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Traditional Sensing and Communications Separation

Communication ) Sensing

o =l

Conventional approach

@ Individual hardware with own antenna and own RF
chain for each of the two tasks

o Separate bandwidths for the two tasks
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Integrated Sensing and Communication (ISAC)

Sensing and Communication ]
(k {u 'OEO'
My

&)
Feedback ) @

e Synergistic hardware, bandwidth, and waveform performing
both tasks: Sensing and Communications
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Motivation for Integrating Sensing and Communication

The most immediate benefits of ISAC:

@ Cellular communication move up in frequencies, even to the THz
regime
— radar and cellular communication occupy similar bandwidths

o Integrating radar and communication will allow to free up precious
bandwidth

@ Savings in hardware costs, resources, and energy consumption
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Important Use Cases

o But we can dream of much more...
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Multi-Functional Networks in 6G

e Ubiquitous sensing capabilities for all terminals in the network:
Anywhere and anytime capabilities for all terminals

e Network sensing (joint sensing capabilities for communicating
terminals) can significantly improve local onboard sensing

capabilities

@ Precise positioning information allows for better communication
performances

@ Precise sensing of position, angles, speed, and structure of objects
allows to obtain a reliable digital twin
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Current Status of ISAC

e Predicted to be crucial building block of future 6G networks

@ Heavily investigated in the communications and signal processing
societies

e First prototypes available

Information-theoretic angle of attack

Determine the optimal performances of ISAC systems. And the
inherent tradeoffs between sensing and communications
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Outline of the Tutorial

@ Some Basics of Information Theory
@ Channel Capacity—Shannon’s Channel Coding Theorem

@ Information-Theoretic Integrated Sensing and Communication
(ISAC) with Distortion

@ Some Basics of Detection Theory
@ Information-Theoretic ISAC with Detection-Errors

@ Results on Network ISAC
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Some Basics of Information Theory
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Entropy

e Entropy measures randomness/uncertainty of a random variable

X) =Y Px(x)log, Pl( ) =Ep [Iog2 5 tx)}

XEX

where 0 Iog% =0

1 T T T T
09

08
07

e Entropy of a binary random variable !
X ~ B(p):

04
03

H(X) = —plog, p — (1 — p)logy(1 — p).
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Extreme Values of Entropy

e Deterministic random variable, Px(a) = 1 for some a € X"

1 1 1
=) Px(x)log, =0Olog s +1-log 7 =0+1-0=0
xeX X()

e Uniform random variable Px(x) = | i, for all x € &:

log || = |X] - - log || = logX].
X;(w m

o Extreme values
0 < H(X) < log | X];

lower bound tight iff X determ. and upper bound iff X uniform.
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Conditional Entropy

e How the observation of a related random variable changes entropy

o Conditional entropy:

1
HX|Y) = yZ@:;PY(y) ;wa(xmlogzw

H(XY=y)

1
E | _—
Prr [ng PYX(YX)}

e Conditioning reduces entropy: 0 < H(X|Y) < H(X)
o HX|Y)=0 <« X=f(Y)

e H(X|Y)=H(X) < X independent of Y
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Joint Entropy

e How much uncertainty is contained in a bunch of random variables

o Joint Entropy:

1 1
HX,Y) =3P logy ——— —Ep,. |logy —
(X, ¥) = xy (x,y) logy Pxy(x,y) P [og2 Pxy (X, Y)]

e Joint and conditional entropies extend to many r.v.:

H(X1,...,Xi|Y1,...,Yi) and H(Xy,...,X;)
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Chain rule of Entropy

e Entropy of X: H(X)=E [Iog %}

e Conditional entropy of Y given X: H(Y|X)=E [Iog W}

e Sum of the two: (log(ab) = log a + log b)

1
H(X) + H(Y|X) = E['Og pX(X)Py|x(Y\X)}

E [Iog ny(lxy)] — H(X,Y)

Chain rule of Entropy

H(X,Y) = H(X) + H(Y|X) = H(Y) + H(X]Y).
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Mutual Information

e Mutual Information is how much X tells about Y

Reduction in Entropy:

I(X; Y) 2 H(X) — H(X|Y) = H(Y) — H(Y|X) > 0.

e X and Y are independent — /(X;Y) =0

X=Y 5 I(X;Y)=H(X)
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Empirical Statistics or Types

e Empirical statistics (type) of a sequence x = (x1,...,x,)

mo(a) = =2y

e Example for the sequence x = (0,1,2,1,1,2,2,0,2,1):
2 1 4 2

(0= =g m)=io=e ()=

10 5 5’
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Joint Empirical Statistics

e Joint empirical statistics of x = (x1,...,x,) and y = (y1,...,¥n):

1 X; = i =b
nxy(a,b):‘{’x aindy o sex bey.

e Example for the sequences x = (0,1,2,1,1,2,2,0,2,1) and
y=(0,3,3,0,3,0,0,0,3,0)

2 2 2

(0,0) = = ey (1,0) = = Ty (2,0) = —
may(0.0)= 2 mey(10) = 2wy (2.0)= o
2 2

xy(1L3) = = mey(2.3) = =

7‘-7_)'(13) 10 7T7y( 3) 10
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Probability of having a Joint Empirical Statistic

o Let X =(X1,...,X,) and Y = (Y1,...,Y,) be jointly drawn i.i.d.
from Pxy.

