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Abstract—In this paper we consider a lossy single-user caching
problem with correlated sources. We first describe the fundamen-
tal interplay between the source correlations, the capacity of the
user’s cache, the user’s reconstruction distortion requirements,
and the final delivery-phase (compression) rate. We then illustrate
this interplay using a multivariate Gaussian source example
and a binary symmetric source example. To fully explore the
effect of the user’s distortion requirements, we formulate the
caching problem using f-separable distortion functions recently
introduce by Shkel and Verdú. The class of f-separable distortion
functions includes separable distortion functions as a special case,
and our analysis covers both the expected- and excess-distortion
settings in detail. We also determine what “common information”
should be placed in the cache, and what information should
be transmitted during the delivery phase. To this end, two new
common-information measures are introduced for caching, and
their relationship to the common-information measures of Wyner,
Gács and Körner is discussed in detail.

I. INTRODUCTION

THIS paper takes a rate-distortion (RD) approach to under-
standing the information-theoretic laws governing cache-

aided communications systems. To help fix ideas, let us start
by outlining some of the applications that motivated this paper.

A. Motivation

1) Streaming media: Consider the problem of streaming
media to millions of users. A common problem is that the
users will most likely request and stream media during periods
of high congestion. For example, most users would prefer
to watch a movie during the evening, rather than during the
early hours of the morning. Downloading bandwidth hungry
media files during such periods leads to further congestion,
high latency, and poor user experience.

To help overcome this problem, content providers often
cache useful information about the media library in small
storage systems at the network edge (with fast user connec-
tions) during periods of low congestion. Naturally these small
caches cannot host the entire media library, so the provider
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must carefully cache information that will be useful to the
users’ future requests.

2) Distributed databases: Now imagine a large database
that is distributed over a vast global disk-storage network.
Such a database might contain measurements taken by weather
or traffic sensors spread across several countries; the time-
series prices of companies’ stock at different exchanges; the
shopping history of customers; or the mobility patterns of
mobile devices in cellular networks.

Now suppose that a user queries the database and requests
an approximate copy of one file (or, perhaps, a function of
several files). Since the database is large and distributed, we
can expect that it will need to make several network calls
to load relevant data in memory before it can communicate
the file to the user. Such network calls are performance
bottlenecks, potentially leading to high latency and network
traffic costs.

Modern database systems handle such problems by smartly
caching the most common queries in fast memory. For ex-
ample, a user is more likely to request the weather forecast
of its hometown rather than of a remote location, hence
we can simply cache this forecast in memory close to this
user. Obviously, however, we cannot always know in advance
what data will be requested, so we should carefully cache
information that is useful to many different requests.

B. Focus and modelling assumptions

Our study will focus on the lossy single-user system il-
lustrated in Figure 1. This basic caching problem consists
of two distinct phases: A caching phase where information
about the library is transported (e.g., during a period of
low congestion) to a cache near the user; and a delivery
phase where the particular source/file requested by the user
is compressed, transported to the user (e.g., during a period of
peak-congestion), and reconstructed in a lossy manner subject
to some distortion constraint. The main purpose of this paper
is to answer the following questions:

1) What are the fundamental tradeoffs between the cache ca-
pacity, delivery-phase (compression) rate, and the user’s
reconstruction distortion requirements?

2) What “common information” should be placed in the
cache, and what information should be transmitted during
the delivery phase?

We have chosen this basic single-user setup because it
focuses on the interplay between the user’s distortion con-
straints and various notions of common information between
the sources. Indeed, we are particularly interested in un-
derstanding how probabilistic dependencies between sources
affect this interplay and common information. We will see,
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for example, that the particular choice of distortion function
greatly influences what common information should be placed
in the cache.

We assume throughout the paper that the library, which we
denote by Xn, consists of (L ≥ 1) different sources:

Xn = (Xn
1 , X

n
2 , . . . , X

n
L).

The `-th source Xn
` , where ` ∈ L := {1, 2, . . . , L}, consists

of n symbols chosen from a discrete and finite alphabet1 X`:
Xn
` = (X`,1, X`,2, . . . , X`,n).

We accordingly assume that the cache can reliably store up
to nC bits, and we say that it has a capacity of C bits per
source symbol. The number of source symbols n (also called
the blocklength) will be allowed to grow without bound so
as to enable an information-theoretic analysis. Thus, we are
interested in libraries consisting of a fixed number of large
sources/files.

We further assume that the library Xn is randomly gener-
ated by a discrete memoryless source (DMS); that is, Xn is
a sequence of n independent and identically distributed (iid)
tuples X = (X1, . . . , XL) defined by an arbitrary joint pmf
pX(x) defined on X := X1 × · · · × XL. This assumption
is quite common in the multi-terminal RD theory literature,
as it admits rigorous proofs and gives some insight to more
complicated models. Although it is somewhat restrictive, some
important transformations (e.g. Burrows-Wheeler) are known
to emit almost memoryless processes [1, 2].

So as to fully explore the influence of the user’s distortion
constraints in the caching problem, we will study both sep-
arable distortion functions and the more general f-separable
distortion functions under both expected- and excess-distortion
constraints. Specifically, for each ` ∈ L let X̂` denote the
user’s reconstruction alphabet for the `-th source, and let
d` : X̂` × X` → [0,∞) be an arbitrary symbol distortion
function2. For example, d` can be the Hamming distortion
function where X̂` = X` and

d`(x̂`, x`) =

{
1 if x̂` 6= x`
0 if x̂` = x`.

The n-symbol separable distortion between a source se-
quence xn` ∈ Xn` and reconstruction sequence x̂n` ∈ X̂n` is
then

d̄`(x̂
n
` , x

n
` ) :=

1

n

n∑

i=1

d`(x̂`,i, x`,i). (1)

Separable distortion functions (1) are widely used in the
multi-terminal RD theory literature primarily because they
yield single-letter (i.e., computable) solutions to optimal RD
trade-off problems. Unfortunately, distortion functions used in
practice are often not separable. The more general class of
f-separable distortion functions, recently proposed by Shkel
and Verdú [3], provides more flexibility in this regard. Let

1We will drop this assumption for two Gaussian source examples.
2To simplify the presentation, we assume throughout that each d` satisfies

the following two conditions: (1) For each source symbol x` ∈ X` there
exists a reconstruction symbol x̂` ∈ X̂` such that d`(x̂`, x`) = 0; and (2)
there exists a finite Dmax > 0 such that d`(x̂`, x`) ≤ Dmax for all x` ∈ X`

and x̂` ∈ X̂`.

f` : [0,∞) → [0,∞) be any continuous and strictly increas-
ing function. The n-symbol f-separable distortion between
xn` ∈ Xn` and x̂n` ∈ X̂n` is then

fd`(x̂
n, xn) := f`

−1

(
1

n

n∑

i=1

f`
(
d`(x̂i, xi)

)
)
. (2)

The basic idea here is to design f` to assign appropriate
(possibly non-linear) frequency costs to different quantization
error events. If f` is the identity mapping, then fd` reduces to
the usual separable distortion function d` corresponding to d`.
Several interesting connections between f-separable distortions
and Rényi entropy, compression with linear costs, and sub-
additive distortion functions are discussed in [3]. Perhaps the
most appealing motivation for using f-separable distortions,
however, is the axiomatic argument provided by the following
proposition (for a more detailed discussion, see [3]).

Proposition 1 (Kolmogorov [4]): Let {a1, . . . , an} be any
set of n real numbers and M̄n : Rn → R satisfy the
following four axioms of mean: (1) M̄n(a1, . . . , an) is a
continuous and strictly increasing function of each argument
ai. (2) M̄n(a1, . . . , an) is a symmetric function of its ar-
guments. (3) M̄n(a, . . . , a) = a. (4) For any integer m ≤
n, M̄n(a1, . . . , am, . . . , an) = M̄n(a, . . . , a, am+1, . . . , an),
where a = M̄m(a1, . . . , am). Then M̄n must take the form [4,
p. 144]

M̄n(a1, . . . , an) = f−1

(
1

n

n∑

i=1

f(ai)

)

for some continuous and strictly increasing f.
Thus, if we have any n-symbol distortion function that

computes some mean of per-symbol distortions (satisfying
the above axioms), then it must be an f-separable distortion
function.

Remark 1: Although f-separable distortion functions are
more general than separable distortions, we will not state and
prove our main results directly using f-separable distortion
functions. Instead, we will first consider separable distortion
functions and then generalize to f-separable distortions. The
reason for this approach is that the f-separable distortion
proofs will need to bootstrap results for separable distortions.

C. Related literature and main contributions

Cache-aided communication systems have been of interest
in the recent information-theoretic literature, e.g., [5]–[18].
The works [16]–[18] consider correlated sources, and, among
these, the work that is most related to our setup is by Wang,
Lim and Gastpar [16]. A key difference to [16], however, is the
source request model: Wang et al. assumed that at each time
instant i the user(s) randomly select a symbol from the tuple
(X1,i, X2,i, . . . , XL,i) in an iid manner. They then leveraged
connections to the Gray-Wyner network to establish some
interesting trade-offs between the optimal compression rate
and cache capacity under a lossless3 reconstruction constraint.
In contrast to [16], we will require that the user requests one

3Specifically, Wang et al. required that a function of the source is reliably
reconstructed (otherwise known as a deterministic distortion function).



3

source in its entirety, we do not place prior probabilities on the
user’s selection, and we allow for lossy reconstructions. We
thus consider a lossy worst-demand (i.e., compound source)
scenario, while [16] considered a lossless ergodic iid-demand
scenario.

Hassanzadeh, Erkip, Llorca and Tulino [17] studied cache-
aided communications systems for transmitting indepen-
dent memoryless Gaussian sources under mean-squared er-
ror distortion constraints. Their caching schemes exploited
successive-refinement techniques to minimize the mean-
squared error of the users’ reconstructions, and they presented
a useful “reverse filling-type solution” to the minimum distor-
tion problem. Yang and Gündüz [18] consider the same cache-
aided Gaussian problem, but instead focussed on the minimum
delivery-phase rate for a given distortion requirement. They
presented a numerical method to determine the minimum
delivery rate, and proposed two efficient caching algorithms.

In the light of this, the main contributions of our work are:
• In Section II, we show that the single-user caching

problem, assuming that the user’s reconstructions are
subject to expected (separable) distortion constraints, is
related to the lossy Gray-Wyner network. We then present
a coding theorem that characterizes the interplay between
the delivery rate, cache capacity and reconstruction dis-
tortion with a single-letter optimization problem.

• In Section III, we evaluate (or, bound) the above op-
timization problem for three different examples: 1) A
multivariate Gaussian source with respect to separable
squared error distortions, 2) a bivariate Gaussian source
with respect to separable squared error distortions, and
3) a doubly-symmetric binary source with respect to
Hamming distortions.

