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Abstract—This paper explores the tradeoff between covert
communication capacity and secret key requirements over dis-
crete memoryless channels (DMCs). We focus on settings where
under a covertness constraint both communication and key rates
are measured as the number of bits per square root of the block-
length. While previous work has identified the maximum covert
communication rates and the corresponding minimum key rates
needed to achieve them, our study characterizes the minimum
key rates necessary for all of desired covert communication rates.
In equivalent terms, we determine, for any given key rate, the
set of achievable covert rates. This relationship defines what we
call the covert capacity-key tradeoff.

Our analysis reveals several new insights. In scenarios where
only small key rates are available and the adversary has a
stronger channel than the intended receiver, binary signaling
is optimal—regardless of the specific channel characteristics or
input alphabets. In these cases, the covert capacity increases
linearly with the available key rate. In other cases and for larger
key rates, the covert capacity-key tradeoff grows sublinearly.

We also extend our findings to multi-access channels (MACs)
with binary inputs.

Index Terms—Covert communication, key rates, covert
capacity-key tradeoff, discrete memoryless networks.

I. INTRODUCTION

This paper investigates the problem of covert communica-
tion, where the goal is to ensure that an external observer—
referred to as the warden—cannot determine whether commu-
nication is taking place. Specifically, we focus on character-
izing the maximum number of data bits that an encoder can
reliably transmit over a channel without being detected by the
warden.

The fundamental limits of covert communication were first
established for Gaussian channels in [1], where covertness
was formalized via a constraint on the Kullback—Leibler
(KL) divergence between the distributions of the wardens
observations in the presence and absence of communication.
This divergence is required to vanish as the communication
blocklength increases.

A key result in [1] is the square-root law, which states that
the number of bits that can be covertly transmitted scales with
the square root of the number of channel uses, and not linearly
in the number of channel uses for traditional non-covert
communication. The square-root law has since been shown
to hold across a variety of channel models, including general
Gaussian and discrete memoryless channels (DMCs) [2]–[5].

Subsequent work has extended these results to more com-
plex scenarios [6]–[12] and network scenarios [13]–[16].

Prior studies [3], [16] have characterized the key rate needed
to attain the covert capacity, i.e., the maximum covert rate
under unlimited key resources. However, a more refined ques-
tion remains open: given a fixed key budget, what covert rates
are achievable? This tradeoff, termed the covert capacity—key
tradeoff, was first explored for binary-input DMCs in [15],
where it was shown to grow linearly with key rate before
saturating.

In this paper, we extend this analysis to DMCs with arbitrary
input alphabets. We find that the covert capacity—key tradeoff
depends critically on the relative strength of the warden’s
and legitimate receiver’s (Rx) channels across input symbols,
measured by the KL divergence between their respective
output distributions. When the warden is uniformly stronger
over all inputs, binary signaling is optimal at low key rates,
irrespective of the input alphabets of the DMC, and the covert
capacity-key tradeoff grows linearly in this regime. When the
warden is uniformly weaker than the legitimate Rx, covert
capacity is achievable without any key. For mixed cases, the
tradeoff is sublinear and binary signaling suboptimal.

We also characterize the covert capacity—key tradeoff re-
gion for a two-user multiple-access channel with binary inputs.
Our results show that the interaction between the two users’
covert rates depends heavily on the relative strength of the
warden with respect to the legitimate Rx, revealing regimes
of both independence and tradeoff.

Notation: In this paper, we follow standard information
theory notations. We use calligraphic fonts for sets (e.g. S) and
note by |S| the cardinality of a set S. Random variables are
denoted by upper case letters (e.g., X), while their realizations
are denoted by lowercase letters (e.g. x). We write Xn and xn

for the tuples (X1, . . . , Xn) and (x1, . . . , xn), respectively, for
any positive integer n > 0. For a distribution P on X , we note
its product distribution on Xn by P⊗n(xn) =

∏n
i=1 P (xi).