= P[(X, Y) have joint empirical statistics ~ Pxy]

—1las n— oo.

(weak law of large numbers)

o Let X =(X1,...,X,) beand Y =(VY1,...,Y,) be independently
drawn i.i.d. from Px and Py.

P[(X, Y) have joint empirical statistics & Pxy] ~ 2~"(X:Y)
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Recap from Basic Information Theory Part

Entropy and Conditional Entropy

Mutual Information (Reduction in Entropy)

Joint Empirical Statistics

e Probability that independently drawn sequences have joint
empirical statistics Pxy is = 2—nl(X;Y)
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Channel Capacity

Shannon’s Channel Coding Theorem



Data Transmission over a Noisy Channel

. 1
-1-3 3+1 3 IT!EL
011010 0001111011 -3
LT '

data bits Transmitter Modulator
A
Channell
-1-3 3-13 .
oot 00 01 11 00 11 [ Integrate | i
eceiver - . -
decoded bits | & Decide 3
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The Discrete Memoryless Channel (DMC)

M

Enc. f™

(X1,

X" =
7Xn)

A4

Py x

Dec. g™

—

o Discrete-time and stationary memoryless channel law:

e Finite input and output alphabets X and )

P Yy =y|X"=x", Vi1 = y" ] = Pyx(ylxe)
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Examples of Discrete Memoryless Channel

1-p
e Binary Symmetric Channel (BSC): 0 0
Each input, independently flipped with X 5 Y
probability p 1 1
1-p
. 0 1—¢ 0
e Binary Erasure Channel (BEC):
Each input, independently erased with X ‘ ALY

probability e

o Fast-fading channel Y; = S$:X; + Z; for i.i.d. {S;} and {Z;}

StX,fNjL Z;
St

o (Imperfect) receiver channel state information: Y; = <
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Capacity of Discrete Memoryless Channels

XN = yn =

M (X17-~~7Xn> Yi,....Y, M
—»{ Enc.f™ Pyix _P-——>( Lo Yo) Dec. g™

e M consists of nR random (i.i.d. Bernoulli-1/2) bits

\ 4

C. E. Shannon, “A mathematical theory of communication,” Bell System Journal,

October 1948.
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Capacity of Discrete Memoryless Channels

XN = yn =

M (X17-~~7Xn> Yi,....Y, M
—»{ Enc.f™ Pyix _P-——>( Lo Yo) Dec. g™

e M consists of nR random (i.i.d. Bernoulli-1/2) bits

\ 4

e A rate R > 0 is achievable if 3 sequence of encodings f(" and

decodings g(" such that P {/\Aﬂ * M] — 0 as n— oo.

C. E. Shannon, “A mathematical theory of communication,” Bell System Journal,

October 1948.
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Capacity of Discrete Memoryless Channels

XN = yr =

M (le"'vXn) Yi,....Y, ]\:f
—»{ Enc.f™ Pyix (P, Yn) Dec. g™

\ 4

e M consists of nR random (i.i.d. Bernoulli-1/2) bits

e A rate R > 0 is achievable if 3 sequence of encodings f(" and

decodings g(" such that P {/\Aﬂ #* M] — 0 as n— oo.

Theorem (Shannon’s Channel Coding Theorem)

All rates R < C:= maxp, I(X;Y) are achievable.
All rates R > C are not achievable.

C. E. Shannon, “A mathematical theory of communication,” Bell System Journal,
October 1948.
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Capacity of the Binary Symmetric Channel

e Binary Symmetric Channel

1-p

c = nllz)a(xl(X; Y)= rr);;a(x[H(Y) — H(Y|X)]

= max [H(Y)— > Px(x)H(Y|X =x)
X xe{0,1}

= max [H(Y)] = Hb(p)

= 1— Hp(p)
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Capacity of the Binary Symmetric Channel

e Binary Symmetric Channel

c = nllz)a(xl(X; Y)= rr);;a(x[H(Y) — H(Y|X)]

= max [H(Y)— > Px(x)H(Y|X =x)
X xe{0,1}

= max [H(Y)] = Hb(p)

= 1— Hp(p)

e Capacity achieved for Px Bernoulli-1/2 — Py also Bernoulli-1/2
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Capacity of Binary Erasure Channel

e Binary Erasure Channel

’ ’ C = max/(X;Y)=1—-¢
€ Px
X : EA Y
1 1

Capacity again achieved with Bernoulli-1/2 input X
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Capacity of the White Gaussian Noise Channel
{Z} iid. ~N(0,No)

X, /L Y,
D .

o Real inputs with blockpower constraint >_7_; E[X?] < nE,:

1 E,
C = —| 1+ -—=
2og<+N0>

Capacity achieved with Gaussian input Px ~ A/(0, Np)

e With M-PAM inputs: /(X;Y) for uniform Px
+1(X3Y)

=~ 256-PAM
128-PAM
64-PAM
32-PAM
16-PAM
8-PAM
4-PAM
2-PAM

» Es/Np [dB]

}log(1+2§)

7
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What is this Input Distribution Px?