• The three examples outlined above all use some idea of
“common information” to specify the best information
to place in the cache. In Section IV we elaborate on this
idea, and provide two new common-information measures
for caching. The new measures both have operational
meaning for caching and can be computed via single-
letter expressions. We then describe how the new mea-
sures relate to (and differ from) the well-known common
information measures of Wyner, Gács and Körner that of-
ten appear in studies related to the Gray-Wyner network.

• The above results are all derived w.r.t. expected (separa-
ble) distortions. In Section V, we study excess (separable)
distortions, and our main result is a new strong converse.
The new converse does not automatically follow from the
strong converse of the standard RD problem, and, instead,
uses a perturbed source idea that is motivated by the work
of Watanabe [19]. Based on this new converse we study
f-separable distortion functions in Section VI.

D. Basic Informational RD functions

The following functions will be used throughout the paper.
The informational RD function of the `-th source X` w.r.t. the
symbol distortion function d` : X̂` ×X` → [0,∞) is

RX`(D`) := min
pX̂`|X`

: E[d`(X̂`,X`)]≤D`
I(X`; X̂`),

Library
Server

Cache

User

M (n)
c

Library
Server

Cache

User

M (n)
cM

(n)
` X̂n

`

Caching Phase

Delivery Phase

`
Xn = (Xn

1 , . . . , Xn
L)

Xn = (Xn
1 , . . . , Xn

L)

Fig. 1. A cache-aided communications system with a single user.

where the minimization is over all test channels pX̂`|X`
from X` to X̂` satisfying the indicated distortion constraint.
The informational joint RD function of X = (X1, . . . , XL)
w.r.t. the symbol distortion functions d = (d1, . . . , dL) is [20]

RX(D) := min
pX̂|X : E[d`(X̂`,X`)]≤D`, ∀`∈L

I(X; X̂),

where the minimization is over all test joint channels pX̂|X
from X to X̂ satisfying all L indicated distortion constraints.
Finally, the informational conditional RD function [20] of X`

with side information U is

RX`|U (D`) := min
pX̂`|X`U

: E[d`(X̂`,X`)]≤D`
I(X`; X̂`|U),

where the minimization is over all test channels pX̂`|X`U from
X` × U to X̂` satisfying the indicated distortion constraint.

Remark 2: The above minima exist by the continuity of
Shannon’s information measures, the assumption of bounded
single-symbol distortion functions d, and the fact that each
(conditional) mutual information is minimized over a compact
set.

II. CACHING W.R.T. EXPECTED (SEPARABLE) DISTORTIONS

A. Problem setup

A joint rate-distortion-cache (RDC) code for a given block-
length n is a collection of (2L+ 1) mappings:

(i) A cache-phase encoder at the server φ(n)
c : Xn →M(n)

c .
Here M(n)

c is a finite (index) set with an appropriate
cardinality for the cache capacity.

(ii) A delivery-phase encoder at the server φ(n)

` : Xn →
M(n) for each user request ` ∈ L. Here M(n) is a
finite (index) set with an appropriate cardinality for the
delivery phase.

(iii) A delivery-phase decoder at the user ϕ(n)

` : M(n) ×
M(n)

c → X̂n` for each possible user request ` ∈ L.
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We call the above collection of encoders and decoders an
(n, |M(n)|, |M(n)

c |)-code.
During the caching phase, the server places the message

M(n)
c = φ(n)

c (Xn) in the cache. Later, during the delivery
phase, the user picks ` ∈ L arbitrarily and requests the
corresponding source Xn

` from the server. The server responds
to the user’s request with the message M(n)

` = φ(n)

` (Xn), and
the user attempts to reconstruct Xn

` by computing X̂n
` =

ϕ(n)

` (M(n)

` ,M(n)
c ). This encoding and decoding process is il-

lustrated in Figure 1.
Suppose that we would like the caching system to operate

with a delivery-phase rate R, cache capacity C, and recon-
struction distortions D = (D1, . . . , DL), where D` is the
desired expected distortion of the `-th source Xn

` .
Definition 1: We say that the rate-distortion-cache tuple

(R,D, C) is achievable w.r.t. expected (separable) distortions
if there exists a sequence of (n, |M(n)|, |M(n)

c |)-codes such that

lim sup
n→∞

1

n
log |M(n)

c | ≤ C, (3a)

lim sup
n→∞

1

n
log |M(n)| ≤ R, and (3b)

lim sup
n→∞

E
[
d̄`(X̂

n
` , X

n
` )
]
≤ D`, ∀ ` ∈ L. (3c)

The RDC function w.r.t. expected (separable) distortions
R†(D, C) is the infimum of all rates R ≥ 0 such that
(R,D, C) is achievable.

The next lemma summarizes some basic properties of
R†(D, C) that will be useful later. We omit the proof.

Lemma 2:
(i) R†(D, C) is convex, non-increasing and continuous in

(D, C) ∈ [0,∞)L+1.
(ii) If the cache capacity is larger than the informational joint

RD function C > RX(D), then R†(D, C) = 0.
(iii) If the cache has zero capacity C = 0, then R†(D, 0) =

max`∈L RX`(D`).

B. A single-letter expression for R†(D, C)

A computable single-letter expression for R†(D, C) can
easily be obtained by leveraging known results for the Gray-
Wyner network shown in Figure 2. The Gray-Wyner network
is a multi-user RD problem with a single transmitter and two
receivers. The transmitter is connected to the receivers via a
single common link with rate Rc and two private links of rates
R1 and R2 respectively. Receiver ` is required to reconstruct
the `-th source Xn

` to within an expected (separable) distortion
D`. The set of all achievable RD tuples (Rc, R1, R2, D1, D2)
was established by Gray and Wyner in [21]. It is straightfor-
ward to extend this result to the case of L ≥ 2 receivers (with
one common rate Rc and L private rates R = (R1, . . . , RL)):
The set of all achievable RD tuples (Rc,R,D) for the L-
receiver Gray-Wyner network is given by

RGW(D) :=
⋃

pU|X

{
(Rc,R) :

Rc ≥ I(X;U)
R` ≥ RX`|U (D`) ∀ ` ∈ L

}
,

Transmitter

Receiver 1

Receiver 2

Rc

R1

R2

(Xn
1 , Xn

2 )

X̂n
2

X̂1

Fig. 2. The Gray-Wyner network.

where the union is over all test channels pU |X from X to U
with |U| ≤ |X | + 2L. The next lemma shows that our RDC
function R†(D, C) can be expressed as a minimization over
the achievable rate region RGW(D).

Lemma 3: R†(D, C) = R(D, C), where

R(D, C) = min
U : I(X;U)≤C

max
`∈L

RX`|U (D`) (4)

and the minimization is over all test channels pU |X from X
to U with |U| ≤ |X |+ 2L.

We call R(D, C) the informational RDC function. This
function will play a central role in this paper.

Proof of Lemma 3: We need only show that

R†(D, C) = min
(C,R)∈RGW(D)

max
`∈L

R`. (5)

If (C,R) ∈ RGW(D), then we can use the corresponding
Gray-Wyner encoder and decoders to achieve a delivery phase-
rate of max`R` in the caching problem; thus, R†(D, C) can-
not be larger than the R.H.S. of (5). Now suppose R†(D, C) is
strictly smaller than the R.H.S. of (5): There would then exist
an encoder and decoders in the Gray-Wyner problem that can
operate outside of the rate region RGW(D).

III. EXAMPLES OF R(D, C)

We now evaluate/bound the informational RDC function
R(D, C) for some common sources and symbol distortion
functions. The Gaussian setup was also investigated under
an average-performance criterion where the receiver demands
each file Xn

` with a given probability p` [22].

A. Identical and independent sources

Suppose that X = (X1, . . . , XL) consists of L mutually
independent instances of a random variable X on X . If the
symbol distortion functions are identical d1 = · · · = dL = d
and the distortion constraints are symmetric D = (D, . . . ,D),
then the informational RDC function is given by

R(D, C) =

[
RX(D)− C

L

]+

,

where [a]+ := max{a, 0}. The optimal caching strategy
for this case is simple: Take an optimal RD code for each
(X, d̄`, D); compress each Xn

` to the RD limit RX(D); cache
C/L of the compressed bits output by each RD code; and
transmit the remaining bits during the delivery phase.
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B. Multivariate Gaussian sources with squared error distor-
tion functions

The discussion so far has been restricted to sources defined
on finite alphabets. However, it can be shown that the above
ideas extend to multivariate Gaussian sources with squared-
error distortions, e.g. [23]. Let X = (X1, . . . , XL) ∈ RL be a
zero mean multivariate Gaussian with covariance matrix KX

and d`(x̂`, x`) = (x̂` − x`)
2 for all ` ∈ L. Let R†G(D, C)

denote the corresponding operational RDC function w.r.t. the
expected (separable) distortion constraints

E

[
1

n

n∑

i=1

(X̂`,i−X`,i)
2

]
≤ D`, ∀ ` ∈ L.

Now let

RG(D, C) = inf
(U,X̂)

max
`∈L

I(X`; X̂`|U), (6)

where the infimum is taken over all tuples (U, X̂) jointly
distributed with X such that

I(X;U) ≤ C (7a)

and
E
[
(X` − X̂`)

2
]
≤ D`, ∀ ` ∈ L. (7b)

The next lemma is the Gaussian counterpart of Lemma 3. Its
proof is omitted.

Lemma 4: R†G(D, C) = RG(D, C).
The next lemma gives a lower bound on RG(D, C) for
symmetric distortions. For each subset S ⊆ L, let XS =
(X`; ` ∈ S) denote the tuple of random variables with indices
in S, and let KXS denote the covariance matrix of XS .

Proposition 5: If D = (D, . . . ,D), then

RG(D, C) ≥ max
S⊆L

[
1

2|S| log
detKXS

D|S|
− C

|S|

]
.

Proof: Proposition 5 is proved in Appendix A.

C. Bivariate Gaussian Sources

Fix ρ ∈ (0, 1) and consider a zero mean bivariate Gaussian
source X = (X1, X2) with the covariance matrix

KX1X2 =

[
1 ρ
ρ 1

]
. (8)

We wish to evaluate the Gaussian RDC function in (6) with
symmetric distortions D1 = D2 = D. To do this, we will
consider distortion-cache pairs (D,C) separately for each one
of the regions S1,S2,S3 and S4 defined shortly. There are
two key quantities defining these regions: The Gaussian joint
RD function RG,X1X2

and the Wyner common information
between X1 and X2 (Wyner’s common information will
be discussed in detail in the next section). For symmetric4

distortions D1 = D2 = D, the joint RD function RG,X1X2 is
given by [24, Thm. III.1] and [25]:

4Here we only recall the joint RD function of (X1, X2) for the case of
symmetric distortions, D1 = D2 = D. A treatment of the RD function for
arbitrary distortion pairs can be found in [24] and the references therein.
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Fig. 3. Illustration of the distortion-cache regions S1, S2, S3 and S4 used
in Proposition 6 with ρ = 0.8.

