An Information-Theoretic View of Integrated Sensing and Communication (ISAC)

Michèle Wigger

Tutorial, SPAWC 2024

Lucca, Italy, September 10, 2024

Traditional Sensing and Communications Separation

Communication

Sensing

Conventional approach

- Individual hardware with own antenna and own RF chain for each of the two tasks
- Separate bandwidths for the two tasks

Integrated Sensing and Communication (ISAC)

Sensing and Communication

• Synergistic hardware, bandwidth, and waveform performing both tasks: Sensing and Communications

Motivation for Integrating Sensing and Communication

The most immediate benefits of ISAC:

- Cellular communication move up in frequencies, even to the THz regime
 - \rightarrow radar and cellular communication occupy similar bandwidths
- Integrating radar and communication will allow to free up precious bandwidth
- Savings in hardware costs, resources, and energy consumption

Important Use Cases

• But we can dream of much more...

Multi-Functional Networks in 6G

- Ubiquitous sensing capabilities for all terminals in the network:

 Anywhere and anytime capabilities for all terminals
- Network sensing (joint sensing capabilities for communicating terminals) can significantly improve local onboard sensing capabilities
- Precise positioning information allows for better communication performances
- Precise sensing of position, angles, speed, and structure of objects allows to obtain a reliable *digital twin*

Current Status of ISAC

- Predicted to be crucial building block of future 6G networks
- Heavily investigated in the communications and signal processing societies
- First prototypes available

Information-theoretic angle of attack

Determine the optimal performances of ISAC systems. And the inherent tradeoffs between sensing and communications

Outline of the Tutorial

- Some Basics of Information Theory
- 2 Channel Capacity—Shannon's Channel Coding Theorem
- Information-Theoretic Integrated Sensing and Communication (ISAC) with Distortion
- Some Basics of Detection Theory
- Information-Theoretic ISAC with Detection-Errors
- **6** Results on Network ISAC

Some Basics of Information Theory

Entropy

• Entropy measures randomness/uncertainty of a random variable

$$H(X) = \sum_{x \in \mathcal{X}} P_X(x) \log_2 \frac{1}{P_X(x)} = \mathbb{E}_{P_X} \left[\log_2 \frac{1}{P_X(X)} \right]$$

where $0 \log \frac{1}{0} := 0$

• Entropy of a binary random variable $X \sim \mathcal{B}(p)$:

$$H(X) = -p \log_2 p - (1-p) \log_2 (1-p).$$

Extreme Values of Entropy

• Deterministic random variable, $P_X(a) = 1$ for some $a \in \mathcal{X}$:

$$H(X) = \sum_{x \in X} P_X(x) \log_2 \frac{1}{P_X(x)} = 0 \log \frac{1}{0} + 1 \cdot \log \frac{1}{1} = 0 + 1 \cdot 0 = 0$$

• Uniform random variable $P_X(x) = \frac{1}{|\mathcal{X}|}$, for all $x \in \mathcal{X}$:

$$H(X) = \sum_{X \in \mathcal{X}} \frac{1}{|\mathcal{X}|} \log |\mathcal{X}| = |\mathcal{X}| \cdot \frac{1}{|\mathcal{X}|} \log |\mathcal{X}| = \log |\mathcal{X}|.$$

• Extreme values

$$0 \le H(X) \le \log |\mathcal{X}|;$$

lower bound tight iff X determ. and upper bound iff X uniform.

Conditional Entropy

- How the observation of a related random variable changes entropy
- Conditional entropy:

$$H(X|Y) = \sum_{y \in \mathcal{Y}} P_Y(y) \sum_{\substack{x \in \mathcal{X} \\ H(X|Y=y)}} \frac{1}{P_{X|Y}(x|y) \log_2 \frac{1}{P_{X|Y}(x|y)}}$$
$$= \mathbb{E}_{P_{XY}} \left[\log_2 \frac{1}{P_{Y|X}(Y|X)} \right]$$

- Conditioning reduces entropy: $0 \le H(X|Y) \le H(X)$
- $H(X|Y) = 0 \Leftrightarrow X = f(Y)$
- $H(X|Y) = H(X) \Leftrightarrow X \text{ independent of } Y$

Joint Entropy

- How much uncertainty is contained in a bunch of random variables
- Joint Entropy:

$$H(X,Y) = \sum_{x,y} P_{XY}(x,y) \log_2 \frac{1}{P_{XY}(x,y)} = \mathbb{E}_{P_{XY}} \left[\log_2 \frac{1}{P_{XY}(X,Y)} \right]$$

• Joint and conditional entropies extend to many r.v.: $H(X_1, ..., X_j | Y_1, ..., Y_i)$ and $H(X_1, ..., X_j)$

Chain rule of Entropy

- Entropy of X: $H(X) = \mathbb{E}\left[\log \frac{1}{P_X(X)}\right]$
- Conditional entropy of Y given X: $H(Y|X) = \mathbb{E}\left[\log \frac{1}{P_{Y|X}(Y|X)}\right]$
- Sum of the two: $(\log(ab) = \log a + \log b)$

$$H(X) + H(Y|X) = \mathbb{E}\left[\log \frac{1}{P_X(X)P_{Y|X}(Y|X)}\right]$$
$$= \mathbb{E}\left[\log \frac{1}{P_{XY}(X,Y)}\right] = H(X,Y)$$

Chain rule of Entropy

$$H(X, Y) = H(X) + H(Y|X) = H(Y) + H(X|Y).$$

Mutual Information

- Mutual Information is how much X tells about Y
- Reduction in Entropy:

$$I(X;Y) \triangleq H(X) - H(X|Y) = H(Y) - H(Y|X) \geq 0.$$

- X and Y are independent $\rightarrow I(X; Y) = 0$
- $X = Y \rightarrow I(X; Y) = H(X)$

Empirical Statistics or Types

• Empirical statistics (type) of a sequence $\mathbf{x} = (x_1, \dots, x_n)$

$$\pi_{\mathbf{x}}(a) = \frac{|\{i : x_i = a\}|}{n}, \quad a \in \mathcal{X}.$$

• Example for the sequence x = (0, 1, 2, 1, 1, 2, 2, 0, 2, 1):

$$\pi_{x}(0) = \frac{2}{10} = \frac{1}{5}, \qquad \pi_{x}(1) = \frac{4}{10} = \frac{2}{5}, \qquad \pi_{x}(2) = \frac{4}{10} = \frac{2}{5}$$

Joint Empirical Statistics

• Joint empirical statistics of $\mathbf{x} = (x_1, \dots, x_n)$ and $\mathbf{y} = (y_1, \dots, y_n)$:

$$\pi_{xy}(a,b) = \frac{|\{i \colon x_i = a \text{ and } y_i = b\}|}{n}, \quad a \in \mathcal{X}, \ b \in \mathcal{Y}.$$

• Example for the sequences $\mathbf{x} = (0, 1, 2, 1, 1, 2, 2, 0, 2, 1)$ and $\mathbf{y} = (0, 3, 3, 0, 3, 0, 0, 0, 3, 0)$

$$\pi_{xy}(0,0) = \frac{2}{10}$$
 $\pi_{x,y}(1,0) = \frac{2}{10}$ $\pi_{x,y}(2,0) = \frac{2}{10}$ $\pi_{x,y}(1,3) = \frac{2}{10}$ $\pi_{x,y}(2,3) = \frac{2}{10}$

Probability of having a Joint Empirical Statistic

- Let $\mathbf{X} = (X_1, \dots, X_n)$ and $\mathbf{Y} = (Y_1, \dots, Y_n)$ be jointly drawn i.i.d. from P_{XY} .
 - $\Rightarrow \quad \mathbb{P}[(\boldsymbol{X},\boldsymbol{Y}) \text{ have joint empirical statistics } \approx P_{XY}] \\ \rightarrow 1 \text{ as } n \rightarrow \infty.$

(weak law of large numbers)

• Let $\mathbf{X} = (X_1, \dots, X_n)$ be and $\mathbf{Y} = (Y_1, \dots, Y_n)$ be independently drawn i.i.d. from P_X and P_Y .