M (X1,
— Enc.f" Pyx

e The capacity formula C = maxp, /(X;Y)

@ Px describes the probability distribution of the input X; averaged
over all times t

@ Since data bits are uniform, so are the codewords
x"(M =000---000), x"(M = 000---001), x"(M = 000---010),
x"(M =000---011), ...,

= Px(0) simply indicates the frequency (empirical statistics) of
the 0-symbol among all codewords
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A Refined Shannon Theorem

What Shannon says:

o There is no family of encodings/decodings {(f(", g(")152, of rate
R>C
such that Pé") —0asn—

e For any rate R < C there does exist a family of
encodings/decodings {f(", g(”))}ﬁ‘):1
s.t. Pén) —0as n— oo
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A Refined Shannon Theorem

A stronger version:

For any distribution Px over X:

o There is no family of encodings/decodings {(f(", g(M)}>2, of rate
R > I(X;Y) and with codebook statistics Px
such that Pg") —0as n— oo

e For any rate R < I(X;Y) there does exist a family of
encodings/decodings {f("), g(M)}°°  with codebook statistics Px
s.t. Pén) —0asn— o
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Achievability Proof (if-direction) for Capacity Theorem

e Encoder: Send x"(M)

2"(00- - - 10)
2"™(00 - - 00)
2™(00---01)
2" (11---11)

empirical statistics of
each codeword ~ Px
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Achievability Proof (if-direction) for Capacity Theorem

e Encoder: Send x"(M)

2™(00- - - 10) ) )
(00 - - 00) e Decoder: Declare the unique M s.t. (x"(M), Y")
2™(00---01) have joint empirical statistics ~ Px Py x

2™ (11---11)

empirical statistics of
each codeword ~ Px
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Achievability Proof (if-direction) for Capacity Theorem

e Encoder: Send x"(M)

2™(00- - - 10) ) )
2™(00 - - - 00) e Decoder: Declare the unique M s.t. (x"(M), Y")
2™(00---01) have joint empirical statistics ~ Px Py x
o Analysis:
° ]P)[(X"(l\//), Y") of joint stat. = PXPylx] ~1
o Vj# M:
P[(x"(j), Y") of joint Stat.zPXPYlX] ~e 2—nl(X:Y)
e By union bound:
P[3j # M: (x"(j), Y") of joint st.~ PxPy/x]
2™ (11---11) ~ DnR . 9=nl(X;Y)

empirical statistics of
each codeword ~ Px which vanishes as n — oo if R < I(X;Y).
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Converse Proof (only if-direction) for Capacity Theorem

e Fix encodings/decodings (f("), g(") so that P 5 0as n— oo

nR

IN

H(M) = I(M; Y™y —  H(M|Y") = I(M;Y")

—0 as n—o00,P.—0

STUM: YY) — (P, n)
t=1
n

STIH(YYEY) — HYe YL M)] — 8(PE, )
t=1

STH(Y:) — HOY YE2 M, Xe)] — 8(PE, n)

t=1

STIH(Y:) = H(Yel X)) — 6(PL”, n)
t=1

S I(Yei Xe) — (P, n) < nC — 5(P7, n)

t=1

—5(P{, n)
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What about Feedback?

| X" = :' yn —

M (X1, X0) Yi,....Y, M
Enc. £ Py ("1 )

e Transmitter observes backscatterers or feedback

Theorem (Shannon’s Capacity-Theorem for Feedback Channels)

Capacity with feedback and without feedback is the same for Discrete
Memoryless Channels.
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What about Feedback?

e Transmitter observes backscatterers or feedback

Theorem (Shannon’s Capacity-Theorem for Feedback Channels)

Capacity with feedback and without feedback is the same for Discrete
Memoryless Channels.

Holds also with active feedback.

Active feedback cannot be better than perfect feedback Z =Y
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Capacity of Channels with Memory

o Arbitrary channel law Pyn xn (for each n)

e Capacity formula

1
C:= sup p—lim —i(X";Y")

{Pxn}>2, n—oo N

where the information density is i(X"™; Y") = log %
X n

@ Supremum over distributions on tuples of inputs X"

e For DMCs and i.i.d. inputs we obtain by the weak law of large
numbers: p—lim,_, . 2i(X"; Y") = I(X;Y)

n—o0

S. Verdu and T.S. Han, “A general formula for channel capacity,” in IEEE Trans.

IT, July 1994.
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Information-Theoretic Finite-Blocklength Bounds

| Py x(yIx)
Py(y)

Theorem

Given a blocklength n. Rate R is achievable with error probability € if 3
Px and K > 0 s.t.:

e Information density: i(X;Y) =

|
R < 10 Y) =y Y (e - ) — KB 1)
with By = nflK + % andV /T the 2nd / 3rd cent. mom. of i(X;Y).

Rate R is not achievable with error probability € > 0, if Yd > 0 and
pmfs Px:

R > I(X;Y) \/7(@ (e+ B) log(") _ logd, (2)

n

6T

where B =

7

T
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Take-Away Messages from the Capacity Part

e Capacity denotes the highest rates of reliable communication
(error probability tending to 0)

Capacity formula: C = maxp, /(X;Y)

Capacity formula holds also with feedback
e Maximimaztion argument Px refers to the codebook statistics

e For given codebook statistics Px largest reliable rate is /(X; Y)
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Information-Theoretic Integrated

Sensing and Communication (ISAC)

with Distortion
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Information Theoretic Model for ISAC Kobayashi et al.