(i) If 0 < D ≤ 1− ρ, then

RG,X1X2
(D,D) =

1

2
log

1− ρ2

D2
.

(ii) If 1− ρ ≤ D ≤ 1, then

RG,X1X2
(D,D) =

1

2
log

1 + ρ

2D − (1− ρ)
.

(iii) If D > 1, then

RG,X1X2
(D,D) = 0.

The Wyner common information of the Gaussian pair X1 and
X2 is given by [26, 27]

KW(X1, X2) =
1

2
log

1 + ρ

1− ρ . (9)

Consider the following four regions S1,S2,S3,S4:

S1 :=
{

(D,C) : C ≥ RG,X1X2
(D,D)

}
,

S2 :=
{

(D,C) : KW(X1, X2) ≤ C ≤ RG,X1X2(D,D)
}
,

S3 :=

{
(D,C) : D ≤ 1− ρ, C ≤ KW(X1, X2)

}
,

and

S4 :=

{
(D,C) : 1− ρ ≤ D ≤ 1, C ≤ RG,X1X2

(D,D)

}
.

These four regions are illustrated in Figure 3.
Proposition 6: For the zero mean bivariate Gaussian source

(X1, X2) with the covariance matrix KX1X2
in (8) and

squared error distortion constraints, we have

RG((D,D), C) =





0, (D,C) ∈ S1,

1

4
log

1− ρ2

D2
− C

2
, (D,C) ∈ S2,
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and Proposition 6 only give lower and upper bounds, and these are shown
with dashed lines.
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Fig. 5. Illustration of the upper (achievable) and lower (converse) bounds in
Proposition 7 for the DSBS RDC function R(0, C) with ρ = 0.1.

and

RG((D,D), C) ≤ 1

2
log

1− 1
2 (1 + ρ)(1− 2−2C)

D
,

(D,C) ∈ S3 ∪ S4.

Proof: Proposition 6 is proved in Appendix B.
Figure 4 illustrates an example of Proposition 6.

D. Doubly Symmetric Binary Source

We now evaluate the RDC function for a doubly symmetric
binary source (DSBS) under Hamming distortion functions.

Fix 0 ≤ ρ ≤ 1/2 and let (X1, X2) be defined by X1 = X2 =
X̂1 = X̂2 = {0, 1} and

pX(x1, x2) =
1

2
(1− ρ)1{x1 = x2}+

1

2
ρ1{x1 6= x2}.

The Wyner common information of the pair (X1, X2) is
given by [28]

KW(X1, X2) = 1 + h(ρ)− 2h(ρ∗)

where
ρ∗ =

1

2
− 1

2

√
1− 2ρ.

Here, the binary entropy function is denoted and defined by
h(ρ) := −ρ log2 ρ − (1 − ρ) log2(1 − ρ) for ρ ∈ (0, 1) and
h(0) = h(1) := 0. The next proposition can be proved in
a similar way to the DSBS examples in [21, Sec. 1.5], [29,
Sec. III.C] and [16, Ex. 1], so we omit the proof.

Proposition 7:
(i) If KW(X1, X2) ≤ C ≤ 1 + h(ρ), then R(0, C) = (1 +

h(ρ)− C)/2.

(ii) If 0 < C < 1 + h(ρ), then R(0, C) ≥ [1− C]+.

(iii) If 0 < C ≤ KW(X1, X2), then

1 + h(ρ)− C
2

≤ R(0, C) ≤ h
(

(1− ρ)α+
ρ

2

)
,

where
α := h−1

(
1− ρ− C

1− ρ

)
.

The above bounds are illustrated in Figure 5.
Remark 3: It is worth noting that, in this special case,

the informational RDC function R(D, C) particularizes to the
same expression as in [16, Ex. 1] (see also [21, Sec. 1.5]). This
equivalence is a consequence of the DSBS’s symmetry and
does not hold when the source and/or the distortion constraints
are asymmetric.

IV. COMMON-INFORMATION MEASURES FOR CACHING

In this section we give two new operational definitions
of common information for the caching problem. The first
definition relates to a “genie-aided” caching system where the
encoder knows in advance which source the user will select.
The second system relates to a “superuser” caching system.

A. Genie-aided caching

Imagine that, before the caching phase, a genie tells the
server which ` ∈ L the user will choose in the future.
The optimal caching strategy for this hypothetical genie-aided
system is obvious: We should compress the `-th source Xn

`

using an optimal RD code for that source, cache nC bits of
the code’s output, and then send the remaining bits during the
delivery phase. The RDC function of the genie-aided problem
is clearly

g(D, C) =
[

max
`∈L

RX`(D`)− C
]+
.

In the main caching problem at hand, however, the server
does not know in advance which ` ∈ L the user will select, and
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1

L
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g(D
, C

)

s(D, C)
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`2L

RX`
(D`)

m
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`2
L
RX

(̀D
)̀

Fig. 6. An illustration of some typical characteristics of the RDC function
R(D, C) for a fixed distortion tuple D = (D1, . . . , DL). The function
describes the optimal (minimum) delivery-phase rate (vertical axis) for a given
cache capacity (horizontal axis). The bounds (10) and (18) are plotted with
dashed lines.

this uncertainty may cost additional rate in either the caching
or delivery phases. Consequently,

R(D, C) ≥ g(D, C). (10)

We have equality in (10) whenever C = 0, so it is natural to
define the critical cache capacity5

Cg(D) := max
{
C ≥ 0 : R(D, C) = g(D, C)

}
. (11)

We can view Cg(D) as a type of common information
for caching: It is the maximum information that can be
extracted from every source and placed in the cache without
needing redundant information to be transmitted during the
delivery phase (w.r.t. the hypothetical genie-aided system).
Figure 6 illustrates some typical characteristics of R(D, C)
and g(D, C).

We now give a single-letter expression for Cg(D). Let
L∗(D) := {`∗ ∈ L : RX`∗ (D`∗) = max`∈L RX`(D`)}.
Define

C∗g(D) := max
U

I(X;U), (12)

where the maximization is over the set of all auxiliary random
variables U jointly distributed with X such that for all `∗ ∈ L∗

I(X;U) = RX`∗ (D`∗)− RX`∗ |U (D`∗) (13a)

and
RX`∗ |U (D`∗) = max

`∈L
RX`|U (D`). (13b)

Theorem 8: Cg(D) = C∗g(D).
Corollary 8.1: For almost lossless Hamming distortions

we have Cg(0) = C∗g(0) = maxU I(X;U), where the
maximization is taken over the set of all U satisfying
U ↔ X`∗ ↔ XL\`∗ and H(X`∗ |U) = max`∈LH(X`|U) for
all `∗ ∈ L∗.

Proof: Theorem 8 and Corollary 8.1 are proved in Ap-
pendices C-A and C-B, respectively.

5The maximum indicated in (11) exists because R(D, C) is convex and
g(D, C) is linear for C in the interval [0,RX(D)].

B. Gács-Körner common information and the Gray-Wyner
network

The Gray-Wyner network in Figure 2 has often been used
to provide operational meaning for Gács-Körner common in-
formation. Since this network is closely related to our caching
problem, it is useful to relate these ideas to Cg(D). To this
end, consider the L-receiver Gray-Wyner network with one
common rate Rc and L private rates R = (R1, . . . , RL) and
almost lossless (separable) Hamming distortions. It is not too
hard to show that the achievable rate region of this network
is equal to the set of all (L + 1)-rate tuples (Rc,R) for
which there exists an auxiliary random variable U such that
Rc ≥ I(X;U) and R` ≥ H(X`|U) for all ` ∈ L.

For any receiver ` ∈ L, the smallest sum rate Rc +R` that
can be achieved is clearly H(X`). Let us call this smallest sum
rate the cut-set rate for receiver `. Now consider the maximum
common rate Rc for which there exists private rates R such
that (Rc,R) simultaneously meets all L cut-set rates. It is not
difficult to show that this maximum common rate is given by

KGK(X) = max
U↔X`↔XL\`, ∀`∈L

I(X;U). (14)

For the special case of L = 2 variables, it is well-known
that KGK(X1, X2) simplifies to the Gács-Körner common
information

KGK(X1, X2) = max
H(U |X1)=0 and H(U |X2)=0

H(U). (15)

The next proposition extends (15) to L ≥ 2 variables. To the
best of our knowledge, this result has not been shown before.

Proposition 9:

KGK(X) = max
U : H(U |X`)=0, ∀`∈L

H(U)

Proof: Proposition 9 is proved in Appendix D.
Thus, the L-variable Gács-Körner common information

KGK(X) can be viewed as the maximum common information
that can be extracted from every variable in X and transmitted
over the common link, without needing redundant information
to be transmitted over the private links.

Viswanatham, Akyol and Rose [26] generalized the above
idea (for two receivers) from lossless to lossy reconstructions,
and, in doing so, proposed a new lossy version of (14).
The next definition is the natural generalization of this lossy
common information applied to L variables6.

Definition 2: We define the lossy Gács-Körner common
information of X w.r.t. the symbol distortion functions d by7

KGK(X;D) := max
(U,X̂)

I(X;U), (16)

where the maximum is taken over all tuples (U, X̂) on U ×X̂
jointly distributed with X and satisfying

(i) ∀ ` ∈ L : U ↔ X` ↔ XL\`
(ii) ∀ ` ∈ L : U ↔ X̂` ↔ X`

6Setting L = 2 gives the original definition in [26].
7The indicated maximum in Definition 2 exists because the set of all

tuples (U, X̂) satisfying (i)–(iv) can be viewed as a compact subset of the
corresponding probability simplex.
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(iii) ∀ ` ∈ L : E[d`(X̂`, X`)] ≤ D`

(iv) ∀ ` ∈ L : I(X`; X̂`) = RX`(D`).
The next theorem relates the critical cache capacity to lossy

Gács-Körner common information.
Theorem 10: C∗g(D) ≥ KGK(X;D) with equality whenever

RX1
(D1) = · · · = RXL(DL).
Proof: Theorem 10 is proved in Appendix E.

