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Abstract—The main objective of this paper is to analyze
a closed-loop feedback system where a transmitter probes a
discrete memoryless channel (DMC) and can adapt its inputs
based on the previous channel outputs. We prove that, regardless
of the transmitter’s strategy, the conditional type of the outputs
given the inputs remains close to the DMC transition law PY |X .
This general result enables the study of fundamental limits in
certain adaptive systems.

As an application, we establish a converse result for an inte-
grated sensing and communication (ISAC) model. In this setting,
the transmitter also functions as a radar receiver, aiming to
simultaneously transmit a message over the channel and estimate
the channel state from the backscattered feedback signals. We
show that the fundamental limits of the closed loop system are
the same as of the open-loop system where the transmitter can
use the feedback signal to estimate the state but not to produce
adaptive channel inputs. This result holds as long as the sum
of the admissible-average-decoding-error-probability, denoted ϵ,
and the admissible-excess-distortion-probability, denoted δ, is
below 1, i.e., δ + ϵ < 1.

Index Terms—channel coding, feedback, typicality, strong con-
verse, change of measure, integrated sensing and communication

I. INTRODUCTION

In this paper, we investigate a closed-loop system where
a transmitter probes a discrete memoryless channel (DMC)
and the transmitter can adapt its inputs based on past channel
outputs, see Figure 1. We show that, irrespective of the
transmitter’s strategy in producing the inputs, the empirical
conditional distribution—or conditional type—of the channel
outputs given the inputs remains close to the underlying
channel law PY |X . For open-loop systems, where channel
inputs cannot depend on past outputs, the desired statement
follows from Chebychef’s inequality in a straightforward way
and in the asymptotic limit is nothing but the weak law of large
numbers. With closed-loop strategies, the situation is more
complicated because the transmitter can adapt its inputs so as
to maximize the deviation between the empirical distribution
and the true channel law PY |X . Proving the desired statement
on the conditional type requires a different proof.

Specifically, we identify for each input-output pair (a, b)
the transmitter strategy that maximizes the probability that
the conditional type of output b given input a deviates from
PY |X(b|a) by more than a fixed threshold µ. The optimal
strategy has a simple form: the transmitter feeds input a to
the channel until the number of observed b symbols deviates
from b by more than n times the threshold µ, at which point it
starts feeding non-“a” symbols to the channel until the number
of channel uses n is reached. Optimality of this strategy is

proved by first noting the bijection between input strategies
and labels on a full |Y|-ary tree of depth n, and then deriving
the labeling on the tree that maximizes the desired probability.
We finally analyze this probability for the described strategy
using a simple inequality on sums of i.i.d. random variables.

We subsequently use the established result on the condi-
tional types to prove a converse result for an Integrated Sensing
and Communication (ISAC) system where the transmitter
sends a message over a state-dependent discrete memoryless
channel (SDMC) with feedback and from the feedback signals
also reconstructs the state sequence up to desired distortion.
Our converse proof is based on change of measure arguments
[1]–[4], [6], [10] and establishes that for any permissible
decoding error probability ϵ and excess distortion probability δ
whose sum is below 1, i.e., ϵ+δ < 1, the set of data rates and
reconstruction distortions that are simultaneously achievable,
coincides with this set in an open-loop system where the
transmitter is not allowed to adapt its inputs in function of the
feedback signals. Our results assume perfect feedback, and
extend to noisy or degraded versions thereof. Extension to
arbitrary generalized feedback signals as considered in [8]–
[10] is left for future work.

Notation. Sets are denoted using calligraphic fronts such
as X and Y . All random variables are assumed finite. For
i ≤ j two positive integers, sequences of random variables
(Xi, . . . , Xj) and realizations (xi, . . . , xj) are abbreviated by
Xj

i and xj
i respectively. If i = 1, we also use Xj and xj

instead of Xj
i and xj

i . The probability of an event A and
the expectation of a random variable X are denoted by P(A)
and E[X] respectively. Moreover, throughout this paper, 2nR

will denote the integer ⌊2nR⌋, and Ja, bK, for integer numbers
a < b, denotes the set {a, . . . , b}. We denote by πxnyn the
joint type of (xn, yn) defined in [11]. The marginal type of
xn is denoted πxn . Finally, we will use the Landau notation
o(1) to indicate any function that tends to 0 when n → +∞.