Y; M

e state sequence S" = (51,...,5,) i.id. ~ Ps

@ Behaviour of the channel depends on the state S”
(for example the acceleration of an object)

e Sensing Performance measured by Average Block-Distortion:

im L > "E[d(Si, 5)] < D.
i=1

n—o0 N 4
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Distortion as a Sensing Performance

M

@ Sensing Performance Measured by Average Block-Distortion:

I|m fZE[d(S,,S )] < D.

e Examples of distortion measures
o Mean-Squared Error d(s,$) = (s — §)?
o Hamming weight d(s,$) = 1{s # §}

o Distortion on a function of the state d(s, §) = d’(f(s), $)
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Recall the Generality of our Model

Y; M

o Arbitrary forward and backward channels Py|xs and Pz yxs

o Examples:
e Memoryless fading channels Y = SX + N
o Backscatterer can be Z=SX+ NorZ=Y + Nor ...

e Receiver CSI: Y; can include S; or imperfect versions of S;
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Information-Theoretic Fundamental Limit

Y; M

Capacity-distortion tradeoff C(D) is largest rate R such that there
exist encoders, decoders and estimators with

Pr(l\?l;él\/l)—)o as n— oo

and

im =S E[d(S, $)] < D
i=1

n—00 N 4
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Optimal Sensing under Distortion Constraints

e By memoryless assump.: Markov chain (X", Z") — (Xi, Zi) = Si

Lemma

The optimal estimator operates symbolwise on (X", Z")

$"(x", z") = (8% (x1,21), 8" (%2, 22)5 - - -, 87 (Xny 2n)),

where the optimal per-symbol estimator is

§*(x,z) := arg min Z Psixz(s|x, z)d(s,s')

s'eS S

o Minimum achievable distortion Dmin = L 5771 E[d(S¢, §*(Xe, Z¢))]

@ So, it depends only on the empirical statistics of the codebook
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Capacity-Distortion Tradeoff C(D)

Theorem (Kobayashi et al.)

Capacity-distortion tradeoff
C(D) :=maxI(X;Y)
where mazximum is over Px satisfying

E[d(S,$"(X, 2))] < D.

e Tradeoff between communication and sensing stems from Px

o Generalized feedback not used for coding. Simple point-to-point

codes are sufficient. It suffices to adjust input pmf Px to desired
sensing performance.
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Ex. 1: Binary Multiplicative-State Channel
e S~ B(q)
e Z=Y' =SXand Y =(Y,S)
e Hamming Distortion d(s,§) = s® 8.
e Minimize distortion: X =1 —+ D=0and R=0

e Maximize rate: X ~ B(1/2) — D =1/2-min{q,1—q}and R=gq

0.4
03r
x 0.2
0.1} '." —C(D)
* - == Resource sharing
% 005 01 015 02 0% 03 0% 04

D
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Ex. 2: Rayleigh Fading Channel

Standard Gaussian state and noises S, N, Ng,

Rayleigh fading channel Y/ = SX + N

Rx observes Y = (Y’,S) and Tx Z = Y’ + Np,

Input power constraint P = 10dB

Quadratic distortion d(s,$) = (s — $)2.

e X ~ N(0, P) achieves capacity

=== Resource Sharing
—C(D)

e X+ VP optimal for sensing

! I ! I !
0.1 0.15 0.2 0.25 0.3 0.35 0.4
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The Finite Blocklength Regime

e Given blocklength n, triple (R, D, ¢) is called achievable if 3
encoder, decoder, and estimator with

Pr (M ” M) <e and iiE[d(S;, $) <D
i=1

e Can reuse the optimal
estimator s*(x, z) from the
capacity-problem!

o Ex.: Z=Y = XS and
S ~B(0.4) and € = 103

[3] H. Nikbakht et al., “Integrated Sensing and Communication in the Finite

Blocklength Regime”, ISIT 2024. 1595



Information-Theoretic Finite-Blocklength Bounds

Theorem

Given n. Triple (R, D, €) is achievable if 3 Px and K > 0 s.t.:

R 10X;Y) \f Q-1 '°gn(”), (3)

D > E[d(S,5*(X,2)) (4)

IA

andV /T the 2nd / 3rd cent. mom. of i(X;Y).

with B, 1= iK+ T =
Triple (R, D, €) not achievable if Y6 > 0 and pmfs P satisfying (4):
V__ log(n) logd
R > I(X;Y)—4/—-0Q! _ =
> 106Y) — Yt e+ )+ B _losd
where B 1= \/% + -

[3] H. Nikbakht et al., “Integrated Sensing and Communication in the Finite

Blocklength Regime”, ISIT 2024.
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Beyond the Memoryless Assumption

e arbitrary state sequence S" = (S1,...,S,) (for each n)
e No feedback coding X" = f"(M)

o arbitrary channel law Pznyn xnsn (for each n)

o general distortion constraint lim,_,. 1E[d(S", SM<D

Theorem (Capacity-distortion tradeoff)

1
C(D):= sup p— lim ~i(X" Y")

{PX"}n n—oo N

where supremum over all {Pxn} s.t. lim, o0 %E[d(S",g"(X”, Z"N] <D

[4] Chen et al. “On general capacity-distortion formulas of integrated sensing and

communication,” Arxiv 2023.
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Take-Away for Distortion-Based Single-User ISAC

Information-theoretic model with average distortion

Symbol-by-symbol estimator optimal in memoryless case =
sensing performance depends only on empirical statistics of X"

= Use optimal data communication scheme under restriction on
empirical statistics of x"
= No need to use backscatterers for coding

Tradeoff between sensing and communication

Resource-sharing schemes highly suboptimal
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Beyond the Distortion Model: Estimation-Theoretic
Sensing

o Gaussian channels:

Y. = HX+Z.
Ys = HX+Z;
e Sensing parameter 0 s.t. Hs = g(n) and metric (which
lower-bounds MMSE)
-1
E[tr (k)]

e Characterized/approximated extreme points of
Rate-Cramer-Rao-Bound Tradeoff (max rate and min CRB)

[5] Y. Xiong et al., “On the fundamental tradeoff of ISAC under Gaussian
channels,” Trans. IT Sep. 2023.
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Beyond the Distortion Model: Detection of Events

zn

Radar Rx

H

M Transm.