C. Superuser caching

Now imagine that a superuser is connected to the server
by L independent rate-R noiseless links, and suppose that the
superuser requests every source. The optimal caching strategy
for this superuser problem is again clear: Take an optimal
code for the joint RD function of X , cache C bits of the
code’s output, and distribute the remaining bits equally over
the L links in the delivery phase. The RDC function of this
superuser problem is

s(D, C) =

[
RX(D)− C

L

]+

. (17)

Since the average of L non-negative numbers cannot be
larger than the maximum, we have

R(D, C) ≥ s(D, C). (18)

Clearly the superuser bound (18) is achievable by the
caching system at C = RX(D). It is natural to consider the
smallest cache capacity for which there is no rate loss with
respect to the optimal superuser system8

Cs(D) := min
{
C ≥ 0 : R(D, C) = s(D, C)

}
. (19)

We now give a single-letter expression for Cs(D). For a
given D, let

C∗s (D) := min
(U,X̂)

I(X;U)

where the minimum is taken over all tuples (U, X̂) on U × X̂
such that the following five properties hold

(i) X ↔ X̂ ↔ U

(ii) I(X1; X̂1|U) = · · · = I(XL; X̂L|U)

(iii) ∀ ` ∈ L : X̂` ↔ U ↔ X̂L\`
(iv) ∀ ` ∈ L : E[d`(X̂`, X`)] ≤ D`

(v) I(X; X̂) = RX(D).
Theorem 11: Cs(D) = C∗s (D).

Proof: Theorem 11 is proved in Appendix F.

D. Wyner common information and the Gray-Wyner Network

The Gray-Wyner network in Figure 2 with almost lossless
(separable) Hamming distortions is also often used to provide
an operation meaning for Wyner’s common information [28]

KW(X1, X2) := min
U :X1↔U↔X2

I(X1, X2;U). (20)

Specifically, KW(X1, X2) is equal to the minimum common
rate Rc for which it is possible to achieve the so called

8The minimum in (19) exists because RX(D) is convex and s(D, C) is
linear for C in the interval for [0,RX(D)]. Figure 6 depicts the superuser
bound and the critical cache capacity Cs(D).

Pangloss plane Rc + R1 + R2 = H(X1, X2). The natural
extension of Wyner’s common information to L variables X
is

KW(X) := min
U : X` ↔ U ↔ XL\`, ∀`∈L

I(X;U).

Viswanatha, Akyol and Rose’s [26] generalized the above
idea from lossless to reconstructions, and, in doing so, pro-
posed the following lossy Wyner common information.

Definition 3: For a given distortion tuple D and single-
symbol distortion functions d, the lossy Wyner common infor-
mation of X is given by

KW(X;D) := min
(U,X̂)

I(X;U)

where the minimum is taken over all tuples (U, X̂) on U × X̂
such that the following four properties hold

(i) X ↔ X̂ ↔ U

(ii) ∀ ` ∈ L : X̂` ↔ U ↔ X̂L\`
(iii) ∀ ` ∈ L : E[d`(X̂`, X`)] ≤ D`

(iv) I(X; X̂) = RX(D).
The next proposition and corollary relate Wyner common

information measures to the caching problem, and they triv-
ially follow from the above definitions.

Proposition 12: C∗s (D) ≥ KW(X;D).
Corollary 12.1: C∗s (0) ≥ KW(X), with equality when-

ever the caching problem is symmetric in the sense that
KW(X) = I(X;U∗) for some U∗ satisfying H(X1|U∗) =
· · · = H(XL|U∗) and X` ↔ U∗ ↔ U∗L\` for all ` ∈ L.

Remark 4: The lossy Wyner common information
KW(X;D) as well as Wyner’s original common information
KW(X) are both defined for discrete and continuous random
vectors X . In the latter case, the lossy Wyner common
information is only defined when the RD function in (iv) is
finite, RX(D) <∞. It is also is worth noting that, in general,
the lossy Wyner common information KW(X;D) is neither
convex/concave nor monotonic in D. Moreover, it is generally
the case that KW(X;D) can be larger/smaller than the Wyner
common information KW(X). A nice treatment of this issue
for L = 2 variables is given by Viswanatha et al. in [26,
Sec. III.B].

V. CACHING W.R.T. EXCESS (SEPARABLE) DISTORTIONS

In this section we reconsider the caching problem formula-
tion from Section II with the expected distortion constraints
replaced by excess-distortion constraints. We will show that
under this more restrictive criteria, a strong converse holds.

Definition 4: We say that a rate-distortion-cache tuple (R,
D, C) is d-achievable w.r.t. excess (separable) distortions
if there exists a sequence of (n, |M(n)|, |M(n)

c |)-codes such
that (3a) and (3b) hold and

lim
n→∞

P

[ ⋃

`∈L

{
d̄`(X̂

n
` , X

n
` ) ≥ D`

}]
= 0. (21)

The RDC function w.r.t. excess (separable) distortions
R‡(D, C) is the infimum of all rates R ≥ 0 such that the
(R,D, C) is d-achievable.
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It is not too hard to show that the RDC functions of the
excess and expected distortion problems coincide (assuming
that the symbol distortion functions d are bounded). We omit
the proof.

Lemma 13: R†(D, C) = R‡(D, C) = R(D, C).
Lemma 13 provides us only with the following weak

converse: If the delivery-phase rate R is strictly smaller than
the informational RDC function R(D, C), then the excess-
distortion probability of any sequence of (n, |M(n)

c |, |M(n)|)
codes satisfying (3a) and (3b) will be bounded away from
zero; that is,

lim sup
n→∞

P

[ ⋃

`∈L

{
d̄`(X̂

n
` , X

n
` ) ≥ D`

}]
> 0.

The next theorem strengthens this weak converse to a strong
converse.

Theorem 14: Fix any cache capacity C and distortion tuple
D such that R(D, C) > 0. Any sequence of (n, |M(n)

c |,
|M(n)|)-codes satisfying

lim sup
n→∞

1

n
log |M(n)| < R(D, C) (22)

and
lim sup
n→∞

1

n
log |M(n)

c | ≤ C (23)

must also satisfy

lim sup
n→∞

P

[ ⋃

`∈L

{
d̄`(X̂

n
` , X

n
` ) ≥ D`

}]
= 1. (24)

Proof: Theorem 14 is proved in Appendix G.
Remark 5: The strong converse in Theorem 14 applies

to the probability of the union of excess-distortion events
in (24). One might wonder if a similar strong converse can
be proved for the maximum probability of excess distortion
scenario in which union probability in (24) is replaced by
max`∈L P[d̄`(X̂

n
` , X

n
` ) ≥ D`]. If the cache capacity is smaller

than the critical cache capacity C ≤ Cg(D), then one can
easily show a new converse in which (24) is replaced by

lim sup
n→∞

max
`∈L

P
[
d̄`(X̂

n
` , X

n
` ) ≥ D`

]
= 1. (25)

This result essentially just employs the strong converse for the
standard point-to-point RD problem with separable distortion
functions. For larger values of C it is unclear, at least to us,
whether (25) still holds.

VI. CACHING W.R.T. f-SEPARABLE DISTORTION
FUNCTIONS

We now consider the caching problem w.r.t. f-separable
distortion functions and both expected and excess distortions.
The corresponding RDC functions are defined in exactly the
same way as in Definitions 1 and 4, except that the f-separable
distortion function fd` replaces the separable distortion func-
tion d̄`. We denote the corresponding RDC function under
expected and excess distortions by R†f (D, C) and R‡f (D, C)
respectively.

For each request ` ∈ L, let d∗` : X̂` × X` → [0,∞) be the
single-symbol distortion function obtained by setting

d∗` (x̂`, x`) = f`
(
d`(x̂`, x`)

)
. (26)

Now let Rd∗(f(D), C) denote the informational RDC func-
tion in (4) evaluated w.r.t. the single-symbol distortion func-
tions d∗ = (d∗1, . . . , d

∗
L) and distortion tuple f(D) =(

f1(D1), . . . , fL(DL)
)
. Modifying the strong converse for the

usual point-to-point RD problem (see, for example, Kief-
fer [30]), and using ideas in [3], it is not too difficult to obtain
the following proposition. We omit the proof.

Proposition 15: For f-separable distortion functions and all
cache capacities C ≤ Cg(D), we have

R†f (D, C) = R‡f (D, C) = Rd∗(f(D), C).

Proposition 15 is quite intuitive, and a natural question
is whether or not it extends to cache capacities larger than
Cg(D). The next result considers such cases, but it requires
a slightly more restricted version of the expected distortions
operational model. Specifically, let us consider the following
definition:

Definition 5: We say that a rate-distortion-cache tuple (R,
D, C) is achievable w.r.t. the expected max-distortion cri-
terium if there exists a sequence of (n,M(n)

c ,M(n))-codes such
that (3a) and (3b) hold and

lim sup
n→∞

E
[

max
`∈L

(
fd`(X̂

n
` , X

n
` )−D`

)]
≤ 0. (27)

The RDC function w.r.t. expected max-distortions criterion is

R̃†f,max-exc(D, C) := inf
{
R ≥ 0 :

(R,D, C) is achievable w.r.t. expected max-distortions
}

Theorem 16: R̃†f,max-exc(D, C) = R‡f (D, C) =
Rd∗(f(D), C).

Proof: Theorem 16 is proved in Appendix I.

VII. CONCLUSION

We studied cache-aided systems with correlated source
files and characterized the tradeoff between delivery rate,
cache memory, and reconstruction distortion. This trade-off
is formalized in terms of an auxiliary random variable, and,
therefore, its computation is non-trivial. Moreover, it does
not provide an explicit answer to what type of “common
information” among the sources should be cached. We in-
vestigated two new notions of common information and their
operational meaning for the caching problem and showed
that it is optimal to cache these common informations in
some regimes. Our approach is motivated by the operational
meaning of Wyner’s common information and Gács-Körner
common information on the Gray-Wyner network. Under some
very special symmetry conditions, our new definitions coincide
with the previous ones. In general, however, the definitions are
different.

We also extended our results to excess-distortion criteria
and f-separable distortion measures introduced in [3]. A key
component of this extension is a new strong converse for a
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union (over all sources) excess separable distortions criteria.
The new strong converse is needed because, in general, it is
possible to non-trivially trade distortions between the sources
by modifying what information is placed in the cache.

Our approach can also be generalized to cache-aided multi-
user settings (see, e.g., [31, Section IX], [32]). In general,
however, finding exact tradeoffs is challenging and it is inter-
esting to seek approximate solutions.

Future interesting directions on the problem include
addressing practical requirements such as latency, secu-
rity/privacy, and complexity of code design.