 $\mathbb{P}[(X,Y) \text{ have joint empirical statistics } \approx P_{XY}] \approx 2^{-nI(X;Y)}$

Recap from Basic Information Theory Part

- Entropy and Conditional Entropy
- Mutual Information (Reduction in Entropy)
- Joint Empirical Statistics
- Probability that independently drawn sequences have joint empirical statistics P_{XY} is $\approx 2^{-nI(X;Y)}$

Channel Capacity

Shannon's Channel Coding Theorem

Data Transmission over a Noisy Channel

The Discrete Memoryless Channel (DMC)

• Discrete-time and stationary memoryless channel law:

$$\mathbb{P}\left[Y_t = y \middle| X^t = x^t, Y_{t-1} = y^{t-1}\right] = P_{Y|X}(y|x_t)$$

ullet Finite input and output alphabets ${\mathcal X}$ and ${\mathcal Y}$

Examples of Discrete Memoryless Channel

• Binary Symmetric Channel (BSC): Each input, independently flipped with probability p

• Binary Erasure Channel (BEC): Each input, independently erased with probability ϵ

- \bullet Fast-fading channel $Y_t = S_t X_t + Z_t$ for i.i.d. $\{S_t\}$ and $\{Z_t\}$
- (Imperfect) receiver channel state information: $Y_t = \begin{pmatrix} S_t X_t + Z_t \\ \tilde{S}_t \end{pmatrix}$

Capacity of Discrete Memoryless Channels

• M consists of nR random (i.i.d. Bernoulli-1/2) bits

C. E. Shannon, "A mathematical theory of communication," Bell System Journal, October 1948.

Capacity of Discrete Memoryless Channels

- M consists of nR random (i.i.d. Bernoulli-1/2) bits
- A rate R > 0 is achievable if \exists sequence of encodings $f^{(n)}$ and decodings $g^{(n)}$ such that $\mathbb{P}\left[\hat{M} \neq M\right] \to 0$ as $n \to \infty$.

C. E. Shannon, "A mathematical theory of communication," Bell System Journal, October 1948.

Capacity of Discrete Memoryless Channels

- M consists of nR random (i.i.d. Bernoulli-1/2) bits
- A rate R > 0 is achievable if \exists sequence of encodings $f^{(n)}$ and decodings $g^{(n)}$ such that $\mathbb{P}\left[\hat{M} \neq M\right] \to 0$ as $n \to \infty$.

Theorem (Shannon's Channel Coding Theorem)

All rates $R < C := \max_{P_X} I(X; Y)$ are achievable.

All rates R > C are not achievable.

C. E. Shannon, "A mathematical theory of communication," Bell System Journal, October 1948.

Capacity of the Binary Symmetric Channel

• Binary Symmetric Channel

$$C = \max_{P_X} I(X; Y) = \max_{P_X} [H(Y) - H(Y|X)]$$

$$= \max_{P_X} \left[H(Y) - \sum_{x \in \{0,1\}} P_X(x) H(Y|X = x) \right]$$

$$= \max_{P_X} [H(Y)] - H_b(p)$$

$$= 1 - H_b(p)$$

Capacity of the Binary Symmetric Channel

• Binary Symmetric Channel

$$C = \max_{P_X} I(X; Y) = \max_{P_X} [H(Y) - H(Y|X)]$$

$$= \max_{P_X} \left[H(Y) - \sum_{x \in \{0,1\}} P_X(x) H(Y|X = x) \right]$$

$$= \max_{P_X} [H(Y)] - H_b(p)$$

$$= 1 - H_b(p)$$

• Capacity achieved for P_X Bernoulli-1/2 \rightarrow P_Y also Bernoulli-1/2

Capacity of Binary Erasure Channel

• Binary Erasure Channel

Capacity again achieved with Bernoulli-1/2 input X

Capacity of the White Gaussian Noise Channel

• Real inputs with blockpower constraint $\sum_{t=1}^{n} \mathbb{E}[X_{i}^{2}] \leq nE_{s}$:

$$C = \frac{1}{2} \log \left(1 + \frac{E_s}{N_0} \right)$$

Capacity achieved with Gaussian input $P_X \sim \mathcal{N}(0,N_0)$

• With M-PAM inputs: I(X; Y) for uniform P_X

What is this Input Distribution P_X ?

- The capacity formula $C = \max_{P_X} I(X; Y)$
- P_X describes the probability distribution of the input X_t averaged over all times t
- Since data bits are uniform, so are the codewords $x^n(M = 000 \cdots 000), x^n(M = 000 \cdots 001), x^n(M = 000 \cdots 010), x^n(M = 000 \cdots 011), \dots,$
 - $\Rightarrow P_X(0)$ simply indicates the frequency (empirical statistics) of the 0-symbol among all codewords

A Refined Shannon Theorem

What Shannon says:

• There is no family of encodings/decodings $\{(f^{(n)}, g^{(n)})\}_{n=1}^{\infty}$ of rate R > C such that $P_e^{(n)} \to 0$ as $n \to \infty$

• For any rate R < C there does exist a family of encodings/decodings $\{f^{(n)}, g^{(n)}\}_{n=1}^{\infty}$ s.t. $P_e^{(n)} \to 0$ as $n \to \infty$

A Refined Shannon Theorem

A stronger version:

For any distribution P_X over \mathcal{X} :

- There is no family of encodings/decodings $\{(f^{(n)}, g^{(n)})\}_{n=1}^{\infty}$ of rate R > I(X; Y) and with codebook statistics P_X such that $P_e^{(n)} \to 0$ as $n \to \infty$
- For any rate R < I(X; Y) there does exist a family of encodings/decodings $\{f^{(n)}, g^{(n)}\}_{n=1}^{\infty}$ with codebook statistics P_X s.t. $P_e^{(n)} \to 0$ as $n \to \infty$

Achievability Proof (if-direction) for Capacity Theorem

empirical statistics of each codeword $\approx P_X$

• Encoder: Send $x^n(M)$

Achievability Proof (if-direction) for Capacity Theorem

empirical statistics of each codeword $\approx P_X$

• Encoder: Send $x^n(M)$

• Decoder: Declare the unique \hat{M} s.t. $(x^n(\hat{M}), Y^n)$ have joint empirical statistics $\approx P_X P_{Y|X}$

Achievability Proof (if-direction) for Capacity Theorem

empirical statistics of each codeword $\approx P_X$

- Encoder: Send $x^n(M)$
- Decoder: Declare the unique \hat{M} s.t. $(x^n(\hat{M}), Y^n)$ have joint empirical statistics $\approx P_X P_{Y|X}$
- Analysis:
 - $\mathbb{P}[(x^n(M), Y^n) \text{ of joint stat. } \approx P_X P_{Y|X}] \approx 1$
 - $\forall j \neq M$: $\mathbb{P}[(x^n(j), Y^n) \text{ of joint stat.} \approx P_X P_{Y|X}] \approx 2^{-nI(X;Y)}$
 - By union bound:

$$\mathbb{P}[\exists j \neq M \colon (x^n(j), Y^n) \text{ of joint st.} \approx P_X P_{Y|X}]$$
$$\approx 2^{nR} \cdot 2^{-nI(X;Y)}$$

which vanishes as $n \to \infty$ if R < I(X; Y).