Channel | Y™ - I
H ——>| Receiver M
PYoix

H
He{0,1}

e Channel governed by single parameter H for entire transmission

e Radar Rx wishes to detect finite H

o Information-theoretic limits derived under various sensing criteria:
Stein exponent, minimum error exponent, exponents region

lim —1/nlogPr[H #H|H =], i<c{0,1}

[6] H. Joudeh & F. Willems, “Joint communication and binary state detection,”
JSAIT 2022.

[7] M.-C. Chang, et al. “Rate and detection-error exponent tradeoff for joint
communication and sensing of fixed channel states,” JSAIT 2023.

[8] M. Ahmadipour, et al. “Strong Converse for Bi-Static ISAC with Two

Detection-Error Exponents,” 125 2024. -



Some Basics of Detection Theory
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Non-Adaptive Active Detection / Hypothesis Testing

X’n
— PZ\X or QZ|X

z"

e Hypothesis H € {0,1}

o Non-adaptive input sequence x" (deterministic or random)

o under H = 0: outputs

o under H =1:

o Decision H = g(" (2", X")

Detector
g™ ()

e

7" ~ P(>'<n

outputs Z" ~ Q?")’((\x”)

z\x("xn)
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Non-Adaptive Active Detection / Hypothesis Testing

X’n
— PZ\X or QZ|X

Z?’L

e Hypothesis H € {0,1}

Detector

g™ ()

E

e Probability of type-I: a, = P[ = 1" =0]

e Probability of type-1I: 5, = IP’[

—0H =1]
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Example on how to Detect

o Assume Z = X = {0,1} and for x # z: Pz x(z|x) = 0.25 and
Qzix(z|x) =0.7

e Assume the input sequence is
X" =(0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1)

e How to decide on the following output sequences:

Z"=(0,0,1,0,0,1,0,0,1,1,0,1,0,1,1,1) —SH=0
Z"=(0,0,1,1,1,1,1,1,1,0,0,0,0,0,0,1) —H=1
Z"=(0,0,1,1,0,1,0,0,1,1,0,0,0,0,0,1) —H =7
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Neyman-Pearson Test

For a fixed blocklength n and fixed input sequence x”

Pzx(Zi|xi)

e Log-likelihood ratio (LLR) = >_7 ; log U T

o Neyman-Pearson Test:

S S

H=0 if LLR >~ and H=1

otherwise

e Varying v over R we obtain the optimal tradeoff-curve between the

type-I and type-II error probabilities

@ Our interest will be in the behaviour of the error probabilities in

function of n — oo:

— error probabilities can decay exponentially!
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Kullback Leibler Divergence

e Given two probability distributions P and @ on same alphabet X

Kullback Leibler (KL) Divergence:

P(x)

D(P|Q) = ) P(x)log 20"

xXEX

KL divergence nonnegative: D(P||Q) > 0 with equality iff
P(x) = Q(x) for all x € X

KL divergence is non-symmetric D(P||Q) # D(Q||P)

— not a real distance but still measures closeness

D(nyHP)(Py) = /(X; Y)
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Probability of Having a Joint Statistics II

o Let X = (X1,...,X,) beand Y =(Y1,...,Y),) be jointly drawn
iid. from Qxy. For any Pxy # Qxy:

= P[(X,Y) have joint empirical statistics ~ Pxy]|
~ 2~ D(Pxy[|@xy)

@ Let S be a set of joint empirical statistics:

P[(X, Y) have joint empirical statistics in set S]

~ Z 2—nD(Pl|Q@xy) ~ max 2~ "P(PIlQxy) ~, 9—nminpes D(P||Qxy)

PeS
PeS

e Notice that the number of empirical statistics is polynomial in n!
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Stein-Exponent

X" Z" |Detector| H
—{ Pz|x or Qz|x | ()

e

@ H =1 corresponds to an extreme alert situation!
(Tsunami, fire, earthquake)

e Asymmetric requirements on the error probabilities

lim a, < €

n—00

1
lim ——log B, > 0 Y= B, <27
n—oo N

Theorem (Stein Exponent)

Largest possible exponential decay is Omax = Y, m(x) D(Pz|x=x||Qz|x=x)
where w(x) denotes the statistics of the input sequence x".
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Relation Stein-Exponent to Empirical Statistics

Fix input sequence x" of empirical statistics my

@ Define P = 7TxPz|x and Q = 7TxQ2|X

Decide H = g("(z",x") = 0 only if emp. statistics mynzn & TxPzx-
Else declare H = 1

Plemp. statistics of (x",Z") ~ P|H =1] ~ 2= nD(7x Pz x|I7x Qz|x)