APPENDIX A
PROOF OF PROPOSITION 5

Fix D = (D,D, . . . ,D) for some D ≥ 0, and consider any
tuple (U, X̂) satisfying (7). Fix S ⊆ L and let S := |S|. Then

max
`∈L

I(X`; X̂`|U)

≥ max
`∈S

[
h(X`|U)− h(X`|X̂`)

]

a
≥ 1

S
h(XS |U)− 1

2
log(2πeD)

b
≥ 1

S

(
1

2
log
(
(2πe)S detKXS

)
− C

)
− 1

2
log(2πeD)

=
1

2S
log

detKXS

DS
− C

S
.

Step (a) follows because

h(X`|X̂`)
a.1
= h(X` − X̂`|X̂`)
a.2
≤ h

(
N (0,E(X̂` −X`)

2)
)

a.3
≤ h

(
N (0, D)

)

a.4
≤ 1

2
log(2πeD),

where (a.1) follows by the translation property of differential
entropy [33, Thm. 10.18]; (a.2) uses the fact that the normal
distribution maximizes differential entropy for a given second
moment [33, Thm. 10.43], and (a.3) invokes the distortion
constraint in (7). Moreover, for the first term, we have

max
`∈S

h(X`|U)
a.5
≥ 1

S

∑

`∈S
h(X`|U)

a.6
≥ 1

S
h(XS |U),

where (a.5) follows because the maximum cannot be smaller
than the average, and (a.6) follows by the independence bound
for differential entropy [33, Thm. 10.34].

Step (b) follows from the cache capacity constraint in (7)

C ≥ I(X;U) ≥ I(XS ;U)

= h(XS)− h(XS |U)

=
1

2
log
(
(2πe)S detKXS

)
− h(XS |U)

�

APPENDIX B
PROOF OF PROPOSITION 6

A. Case 1: (D,C) ∈ S1

If (D,C) ∈ S1, then it trivially follows from the definition
of RG,X1X2

(D,D) that RG((D,D), C) = 0.

B. Case 2: (D,C) ∈ S2

Since RG,X1X2
(D,D) is strictly decreasing in D, it follows

that for a given C ≤ RG,X1X2
(D,D) the distortion D must

satisfy
0 < D ≤ 2−C

√
1− ρ2.

Define
α = 1− ρ− 2−C

√
1− ρ2 (28)

and note that 0 ≤ α < 1− ρ for all finite

C >
1

2
log

1 + ρ

1− ρ .

Now let W,N1, N2, Ñ1, Ñ2, Z1 and Z2 be mutually in-
dependent standard Gaussians N (0, 1), and notice that our
bivariate Gaussian source (X1, X2) can be written as

Xi =
√
ρ W +

√
α Ni +

√
1− ρ−D − α Ñi +

√
D Zi,

i = 1, 2.

Choose U = (U1, U2), where

Ui =
√
ρ W +

√
α Ni, i = 1, 2.

Define the reconstructions X̂1 and X̂2 to be

X̂i := Ui +
√

1− ρ− α−D Ñi, i = 1, 2.

We notice that

X1 ↔ X̂1 ↔ U1 ↔ U ↔ U2 ↔ X̂2 ↔ X2 (29)

forms a Markov chain. Additionally,

I(X1, X2;U)

= h(X1, X2)− h(X1, X2|U)
a
= h(X1, X2)− h(X1|U)− h(X2|U)
b
= h(X1, X2)− h(X1|U1)− h(X2|U2)
c
= h(X1, X2)− 2h(X1|U1)

= h(X1, X2)− 2h(X1 − U1|U1)

=
1

2
log
(
(2πe)2(1− ρ2)

)
− log

(
2πe(1− ρ− α)

)

=
1

2
log

1− ρ2

(1− ρ− α)2

d
= C,

where (a) and (b) follow from (29), (c) follows by symmetry,
and (d) substitutes (28). Similarly,

I(X1; X̂1|U) = h(X1|U)− h(X1|X̂1, U)
a
= h(X1|U1)− h(X1|X̂1)

= h(X1 − U1|U1)− h(X1 − X̂1|X̂1)

=
1

2
log
(

2πe(1− ρ− α)
)
− 1

2
log
(

2πeD
)

=
1

2
log

(
1− ρ− α

D

)

b
=

1

4
log

(
1− ρ2

D2

)
− C

2
,

where (a) uses the Markov chain (29) and (b) substitutes (28).
Finally, we notice that the above achievable rate is equal to
the lower bound from Proposition 5.
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C. Case 3: (D,C) ∈ S3

Let
α =

1

2
(1 + ρ)(1− 2−2C),

and note that 0 ≤ α ≤ ρ. Now let W, W̃ , Z1, Z2, N1 and N2

be mutually independent standard Gaussians N (0, 1). Choose

U =
√
α W +

√
ρ− α W̃

and
X̂i =

√
ρ W +

√
1− ρ−D Zi, i = 1, 2.

We may now write our bivariate Gaussian source (X1, X2) as

Xi = X̂i +
√
D Ni, i = 1, 2.

The pair (X1, U) and the pair (X2, U) are both zero mean
bivariate Gaussians with identical covariance matrices

KX1U = KX2U =

[
1

√
αρ√

αρ ρ

]
.

Similarly, (X1, X2, U) is a zero mean multivariate normal with
the covariance matrix

KX1X2U =




1 ρ
√
αρ

ρ 1
√
αρ√

αρ
√
αρ ρ


 .

Thus,

I(X1, X2;U) = h(X1, X2) + h(U)− h(X1, X2, U)

=
1

2
log
(
(2πe)2 detKX1X2

)
+

1

2
log
(
2πeρ

)

− 1

2
log
(
(2πe)3 detKX1X2U

)

=
1

2
log

1 + ρ

1 + ρ− 2α

= C,

and

I(X1; X̂1|U) = h(X1|U)− h(X1|X̂1, U)

= h(X1, U)− h(U)− h(X1|X̂1)

=
1

2
log
(
(2πe)2 detKX1U

)
− 1

2
log(2πeρ)

− 1

2
log(2πeD)

=
1

2
log

1− α
D

.

D. Case 4: (D,C) ∈ S4

Suppose that (D,C) ∈ S4. Since (D,C) lies below the
Gaussian joint RD function RG,X1X2

(D,D), it follows that
for any given distortion D ∈ [1 − ρ, 1] the cache capacity C
must lie within

0 ≤ C ≤ 1

2
log

1 + ρ

2D − 1 + ρ
.

Define
α =

1

2
(1 + ρ)(1− 2−2C)

and
β = 1− α−D,

where we notice that

0 ≤ α, β ≤ 1−D and α+ β = 1−D ≤ ρ.
In this case, we may write

Xi =
√
α A+

√
β B +

√
ρ− (α+ β) W +

√
1− ρ Ni,
i = 1, 2,

where A,B,W,N1 and N2 are mutually independent standard
Gaussians N (0, 1). Now let

U =
√
α A,

and
X̂1 = X̂2 = X̂ := U +

√
β B.

Here (X1, X2, U) is a zero mean multivariate Gaussian with
covariance matrix

KX1X2U =




1 ρ α
ρ 1 α
α α α.




Then,

I(X1, X2;U) = h(X1, X2)− h(X1, X2, U)− h(U)

=
1

2
log
(
(2πe)2 detKX1X2

)

− 1

2
log
(
(2πe)3 detKX1X2U

)

+
1

2
log
(
2πeρ

)

=
1

2
log

1 + ρ

1 + ρ− 2α

= C.

Moreover,

I(X1; X̂|U) = h(X1|U)− h(X1|U, X̂)

= h(X1|U)− h(X1|X̂)

=
1

2
log
(
2πe(1− α)

)
− 1

2
log
(
2πe(1− α− β)

)

=
1

2
log

1− α
D

.

�

APPENDIX C
PROOF OF THEOREM 8 AND COROLLARY 8.1

A. Proof of Theorem 8

Choose the cache capacity to be C = Cg(D) and assume
that R(D,Cg(D)) > 0. By the definition of Cg(D):

R(D, C) = max
`∈L

RX`(D`)− C. (30)

Let U be an optimal auxiliary random variable for the
informational RDC function R(D, C), i.e., U is so that

R(D, C) = max
`∈L

RX`|U (D`) (31)

and
I(X;U) ≤ C. (32)
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Let `∗ ∈ L∗, i.e., `∗ attains the maximum in (30). We have
the following:

R(D, C)
a
= max

`∈L
RX`|U (D`)

≥ RX`∗ |U (D`∗)

= min
pX̂`∗ |X`∗U

: E[d(X̂`∗ ,X`∗ )]≤D`
I(X`∗ ; X̂`∗ |U)

b
≥ min
pX̂`∗ |X`∗U

: E[d(X̂`∗ ,X`∗ )]≤D`
I(X`∗ ;U, X̂`∗)− I(X;U)

c
≥ RX`∗ (D`∗)− I(X;U)

d
≥ RX`∗ (D`∗)− C
e
= R(D, C),

where (a) is identical to (31); (b) follows by adding the
non-positive term I(X`∗ ;U) − I(X;U); (c) holds because
I(X`∗ ;U, X̂`∗) ≥ I(X`∗ ; X̂`∗); (d) holds by (32); and (e)
holds by (30) and because `∗ ∈ L∗.

The above inequalities must all hold with equality and so
the chosen U must satisfy I(X;U) = C = Cg(D), (13a)
and (13b). Therefore,

Cg(D) ≤ C∗g(D). (33)

Choose now the cache capacity C = C∗g(D), and let U be
an optimal auxiliary random variable for C∗g(D). That means,
U satisfies (13a) and (13b) and

I(X;U) = C∗g(D) = C. (34)

The following holds for all `∗ ∈ L∗:

R(D, C)
a
≤ max

`∈L
RX`|U (D`)

b
= RX`∗ |U (D`∗)
c
= RX`∗ (D`∗)− I(X;U)
d
= RX`∗ (D`∗)− C,

where (a) follows because U need not be optimal for R(D, C),
(b) follows from (13b), (c) follows from (13a), and (d)
from (34).

Therefore, at the cache capacity C = I(X;U) = C∗g(D)
we have R(D,C) = RX`∗ (D`∗)− C and consequently

Cg(D) ≥ C∗g(D). (35)

The theorem follows from (33) and (35). �

B. Proof of Corollary 8.1

The conditional RD function particularizes to the condi-
tional entropy function: RX`|U (0) = H(X`|U). Similarly, the
constraint (13a) particularizes to

I(X;U) = H(X`∗)−H(X`∗ |U) = I(X`∗ ;U),

which is equivalent to U ↔ X`∗ ↔ XL\`∗ . �

APPENDIX D
PROOF OF PROPOSITION 9

We have

max
U : H(U |X`)=0, ∀`∈L

H(U) ≤ max
U : U ↔ X` ↔ XL\`, ∀`∈L

I(X;U)

since any U satisfying H(U |X`) = 0 for all ` ∈ L must also
satisfy U ↔ X` ↔ XL\` for all ` ∈ L. The reverse inequality
follows by the next lemma, which is a multivariate extension
of [34, Lem. A.1]. �

Lemma 17: If U is jointly distributed with X such that
U ↔ X` ↔ XL\` for all ` ∈ L, then there exists U ′

jointly distributed with (U,X) such that U ↔ U ′ ↔ X and
H(U ′|X`) = 0 for all ` ∈ L.