Converse Proof (only if-direction) for Capacity Theorem

• Fix encodings/decodings $(f^{(n)}, g^{(n)})$ so that $P_e^{(n)} \to 0$ as $n \to \infty$

$$nR = H(M) = I(M; Y^n) - \underbrace{H(M|Y^n)}_{\rightarrow 0 \text{ as } n \rightarrow \infty, P_e \rightarrow 0} = I(M; Y^n) - \delta(P_e^{(n)}, n)$$

$$= \sum_{t=1}^{n} I(M; Y_t | Y^{t-1}) - \delta(P_e^{(n)}, n)$$

$$= \sum_{t=1}^{n} \left[H(Y_t|Y^{t-1}) - H(Y_t|Y^{t-1},M) \right] - \delta(P_e^{(n)},n)$$

$$\leq \sum_{t=1}^{n} \left[H(Y_t) - H(Y_t|Y^{t-1}, M, X_t) \right] - \delta(P_e^{(n)}, n)$$

$$= \sum_{t=1}^{n} [H(Y_t) - H(Y_t|X_t)] - \delta(P_e^{(n)}, n)$$

$$= \sum_{t=1}^{n} I(Y_t; X_t) - \delta(P_e^{(n)}, n) \le nC - \delta(P_e^{(n)}, n)$$

What about Feedback?

• Transmitter observes backscatterers or feedback

Theorem (Shannon's Capacity-Theorem for Feedback Channels)

Capacity with feedback and without feedback is the same for Discrete Memoryless Channels.

What about Feedback?

• Transmitter observes backscatterers or feedback

Theorem (Shannon's Capacity-Theorem for Feedback Channels)

Capacity with feedback and without feedback is the same for Discrete Memoryless Channels.

Holds also with active feedback.

Active feedback cannot be better than perfect feedback Z = Y

Capacity of Channels with Memory

- Arbitrary channel law $P_{Y^n|X^n}$ (for each n)
- Capacity formula

$$C := \sup_{\{P_{X^n}\}_{n=1}^{\infty}} p - \underline{\lim}_{n \to \infty} \frac{1}{n} i(X^n; Y^n)$$

where the information density is $i(X^n; Y^n) = \log \frac{P_{X^n Y^n}(X^n, Y^n)}{P_{X^n}^n(X^n) \cdot P_{Y^n}(Y^n)}$

- Supremum over distributions on tuples of inputs X^n
- For DMCs and i.i.d. inputs we obtain by the weak law of large numbers: $p \underline{\lim}_{n \to \infty} \frac{1}{n} i(X^n; Y^n) = I(X; Y)$

S. Verdu and T.S. Han, "A general formula for channel capacity," in IEEE Trans. IT, July 1994.

Information-Theoretic Finite-Blocklength Bounds

• Information density: $i(X; Y) := \log \frac{P_{Y|X}(y|x)}{P_{Y|X}(y)}$

Theorem

Given a blocklength n. Rate R is achievable with error probability ϵ if \exists P_X and K > 0 s.t.:

$$R \leq I(X;Y) - \sqrt{\frac{V}{n}} \mathbb{Q}^{-1} \left(\epsilon - \beta_{u}\right) - K \frac{\log(n)}{n}$$

$$with \ \beta_{u} := \frac{1}{n^{K}} + \frac{0.7975T}{\sqrt{n^{V/3}}} \ and \ V \ / \ T \ the \ 2nd \ / \ 3rd \ cent. \ mom. \ of \ i(X;Y).$$

Rate R is not achievable with error probability $\epsilon > 0$, if $\forall \delta > 0$ and

Rate
$$R$$
 is not achievable with error probability $\epsilon > 0$, if $\forall \delta > 0$ and pmfs P_X :

$$pmfs \ P_X:$$

$$R \ge I(X;Y) - \sqrt{\frac{V}{n}} \mathbb{Q}^{-1} \left(\epsilon + \beta_I\right) + \frac{\log(n)}{2n} - \frac{\log \delta}{n}, \qquad (2)$$

$$where \ \beta_I := \frac{6T}{\sqrt{nV^3}} + \frac{\delta}{\sqrt{n}}.$$

Take-Away Messages from the Capacity Part

- Capacity denotes the highest rates of reliable communication (error probability tending to 0)
- Capacity formula: $C = \max_{P_X} I(X; Y)$
- Capacity formula holds also with feedback
- Maximimaztion argument P_X refers to the codebook statistics
- For given codebook statistics P_X largest reliable rate is I(X; Y)

Information-Theoretic Integrated Sensing and Communication (ISAC) with Distortion

Information Theoretic Model for ISAC Kobayashi et al.

- state sequence $S^n = (S_1, \dots, S_n)$ i.i.d. $\sim P_S$
- Behaviour of the channel depends on the state S^n (for example the acceleration of an object)
- Sensing Performance measured by Average Block-Distortion:

$$\overline{\lim}_{n\to\infty}\frac{1}{n}\sum_{i=1}^n\mathbb{E}[d(S_i,\hat{S}_i)]\leq D.$$

Distortion as a Sensing Performance

• Sensing Performance Measured by Average Block-Distortion:

$$\overline{\lim}_{n\to\infty}\frac{1}{n}\sum_{i=1}^n\mathbb{E}[d(S_i,\hat{S}_i)]\leq D.$$

- Examples of distortion measures
 - Mean-Squared Error $d(s, \hat{s}) = (s \hat{s})^2$
 - Hamming weight $d(s, \hat{s}) = \mathbb{1}\{s \neq \hat{s}\}\$
 - Distortion on a function of the state $d(s,\hat{s}) = d'(f(s),\hat{s})$

Recall the Generality of our Model

- \bullet Arbitrary forward and backward channels $P_{Y|XS}$ and $P_{Z|YXS}$
- Examples:
 - Memoryless fading channels Y = SX + N
 - Backscatterer can be Z = SX + N or Z = Y + N or ...
 - Receiver CSI: Y_i can include S_i or imperfect versions of S_i

Information-Theoretic Fundamental Limit

Definition

Capacity-distortion tradeoff C(D) is largest rate R such that there exist encoders, decoders and estimators with

$$\Pr\left(\hat{M} \neq M\right) \to 0$$
 as $n \to \infty$

and

$$\overline{\lim}_{n\to\infty}\frac{1}{n}\sum_{i=1}^n\mathbb{E}[d(S_i,\hat{S}_i)]\leq D$$

Optimal Sensing under Distortion Constraints

 \bullet By memoryless assump.: Markov chain $(X^n,Z^n) \to (X_i,Z_i) \to S_i$

Lemma

The optimal estimator operates symbolwise on (X^n, Z^n)

$$\hat{s}^n(x^n,z^n) := (\hat{s}^*(x_1,z_1),\hat{s}^*(x_2,z_2),\dots,\hat{s}^*(x_n,z_n)),$$

 $where\ the\ optimal\ per\mbox{-}symbol\ estimator\ is$

$$\hat{s}^*(x,z) := \arg\min_{s' \in \hat{\mathcal{S}}} \sum_{s \in \mathcal{S}} P_{S|XZ}(s|x,z) d(s,s')$$

- Minimum achievable distortion $D_{\mathsf{min}} = \frac{1}{n} \sum_{t=1}^{n} \mathbb{E}[d(S_t, \hat{s}^*(X_t, Z_t))]$
- So, it depends only on the empirical statistics of the codebook

Capacity-Distortion Tradeoff C(D)

Theorem (Kobayashi et al.)