Set where 2 = 0 set of joint types mzx
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Exponents Region

X" Z" |Detector| H
—> F%|X OTC?ZLX > g(")ﬂ)

Tn

e Exponential decay of both error exponents:

. 1 _
lim ——loga, > r e, <27
n—oo N

. ]- “ " —nv
lim —=logB8, > v "B, <2
n—oo N

Theorem (Exponentsregion)

For fized type-I error exponent r the largest type-II error exponent is

vi(r) = iy D(mxmz x| mxQz|x)

D(mxmzix || mx Pz x)<r
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Exponents region to Empirical Statistics

X" Z" |Detector| H
— PZ\X or QZ|X > g(")(-)

TX n

e Fix input sequence x” of empirical statistics my

o Decide H = g("(z",x") = 0 only if emp. statistics mynzn is such
that D(7mxnzn||mxPzx) < r. Else declare H =1

°
P[D(mznl|mPzix) < rfH =1~ Y 27 "PmmzxinQzx)
ﬂz‘xi
Dl z x| mxPzix)<r
Set where H =

set of joint types mzx
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Chernoff Exponent

X" Z" |Detector| H
—{ Pz|x or Qz|x | ()

e

o Interested in smallest exponent for input x”

1 1
min{ lim ——logap, lim —|0g5n} > E
n

n—oo N n—o0

Theorem (Symmetric Error Exponent)

vi(r) = ,TT‘L“: D(mxmz x| mxQz|x)

D(mxmz x||mx Pz x )< D(mxmz x| 7x Qz| x)

= max — Z?TXn(X) log (Z PZ‘X(Z|X)IQZ|X(Z‘X, 1)1*l>

1€[0,1]

e E is also the exponent of the sum probability %oz,, + %ﬁn

o Extends to multiple hypotheses!
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Chernoff Exponent and Empirical Statistics
e Fix input sequence x” of empirical statistics my
@ Define P = 7TXP2|X and Q = 7TxQz|x

o Decide H = g(”)(z”,x”) = 0 only if emp. statistics mynzn has
smaller KL, divergence with 7Pz x than with m,Qzx. Else H =1
°

P[D(mxnzn|[mxPz)x) < D(mxnzn||mx Qz1x )| H = 1]
~ Z 2= nD(mxmz x| mx Qz|x)

7Tz‘X .
D(mxmzx17xPz|x)
<D(mxmz)x ||7x Qz|x)

set of joint types 7wz x
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Active Adaptive Detection

X; Z; |Detector| H

1 T ame [
Enc ]2 ] T

R H
Pz x

M-ary hypotheses: H € {0,1,..., M — 1}

Inputs can be chosen adaptively x; = £;(Z'~1)

Decision H = g("(Z", X")

o For more than two hypotheses M > 2, adaptive strategies allow to
discriminate between different hypotheses!

63/95



Take-Away from Detection Theory

e S aset of joint statistics and Z" ~ Qzx given x". Then:
Prrynzn € S] & 27" Minwes D(x[1Q)

e Non-adaptive active hypothesis testing:

o Asymptotically-optimal detection rule based solely on the joint
empirical statistics of (x”,Z")

e Detection performances only depend on statistics of input x"!

o Channel discrimination possible with exp.-decaying error prob.

e Adaptive strategies beneficial for active hypothesis testing if more
than 2 hypotheses
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Information-Theoretic Results on

ISAC with Detection Errors
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ISAC Models with Detection Exponents

ZL
\ 4
XA
Enc.{f;} ‘ Px?/-lzp(
H T H e {0,1

e Single sensing parameter H € {0,1} constant for all times

@ Sensing performance measured in detection-error exponents

e Symmetric detection exponent:

Esym ;:nimm—%mg(max{lp [7%: 1|H:0] : P['}%:om: 1”)
e Stein’s exponent requires
lim P[ﬁzomzl}

n— o0
Osien =  lim —logP {H —0|H= 1}

IN
[0}



Relation to a Compound Channel

H
Pyix

THE{QH
e Without the sensing it is a compound channel

o Compound capacity without feedback:
Ccompound < n;)ix m?_iln I(X; Y’/H)

Cannot adjust codebook statistics Px to the channel H!
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Relation to a Compound Channel

| Y; i
' i
L X " Y; M

THE{OH

e Without the sensing it is a compound channel

e Compound capacity without feedback:

Ccompound < maxmin /(X. Y’H)
Px H
Cannot adjust codebook statistics Px to the channel H!

e Compound capacity with feedback:

Ccompound,fb < m,}_lln n;?(XI(X' Y|/H) - m?_ltn C('DY|X)

Can learn channel and adapt codebook statistics!
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Bi-Static ISAC with Chernoff Exponent

H

M
Enc.{f:}

Zi

Y; M

THE{().I}

e Only non-adaptive strategies are possible

Theorem (Joudeh et al. and Chang et al.)

(R, Esym) pairs are achievable iff for some Px:
R < minl(X: Y[H),

Esym < max—ZPX Iog(ZP%X(Z|X)’P§‘|X(Z|X)L/>

1€[0,1]

e Tradeoff between sensing and communication due to common Px!
(input statistics)
[6] H. Joudeh & F. Willems, “Joint communication and binary state detection,”ss /95




ISAC Model with Stein Error Exponent

M ‘ ; Y; M

THE{().I}

Theorem (Ahmadipour et al.)