Proof: Let pU |X denote the conditional distribution of U
given X , and suppose that

U ↔ X` ↔ XL\`, ∀ ` ∈ L. (36)

We first generate an L-partite graph

G = (V, E),

with vertices
V =

⋃

`∈L
X`.

The edge set E contains an edge
{
x, x′

}
, x ∈ Xi, x′ ∈ Xj , i, j ∈ L with i 6= j,

if and only if there exists an x̃ ∈ X with x̃i = x and x̃j = x′

and pX(x̃) > 0.
Let C1, C2, . . . , CNcc denote the connected components of G,

and let c(x) denote the index of the connected component that
contains vertex x.

Let us now construct a new auxiliary random variable U ′

on {1, . . . , Ncc} that is jointly distributed with X by setting

U ′ = c(X1).

Now, for any x ∈ X with pX(x) > 0, the corresponding set
of vertices {x1, . . . , xL} forms a clique and, therefore, is a
subgraph of some connected component. Therefore,

U ′ = c(X`) a.s., ∀ ` ∈ {2, . . . , L}.
This, of course, implies H(U ′|X`) = 0 for all `.

To complete the proof, we need only to show that U can
be generated by some conditional distribution pU |U ′ : {1, . . . ,
Ncc} → U . We first notice that the Markov chain (36) is
equivalent to the following condition: For all x ∈ X with
pX(x) > 0, we have

pU |X(u|x) = pU |X1
(u|x1) = · · · = pU |XL(u|xL), ∀ u ∈ U .

Now consider any connected component Ci and any u ∈ U .
By the above method of constructing G, we may conclude that

pU |X`(u|x`) = constant, ∀ ` ∈ L and x` ∈ Ci ∩ X`.
That is, pU |X`(u|x`) depends only on the connected compo-
nent c(x`) and the particular u ∈ U , and we can write the
above constant as qc(x`)(u). Choose pU |U ′(u|u′) := qu′(u) to
complete the proof.
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APPENDIX E
PROOF OF THEOREM 10

Let ` ∈ L. For any (X, U) ∼ pX pU |X on X × U , the
following inequalities hold:

RX`|U (D`) = min
qX̂′
`
|U,X`

: E[d`(X̂′`,X`)]≤D`
I(X`; X̂

′
`|U)

≥ min
qX̂′
`
|X`

: E[d`(X̂′`,X`)]≤D`
I(X`; X̂

′
`)− I(X;U)

= RX`(D`)− I(X;U). (37)

Now suppose that we have (U, X̂) ∼ pX̂,U |X on U × X̂
satisfying conditions (i), (ii), (iii), and (iv) in Definition 2.
Then,

RX`|U (D`)
a
≤ I(X`; X̂`|U)
b
= I(X`; X̂`)− I(X;U)
c
= RX`(D`)− I(X;U), (38)

where (a) follows from property (iii) of Definition 2; (b)
follows by properties (i) and (ii) of Definition 2; and (c)
follows from property (iv) of Definition 2.

Inequalities (37) and (38) combine to

RX`|U (D`) = RX`(D`)− I(X;U), ∀` ∈ L. (39)

Thus, the pair (U, X̂) satisfies (13a). Moreover, since the
mutual information I(X;U) does not depend on ` ∈ L, the
conditional rate-distortion function RX`|U (D`) is largest for
the same indices ` as the standard rate-distortion function
RX`(D`). Since RX`(D`) is maximum for indices `∗ ∈ L∗,
this proves that the pair (U, X̂) also satisfies (13b). To
conclude: If (U, X̂) satisfies (i), (ii), (iii), and (iv) in Defi-
nition 2, then U is a valid auxiliary variable for C∗g(D) and
KGK(D) ≤ C∗g(D).

Now suppose that

RX1
(D1) = RX2

(D2) = · · · = RXL(DL)

and, therefore, L∗ = L. Let U ∼ pU |X on U be any
auxiliary random variable satisfying (13a) for every ` ∈ L.
(Condition (13b) automatically follows because L∗ = L.) For
each ` ∈ L, let pX̂`|UX` be any test channel that is optimal
for the informational conditional RD function

RX`|U (D`) = min
qX̂′
`
|UX`

: E[d`(X̂′`,X`)]≤D`
I(X`; X̂

′
`|U).

Now consider the tuple

(X, U, X̂) ∼ pX pU |X
∏

`∈L
pX̂`|UX` .

For all ` ∈ L we have

RX`|U (D`)
a
= RX`(D`)− I(X;U)
b
≤ I(X`; X̂`)− I(X;U)

≤ I(X`; X̂`|U)
c
= RX`|U (D`),

where (a) follow because U was originally chosen to sat-
isfy (13a); (b) follows because (X, U, X̂) need not be optimal

for the informational RD functions RX`(D`); and (c) follows
because pX̂`|UX` achieves RX`|U (D`). The above inequalities
must be equalities and, therefore, (X, U, X̂) satisfies the
following four conditions:
• ∀ ` ∈ L : U ↔ X` ↔ XL\`
• ∀ ` ∈ L : U ↔ X̂` ↔ X`

• ∀ ` ∈ L : I(X`; X̂`) = RX`(D`)
• ∀ ` ∈ L : E[d`(X̂`, X`)] ≤ D`.
To conclude: Given any (X, U) ∼ pX pU |X satisfy-

ing (13a) for all ` ∈ L we can always find a test channel
pX̂|UX such that (X, U, X̂) ∼ pX pU |X pX̂|UX satisfies the
conditions of Definition 2. �

APPENDIX F
PROOF OF THEOREM 11

Choose the cache capacity C = Cs(D). Let U be an optimal
auxiliary random variable for the informational RDC function;
that is,

R(D, C) = max
`∈L

RX`|U (D`).

Now, for each ` ∈ L, let pX̂`|X`U be an optimal test channel
for the informational conditional RD function RX`|U (D`).
Define

(X, U, X̂) ∼ pX pU |X
∏

`∈L
pX̂`|UX`

and note that

X̂` ↔ (U,X`) ↔ (XL\`, X̂L\`), ∀ ` ∈ L. (40)

Then,

R(D, C) = max
`∈L

I(X`; X̂`|U)

≥ 1

L

L∑

`=1

I(X`; X̂`|U)

a
≥ 1

L

L∑

`=1

I(X; X̂`|U, X̂`−1
1 )

=
1

L
I(X; X̂|U)

b
≥ 1

L

(
I(X; X̂)− Cs(D)

)

c
≥ 1

L

(
RX(D)− Cs(D)

)

d
= R(D, C),

where (a) follows from (40); (b) follows because I(X;U) ≤
Cs(D); (c) follows because E[d`(X`, X̂`)] ≤ D`; and (d)
follows from the definition of Cs(D).

The above inequalities are equalities and consequently
I(X1; X̂1|U) = · · · = I(XL; X̂L|U), X̂` ↔ U ↔ X̂`−1 (and
therefore X̂` ↔ U ↔ X̂L\` since the chain rule expansion
order is arbitrary), X ↔ X̂ ↔ U and C = I(X;U). We can
thus conclude that the tuple (X, U, X̂) satisfies conditions
(i)–(v) in the definition of C∗s (D) and C∗s (D) ≤ Cs(D).

Now suppose that (X, U, X̂) satisfies conditions (i)–(v) in
the definition of C∗s (D) and I(X;U) = C∗s (D). Then,

R(D, C) ≤ max
`∈L

I(X`; X̂`|U)
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a
=

1

L

L∑

`=1

I(X`; X̂`|U)

b
≤ 1

L

L∑

`=1

I(X; X̂`|U, X̂`−1
1 )

=
1

L

(
I(X; X̂, U)− I(X;U)

)

c
≤ 1

L

(
RX(D)− C∗s (D)

)
,

where (a) follows from condition (ii); (b) follows from con-
dition (iii); (c) follows from conditions (i) and (v). Thus,
we can achieve the superuser bound at C = C∗s (D) and
C∗s (D)≥Cs(D). �

APPENDIX G
PROOF OF THEOREM 14

We need the following lemma.
Lemma 18: Take any sequence of (n, |M(n)

c |, |M(n)|)-codes
and any positive real sequence {αn} ↓ 0. If for every
sufficiently large blocklength n we have

P

[ ⋂

`∈L

{
d̄`(X̂

n
` , X

n
` ) < D`

}]
≥ 2−nαn ,

then there exists a real sequence {ζn} → 0 such that

1

n
log |M(n)| ≥ R

(
D + ζn,

1

n
log |M(n)

c |+ ζn

)
− ζn.

Proof: Lemma 18 is proved in Appendix H.
Now consider Theorem 14 and any sequence of (n,M(n)

c ,
M(n))-codes satisfying (22) and (23). Pick a positive real
sequence {αn} ↓ 0 satisfying

lim
n→∞

2−nαn = 0.

Suppose that there exists a large blocklength n∗ so that for all
n > n∗:

P

[ ⋂

`∈L

{
d̄`(X̂

n
` , X

n
` ) < D`

}]
≥ 2−nαn . (41)

Pick γ > 0 arbitrarily. By assumptions (22) and (23), and by
Lemma 18, we can pick n∗ sufficiently large so that ∀n ≥ n∗
the following chain of inequalities holds:

R(D, C) + γ
a
>

1

n
log |M(n)|

b
≥ R

(
D + γ,

1

n
log |M(n)

c |+ γ

)
− γ

c
≥ R (D + γ,C + 2γ)− γ, (42)

where step (a) follows by assumption (22); step (b) follows
from Lemma 18; and step (c) follows by assumption (23) and
the fact that the informational RDC function is non-increasing
in the cache capacity.