 $Capacity\mbox{-}distortion\ tradeoff$

$$C(D) := \max I(X; Y)$$

where maximum is over P_X satisfying

$$\mathbb{E}[d(S, \hat{s}^*(X, Z))] \leq D.$$

- Tradeoff between communication and sensing stems from P_X
- Generalized feedback not used for coding. Simple point-to-point codes are sufficient. It suffices to adjust input pmf P_X to desired sensing performance.

Ex. 1: Binary Multiplicative-State Channel

- $S \sim \mathcal{B}(q)$
- Z = Y' = SX and Y = (Y', S)
- Hamming Distortion $d(s, \hat{s}) = s \oplus \hat{s}$.
- Minimize distortion: $X = 1 \rightarrow D = 0$ and R = 0
- Maximize rate: $X \sim \mathcal{B}(1/2) \rightarrow D = 1/2 \cdot \min\{q, 1-q\}$ and R = q

Ex. 2: Rayleigh Fading Channel

- \bullet Standard Gaussian state and noises $\mathcal{S}, \mathcal{N}, \mathcal{N}_{\text{fb}}$
- Rayleigh fading channel Y' = SX + N
- Rx observes Y = (Y', S) and Tx $Z = Y' + N_{fb}$
- Input power constraint P = 10dB
- Quadratic distortion $d(s, \hat{s}) = (s \hat{s})^2$.

The Finite Blocklength Regime

• Given blocklength n, triple (R, D, ϵ) is called achievable if \exists encoder, decoder, and estimator with

$$\Pr\left(\hat{M} \neq M\right) \leq \epsilon$$
 and $\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}[d(S_i, \hat{S}_i)] \leq D$

- Can reuse the optimal estimator $s^*(x, z)$ from the capacity-problem!
- Ex.: Z = Y = XS and $S \sim \mathbb{B}(0.4)$ and $\epsilon = 10^{-3}$

[3] H. Nikbakht et al., "Integrated Sensing and Communication in the Finite Blocklength Regime", ISIT 2024.

Information-Theoretic Finite-Blocklength Bounds

Theorem

Given n. Triple (R, D, ϵ) is achievable if $\exists P_X \text{ and } K > 0 \text{ s.t.}$:

$$R \leq I(X;Y) - \sqrt{\frac{V}{n}} \mathbb{Q}^{-1} \left(\epsilon - \beta_u\right) - K \frac{\log(n)}{n}, \tag{3}$$

$$D \geq \mathbb{E}[d(S, \hat{s}^{\star}(X, Z))] \tag{4}$$

with $\beta_{\mathbf{u}} := \frac{1}{n^{K}} + \frac{0.7975T}{\sqrt{nV^{3}}}$ and \mathbf{V} / \mathbf{T} the 2nd / 3rd cent. mom. of $i(\mathbf{X}; \mathbf{Y})$. Triple $(\mathbf{R}, D, \epsilon)$ not achievable if $\forall \delta > 0$ and pmfs P satisfying (4):

$$R \geq I(X;Y) - \sqrt{\frac{V}{n}} \mathbb{Q}^{-1} \left(\epsilon + \beta_I\right) + \frac{\log(n)}{2n} - \frac{\log \delta}{n}, \tag{5}$$

where
$$\beta_I := \frac{6T}{\sqrt{nV^3}} + \frac{\delta}{\sqrt{n}}$$
.

[3] H. Nikbakht et al., "Integrated Sensing and Communication in the Finite Blocklength Regime", ISIT 2024.

Beyond the Memoryless Assumption

- arbitrary state sequence $S^n = (S_1, ..., S_n)$ (for each n)
- No feedback coding $X^n = f^n(M)$
- arbitrary channel law $P_{Z^nY^n|X^nS^n}$ (for each n)
- general distortion constraint $\overline{\lim}_{n\to\infty} \frac{1}{n} \mathbb{E}[d(S^n, \hat{S}^n)] \leq D$

Theorem (Capacity-distortion tradeoff)

$$C(D) := \sup_{\{P_{X^n}\}_n} p - \underline{\lim}_{n \to \infty} \frac{1}{n} i(X^n; Y^n)$$

where supremum over all $\{P_{X^n}\}$ s.t. $\overline{\lim}_{n\to\infty} \frac{1}{n} \mathbb{E}[d(S^n, \hat{S}^n(X^n, Z^n))] \leq D$

^[4] Chen et al. "On general capacity-distortion formulas of integrated sensing and communication," Arxiv 2023.

Take-Away for Distortion-Based Single-User ISAC

- Information-theoretic model with average distortion
- Symbol-by-symbol estimator optimal in memoryless case \Rightarrow sensing performance depends only on empirical statistics of X^n
 - \Rightarrow Use optimal data communication scheme under restriction on empirical statistics of x^n
 - \Rightarrow No need to use backscatterers for coding
- Tradeoff between sensing and communication
- Resource-sharing schemes highly suboptimal

Beyond the Distortion Model: Estimation-Theoretic Sensing

• Gaussian channels:

$$Y_c = H_cX + Z_c$$

 $Y_s = H_sX + Z_s$

• Sensing parameter η s.t. $H_s = g(\eta)$ and metric (which lower-bounds MMSE)

$$\mathbb{E}\left[\operatorname{tr}\left(\mathsf{J}_{oldsymbol{\eta}|oldsymbol{X}}^{-1}
ight)
ight]$$

• Characterized/approximated extreme points of Rate-Cramer-Rao-Bound Tradeoff (max rate and min CRB)

^[5] Y. Xiong et al., "On the fundamental tradeoff of ISAC under Gaussian channels," Trans. IT Sep. 2023.

Beyond the Distortion Model: Detection of Events

- Channel governed by single parameter \mathcal{H} for entire transmission
- Radar Rx wishes to detect finite \mathcal{H}
- Information-theoretic limits derived under various sensing criteria: Stein exponent, minimum error exponent, exponents region

$$\overline{\lim_{n \to \infty}} - 1/n \log \Pr[\hat{\mathcal{H}} \neq \mathcal{H} | \mathcal{H} = i], \quad i \in \{0, 1\}$$

- [6] H. Joudeh & F. Willems, "Joint communication and binary state detection," $JSAIT\ 2022.$
- [7] M.-C. Chang, et al. "Rate and detection-error exponent tradeoff for joint communication and sensing of fixed channel states," JSAIT 2023.
- [8] M. Ahmadipour, et al. "Strong Converse for Bi-Static ISAC with Two Detection-Error Exponents," *IZS* 2024.