II. TYPICALITY THROUGH A CHANNEL WITH FEEDBACK
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Fig. 1. Typicality through a Channel with Feedback

Consider the setup in Figure 1. An encoder called ‘Alex’
produces inputs X1, . . . , Xn to a channel PY |X with feedback.



That is, it can observe the past outputs of the channel and
choose the inputs in function thereof:

Xi = hi(Y1, . . . , Yi−1), i ∈ {1, . . . , n}, (1)

for some functions hi(·) on appropriate domains. The fol-
lowing lemma asserts that whatever strategy, i.e., sequence
of functions {h1, . . . , hn}, Alex chooses, the conditional type
of the outputs Y n given the inputs Xn is close to the channel
law PY |X with high probability.

Lemma 1: Irrespective of the choice of the functions
{h1, . . . , hn}, for any (a, b) ∈ X ×Y and small value µ > 0:

P
(∣∣πXnY n(a, b)− πXn(a)PY |X(b)

∣∣ > µ
)
≤ (4nµ2)−1. (2)

While without feedback this statement holds by Chebychef’s
inequality, the proof is slightly trickier with feedback. Another
result examines an upper bound on the probability associated
with a specified type of inputs and a specified conditional type
of outputs [14].

A. Proof of Lemma 1

Define for any strategy h = (h1(·), . . . , hn(·)) and any
(a, b) ∈ X × Y , the random score

Sn(h, a, b) =

n∑
k=1

1{Xk = a}(1{Yk = b} − PY |X(b|a)), (3)

for {(Xk, Yk)}nk=1 generated according to the strategy h and
the channel PY |X .

Notice the equivalence:

P
(∣∣πXnY n(a, b)− πXn(a)PY |X(b|a)

∣∣ > µ
)

= P

(∣∣∣∣∣
n∑

i=1

1{Xi = a}
(
1{Yi = b} − PY |X(b|a)

)∣∣∣∣∣ > nµ

)
= P (|Sn(h, a, b)| > nµ) . (4)

We shall prove that for any (a, b) ∈ X × Y:

max
h

P (|Sn(h, a, b)| > nµ) ≤ (4nµ2)−1, (5)

implying the result in Lemma 1. To this end, we first identify
the maximizing strategy h for any given pair (a, b), and then
determine the probability that its score function exceeds nµ.

Remark 1: As suggest by one of the anonymous reviewers,
one can prove (5) by first noting that for any given strategy
h the random process {Sn(h, a, b)}n forms a martingale and
then applying Doob’s inequality. In our proof we also identify
the optimal strategy h, which has a pleasing intuitive form.

1) A maximizing strategy h: Fix (a, b) ∈ X×Y . For a given
strategy h, define for each i ∈ {1, . . . , n} and each tuple yi:

si(y
i,h) =

i∑
ℓ=1

1{xℓ = a}(1{yℓ = b} − PY |X(b|a)), (6)

where xℓ = hℓ(y
ℓ−1).

Lemma 2: The following strategy is a maximizer of (5):

h∗
k(y1, . . . , yk−1) =

{
a, if |sk−1(y

k−1,h)| < nµ

̸= a otherwise,
(7)
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Fig. 2. Example of a tree for n = 2
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Fig. 3. Example of a labeled tree for n = 3, |X | = 2 and |Y| = 3.

where ̸= a indicates any symbol other than a.
Proof of Lemma 2: We start by noticing that each strategy

h can be represented as labels on all nodes (including the
vertex node but excluding leaves) of a full |Y|-ary rooted tree
of depth n where the |Y| edges below a node are labeled
by the |Y| distinct elements of Y . We simply use label
hk(y1, . . . , yk−1) for the level-k node v that is reached from
the root through the edges labeled y1, . . . , yk−1. Figure 2
illustrates for example the tree (for n = 2 and Y = {0, 1, 2})
and the node labels corresponding to strategy

h1(∅) = 1 (8)

h2(y1) =

{
0 if y1 ∈ {0, 2}
1 if y1 = 1.