Since the RDC function R(D, C) is a continuous function of
D ∈ [0,∞)L and C ∈ [0,∞) and by choosing γ sufficiently
close to 0, for any desired ε > 0 we can obtain from (42) that

R(D, C)− 1

n
log |M(n)|

≤ R(D, C)− R (D + γ,C + 2γ) + γ

< ε. (43)

This contradicts assumption (22). We therefore conclude that
assumption (41) was wrong and holds with a strict inequality
in the reverse direction for some n ≥ n∗ and consequently

lim sup
n→∞

P

[ ⋃

`∈L

{
d̄`(X̂

n
` , X

n
` ) ≥ D`

}]
= 1. (44)

�

APPENDIX H
PROOF OF LEMMA 18

A. Proof setup and outline

Assume that we have a sequence of (n,M(n)
c ,M(n))-codes

for the RDC problem. For each blocklength n and RDC code
(φ(n)

c , φ(n)

` , ϕ
(n)

` ), let

G(n) :=
{
xn ∈ Xn :

d̄`
(
ϕ(n)

`

(
φ(n)

c (xn), φ(n)

` (xn)
)
, xn` )

)
< D`,∀ ` ∈ L

}

denote the set of all “good” sequences that the code will
reconstruct with acceptable distortions. Let {αn} ↓ 0 be a
sequence of positive real numbers, and suppose that the above
mentioned sequence of RDC codes satisfies

P
[
Xn ∈ G(n)

]
≥ 2−nαn (45)

for every blocklength n. For example, we are free to choose
{αn} such that {2−nαn} → 0 or {2−nαn} → 1.

The basic idea of the following proof is to show that (45)
implies that the delivery-phase rate of the sequence of RDC
codes satisfies

1

n
log |M(n)| ≥ R

(
D + ζn,

1

n
log |M(n)

c |+ ζn

)
−ζn (46)

for some sequence {ζn} → 0. The key idea in proving this
inequality will be to use the RDC code on a hypothetical
“perturbed” source that is constructed from the good set G(n)

and the DMS of pmf pX .

B. Construction of the perturbed source

The following construction is similar to that used by Watan-
abe [19] and Gu and Effros [35]. Let us call the DMS

Xn ∼ pnX(xn) =

n∏

i=1

pX(xi), xn ∈ Xn

the real source. The perturbed source

Y n ∼ qY n(yn) = P[Y n = yn], yn ∈ Xn

is defined as follows: If yn ∈ G(n), then

qY n(yn) =
2
n(αn+ 1√

n
)
pnX(yn)

2
n(αn+ 1√

n
)P[Xn ∈ G(n)] + P[Xn /∈ G(n)]

.

(47a)
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Otherwise if yn /∈ G(n), then

qY n(yn) =
pnX(yn)

2
n(αn+ 1√

n
)P[Xn ∈ G(n)] + P[Xn /∈ G(n)]

.

(47b)
It is worth noting that qY n need not be a product distribution
on Xn. It is, however, not too difficult to see that qY n is
“close” to the product distribution pnX of the real DMS in the
following sense. For every sequence yn ∈ Xn:

2
−n(αn+ 1√

n
)
pnX(yn) ≤ qY n(yn) ≤ 2

n(αn+ 1√
n

)
pnX(yn).

(48)

C. Caching the perturbed source — distortion bounds

We now take the (n,M(n)
c ,M(n))-code (φ(n)

c , φ(n)

` , ϕ
(n)

` ) from
the above mentioned sequence, and use it to cache the per-
turbed source Y n ∼ qY n . For each ` ∈ L, let

Ŷ n` = ϕ(n)

`

(
φ(n)

` (Y n), φ(n)

c (Y n)
)

denote the corresponding output at the decoder. A lower bound
on the probability of the decoding success for this RDC code
on Y n can be obtained as follows:

P
[
Y n ∈ G(n)

]

=
∑

yn∈G(n)
qY n(yn)

a
=

∑

yn∈G(n)

2
n(αn+ 1√

n
)
pX(yn)

2
n(αn+ 1√

n
) P[Xn ∈ G(n)] + 1− P[Xn ∈ G(n)]

=
2
n(αn+ 1√

n
)P[Xn ∈ G(n)]

2
n(αn+ 1√

n
) P[Xn ∈ G(n)] + 1− P[Xn ∈ G(n)]

=
2
n(αn+ 1√

n
)

2
n(αn+ 1√

n
)

+ 1
P[Xn∈G(n)] − 1

b
≥ 2

n(αn+ 1√
n

)

2
n(αn+ 1√

n
)

+ 2nαn − 1

=
2
√
n

2
√
n + 1− 2−nαn

≥ 2
√
n

2
√
n + 1

,

where (a) substitutes the definition of qY n(yn) from (47) and
(b) invokes the assumption (45). Therefore,

lim
n→∞

P
[
Y n ∈ G(n)

]
= 1.

The expected distortion performance of the RDC code on
Y n ∼ qY n can be upper bounded by

E
[
d̄`
(
Ŷ n` , Y

n
`

)]
= E

[
d̄`
(
Ŷ n` , Y

n
`

)∣∣∣Y n ∈ G(n)

]
P
[
Y n ∈ G(n)

]

+ E
[
d̄`
(
Ŷ n` , Y

n
`

)∣∣∣Y n /∈ G(n)

]
P
[
Y n /∈ G(n)

]

≤ D` +Dmax

(
1− 2

√
n

2
√
n + 1

)
. (49)

Therefore,

lim sup
n→∞

E
[
d̄`(Ŷ

n
` , Y

n
` )
]
≤ D`, ∀ ` ∈ L.

D. Caching the perturbed source — A lower bound on the
caching rate

We now give a single-letter lower bound on the caching rate
for the perturbed source. Let M(n)

c = φ(n)
c (Y n) inM(n)

c denote
the corresponding cache message. We have

1

n
log |M(n)

c | ≥
1

n
H(M(n)

c ) ≥ 1

n
I(Y n;M(n)

c )

=
1

n

n∑

i=1

I(Y i;M
(n)

c |Y i−1
1 )

a
=

1

n

n∑

i=1

I(Y i;M
(n)

c ,Y i−1
1 )− I(Y i;Y

i−1
1 )

b
=

1

n

n∑

i=1

I(Y i;Ui)−
1

n

n∑

i=1

H(Y i) +
1

n

n∑

i=1

H(Y i|Y i−1
1 )

=
1

n

n∑

i=1

I(Y i;Ui)−
1

n

n∑

i=1

H(Y i) +
1

n
H(Y n), (50)

where in (a) we note that qY n need not be a product measure
and (b) substitutes

Ui = (M(n)

c ,Y i−1
1 ) on Ui =M(n)

c ×X i−1.

E. Caching the perturbed source — A lower bound on the
delivery rate

Now consider an arbitrary request ` ∈ L, and let M(n)

` =

φ
(n)
` (Y n) in M(n) denote the corresponding delivery phase

message. The delivery-phase rate can be lower bound as
follows:

1

n
log |M(n)| ≥ 1

n
H(M(n)

` |M(n)

c )

≥ 1

n
I(Y n;M(n)

` |M(n)

c )

a
≥ 1

n
I(Y n; Ŷ n` |M(n)

c )

=
1

n

n∑

i=1

I(Y i; Ŷ
n
` |M(n)

c ,Y i−1
1 )

b
≥ 1

n

n∑

i=1

I(Y`,i; Ŷ`,i|Ui), (51)

where (a) follows because Ŷ n` ↔ (M(n)

` ,M(n)
c ) ↔ Y n forms

a Markov chain; and (b) substitutes Ui.

F. Caching the perturbed source — timesharing and cardinal-
ity reduction

Consider the tuple of random variables (Y n, Un, Ŷ n) con-
structed in the above sections. Let J ∈ {1, 2, . . . , n} be a
uniform random variable that is independent of (Y n, Un, Ŷ n),
and let

Ū(n) =

(
n⋃

i=1

Ui
)
× {1, 2, . . . , n}.

Let
(
Ȳ , Ū , ˆ̄Y

)
∈ X × Ū × X̂ , denote the random tuples

generated by setting

Ȳ = Y J , Ū = (UJ , J) and ˆ̄Y = Ŷ J .
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With this choice, it then follows from (50) that

1

n
log |M(n)

c | ≥ I(Y J ;UJ |J)−H(Y J) +
1

n
H(Y n)

= I(Ȳ ; Ū)−H(Ȳ ) +
1

n
H(Y n) (52)

and from (51) that

1

n
log |M(n)| ≥ I(Y`,J ; Ŷ`,J |UJ , J)

= I(Ȳ`;
ˆ̄Y`|Ū). (53)

Finally, from (49) the expected distortion satisfies

E
[
d`(

ˆ̄Y `, Ȳ`)
]

= E
[
d(Ŷ n` , Y

n
` )
]

≤ D` +Dmax

(
1− 2

√
n

2
√
n + 1

)
. (54)

Let q
Ȳ Ū ˆ̄Y

denote the joint distribution of the variables
(Ȳ , Ū , ˆ̄Y ). The cardinality of Ū(n) grows without bound in
n, and the next lemma uses the convex cover method [36,
Appendix C] to bound this cardinality by a finite number.

Lemma 19: There exists a random tuple ( ¯̄Y , ¯̄U,
ˆ̄̄
Y ) ∼

q ¯̄Y ¯̄U
ˆ̄̄
Y

defined on X × ¯̄U × X̂ for which the following is
true:

• | ¯̄U| ≤ |X |+ 2L,

• q ¯̄Y = qȲ ,

• I( ¯̄Y ; ¯̄U) = I(Ȳ ; Ū),

• I( ¯̄Y `;
ˆ̄̄
Y`| ¯̄U) = I(Ȳ`;

ˆ̄Y`|Ū) for all ` ∈ L, and

• E[d`(
ˆ̄̄
Y`,

¯̄Y `)] = E[d`(
ˆ̄Y `, Ȳ`)] for all ` ∈ L.

Combining Lemma 19 with (52), (53) and (54) yields the
following: There exists some tuple

( ¯̄Y , ¯̄U,
ˆ̄̄
Y ) ∼ q ¯̄Y ¯̄U

ˆ̄̄
Y

on X × ¯̄U × X̂

such that cache rate is lower bounded by

1

n
log |M(n)

c | ≥ I( ¯̄Y ; ¯̄U)−H( ¯̄Y ) +
1

n
H(Y n); (55)

the expected distortion is upper bounded by

E
[
d`(

ˆ̄̄
Y`,

¯̄Y `)
]
≤ D` +Dmax

(
1− 2

√
n

2
√
n + 1

)
; (56)

and the delivery phase rate is lower bounded by

1

n
log |M(n)| ≥ I( ¯̄Y `;

ˆ̄̄
Y `| ¯̄U)

≥ R ¯̄Y `| ¯̄U

(
D` +Dmax

(
1− 2

√
n

2
√
n + 1

))
,

(57)

where the second inequality follows from the definition of the
conditional RD function.

G. Convergence of H( ¯̄Y ) to H(X)

Fix γ > 0 arbitrarily small. The set of γ-letter typical
sequences [37] with respect to the DMS pnX will be useful
in the following arguments. This set is given by

A(n)

γ (pX) =

{
xn ∈ Xn :

∣∣∣∣
1

n
N(a|xn)− pX(a)

∣∣∣∣ ≤ γ pX(a), ∀ a ∈ X
}
.