Some Basics of Detection Theory

Non-Adaptive Active Detection / Hypothesis Testing

- Hypothesis $\mathcal{H} \in \{0, 1\}$
 - Non-adaptive input sequence x^n (deterministic or random)
 - under $\mathcal{H} = 0$: outputs $Z^n \sim P_{Z|X}^{\otimes n}(\cdot|x^n)$
 - under $\mathcal{H} = 1$: outputs $Z^n \sim Q_{Z|X}^{\otimes n}(\cdot|x^n)$
 - Decision $\hat{\mathcal{H}} = g^{(n)}(Z^n, X^n)$

Non-Adaptive Active Detection / Hypothesis Testing

$$X^n$$
 $P_{Z|X}$ or $Q_{Z|X}$ Z^n Detector $\hat{\mathcal{H}}$ X^n

- Hypothesis $\mathcal{H} \in \{0,1\}$
- Probability of type-I: $\alpha_n = \mathbb{P}[\hat{\mathcal{H}} = 1 | \mathcal{H} = 0]$
- Probability of type-II: $\beta_n = \mathbb{P}[\hat{\mathcal{H}} = 0 | \mathcal{H} = 1]$

Example on how to Detect

- Assume $\mathcal{Z}=\mathcal{X}=\{0,1\}$ and for $x\neq z$: $P_{Z|X}(z|x)=0.25$ and $Q_{Z|X}(z|x)=0.7$
- Assume the input sequence is $X^n = (0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1)$
- How to decide on the following output sequences:

$$Z^n = (0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1)$$
 $\rightarrow \hat{\mathcal{H}} = 0$

$$Z^n = (0,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1) \qquad \rightarrow \hat{\mathcal{H}} = 1$$

$$Z^n = (0,0,1,1,0,1,0,0,1,1,0,0,0,0,0,1) \rightarrow \hat{\mathcal{H}} = ?$$

Neyman-Pearson Test

For a fixed blocklength n and fixed input sequence x^n

- Log-likelihood ratio (LLR) = $\sum_{i=1}^{n} \log \frac{P_{Z|X}(Z_i|x_i)}{Q_{Z|X}(Z_i|x_i)}$
- Neyman-Pearson Test:

$$\hat{\mathcal{H}} = 0$$
 if LLR $\geq \gamma$ and $\hat{\mathcal{H}} = 1$ otherwise

 \bullet Varying γ over $\mathbb R$ we obtain the optimal tradeoff-curve between the type-I and type-II error probabilities

- Our interest will be in the behaviour of the error probabilities in function of $n \to \infty$:
 - \rightarrow error probabilities can decay exponentially!

Kullback Leibler Divergence

- ullet Given two probability distributions P and Q on same alphabet $\mathcal X$
- Kullback Leibler (KL) Divergence:

$$D(P||Q) \triangleq \sum_{x \in \mathcal{X}} P(x) \log \frac{P(x)}{Q(x)}.$$

- KL divergence nonnegative: $D(P||Q) \ge 0$ with equality iff P(x) = Q(x) for all $x \in \mathcal{X}$
- KL divergence is non-symmetric $D(P||Q) \neq D(Q||P)$
 - \rightarrow not a real distance but still measures closeness
- $D(P_{XY} || P_X P_Y) = I(X; Y)$

Probability of Having a Joint Statistics II

• Let $X = (X_1, ..., X_n)$ be and $Y = (Y_1, ..., Y_n)$ be jointly drawn i.i.d. from Q_{XY} . For any $P_{XY} \neq Q_{XY}$:

$$\Rightarrow$$
 $\mathbb{P}[(X, Y) \text{ have joint empirical statistics } \approx \frac{P_{XY}}{2}]$ $\approx 2^{-nD(P_{XY}||Q_{XY})}$

• Let S be a set of joint empirical statistics:

$$\begin{split} \mathbb{P}[(\boldsymbol{X},\boldsymbol{Y}) \text{ have joint empirical statistics in set } \mathcal{S}] \\ &\approx \sum_{P \in \mathcal{S}} 2^{-nD(P \parallel Q_{XY})} \approx \max_{P \in \mathcal{S}} 2^{-nD(P \parallel Q_{XY})} \approx 2^{-n\min_{P \in \mathcal{S}} D(P \parallel Q_{XY})} \end{split}$$

• Notice that the number of empirical statistics is polynomial in n!

Stein-Exponent

- $\mathcal{H} = 1$ corresponds to an extreme alert situation! (Tsunami, fire, earthquake)
- Asymmetric requirements on the error probabilities

$$\begin{array}{rcl} & \overline{\lim}_{n \to \infty} \alpha_n & \leq & \epsilon \\ & \underline{\lim}_{n \to \infty} -\frac{1}{n} \log \beta_n & \geq & \theta & & " \Longleftrightarrow " \beta_n \leq 2^{-n\theta} \end{array}$$

Theorem (Stein Exponent)

Largest possible exponential decay is $\theta_{\text{max}} = \sum_{x} \pi(x) D(P_{Z|X=x} || Q_{Z|X=x})$ where $\pi(x)$ denotes the statistics of the input sequence x^n .

Relation Stein-Exponent to Empirical Statistics

- Fix input sequence x^n of empirical statistics π_x
- Define $P = \pi_x P_{Z|X}$ and $Q = \pi_x Q_{Z|X}$
- Decide $\hat{\mathcal{H}} = g^{(n)}(z^n, x^n) = 0$ only if emp. statistics $\pi_{x^n z^n} \approx \pi_x P_{Z|X}$. Else declare $\hat{\mathcal{H}} = 1$
- $\mathbb{P}[\text{emp. statistics of } (x^n, Z^n) \approx P | \mathcal{H} = 1] \approx 2^{-nD(\pi_x P_{Z|X} || \pi_x Q_{Z|X})}$

Exponents Region

• Exponential decay of both error exponents:

Theorem (Exponentsregion)

For fixed type-I error exponent r the largest type-II error exponent is

$$\nu^{\star}(r) = \min_{\substack{\pi_{Z|X}:\\D(\pi_x\pi_{Z|X}\|\pi_xP_{Z|X}) \le r}} D(\pi_x\pi_{Z|X}\|\pi_xQ_{Z|X})$$

Exponents region to Empirical Statistics

- Fix input sequence x^n of empirical statistics π_x
- Decide $\hat{\mathcal{H}} = g^{(n)}(z^n, x^n) = 0$ only if emp. statistics $\pi_{x^n z^n}$ is such that $D(\pi_{x^n z^n} || \pi_x P_{Z|X}) \le r$. Else declare $\hat{\mathcal{H}} = 1$
 - $\mathbb{P}[D(\pi_{x^nZ^n}||\pi_xP_{Z|X}) \leq r|\mathcal{H}=1] \approx \sum_{\substack{\pi_{Z|X}:\\D(\pi_x\pi_{Z|X}||\pi_xP_{Z|X}) \leq r}} 2^{-nD(\pi_x\pi_{Z|X}||\pi_xQ_{Z|X})}$

Chernoff Exponent

$$X^n$$
 $P_{Z|X}$ or $Q_{Z|X}$ Z^n Detector $\hat{\mathcal{H}}$ X^n

• Interested in smallest exponent for input x^n

$$\min \left\{ \underbrace{\lim_{n \to \infty} -\frac{1}{n} \log \alpha_n, \, \underline{\lim}_{n \to \infty} -\frac{1}{n} \log \beta_n}_{} \right\} \ \geq \ E$$

Theorem (Symmetric Error Exponent)

$$\nu^{*}(r) = \min_{\substack{\pi_{Z|X}:\\ D(\pi_{x}\pi_{Z|X} || \pi_{x}P_{Z|X}) \leq D(\pi_{x}\pi_{Z|X} || \pi_{x}Q_{Z|X})}} D(\pi_{x}\pi_{Z|X} || \pi_{x}Q_{Z|X})$$

$$= \max_{I \in [0,1]} -\sum_{x} \pi_{x^{n}}(x) \log \left(\sum_{z} P_{Z|X}(z|x)^{I} Q_{Z|X}(z|x,1)^{1-I} \right)$$

- E is also the exponent of the sum probability $\frac{1}{2}\alpha_n + \frac{1}{2}\beta_n$
- Extends to multiple hypotheses!