(9)

A second example (for n = 3, |X | = 2 and |Y| = 3) is
provided in Figure 3, where for readability, we do not show
the labels on the edges; they always correspond to the elements
of Y in the same order.

We shall refer by Th to the tree corresponding to a strategy
h. Notice the following facts for this tree Th:

• There is a one-to-one correspondance between the leaves
of the tree and the output sequences yn. We will thus
simply refer to the sequences yn as the leaves of the
tree.

• The score sn(y
n,h) of a given leave node is obtained

by running from the root node of the tree Th to leave
yn, and by summing up for each edge the term (1{yk =
b} − PY |X(b|a)) if its parent node is a and 0 otherwise.
We will thus also write si(y

i, Th) instead of si(yi,h).
For a general labeled tree T , we define si(y

i, T ) as

i∑
ℓ=1

1{xℓ(y
ℓ−1) = a}(1{yℓ = b} − PY |X(b|a)), (10)



where xℓ(y
ℓ−1) is the label in T at the node on the path

from the root indicated by y1, . . . , yℓ−1.
• The success probability P(|Sn(h, a, b)| > nµ) of strategy

h is directly obtained from the tree Th by summing
over the probabilities of the leaves with sufficiently high
scores.
We generally define for any labeled tree T :

S(T ) ≜ {yn : |sn(yn, T )| > nµ}, (11)

and the success probability of the tree

P (T ) ≜
∑

yn∈S(T )

n∏
i=1

PY |X(yi|xi(y
i−1)), (12)

where xi(y
i−1) is the label on T of the node on the path

from the root indicated by y1, . . . , yi−1. Then,

P (Th) = P(|Sn(h, a, b)| > nµ). (13)

Given these observations, we will denote by F the set of all
labeled trees, and the bijection between the elements of F and
the set of strategies.

After these preliminary remarks, we tackle the proof of
Lemma 2. Notice that it is equivalent to proving that there
exists an optimal labeled tree T ∗ ∈ F , i.e., P (T ∗) =
maxT ∈F P (T ), with the following properties:

1) The tree T ∗ is well-ordered, meaning only nodes labeled
a can have descendants labeled a.

2) A level-k node of T ∗ is labeled a if, and only if,
|sk(yk, T ∗)| ≤ nµ, where yk indicates the labels of the
path from the root to this node.

To show that 1.) holds, we start with any optimal tree
T0 ∈ F and iteratively construct new trees T1, T2, . . . so that
P (Tk) ≥ P (Tk−1) for any k ≥ 1. Moreover, after a finite
number of steps κ the tree Tκ is well-ordered and optimal.

Tree Tk is obtained from Tk−1 as follows:
• Pick a vertex vk from tree Tk−1 that is labeled ã ̸= a

but for which all parents and one of these children are
labeled a. (For example, consider vertex v1 in Figure 3.)

• For any y ∈ Y , denote by By the subtree starting at the
child of vk along the edge y. Label all leave nodes of
By by ã and augment all of these leaves with |Y| new
children, where the edges are labeled by all elements of
Y . ( Figure 3 indicates the trees B0,B1,B2 for node v1
with dashed boxes and Figure 4 depicts the augmented
tree of B0.)

• Starting from Tk−1, create a new random tree Ã as fol-
lows. For each y ∈ Y , with probability PY |X(y|ã) replace
node vk and its underlying subtree by the augmented tree
of By . (Figure 5 depicts the realization of Ã constructed
with the augmented of B0.)

• Among all |Y| possible realizations of the tree Ã, let Tk
be the one that has largest probability of success P (·).

It can be verified that for each iteration k:

P (Tk−1) = P (Ã) ≤ P (Tk). (14)
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Fig. 4. The augmented tree of B0
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Fig. 5. The realization of Ã constructed with the augmented tree of B0

Above inequality holds simply because the best is no worse
than the average. The equality is proved in Appendix A in
[13].

