I+

∑
i∈Ωcu

H(Ui)+
∑
j∈Ωcv

H(Vj))

·2n(H(U(Ωcu ),V (Ωcv )|U(Ωu),V (Ωv))+δ(ε)),

(163)

where Ωu =
⋃2
j=0 κj(aj), Ωv =

⋃2
j=0 κj(bj), and

κj(x) =

{
{j} if x = 1,

∅ otherwise.
(164)

Also, for all a0, a1, a2, b0, b1, b2 ∈ {1, 2}, we have

E[Q(a0, a1, a2, b0, b1, b2)]

= 2n
(∑2

i=0 aiRui+
∑2
j=0 bjRvj

)
·2−n

(
1+1
{⋃2

i=0{ai=2}
})
R1 · 2−n

(
1+1
{⋃2

j=0{bj=2}
})
R2 .

(165)

Finally, (161) and thus (148) can be further upper bounded
using (162), (163), (165). It can be checked that the corre-
sponding upper bound tends to zero as n→∞ if the condition
(146) holds, which establishes the lemma.

APPENDIX C
PROOF OF THEOREM 3

First, we state the cut-set bound for the capacity region of
the memoryless Gaussian C-RAN model. The proof follows
by applying the standard cut-set argument (see [24, Theorem
15.10.1]) to the considered model and then specializing it to
the memoryless Gaussian case.

Proposition 1: If a rate tuple (R1, · · · , RL) is achievable
for the downlink N -BS L-user C-RAN with BS cooperation,
then it must satisfy the inequality∑
`∈D

R` ≤
∑
k∈Sc

Ck +
∑
j∈S

∑
k∈Sc

Ckj

+
1

2
log det

(
I + G(D,S)K(S|Sc)GT (D,S)

)
, (166)

for all S ⊆ [N ] and all nonempty subsets D ⊆ [L] for some
covariance matrix K � 0 with Kjj ≤ P . Here K(S|Sc) is
the conditional covariance matrix of X(S) given X(Sc) for
XN ∼ N (0,K) and G(S,D) is defined such that[
Y (D)
Y (Dc)

]
=

[
G(D,S) G(D,Sc)
G(Dc,S) G(Dc,Sc)

] [
X(S)
X(Sc)

]
+

[
Z(D)
Z(Dc)

]
.

(167)

Now we are ready to prove Theorem 3. It can be shown that
the rate constraint of the DDF scheme can also be expressed
as∑
`∈D

R` <
∑
k∈Sc

Ck +
∑
j∈S

∑
k∈Sc

Ckj + I(X(S);U(D)|X(Sc))

−
∑
k∈Sc

I(Xk;X(Sck))−
∑
`∈D

I(U`;U(D`), XN |Y`),

(168)
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Var(|A|)
E[|A|]2

=
E[E[|A|2|B1,B2]]− (E[E[|A||B1,B2]])2

(E[E[|A||B1,B2]])2

=

∑
(a0,a1,a2,b0,b1,b2)6=(2,2,2,2,2,2)

E[Q(a0, a1, a2, b0, b1, b2)]p(a0, a1, a2, b0, b1, b2)

(E[Q(1, 1, 1, 1, 1, 1)]p(1, 1, 1, 1, 1, 1))2
(161)

Then, we set Xk to be i.i.d. N (0, P ) for all k ∈ [N ] and

U` =

N∑
k=1

g`kXk + Ẑ`, (169)

where Ẑ` ∼ N (0, 1) are mutually independent and indepen-
dent of (XN , Y L). Then, we have∑

`∈D

R` <
∑
k∈Sc

Ck +
∑
j∈S

∑
k∈Sc

Ckj

+
1

2
log det

(
I + PG(D,S)GT (D,S)

)
−
∑
`∈D

1

2
log

(
1 +

∑
k∈S g

2
`kP

1 +
∑
k∈S g

2
`kP

)
, (170)

which can be further relaxed as∑
`∈D

R` <
∑
k∈Sc

Ck +
∑
j∈S

∑
k∈Sc

Ckj

+
1

2
log det

(
I + PG(D,S)GT (D,S)

)
− |D|

2
. (171)

On the other hand, the cut-set bound for the Gaussian case
is given by∑
`∈D

R` ≤
∑
k∈Sc

Ck +
∑
j∈S

∑
k∈Sc

Ckj

+
1

2
log det

(
I + G(D,S)K(S|Sc)GT (D,S)

)
, (172)

(a)
=
∑
k∈Sc

Ck +
∑
j∈S

∑
k∈Sc

Ckj

+
1

2
log det

(
I + GT (D,S)G(D,S)K(S|Sc)

)
, (173)

where (a) follows from Sylvester’s determinant identity.
The term det

(
I + GT (D,S)G(D,S)K(S|Sc)

)
can be upper

bounded in two different ways. Note that the symmetric
matrices GT (D,S)G(D,S) and K(S|Sc) are positive semi-
definite. When S is an empty set, the inner bound matches the
cut-set bound. In the following, we consider the case |S| ≥ 1.

First, we have

det
(
I + GT (D,S)G(D,S)K(S|Sc)

)
≤ det

(
I + PGT (D,S)G(D,S)

)
· det

(
I +

1

P
K(S|Sc)

)
(a)

≤ det
(
I + PG(D,S)GT (D,S)

)
· 2|S|, (174)

where (a) follows from Sylvester’s determinant identity and
Hadamard’s inequality.

Second, denote by λj(A) the j-th largest eigenvalue of the
symmetric matrix A. For notational convenience, we denote
G′ = GT (D,S)G(D,S) and K′ = K(S|Sc). Note that the

matrix G′ has at most |D| nonzero eigenvalues and λ1(K′) ≤
tr(K′) ≤ |S|P . Thus, we have

det (I + G′K′) =

|S|∏
i=1

(1 + λi(G
′K′)) (175)

(a)

≤
|S|∏
i=1

(1 + λi(G
′)λ1(K′)) (176)

≤
|S|∏
i=1

(1 + λi(G
′)|S|P ) (177)

= det
(
I + |S|PG(D,S)GT (D,S)

)
(178)

≤ det
(
I + PG(D,S)GT (D,S)

)
· |S||D|, (179)

where (a) follows from [25, 7.3.P16].
To summarize, the cut-set bound can be relaxed as∑

`∈D

R` ≤
∑
k∈Sc

Ck +
∑
j∈S

∑
k∈Sc

Ckj

+ det
(
I + PG(D,S)GT (D,S)

)
+

1

2
min{|S|, |D| log |S|}. (180)

Comparing the relaxed inner bound (171) and outer bound
(180), we conclude that the DDF scheme achieves within
min

{
L+N

2 , L+L logN
2

}
bits per dimension from the cut-set

bound and thus from the capacity region.
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