Chernoff Exponent and Empirical Statistics

- Fix input sequence x^n of empirical statistics π_x
- Define $P = \pi_x P_{Z|X}$ and $Q = \pi_x Q_{Z|X}$
- Decide $\hat{\mathcal{H}} = g^{(n)}(z^n, x^n) = 0$ only if emp. statistics $\pi_{x^n z^n}$ has smaller KL divergence with $\pi_x P_{Z|X}$ than with $\pi_x Q_{Z|X}$. Else $\hat{\mathcal{H}} = 1$

$$\mathbb{P}[D(\pi_{x^{n}Z^{n}} \| \pi_{x} P_{Z|X}) \leq D(\pi_{x^{n}Z^{n}} \| \pi_{x} Q_{Z|X}) | \mathcal{H} = 1]$$

$$\approx \sum_{\substack{\pi_{Z|X}:\\ D(\pi_{x}\pi_{Z|X} \| \pi_{x} P_{Z|X})\\ \leq D(\pi_{x}\pi_{Z|X} \| \pi_{x} Q_{Z|X})}} 2^{-nD(\pi_{x}\pi_{Z|X} \| \pi_{x} Q_{Z|X})}$$
set of joint types π_{ZX}

Active Adaptive Detection

- M-ary hypotheses: $\mathcal{H} \in \{0, 1, \dots, M-1\}$
- Inputs can be chosen adaptively $x_i = f_i(Z^{i-1})$
- $\bullet \ \mathrm{Decision} \ \hat{\mathcal{H}} = g^{(n)}(Z^n, X^n)$
- For more than two hypotheses $M \ge 2$, adaptive strategies allow to discriminate between different hypotheses!

Take-Away from Detection Theory

• S a set of joint statistics and $Z^n \sim Q_{Z|X}$ given x^n . Then:

$$\mathbb{P}[\pi_{\mathsf{X}^n\mathsf{Z}^n}\in\mathcal{S}]\approx 2^{-n\min_{\pi\in\mathcal{S}}D(\pi\|Q)}$$

- Non-adaptive active hypothesis testing:
 - Asymptotically-optimal detection rule based solely on the joint empirical statistics of (x^n, Z^n)
 - Detection performances only depend on statistics of input x^n !
 - Channel discrimination possible with exp.-decaying error prob.
- Adaptive strategies beneficial for active hypothesis testing if more than 2 hypotheses

Information-Theoretic Results on ISAC with Detection Errors

ISAC Models with Detection Exponents

- Single sensing parameter $\mathcal{H} \in \{0,1\}$ constant for all times
- Sensing performance measured in detection-error exponents
 - Symmetric detection exponent:

$$\textit{E}_{\mathrm{Sym}} := \lim_{n \to \infty} -\frac{1}{n} \log \Big(\max \left\{ \mathbb{P} \left[\hat{\mathcal{H}} = 1 \mid \mathcal{H} = 0 \right], \; \mathbb{P} \left[\hat{\mathcal{H}} = 0 \mid \mathcal{H} = 1 \right] \right\} \Big)$$

• Stein's exponent requires

$$\lim_{n \to \infty} \mathbb{P} \left[\hat{\mathcal{H}} = 0 \mid \mathcal{H} = 1 \right] \leq \epsilon$$

$$\theta_{\text{Stein}} := \lim_{n \to \infty} -\frac{1}{n} \log \mathbb{P} \left[\hat{\mathcal{H}} = 0 \mid \mathcal{H} = 1 \right]$$

Relation to a Compound Channel

- Without the sensing it is a compound channel
- Compound capacity without feedback:

$$C_{\text{compound}} \leq \max_{P_X} \min_{\mathcal{H}} I(X; Y|\mathcal{H})$$

Cannot adjust codebook statistics P_X to the channel \mathcal{H} !

Relation to a Compound Channel

- Without the sensing it is a compound channel
- Compound capacity without feedback:

$$C_{\text{compound}} \leq \max_{P_X} \min_{\mathcal{H}} I(X; Y|\mathcal{H})$$

Cannot adjust codebook statistics P_X to the channel \mathcal{H} !

• Compound capacity with feedback:

$$C_{\text{compound,fb}} \leq \min_{\mathcal{H}} \max_{P_X} I(X; Y|\mathcal{H}) = \min_{\mathcal{H}} C(P_{Y|X}^{\mathcal{H}}).$$

Can learn channel and adapt codebook statistics!

Bi-Static ISAC with Chernoff Exponent

• Only non-adaptive strategies are possible

Theorem (Joudeh et al. and Chang et al.)

$$(R, E_{Sym})$$
 pairs are achievable iff for some P_X :

$$R \leq \min_{\mathcal{H}} I(X; Y|\mathcal{H}),$$

$$E_{\text{Sym}} \leq \max_{I \in [0,1]} - \sum_{x} P_X(x) \log \left(\sum_{z} P_{Z|X}^{\mathcal{H}}(z|x)^I P_{Z|X}^{\mathcal{H}}(z|x)^{1-I} \right)$$

• Tradeoff between sensing and communication due to common P_X ! (input statistics)

ISAC Model with Stein Error Exponent

Theorem (Ahmadipour et al.)

 (R, E_{Stein}) pairs are achievable iff for some P_X :

$$R \leq \min_{\mathcal{H}} I(X; Y|\mathcal{H}),$$

$$E_{\text{Stein}} \leq \sum_{x} P_{X}(x) D(P_{Z|X}(\cdot|x) || Q_{Z|X}(\cdot|x))$$

- Tradeoff between sensing and communication due to common P_X ! (input statistics)
- [8] M. Ahmadipour, M. Kobayashi, M. W. and G. Caire, "An Information-Theoretic Approach to Joint Sensing and Communication," $Trans.\ IT,\ 2022.$

Adaptive Channel Coding/Sensing

- ullet Feedback allows the encoder to "learn" the channel parameter ${\cal H}$ and to adapt its coding to the correct channel
- Sensing (detection) problem is still open when H non-binary
 → adaptive inputs also improve detection performance
- Chang et al. propose joint sensing and communication schemes
- Problem seems difficult and is open!

[[7] M.-C. Chang, et al. "Rate and detection-error exponent tradeoff for joint communication and sensing of fixed channel states," JSAIT 2023.