To prove 2), notice that once 1) is established, we can focus
on well-ordered trees only. By the property of these trees, the
path from the root to any leaf ȳn starts with a certain number
of a-labels on the nodes, and then once it reaches a specific
node v∗(ȳn) it switches to non-a labels for v∗(ȳn) and all its
descendants. Notice that in an ordered tree Tord, all leaves yn

that are descendants of a switching node v∗(ȳn) have same
score as ȳn: sn(yn, Tord) = sn(ȳ

n, Tord).
Fix an ordered tree T and a leave ȳn, and let k be the depth

of “switching” node v∗(ȳn). We argue that if |si(ȳi)| > nµ for
some i ∈ {1, . . . , k − 1} or |sk(ȳk)| ≤ nµ, then we can find
a new ordered tree T ′ with a larger set of leaves exceeding
the desired score than the original tree. I.e., S(T ′) ⊇ S(T )
which by (12) implies P (T ′) ≥ P (T ). It can also be verified
that the procedure will produce T ∗ after a finite number of
steps. The new ordered tree T ′ is obtained as follows:

• Assume |si(ȳi)| > nµ for some i ∈ {1, . . . , k−1}. In this
case, denote the level-i node on the path to ȳn by ṽ and
set in T ′ the new node ṽ as the “switching” node of yn

(and naturally of all descendant leaves of ṽ). Notice that
all descendant leaves yn of ṽ have score |sn(yn, T ′)| >
nµ implying in particular that this holds for all leaves that
are descendants of the original “switching” node v∗(ȳn).
Since the score of all other leaves did not change from
T to T ′, we can conclude the inclusion S(T ′) ⊇ S(T ).

• If |sk(ȳk)| ≤ nµ, then all leaves yn that are descendants
of v∗(ȳn) has scores below nµ and do not belong to
S(T ). We construct T ′ from T by relabeling v∗(ȳn) by
a, and trivially conclude S(T ′) ⊇ S(T ).

2) Success Probability of Strategy h∗ in (7) :
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Proposition 1: We have:

P (|Sn(h
∗, a, b)| > nµ) ≤ (4nµ2)−1 (15)

Proof: Define the i.i.d. variables Zk = 1{Ỹi = b} −
PY |X(b|a) for k = 1, 2, . . . where {Ỹi}+∞

i=1 is i.i.d. ∼
PY |X(·|a). By Kolmogorov’s maximal inequality [12, The-
orem 2.5.5]:

P

(
max

1≤k≤n

∣∣∣∣∣
k∑

i=1

Zi

∣∣∣∣∣ > nµ

)
≤

E[(
∑n

k=1 Zk)
2]

n2µ2
≤ 1

4nµ2
. (16)

We next relate the probability on the left-hand side of (16)
with the success probability of our optimal strategy h∗. Notice
that for all yn sequences where max1≤k≤n |

∑
i≤k Zi| ≤ nµ

when Ỹ n = yn, we also have |sk(yk,h∗)| ≤ nµ for all
k ∈ {1, . . . , n}. This is, both are smaller than the threshold.
Moreover, these sequences have same probability of arising
for the random sequences Ỹ n and Y n as the optimal strategy
h∗ always produces a, i.e., x1 = . . . = xn = a. We obtain:

P

(
max

1≤k≤n

∣∣∣∣∣
k∑

i=1

Zi

∣∣∣∣∣ > nµ

)
≤ P (|Sn(Y

n,h∗)| ≤ nµ) . (17)

The proof is then concluded by considering the complement
probabilities as well as (16).

III. CONVERSE THEOREM FOR AN ISAC MODEL

We use our Lemma 1 to prove a converse for the integrated
sensing and communication (ISAC) model in Figure 6.

A transmitter seeks to communicate a random message
M to a receiver over a state-dependent discrete memoryless
channel (SDMC) PY |XS . The message M is assumed to be
uniformly distributed over the set J1, 2nRK, where R > 0
denotes the communication rate and n > 0 the blocklength.
The SDMC is influenced by a state sequence Sn, which is i.i.d.
according to a given probability mass function (pmf) PS . At
each time i, the channel output Yi is generated based on the
current input Xi and the state Si, according to the SDMC
transition probability PY |XS . The outputs are observed at the
receiver, and through backscattering also at the transmitter.