We also denote by Supp(P ) the support of a distribution P ,
i.e. Supp(P ) = {x : P (x) 6= 0}. For two distributions P and
Q on X , we let D(P‖Q) =

∑
x∈X P (x) log

(
P (x)
Q(x)

)
denote

the Kullback-Leibler (KL) divergence. We shall use Landau
notation and We abbreviate probability mass function by pmf
and independent and identically distributed by i.i.d..

II. THE SINGLE-USER SETUP

Consider the setup illustrated in Figure 1. The transmitter
(Tx) wishes to send a message W to the legitimate Rx while
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Ŵ
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Fig. 1: Point-to-point covert communication over a Discrete
Memoryless Channel of law ΓY Z|X .

avoiding detection by the warden which attempts to detect the
presence of communication. Communication takes place over
a block of n channel uses. The Tx produces channel inputs in a
finite alphabet X and the legitimate Rx and the warden observe
channel outputs within finite alphabets Y and Z . These outputs
are produced by a DMC, that means, if the Tx produces the n
channel inputs Xn = xn then for any i ∈ {1, . . . , n} the i-th
output symbols Yi and Zi observed at the legitimate Rx and
the warden are generated from the i-th input xi according to
the conditional laws ΓY |X(·|xi) and ΓZ|X(·|xi), repectively.

The Tx encodes message W using some encoding function
ϕ(n) defined on appropriate domains, along with a secret-key
S. Subsequently, it sends the resulting codeword

Xn = ϕ(n)(W,S) (1)

over the channel. For readability, we will write xn(w, s)
instead of ϕ(n)(w, s). Let the message W and the secret-key
S be represented by two sequences of m and p i.i.d. Bernoulli-
1/2 bits, where these numbers m and p will depend on the
blocklength n. The secret-key S is exclusively known to the
Tx and the Rx but not to the warden.

The legitimate Rx estimates the message as:

Ŵ = g(n)(Y n, S) (2)

using an appropriate decoding function.
To ensure reliability of communication, we seek for systems

(encoding and decoding functions) where

lim
n→∞

Pr[Ŵ 6= W ] = 0. (3)

At the same time we impose that the output distribution
implied at the warden

Q̂n(zn) ,
1

2m2p

∑

(w,s)

Γ⊗nZ|X(zn|xn(w, s)). (4)

be almost indistinguishable from the warden’s output distribu-
tion when the all-zero sequence is transmitted (which stands
for absence of communication), i.e., from

Γ⊗nZ|X(zn|0n). (5)

Notice that we impose that the 0-symbol be part of the input
alphabet X and then require that the KL divergence

δn , D
(
Q̂n(·)

∥∥Γ⊗nZ|X(·|0n)
)

(6)

vanishes in the regime of large blocklengths n→∞.

A. Achievable Covert Rates and Covert Capacity-Key Tradeoff

Our goal is to determine the largest data rate in function
of the available key rate. In covert-communication tradition
[2]–[4] rates are obtained by scaling the number of message
or secret key bits with the square-root of the number of
channel uses and the divergence-δn. This yields the following
definition.

Definition 1: For any given k ≥ 0, define the covert
capacity-key tradeoff r?(k) as the largest rate r such that
there exists a sequence of tuples (m, p) and encoding/decoding
functions {(ϕ(n), g(n))}n satisfying

lim
n→∞

Pr[Ŵ 6= W ] = 0 (7a)

and

r ≤ lim inf
n→∞

m√
nδn

, (8a)

k ≥ lim sup
n→∞

p√
nδn

. (8b)

To ensure that the problem is non-degenerate, we assume:
∑

x∈X\{0}
ψ(x)ΓZ|X(·|x) 6= ΓZ|X(·|0), ∀ψ(·), (9a)

Supp
(
ΓZ|X(·|x)

)
⊆ Supp

(
ΓZ|X(·|0)

)
, ∀x ∈ X , (9b)

Supp
(
ΓY |X(·|x)

)
⊆ Supp

(
ΓY |X(·|0)

)
, ∀x ∈ X (9c)

where in the above, ψ(·) indicates any pmf over X\{0}.
Under these assumptions, we define the covert capacity as:

Ccovert := sup
k≥0

r?(k). (10)

III. SINGLE-USER RESULTS

Given a pmf ψ(·) over X\{0}, we use the abbreviations

χ2(ψ) ,
∑

z∈Z

(∑
x∈X ψ(x)ΓZ|X(z|x)− ΓZ|X(z|0)

)2

ΓZ|X(z|0)
. (11)

Moreover, for given x ∈ X\{0}, we define:

DY (x) , D
(
ΓY |X(·|x)‖ΓY |X(·|0)

)
, (12)

DZ(x) , D
(
ΓZ|X(·|x)‖ΓZ|X(·|0)

)
. (13)

Finally, we define a function k 7→ f(ψ, k) for each choice
of the pmf ψ(·). The definition of k 7→ f(ψ, k) depends on
whether the difference

∆ψ ,
∑

x∈X\{0}
ψ(x) · (DZ(x)− DY (x)) (14)

is positive or not. For pmfs ψ for which ∆ψ > 0, we define

f(ψ, k) = min

{ ∑
x∈X\{0} ψ(x) · DY (x)

∑
x∈X\{0} ψ(x) · (DZ(x)− DY (x))

· k,

√
2

∑
x∈X\{0} ψ(x) · DY (x)

√
χ2(ψ)

}
, (15)



and for pmfs ψ for which ∆ψ ≤ 0, we define

f(ψ, k) = Cψ ,
√

2

∑
x∈X\{0} ψ(x) · DY (x)

√
χ2(ψ)

, (16)

So, if ∆ψ ≤ 0 the function is constant equal to Cψ . If ∆ψ > 0,
the function is a straight line from the origin (k = 0, r = 0)
to the point

k = kψ ,
√

2

∑
x∈X\{0} ψ(x) · (DZ(x)− DY (x))

√
χ2(ψ)

(17)

r = Cψ ,
√

2

∑
x∈X\{0} ψ(x) · DY (x)

√
χ2(ψ)

, (18)

and is constant equal to f(ψ, k) = Cψ for all key rates k ≥ kψ .
We now state the covert capacity-key tradeoff of a DMC:
Theorem 1: We have

r?(k) = max
ψ

f(ψ, k), (19)

where the maximum is over all pmfs ψ(·) on X\{0}, and

Ccovert := sup
ψ
Cψ. (20)

Proof: Omitted due to lack of space.

A. Simplification of the Covert Capacity-Key Tradeoff r?(k)

To further analyze r?(k), we distinguish three cases depend-
ing on whether ∆ψ is positive for all pmfs ψ, is negative for
all ψ, or positive for some ψs and negative for others.

Consider an example where ∆ψ is always positive:
Example 1 (Adversary Stronger than Legitimate Rx): Con-

sider a channel with input alphabet X = {0, 1, 2}, output
alphabets Z = Y = {0, 1, 2, 3, 4}, and transition pmfs:

ΓY |X =




0.23, 0.20, 0.25, 0.05, 0.27
0.35, 0.22, 0.10, 0.05, 0.28
0.27, 0.24, 0.24, 0.07, 0.18


 (21a)

and

ΓZ|X =




0.22, 0.32, 0.15, 0.12, 0.19
0.36, 0.03, 0.39, 0.21, 0.01
0.31, 0.20, 0.07, 0.22, 0.20


 (21b)

where the rows pertain to the three input symbols x = 0, 1, 2
and the five columns to the five output symbols 0, 1, 2, 3, 4.
For this channel the difference ∆ψ > 0 for all pmfs ψ, since
for all x ∈ X\{0} we have DZ(x) − DY (x) > 0. Figure 2
illustrates the function k 7→ f(ψ, k) for different choices of
the input pmf ψ(·). The line with + markers corresponds to
the degenerate choice ψ(1) = 1 and the line with ∗-markers
to the degenerate choice ψ(2) = 1.
We observe that in this example the extreme lines f(ψ, k) with
smallest and largest slopes correspond to the degenerate pmfs
that put probability 1 on a single non-zero input. This is true
in general as can be seen by the following lemma and noting
that the slope of f(ψ, k) is given by

Sψ ,

∑
x∈X\{0} ψ(x) · DY (x)

∑
x∈X\{0} ψ(x) · (DZ(x)− DY (x))

> 0. (22)
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Fig. 2: Figure illustrates the functions k 7→ f(ψ, k) for
different pmfs ψ. The capacity-secret-key tradeoff r?(k) cor-
responds to the upper convex hull of all these curves.