Take-Aways from ISAC with Detection-Errors

- Non-Adaptive case:
 - Complete information-theoretic results for various Detection Exponents
 - Optimal asymptotic performance only depends on x^n through its empirical statistics.
 - \bullet Sensing detector decides based on joint type of x^n and backscatterer depending on the exponent to maximize
 - Again a tradeoff between sensing and communication depending on input statistics

Take-Aways from ISAC with Detection-Errors

- Adaptive case:
 - \bullet Much more involved, communication problem is closed but not the optimal sensing \to ISAC also widely open
 - Adaptive inputs can be used because the transmitter learns the channel and to better discriminate between different pairs of hypotheses.

Network ISAC

Network ISAC

- Data sent to both receivers
- Fundamental limits partly characterized

- Both Transmitters sense and send data
- \bullet Comm. path between Txs! \to Collaborative comm. and sensing

Multi-Receiver ISAC

• State-dependent broadcast channel with backscatterer

- \bullet Arbitrary forward and backward channels $P_{Y_1Y_2|XS}$ and $P_{Z|Y_1Y_2XS}$
- \bullet Model includes as special cases Rx-CSI and two states $\mathcal{S} = \left(\mathcal{S}_1, \mathcal{S}_2\right)$
- For most channels, feedback does increase capacity!!!

Fundamental Capacity-Distortion Region for BC

Definition

Capacity-distortion region is the set of triples (R_1, R_2, D) so that there exist encoder, decoders, and estimator with

$$\lim_{n\to\infty}\Pr(\hat{M}_k\neq M_k)=0,\quad k\in\{1,2\},\qquad \quad \overline{\lim_{n\to\infty}}\,\frac{1}{n}\sum_{i=1}^n\mathbb{E}[d(S_i,\hat{S}_i)]\leq D$$

Same per-symbol optimal estimator as for single-receiver!

Optimal estimator:
$$s^n = (\hat{s}^*(x_1, z_1), \hat{s}^*(x_2, z_2), \dots, \hat{s}^*(x_n, z_n)),$$

with

$$\hat{s}^*(x,z) := \arg\min_{s' \in \hat{\mathcal{S}}} \sum_{s \in S} P_{S|XZ}(s|x,z) d(s,s').$$

- Sensing performance depends only on statistics of x^n
- \bullet Find optimal feedback BC code under constrained $x^n\text{-statistics}.$

State-Dependent BCs with Generalized Feedback

- Feedback does not increase capacity of degraded BCs (El Gamal,'79)
- Achievable scheme for general BCs (Shayevitz et al'12, Venkataramanan et al'13)
- Capacity of several BCs with full Receiver-CSI (Kim et al'16)

Intuition about the Shayevitz-Wigger BC Scheme

- Block-Markov strategy:
 - Compression info sent in block b + 1: info about channel in block b learned via feedback
 - \bullet Block- b outputs improved with compression info sent in block b+1
- New data and compression info sent with Marton's BC scheme (without feedback)

Results on Capacity-Distortion Region of BCs

Degraded Broadcast Channels $X \to Y_1 \to Y_2$

Capacity-distortion region: all (R_1,R_2,D) that for some P_{UX} satisfy

$$R_1 \leq I(X; Y_1 \mid U)$$

$$R_2 \leq I(U; Y_2),$$

$$\mathbb{E}[d(S, \hat{s}^*(X, Z))] \leq D.$$

- Tradeoff between communication and sensing from P_X .
- No-feedback codes with appropriate P_X .

Results on Capacity-Distortion Region of BCs

Degraded Broadcast Channels $X \to Y_1 \to Y_2$

Capacity-distortion region: all (R_1, R_2, D) that for some P_{UX} satisfy

$$\begin{array}{rcl} R_1 & \leq & I(X; Y_1 \mid U) \\ R_2 & \leq & I(U; Y_2), \\ \mathbb{E}[d(S, \hat{s}^*(X, Z))] & \leq & D. \end{array}$$

- Tradeoff between communication and sensing from P_X .
- No-feedback codes with appropriate P_X .

General Broadcast Channels

Inner and outer bounds (feasible and infeasible regions) based on Shayevitz-W. scheme and genie-aided bound

• Bounds in general case tight only in special cases.

Binary Fading Example: Capacity-Distortion Region

- Double-State $S = (S_1, S_2)$ with corr. components, known at Rxs!
- Fading outputs $Y_k = S_k X$, for k = 1, 2 (without noise)
- Perfect Rx CSI and both outputs fed back $Z = (Y_1, Y_2)$
- When X = 1 Tx learns S_1, S_2 ; when X = 0 it learns nothing

- Resource/timesharing approaches sub-optimal
- Tradeoff betwen optimal sensing and comm.
 performances

Take-Away Messages for BC

- Information-theoretic model based on generalized feedback, memoryless state sequence, average distortion
- Symbol-by-symbol estimator optimal; sensing performance depends only on empirical statistics of x^n
- \bullet Use optimal data communication scheme under restriction on empirical statistics of x^n
 - \rightarrow generalized feedback used for data communication
- 3-dimensional tradeoff between 2 rates and distortion
- Resource-sharing schemes highly suboptimal

Multi-Access ISAC

- Both Txs sense the state and send data
- Communication path between Txs!!
- \bullet Symbol-wise estimator at Tx k based on $\left(X_{k,i},Z_{k,i}\right)$ is suboptimal!
- Collaborative coding and sensing through Tx-Tx- paths!

Idea of Willems' Collaborative Comm Scheme

[Willems'83] scheme for the MAC with generalized feedback

• Block-Markov coding and backwards decoding

- Txs exchange message parts over Tx-Tx paths
- Exchanged message parts are collaboratively re-transmitted in the next block
- Collaboratively transmitted message parts are easier to decode

Our Joint Collaborative Comm/Sensing Scheme

• Reuse Willem's multilayer block-Markov coding scheme

- After each block, each Tx extracts sensing info of interest to the other Rx
- This sensing info is transmitted to the other Tx during the next block
- Each Tx i estimates the state S_i^n based on its inputs/outputs, decoded codewords, and sensing info from the other Tx.

Binary MAC Example

 \bullet S_1, S_2 i.i.d. Bernouilli-0.9, noises B_0, B_1, B_2 ind. Bernoulli, and

$$Y' = S_1X_1 + S_2X_2 + B_0,$$
 $Y = (Y', S_1, S_2),$ $Z_k = S_1X_1 + S_2X_2 + B_k,$ $\forall k \in \{1, 2\}.$

- Hamming distortion $d(s, \hat{s}) = s \oplus \hat{s}$
- Choose auxiliaries U_0, U_1, U_2 binary and

$$V_k = \begin{cases} \mathbb{1}\{Z_k = 1\} + 2 \cdot \mathbb{1}\{Z_k = 2\} & \text{if } E_k = 0 \\ \text{"?"} & \text{if } E_k = 1 \end{cases} \quad \forall k = \{1, 2\}$$

$$V_k = \begin{cases} \mathbb{1}\{Z_k = 1\} + 2 \cdot \mathbb{1}\{Z_k = 2\} & \text{if } E_k = 0 \\ \mathbb{1}\{Z_k = 1\} + 2 \cdot \mathbb{1}\{Z_k = 2\} & \text{if } E_k = 1 \end{cases}$$

$$V_k = \{1, 2\}$$

$$V_k = \begin{cases} \mathbb{1}\{Z_k = 1\} + 2 \cdot \mathbb{1}\{Z_k = 2\} & \text{if } E_k = 0 \\ \mathbb{1}\{Z_k = 1\} + 2 \cdot \mathbb{1}\{Z_k = 2\} & \text{if } E_k = 0 \\ \mathbb{1}\{Z_k = 1\} + 2 \cdot \mathbb{1}\{Z_k = 2\} & \text{if } E_k = 0 \\ \mathbb{1}\{Z_k = 1\} + 2 \cdot \mathbb{1}\{Z_k = 2\} & \text{if } E_k = 0 \\ \mathbb{1}\{Z_k = 1\} + 2 \cdot \mathbb{1}\{Z_k = 2\} & \text{if } E_k = 1 \end{cases}$$

$$V_k = \{1, 2\}$$

$$V_k$$

Further Improved ISAC MAC Scheme

• Reuse the Ahmadipour & W. multilayer block Markov scheme

- In each block send sensing information from both Txs to the Rx
- Receiver can also decode the sensing information exchanged between the Txs
- This further improves the previous schemes
- Further improvements possible by improving Tx-to-Tx comm....