The transmitter creates its channel inputs based on the
message and the past feedback outputs

Xi = f
(n)
i (M,Y1, . . . , Yi−1), i = 1, . . . , n, (18)

for some sequence of encoding functions {f (n)
i }n=1. It also

uses the feedback outputs Y n and the produced input sequence
Xn (or M ) to reconstruct the channel’s state sequence S:

Ŝn = h(n)(Xn, Y n). (19)

The receiver attempts to guess the original message M
based on the full sequence of channel outputs Y n using a
decoding function g(n):

M̂ = g(n)(Y n). (20)

Reliability of communication is evaluated via the average
probability of decoding error at the receiver

P (n)
e = P

(
M̂ ̸= M

)
. (21)

Sensing performance at the transmitter is measured by the
average expected distortion between the true state sequence
Sn and its reconstruction Ŝn:

distn(Ŝn, Sn) =
1

n

n∑
i=1

d(Ŝi, Si), (22)

where d denotes a given positive and bounded distortion
function.

Our goal is to have small decoding error probability and
small excess distortion probability.

Definition 1: A rate-distortion pair (R,D) is (ε, δ)-
achievable if there exist sequences of encoding, decoding and
estimation functions {{f (n)

i }ni=1, g
(n), h(n)}+∞

n=1 satisfying

lim
n→+∞

P (n)
e ≤ ε (23)

lim
n→∞

P
(

distn
(
Ŝn, Sn

)
> D

)
≤ δ. (24)

Theorem 1: For any ε + δ < 1, if a rate-distorsion pair
(R,D) is (ε, δ)-achievable then there exists PX satisfying

R = IPXPSPY |XS
(X;Y ) (25)

D ≥ EPXPSPY |XS
[d(ŝ(X,Y ), S)] (26)

where

ŝ(x, y) = min
ŝ∈S

∑
s

PS|XY (s|x, y)d(ŝ, s). (27)

Achievability for ϵ = δ = 0 follows directly from the results
in [8], [9], where it was also shown that the transmitter does
not need to rely on the feedback outputs Y1, . . . , Yi−1 to
produce the next input Xi. The contribution of our article lies
in proving the converse to this statement in the case where the
encoder can use the feedback to produce the channel inputs.

Remark 2: Notice that under the average probability of error
criterion considered in this article, above theorem does not
hold when ϵ+ δ ≥ 1. Better performances can be achieved.

Remark 3: Theorem 1 and Remark 2 can easily be extended
also to setups where the transmitter observes a (deterministi-
cally or stochastically) degraded version of the outputs {Yi}.



A. Proof of Theorem 1
Fix ϵ, δ > 0 with sum ϵ + δ < 1. Fix also a sequence of

encoding and decoding functions {{f (n)
i }ni=1, g

(n)}∞n=1 satis-
fying (23) and (24) and consider the optimal state estimator
(see [9, Lemma 1] hn(sn, xn) = (ŝ(x1, y1), . . . , ŝ(xn, yn)),
where ŝ(x, y) is defined in (27).

Define for any blocklength n the parameter µn = n−1/4 and
notice that µn → 0 while nµ2

n → ∞ as n → +∞. Consider
now the three conditions:

g(n)(yn) = m (28)

distn(h(n)(xn, yn), sn) ≤ D (29)∣∣πxn,sn,yn(a, b, c)− πxn(a)PS(b)PY |XS(c|a, b)
∣∣ ≤ µn (30)

where in the above, xi = fi(m, yi−1) for any i = 1, . . . , n.
Fix a constant η such that 0 < η < 1−ε−δ, and define the

subset M̃n ⊆ J1, 2nRK to consist of all messages m satisfying

P
(
M̃ ̸= M or distn

(
Ŝn, Sn

)
> D | M = m

)
≤ 1− η, (31)

and let M̃ be uniformly distributed over M̃n. Notice that (23)
and (24) imply that (see Appendix B in [13]):

|M̃n|
2nR

≥

(
1−

P
(n)
e + P

(n)
D

1− η

)
=: γn, (32)

where we define P
(n)
D := P

(
distn

(
Ŝn, Sn

)
> D

)
.