(R, Estein) pairs are achievable iff for some Px:
R < min 1(X; Y|H),

Estein < ZPX x)D(Pzix (- [x)[| Qz|x (+[x)

e Tradeoff between sensing and communication due to common Px!
(input statistics)

[8] M. Ahmadipour, M. Kobayashi, M. W. and G. Caire, “An Information-Theoretic

Approach to Joint Sensing and Communication,” Trans. IT, 2022.
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Adaptive Channel Coding/Sensing
z,

H
Py x

THE{O,I

e Feedback allows the encoder to “learn” the channel parameter H
and to adapt its coding to the correct channel

e Sensing (detection) problem is still open when A non-binary
— adaptive inputs also improve detection performance

o Chang et al. propose joint sensing and communication schemes

@ Problem seems difficult and is open!

[[7] M.-C. Chang, et al. “Rate and detection-error exponent tradeoff for joint

communication and sensing of fixed channel states,” JSAIT 2023.
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Take-Aways from ISAC with Detection-Errors

o Non-Adaptive case:

e Complete information-theoretic results for various Detection
Exponents

e Optimal asymptotic performance only depends on x” through its
empirical statistics.

e Sensing detector decides based on joint type of x"” and backscatterer
depending on the exponent to maximize

e Again a tradeoff between sensing and communication depending on
input statistics
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Take-Aways from ISAC with Detection-Errors

e Adaptive case:

e Much more involved, communication problem is closed but not the
optimal sensing — ISAC also widely open

e Adaptive inputs can be used because the transmitter learns the

channel and to better discriminate between different pairs of
hypotheses.
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Network ISAC



Network ISAC

Feedback @
K\ \ o Data sent to both receivers
M
)

(4]

Feedbac &

o Fundamental limits partly
characterized

1///Z>

@ Both Transmitters sense and send data

e Comm. path between Txs! — Collaborative comm. and sensing
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Multi-Receiver ISAC

e State-dependent broadcast channel with backscatterer

Dec.1 g§"> > M,

Py.v,z|xs

(n) y

1 Dec.2 g,

Si

[ ]

o Arbitrary forward and backward channels Py, y,|xs and Pz|y,y,xs
e Model includes as special cases Rx-CSI and two states S = (51, S2)
e For most channels, feedback does increase capacity!!!
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Fundamental Capacity-Distortion Region for BC

Definition

Capacity-distortion region is the set of triples (R, Rz, D) so that there
exist encoder, decoders, and estimator with

nan;OPr(Mk 4 M) =0, ke{1,2}, Tim fZ]E[d $,8) <D

Same per-symbol optimal estimator as for single-receiver!

Optimal estimator: s"=(8"(x1,21), 8 (%2, 22)s - - -, 8% (X, Z0))s

with

§*(x, z) := arg min Z Psixz(s|x, z)d(s,s").
S'€S ses

e Sensing performance depends only on statistics of x”

e Find optimal feedback BC code under constrained x"-statistics.
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State-Dependent BCs with Generalized Feedback

Yi
Zi—l Rec. 1 — ]\Afl
M, My —| Encoder ;e Py,y,z1x5
Transmitter .
Rec.2 — M,
PS 1/21

e Feedback does not increase capacity of degraded BCs (El Gamal, 79)

@ Achievable scheme for general BCs
(Shayevitz et al’12, Venkataramanan et al’13)

e Capacity of several BCs with full Receiver-CSI (Kim et al'16)
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Intuition about the Shayevitz-Wigger BC Scheme

Block: 1 b b+1 B
- Comp. Info. || Comp. Info Comp. Info.
New Data New Data New Data -

© Block-Markov strategy:

e Compression info sent in block b + 1: info about channel in block b
learned via feedback

e Block-b outputs improved with compression info sent in block b+ 1

@ New data and compression info sent with Marton’s BC scheme
(without feedback)
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Results on Capacity-Distortion Region of BCs

Degraded Broadcast Channels X — Y; — Y,

Capacity-distortion region: all (Ry, Rz, D) that for some Pyx satisfy

R < I(X;Y1|U)
R, < I(U;Ya),
E[d(S,5%(X,2))] < D.

o Tradeoff between communication and sensing from Pyx.
o No-feedback codes with appropriate Px.
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Results on Capacity-Distortion Region of BCs

Degraded Broadcast Channels X — Y; — Y,

Capacity-distortion region: all (Ry, Rz, D) that for some Pyx satisfy

R < I(X;Y1|U)
R, < I(U;Ya),
E[d(S,5%(X,2))] < D.

o Tradeoff between communication and sensing from Pyx.
o No-feedback codes with appropriate Px.