Lemma 1: If

DZ(x)− DY (x) > 0, ∀x ∈ X\{0}, (23)

then Sψ > 0 for all input pmfs ψ(·) and is largest (smallest)
for a degenerate pmf ψ(·) that puts probability mass 1 on one
of the non-zero inputs.

Proof: Omitted due to lack of space.

Using above lemma, we can simplify Theorem 1 for the
class of channels satisfying (23).

Corollary 2 (Adversary Stronger than Legitimate Rx): If (23)
holds, then

r?(k) =





Smax · k if k ∈ [0, klin] ,

maxψ∈L(k) Cψ if k ∈ (klin, ksat) ,

Ccovert if k ∈ [ksat,∞) ,

(24)

where
Smax , max

x∈X\{0}
DY (x)

DZ(x)− DY (x)
; (25)

and

klin ,
√

2
DZ(xbest)− DY (xbest)√

χ2(δxbest)
(26)

ksat ,
√

2

∑
x∈X\{0} ψ

∗(x) · DY (x)
√
χ2(ψ∗)

, (27)

where xbest is the maximizer in (25); δxbest indicates the degen-
erate pmf with probability 1 at xbest; and ψ∗ the maximizer in
(20). Moreover,

L(k) ,

{
ψ : k ≥

√
2

∑
x∈X\{0} ψ(x) · DY (x)

√
χ2(ψ)

}
. (28)

Remark 1: From Lemma 1 and above Corollary 2, we
can directly deduce that for channels satisfying (23), binary
signaling on inputs 0 and xbest is optimal for small key rates
k ≤ klin, where recall that xbest is the maximizing input in (25).
Moreover, in the regime of small key rates the covert capacity-
key tradeoff is linear. Specifically, increasing the key-rate by
1 will increase the largest achievable rate by Smax.
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Fig. 3: Figure illustrates the functions k 7→ f(ψ, k) for
different pmfs ψ. The covert capacity-key tradeoff r?(k)
corresponds to the upper convex hull of all these curves.

For channels where (23) holds, the covert capacity-key
tradeoff starts at the origin: r?(0) = 0. For all other channels,
i.e., when

DZ(x)− DY (x) ≤ 0, for some x ∈ X\{0}, (29)

we have r?(0) > 0, see the following corollary directly
obtained from Theorem 1 and our discussion above.

Corollary 3 (Adversary Sometimes Weaker than Legitimate
Rx): If (29) holds, then

r?(k) = max
ψ∈L(k)

√
2

∑
x∈X\{0} ψ(x) · DY (x)

√
χ2(ψ)

. (30)

In particular,

r?(k) = Ccovert, k ≥ ksat. (31)

The following example illustrates the covert capacity-key
tradeoff for a channel satisfying Condition (29).

Example 2 (Adversary Sometimes Weaker than Legitimate
Rx): Consider a channel with ternary inputs X = {0, 1, 2},
quinary outputs Y = Z = {0, 1, 2, 3, 4}, and transition pmfs:

ΓY |X =

0.24 0.10 0.22 0.22 0.22
0.20 0.14 0.26 0.328 0.072
0.06 0.19 0.2 0.05 0.50

 (32a)

and

ΓZ|X =

0.32 0.22 0.23 0.13 0.10
0.47 0.25 0.10 0.14 0.04
0.38 0.01 0.15 0.12 0.34

 (32b)

For this channel, Condition (29) holds for x = 1 but not
for x = 2. Figure 3 illustrates the function k 7→ f(ψ, k) for
above channel and for different choices of the input pmf ψ(·).
The lines with + and ∗ markers correspond to the degenerate
choices ψ(1) = 1 and ψ(2) = 1.