Define now for any m ∈ M̃n the set Dn,m consisting of all
pairs (sn, yn) such that (28), (29), and (30) hold, and introduce
random variables (S̃n, Ỹ n) jointly distributed with M̃ through
the conditional pmfs:

PS̃n,Ỹ n|M̃=m(sn, yn)

≜
P⊗n
S (sn)

∏n
i=1 PY |XS(yi|xi(m, yi−1), si)

∆n,m

·1{(sn, yn) ∈ Dn,m}, (33)

where ∆n,m ≜ P ((Sn, Y n) ∈ Dn,m |M = m).
Notice that:

∆n,m = 1− P ((Sn, Y n) /∈ Dn,m |M = m) (34)

= 1− P(M ̸= M̂ or distn(Ŝn, Sn) > D or
∃(a, b, c) : |πXn,Y n,Sn(a, b, c)

−πXn(a)PS(c)PY |X(b|a)| > µn |M = m) (35)

≥ η −
∑
a,b,c

P (|πXn,Y n,Sn(a, b, c)

−πXn(a)PY |X(b|a)PS(c)| > µn |M = m
)

(36)

By Lemma 1, we obtain for any m and triple (a, b, c):

P
(
|πXnY nSn(a, b, c)

−πXn(a)PY |X(b|a)PS(c)| > µn

∣∣M = m
)
≤ 1

4nµ2
n

, (37)

and thus, by (36):

∆n,m ≥ η − |X ||Y||S|
4nµ2

n

, ∀m ∈ M̃n. (38)

We now prove the desired bounds on the rate and the
distortion. By combining (32) and (28), we establish the
following inequality, the proof of which is provided in the
extended version of the paper (See Appendix C in [13]):

R ≤ H(ỸTn)−
1

n
H(Ỹ n|M̃) + o(1), (39)

where we defined Tn to be independent of (M̃, X̃n, Ỹ n) and
uniform over J1, nK.

Lemma 3: There exists a subsequence {ni}i≥1 and a pmf
PX on X such that:

lim
i→+∞

PX̃T ,ỸT ,S̃T
(x, y, s) = PX(x)PS(s)PY |XS(y|x, s) (40)

lim
i→+∞

1

ni
H(Ỹ ni |M̃) ≥ H(Y |X) (41)

where the random variables (X,Y ) in the entropy term are dis-
tributed according to the joint marginal of pmf PXPSPY |XS .

Proof: Based on (30) and (38), see Appendix D in the
extended version [13].

Subsequently, by virtue of this lemma and (39), and as the
blocklength ni tends to +∞, it must hold that:

R ≤ H(Y )−H(Y |X) = I(X;Y ). (42)

We prove the distortion bound. By (29), with probability 1:

D ≥ 1

ni

ni∑
j=1

d
(
ŝ
(
X̃j , Ỹj

)
, S̃j

)
(43)

= E
[
d
(
ŝ
(
X̃Tn

, ỸTn

)
, S̃Tn

)]
(44)

and by (40), we can conclude by taking ni → +∞ that:

D ≥ E [d(ŝ(X,Y ), S)] . (45)

IV. CONCLUSION

In this paper, we analyzed a closed-loop communication
system where the encoder adapts its transmissions based on
previous outputs of a discrete memoryless channel. We estab-
lished that, despite the presence of feedback, the conditional
type of the channel outputs given the inputs remains close to
the true channel law PY |X . The core of the proof involved
identifying the worst-case encoder strategy and bounding
the probability of significant deviation using a random walk
argument.

We then applied this general result to an Integrated Sensing
and Communication (ISAC) model, where a transmitter seeks
to jointly communicate a message and estimate the state of
a channel based on the backscattered feedback signals. By
leveraging the conditional type result and a change-of-measure
technique, we proved that the fundamental limits are the same
as in the corresponding open loop system with non-adaptive
channel inputs.
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