General Broadcast Channels

Inner and outer bounds (feasible and infeasible regions) based on
Shayevitz-W. scheme and genie-aided bound

@ Bounds in general case tight only in special cases.
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Binary Fading Example: Capacity-Distortion Region
e Double-State S = (51, S2) with corr. components, known at Rxs!
e Fading outputs Yy = Sk X, for k = 1,2 (without noise)
e Perfect Rx CSI and both outputs fed back Z = (Y1, Y2)

@ When X =1 Tx learns 51,5>; when X = 0 it learns nothing

e Resource/time-
sharing approaches
sub-optimal

o Tradeoff betwen
optimal sensing
and comm.
performances
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Take-Away Messages for BC

o Information-theoretic model based on generalized feedback,
memoryless state sequence, average distortion

e Symbol-by-symbol estimator optimal; sensing performance
depends only on empirical statistics of x”

e Use optimal data communication scheme under restriction on
empirical statistics of x”
— generalized feedback used for data communication

e 3-dimensional tradeoff between 2 rates and distortion

@ Resource-sharing schemes highly suboptimal
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Multi-Access ISAC

g Z1;

1 4 . 4———"
M1_> Enc'{fl,l} <

1,2

»

Py 7, 2,1x, X2

M X2,i
Mo—p| ,
Sn EnC.{fgyl}

4

s

2 Z;

Pg

e Both Txs sense the state and send data

e Communication path between Txs!!

Dec. g"

M, My

e Symbol-wise estimator at Tx k based on (X i, Zk ;) is suboptimal!

e Collaborative coding and sensing through Tx-Tx- paths!
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Idea of Willems’ Collaborative Comm Scheme

[Willems’83] scheme for the MAC with generalized feedback

@ Block-Markov coding and backwards decoding

Decoded at Rx

Decoded at
other Tx

Decoded at Rx

Standard Standard
Comm. Comm.
Collabor. Collabor.
Comm. Comm.
Collabor.
Comm.
block 1 block 2

Standard
Comm.

Collabor.
Comm.

-

Collabor.
Comm.

L

Collabor.
Comm.

block B

@ Txs exchange message parts over Tx-Tx paths

block B +1

o Exchanged message parts are collaboratively re-transmitted in the
next block

e Collaboratively transmitted message parts are easier to decode
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Our Joint Collaborative Comm/Sensing Scheme

o Reuse Willem’s multilayer block-Markov coding scheme

Decoded at Rx

Decoded at
other Tx

Decoded at Rx

Standard Standard
Comm. Comm.
Collabor. Collabor.|Collabor.
Comm. Sensing | Comm.
Collabor.
Comm.
block 1 block 2

Standard
Comm.
Collabor.|Collabor. Collabor.
Sensing | Comm. Sensing
Collabor. Collabor.
Comm. Comm.
block B block B + 1

o After each block, each Tx extracts sensing info of interest to the
other Rx

@ This sensing info is transmitted to the other Tx during the next

block

e Each Tx /i estimates the state S/ based on its inputs/outputs,
decoded codewords, and sensing info from the other Tx.
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Binary MAC Example
e 51,5, i.i.d. Bernouilli-0.9, noises By, B1, B> ind. Bernoulli, and
Y' = 51X+ $X + Bo, Y = (Y, 5,5%),
Zr = 51X1+ 5X,+ By, Vk € {1, 2}.
e Hamming distortion d(s,8) =s® §

@ Choose auxiliaries Uy, Uy, Us binary and

HZk =1} +2-1{Z =2 if B, =0
Vi = {k J {4e=2) ok Vk = {1,2}
? if Ek =1
1 -
=
* 051 === Vith collaborative sensing
e = Without collaborative sensing
03 4 5 6 7 8

D> 1072
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Further Improved ISAC MAC Scheme

e Reuse the Ahmadipour & W. multilayer block Markov scheme

Decoded at Rx

Decoded at
other Tx

Decoded at Rx

Standard Standard | Sensing
Comm. Comm. |/nfo to Rz
Collabor. Collabor.|Collabor.
Comm. Sensing | Comm.
Collabor.
Comm.
block 1 block 2

Standard |Sensing Sensing
Comm. [[nfo to Rz Info to Ral
Collabor.|Collabor. Collabor.
Sensing | Comm. Sensing
Collabor. Collabor.
Comm. Comm.
block B block B +1

e In each block send sensing information from both Txs to the Rx

@ Receiver can also decode the sensing information exchanged

between the Txs

@ This further improves the previous schemes

e Further improvements possible by improving Tx-to-Tx comm....

9] Y. Liu, M. Li, A. Liu, L. Ong, and A. Yener, “Fundamental limits
of multiple-access integrated sensing and communication systems,” . o



Device-to-Device ISAC

2y L —>
%

W, T X1, Xo,i 1
W W,

@ Both Txs sense the state and send data
o Interactive communication between Txs!!

@ We propose a coding scheme based on Block-Markov encoding:

— Improved Han’s interactive communication scheme with
collaborative sensing!
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Take-Aways for the MAC and D2D

Symbol-by-symbol estimator based on inputs/outputs suboptimal

@ Base estimator also on decoded codewords

Sensing performance improved through collaborative sensing —
Use the Tx-to-Tx path already used for feedback communication!

Improved schemes are possible using interactive two-way schemes
(Han) and joint source channel coding

o Tradeoff between sensing and communication
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Summary

o Presented information-theoretic framework for integrated sensing
and communication [Kobayashi,Caire,Kramer’'18] and [Joudeh& Willems’22)]

o Information-theoretic limits have been derived for various sensing
criteria and discrete-memoryless channels/state sequences

e Single Tx: optimal sensing performance depends only on x”
statistics.

e Tradeoff between rates and distortion(s)/exponents .
o Multiple Txs: Fully integrate coding for collaborative sensing and

comm.
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Interesting future research directions

Simplified capacity-expressions/coding schemes for Channels with
memory

o Continuous-time channels

Other sensing criteria

e Further investigations on secrecy constraints
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