IV. THE MULTIPLE-ACCESS CHANNEL

We turn our focus to a two-user multi-access channel
(MAC) with binary inputs, see Figure 4, where the two
Txs produce binary input alphabets X1 = X2 = {0, 1},
the legitimate Rx and warden observe outputs in the finite
alphabets Y and Z .

A. Model

φ
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Y n
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(W1, S1, C1)
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{Ŵ1, Ŵ2}
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Warden

g(n)

Xn
2

Fig. 4: Covert communication over a two-user MAC.

This covert MAC has previously been studied in [14]. The
main difference here is that each Tx j ∈ {1, 2} has access to
additional local randomness described by Ci which consists of
gj i.i.d. Bernoulli-1/2 bits. Each Tx j ∈ {1, 2} thus produces
its channel inputs as

Xn
j = ϕ

(n)
j (Wj , Sj , Cj), (33)

where Wj and Sj are independent i.i.d. Bernoulli-1/2 bit-
strings of lengths mj and pj (growing with n), respectively,
and Sj is know to Tx j and the Rx, while Wj and Cj only
to Tx j.

As for the single-user setup, the legitimate Rx and the
warden observe outputs generated by discrete memoryless
channels ΓY |X1X2

(·|·, ·) and ΓZ|X1X2
(·|·, ·) based on the input

sequences produced at the two Txs. That means, if Tx 1 sends
inputs Xn

1 = xn1 and Tx 2 sends Xn
2 = xn2 , then for each

i ∈ {1, . . . , n}, the legitimate Rx observes output symbol Yi
following the conditional law ΓY |X1X2

(·|x1,i, x2,i) and the
adversary observes output Zi following the conditional law
ΓZ|X1X2

(·|x1,i, x2,i).
After observing outputs Y n, the legitimate Rx decodes both

messages W1 and W2 as:

(Ŵ1, Ŵ2) = g(n)(Y n, S1, S2). (34)

using an appropriate decoding function g(n).
Covertness imposes that the warden’s output distribution

Q̂n(zn) ,

∑

(w1,w2,s1,
s2,c1,c2)

Γ⊗nZ|X1X2
(zn|xn1 (w1, s1, c1), xn2 (w2, s2, c2))

2m1+m22p1+p22g1+g2
,

(35)

be almost indistinguishable from the warden’s output distribu-
tion when the all-zero sequence is transmitted by both Txs:

Γ⊗nZ|X1X2
(·|0n, 0n). (36)

We thus require a vanishing KL-divergence

δn , D
(
Q̂n
∥∥Γ⊗nZ|X1X2

(·|0n, 0n)
)
. (37)



Definition 2: For given k1, k2 ≥ 0, define the covert
capacity-key tradeoff region R?(k1, k2) as the set of all
pairs (r1, r2) for which there exists a sequence (in n) of
tuples (m1,m2, p1, p2, g1, g2) and encoding/decoding func-
tions (ϕ

(n)
1 , ϕ

(n)
2 , g(n)) satisfying limn→∞ Pr[(Ŵ1, Ŵ2) 6=

(W1,W2)] = 0, limn→∞ δn = 0, and

rj ≤ lim inf
n→∞

mj√
nδn

, j ∈ {1, 2}, (38)

kj ≥ lim sup
n→∞

pj√
nδn

, j ∈ {1, 2}. (39)

Define

X̃ , ((X1\{0}) × {0}) ∪ ({0} × (X1\{0})) . (40)

To avoid that the problem be trivial or impossible, we restrict
to DMMACs where for all (x1, x2) ∈ X̃ :
∑

ψ

ψ(x1, x2)ΓZ|X1X2
(·|x1, x2) 6= ΓZ|X1X2

(·|0, 0), ∀ψ, (41a)

Supp(ΓY |X1X2
(·|x1, x2)) ⊆ Supp(ΓY |X1X2

(·|0, 0))