 [9] Y. Liu, M. Li, A. Liu, L. Ong, and A. Yener, "Fundamental limits of multiple-access integrated sensing and communication systems,"

 85/

Device-to-Device ISAC

- Both Txs sense the state and send data
- Interactive communication between Txs!!
- We propose a coding scheme based on Block-Markov encoding:
 - \rightarrow Improved Han's interactive communication scheme with collaborative sensing!

Take-Aways for the MAC and D2D

- Symbol-by-symbol estimator based on inputs/outputs suboptimal
- Base estimator also on decoded codewords
- Sensing performance improved through collaborative sensing \rightarrow Use the Tx-to-Tx path already used for feedback communication!
- Improved schemes are possible using interactive two-way schemes (Han) and joint source channel coding
- Tradeoff between sensing and communication

Summary

- Presented information-theoretic framework for integrated sensing and communication [Kobayashi, Caire, Kramer'18] and [Joudeh&Willems'22]
- Information-theoretic limits have been derived for various sensing criteria and discrete-memoryless channels/state sequences
- Single Tx: optimal sensing performance depends only on x^n statistics.
- Tradeoff between rates and distortion(s)/exponents .
- Multiple Txs: Fully integrate coding for collaborative sensing and comm.

Interesting future research directions

- Simplified capacity-expressions/coding schemes for Channels with memory
- Continuous-time channels
- Other sensing criteria
- Further investigations on secrecy constraints

IT References on ISAC with Distortion

- M. Kobayashi, G. Caire, and G. Kramer, "Joint state sensing and communication: Optimal tradeoff for a memoryless case," ISIT 2018.
- M. Ahmadipour, M. Kobayashi, M. W. and G. Caire, "An Information-Theoretic Approach to Joint Sensing and Communication," Trans. IT, 2022.
- Y. Xiong, F. Liu, Y. Cui, W. Yuan, T. X. Han, and G. Caire, "On the fundamental tradeoff of integrated sensing and communications under gaussian channels," *Trans. IT*, 2023.
- H. Nikbakht, M. Wigger, S. Shamai (Shitz), and H. V. Poor, "Integrated Sensing and Communication in the Finite Blocklength Regime," ISIT 2024.
- Y. Chen, T. Oechtering, M. Skoglund, and Y. Luo. "On general capacity-distortion formulas of integrated sensing and communication," Arxiv, 2023.

IT References on ISAC with Exponents

- H. Joudeh and F. M. J. Willems, "Joint communication and binary state detection," JSAIT, 2022.
- H. Wu and H. Joudeh, "On joint communication and channel discrimination," ISIT 2022.
- M.-C. Chang, Erdogan, S.-Y. Wang, and M. R. Bloch, "Rate and detection-error exponent tradeoff for joint communication and sensing of fixed channel states," JSAIT, 2023.
- M. Ahmadipour, M. W., and S. Shamai (Shitz). "Strong converses for memoryless bi-static ISAC," ISIT 2023.
- M. Ahmadipour, M. Wigger, and S. Shamai, "Strong converses for memoryless bi-static ISAC," IZS 2024.

IT References on Network ISAC

- M. Kobayashi, H. Hamad, G. Kramer, and G. Caire, "Joint state sensing and communication over memoryless multiple access channels," *Trans. IT*, July 2019.
- M. Ahmadipour and M. W. "An Information-Theoretic Approach to Collaborative Integrated Sensing and Communication for Two-Transmitter Systems," JSAIT, 2023.
- M. Ahmadipour, M. Kobayashi, M. W. and G. Caire, "An Information-Theoretic Approach to Joint Sensing and Communication," Trans. IT, 2022.
- Y. Liu, M. Li, A. Liu, L. Ong, and A. Yener, "Fundamental limits of multiple-access integrated sensing and communication systems," Arxiv, 2023.
- Y. Liu, M. Li, Y. Han, and L. Ong, "Information-theoretic limits of integrated sensing and communication over interference channels," *ICC* 2024.
- T. Jiao, Y. Geng, Z. Wei, K. Wan, Z. Yang, and G. Caire, "Information-theoretic limits of bistatic integrated sensing and communication," *Arxiv*, 2023.

IT References on ISAC with Security Constraints

- O. Günlü, M. Bloch, R. F. Schaefer, and A. Yener, "Secure integrated sensing and communication," *JSAIT* 2023. 2023.
- M. Ahmadipour, M. W., and S. Shamai (Shitz). "Integrated communication and receiver sensing with security constraints on message and state," ISIT 2023.
- M. Mittelbach, R. F. Schaefer, M/ Bloch, A. Yener, and O. Günlü, "Secure Integrated Sensing and Communication Under Correlated Rayleigh Fading," Arxiv 2024.
- T. Welling, O. Günlü, and A. Yener, "Transmitter actions for secure integrated sensing and communication," ISIT 2024.

Related IT Works on State-Communication

- W. Zhang, S. Vedantam, and U. Mitra, "Joint transmission and state estimation: A constrained channel coding approach," Trans. IT, 2011.
- A. Salimi, W. Zhang, S. Vedantam, and U. Mitra, "The capacity-distortion function for multihop channels with state," ISIT 2017.
- C. Choudhuri, Y. Kim, and U. Mitra, "Causal state communication," Trans. IT, 2013.
- S. I. Bross and A. Lapidoth, "The Gaussian source-and-datastreams problem," Trans. IT, 2019.
- V. Ramachandran, S. R. B. Pillai, and V. M. Prabhakaran, "Joint state estimation and communication over a state-dependent Gaussian multiple access channel," *Trans. IT*, 2019.
- A. Lapidoth and Y. Steinberg, "The multiple-access channel with causal side information: Double state," Trans. IT, 2012.
- A. Lapidoth and Y. Steinberg, "The multiple-access channel with causal side information: Common state," Trans. IT, 2012.
- M. Li, O. Simeone, and A. Yener, "Multiple access channels with states causally known at transmitters," Trans. IT, 2012.

Related IT Works on Feedback

- F. M. Willems, "Information theoretical results for the discrete memoryless multiple access channel," Ph.D. dissertation 1983.
- O. Shayevitz and M. Wigger, "On the capacity of the discrete memoryless broadcast channel with feedback," Trans. IT, 2013.
- R. Venkataramanan and S. S. Pradhan, "An achievable rate region for the broadcast channel with feedback," *Trans. IT*, 2013.