∀x1 ∈ X , x2 ∈ X2, (41b)
Supp(ΓZ|X1X2

(·|x1, x2)) ⊆ Supp(ΓZ|X1X2
(·|0, 0)),

∀x1 ∈ X , x2 ∈ X2, (41c)

where here ψ denotes any pmf over (X1 ×X2)\{(0, 0)}.
B. Results

For any input pair (x1, x2), define

DY (x1, x2) = D
(
ΓY |X1X2

(·|x1, x2) ‖ΓY |X1X2
(·|0, 0)

)
, (42)

DZ(x1, x2) = D
(
ΓZ|X1X2

(·|x1, x2) ‖ΓZ|X1X2
(·|0, 0)

)
. (43)

Theorem 4: The covert capacity-key tradeoff region is:

C(k1, k2) =
⋃

ρ∈[0,1]
{0 ≤ r1 ≤ r1(ρ)} × {0 ≤ r2 ≤ r2(ρ)}

where

ρ1(ρ) , min

{
ρDY (1, 0)

max {ρ (DZ(1, 0)− DY (1, 0)) , 0}k1,

√
2
ρDY (1, 0)√

χ2(ρ)

}
(44)

ρ2(ρ) , min

{
(1− ρ)DY (0, 1)

max {(1− ρ) (DZ(0, 1)− DY (0, 1)) , 0}k2,

√
2

(1− ρ)DY (0, 1)√
χ2(ρ)

}
, (45)

and

χ2(ρ) ,
∑

z∈Z

(
Γρ(z)− ΓZ|X1X2

(z|0, 0)
)2

ΓZ|X1X2
(z|0, 0)

, (46)

for Γρ(z) := ρΓZ|X1X2
(z|1, 0) + (1− ρ)ΓZ|X1X2

(z|0, 1).
Proof: Omitted due to lack of space.

Example 3 (Binary Inputs with a Strong Adversary): Con-
sider a DMMAC with binary input alphabets X1 = X2 =

{0, 1}, output alphabet Y = Z = {0, 1, 2, 3}, and channel
transition pmfs:

ΓY |X1X2
=




0.25 0.16 0.08 0.51
0.45 0.10 0.35 0.10
0.04 0.18 0.20 0.58
0.15 0.18 0.32 0.35


 (47a)

and

ΓZ|X1X2
=




0.24 0.39 0.32 0.05
0.49 0.03 0.41 0.07
0.22 0.39 0.23 0.16
0.25 0.10 0.35 0.30


 (47b)

where the four columns correspond to the four output sym-
bols y = 0, 1, 2, 3 and the four rows correspond to the
four possible input pairs (x1, x2) in increasing alphabetical
ordering, i.e., (0, 0), (0, 1), (1, 0), (1, 1). Figure 5 illustrates
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Fig. 5: R∗(k1, k2) for the channel in (47) when symmetric
constraints are imposed on the key rates k1 and k2.

the covert capacity-key tradeoff regions for this channel at
different secret-key rates. We observe that for small key
rates, the tradeoff regions are square regions and there is no
tradeoff between the largest covert rates r1 and r2 that are
simultaneously achievable at the two users. For larger key rates
a tradeoff arises between the two covert rates

V. SUMMARY AND CONCLUSION

We determined the covert capacity-key tradeoff of DMCs
and binary DMMACs. For DMCs we found that the covert
rate grows linearly with small key rates—but only when the
adversary is uniformly stronger (in the KL-divergence sense)
than the legitimate Rx. In that case, simple binary signaling
(between zero and one nonzero input) is optimal. If the
adversary isnt uniformly stronger or the key rate is higher,
the covert rate grows sublinearly and binary signaling may no
longer be optimal.

Similarly, for the DMMAC, when both users have small
key budgets and the warden is uniformly stronger than the
legitimate Rx, each user can independently attain its optimal
covert rate. But with higher key rates or uneven adversary
strength, a tradeoff emerges, and the region grows sublinearly.
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