Lemma 20: The probability that the real DMS Xn ∼
pnX does not emit a γ-letter typical sequence satisfies [37,
Thm. 1.1]

P
[
Xn /∈ A(n)

γ (pX)
]
≤ 2|X |2−nγ2µ(pX),

where µ(pX) is the smallest value of pX on its support set
supp(pX).

Let us now return to the perturbed source Y n ∼ qY n . For
each a ∈ X we have

q ¯̄Y (a)
a
= qȲ (a)
b
=

∑

yn∈Xn

qY n(yn)P
[
Ȳ = a

∣∣Y n = yn
]

c
=

∑

yn∈Xn

qY n(yn)
N(a|yn)

n

=
∑

yn∈A(n)
γ (pX)

qY n(yn)
N(a|yn)

n

+
∑

yn /∈A(n)
γ (pX)

qY n(yn)
N(a|yn)

n

d
≤ pX(a)(1 + γ)P

[
Xn ∈ A(n)

γ (pX)
]

+ P
[
Xn /∈ A(n)

γ (pX)
]

e
≤ pX(a)(1 + γ) + 2|X |2−nγ2µ(pX) (58)

where (a) applies Lemma 19; (b) and (c) use the fact that Ȳ is
generated by uniformly at random selecting symbols from Y n

(the timesharing argument above); (d) uses the definition of
γ-letter typical sequences; and (e) invokes Lemma 20. Using
similar arguments, we obtain

q ¯̄Y (a) ≥ pX(a)(1− γ)
(
1− 2−nγ

2µ(pX)
)
. (59)

From (58) and (59), we have

(1− γ)pX(a) ≤ lim inf
n→∞

q ¯̄Y (a)

≤ lim sup
n→∞

q ¯̄Y (a) ≤ (1 + γ)pX(a). (60)

Since (60) holds for every γ > 0, and the sequence {q ¯̄Y } does
not dependent on γ, we have

lim
n→∞

q ¯̄Y (a) = pX(a), ∀ a ∈ X . (61)

Therefore, by the continuity of entropy [33, Chap. 2.3] we
have

lim
n→∞

H( ¯̄Y ) = H(X). (62)
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H. Convergence of (1/n)H(Y n) to H(X)

It follows from (48) that for all an ∈ Xn we have

−αn −
1√
n
≤ 1

n
log pnX(an)− 1

n
log qY n(an) (63)

≤ αn +
1√
n
. (64)

Moreover, for every an ∈ A(n)
γ (pX) we have

1

n
log

1

pnX(an)

a
=

1

n
log

(
n∏

i=1

1

pX(ai)

)

=
1

n

n∑

i=1

log
1

pX(ai)

=
1

n

∑

a′∈X
N(a′|an) log

1

pX(a′)

b
≤
(
1 + γ

) ∑

a′∈X
pX(a′) log

1

pX(a′)

=
(
1 + γ

)
H(X), (65)

where (a) follows because pnX is a product measure and (b)
follows because an ∈ A(n)

γ (pX). Similarly, we have

1

n
log

1

pnX(an)
≥ (1− γ)H(X) (66)

for all an ∈ Xn.
Now consider the joint entropy H(Y n). With a few ma-

nipulations, we obtain the upper bound in (67). Here step (a)
uses (63). Step (b) uses the upper bound in (65) on the first
logarithmic term, and

1

n
log

1

pnX(an)
=

1

n

n∑

i=1

log
1

pX(ai)

≤ 1

n

n∑

i=1

log
1

µ(pX)

= log
1

µ(pX)

on the second term9. Finally, step (c) applies Lemma 20. Using
similar arguments, we also have

1

n
H(Y n)

=
1

n

∑

an∈supp(qY n )

qY n(an) log
1

qY n(an)

a
≥

∑

an∈A(n)
γ (pX)

qY n(an)

(
1

n
log

1

pnX(an)
− αn −

1√
n

)

b
≥

∑

an∈A(n)
γ (pX)

qY n(an)

(
(1− γ)H(X)− αn −

1√
n

)

c
≥
(

(1− γ)H(X)− αn −
1√
n

)(
1− 2|X|2−nγµ(pX)

)
.

(68)

9If pnX(an) = 0, then by definition qY n (an) = 0 and an /∈ supp(qY n ).

Step (a) follows from (63); step (b) follows from (66); and
step (c) applies Lemma 20. From (67) and (68) we have for
every fixed γ > 0

(1− γ)H(X) ≤ lim inf
n→∞

1

n
H(Y n)

≤ lim sup
n→∞

1

n
H(Y n) ≤ (1 + γ)H(X),

which, in turn, implies

lim
n→∞

1

n
H(Y n) = H(X). (69)

I. Completing the Proof

The above arguments show that there exists a sequence of
random variables10

{
( ¯̄Y n,

¯̄Un) ∼ q ¯̄Y n
q ¯̄Un| ¯̄Y n

}
,

with each ( ¯̄Y n,
¯̄Un) defined on X × U , such that

lim
n→∞

q ¯̄Y n
(a) = pX(a), ∀ a ∈ X

and
1

n
log |M(n)

c | ≥ I( ¯̄Y ; ¯̄U)− ε1,n
1

n
log |M(n)

c | ≥ R ¯̄Y `,n| ¯̄Un(D` + ε2,n), ∀ ` ∈ L,

where

ε1,n =
∣∣∣ 1
n
H(Y n)−H( ¯̄Y )

∣∣∣ (70)

ε2,n = Dmax

(
1− 2

√
n

2
√
n − 1

)
. (71)

Let (X, ¯̄Un) ∼ pX q ¯̄Un| ¯̄Y n
, and define

ε3,n =
∣∣∣R ¯̄Y n| ¯̄Un(D` + ε2,n)− RX| ¯̄Un(D` + ε2,n)

∣∣∣.

Finally, choose ζn = max{ε1,n, ε2,n, ε2,n} so that the lemma
follows from (61), (62) and (69) and the continuity of the
informational conditional RD function. �

APPENDIX I
PROOF OF THEOREM 16

The proof of Theorem 16 will bootstrap the achievability
part of Lemma 13 and the strong converse in Theorem 14.
Take the single-symbol distortion functions d∗ from (26), and
consider R†d∗(D, C) and R‡d∗(D, C), the respective operational
RDC functions in the expected- and excess-distortion settings
w.r.t. the separable distortion functions

d̄
∗

= ( d
∗
1, . . . , d

∗
L),

where

d
∗
` (x̂

n
` , x

n
` ) =

1

n

n∑

i=1

d∗` (x̂`,i, x`,i) =
1

n

n∑

i=1

f`
(
d`(x̂`,i, x`,i)

)
.

10Here, for clarity, we have added the subscript n on the random variables
to identify the corresponding blocklength n.
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1

n
H(Y n) =

1

n

∑

an∈supp(qY n )

qY n(an) log
1

qY (an)

a
≤

∑

an∈supp(qY n )

qY n(an)

(
1

n
log

1

pnX(an)
+ αn +

1√
n

)

=
∑

an∈A(n)
γ (pX) ∩ supp(qY n )

qY n(an)

(
1

n
log

1

pnX(an)
+ αn +

1√
n

)

+
∑

an /∈A(n)
γ (pX) ∩ supp(qY n )

qY n(an)

(
1

n
log

1

pnX(an)
+ αn +

1√
n

)

b
≤

∑

an∈A(n)
γ (pX) ∩ supp(qY n )

qY n(an)

(
(1 + γ)H(X) + αn +

1√
n

)

+
∑

an /∈A(n)
γ (pX) ∩ supp(qY n )

qY n(an)

(
log

1

µ(pX)
+ αn +

1√
n

)

c
≤ (1 + γ)H(X) + αn +

1√
n

+ 2|X|2−nγµ(pX)

(
log

1

µ(pX)
+ αn +

1√
n

)
(67)

Lemma 21:

R†d∗(D, C) = R‡d∗(D, C) = Rd∗(D, C).

Proof: Apply Lemma 13 with d̄
∗.

Lemma 22:

R‡f (D, C) = R‡d∗
(
f(D), C

)
.

Proof: For every (n,M(n)
c ,M(n))-code we have

P

[ ⋃

`∈L

{
fd`(X̂

n
` , X

n
` ) ≥ D`

}]

a
= P

[ ⋃

`∈L

{
f`
−1

(
1

n

n∑

i=1

f`
(
d`(X̂

n
` , X

n
` )
))
≥ D`

}]

= P

[ ⋃

`∈L

{
1

n

n∑

i=1

d∗` (X̂
n
` , X

n
` ) ≥ f`

(
D`

)
}]

b
= P

[ ⋃

`∈L

{
d̄∗` (X̂

n
` , X

n
` ) ≥ f`

(
D`

)}
]
.

The L.H.S. of (a) corresponds to the excess-distortion event for
R‡f (D, C), and the R.H.S. of (b) corresponds to the excess-
distortion event for R‡d∗(f(D), C). Therefore, a sequence of
(n,M(n)

c ,M(n))-codes can achieve vanishing error probabili-
ties w.r.t. the f-separable distortion functions fd if and only
if it achieves vanishing error probabilities w.r.t. the separable
distortion functions d̄

∗.
Lemma 23:

R̃†f,max-exc(D, C) ≤ R‡f (D, C).

Proof: Recall Definition 4 and fix the distortion tuple D
and cache capacity C. If R > R‡f (D, C) then there exists a
sequence of (n,M(n)

c ,M(n))-codes satisfying (3a), (3b) and
(21). For this sequence of codes, let

Gn =
⋂

`∈L

{
fd`(X̂

n
` , X

n
` ) < D`

}
,

and let Gcn denote the complement of Gn. Then

E

[
max
`∈L

(
fd`(X̂

n
` , X

n
` )−D`

)]

= E
[

max
`∈L

(
fd`(X̂

n
` , X

n
` )−D`

)∣∣∣Gn
]
P
[
Gn
]

+ E
[

max
`∈L

(
fd`(X̂

n
` , X

n
` )−D`

)∣∣∣Gcn
]
P
[
Gcn
]

≤ Dmax P[Gcn]. (72)

Since Dmax is finite and P[Gcn]→ 0 by (21), we have

lim sup
n→∞

E

[
max
`∈L

(
fd`(X̂

n
` , X

n
` )−D`

)]
≤ 0

and R ≥ R̃†f,max-exc(D, C) by Definition 5.
Lemma 24:

R̃†f,max-exc(D, C) ≥ Rd∗(f(D), C).

Proof: If Rd∗(D
∗, C) = 0, then the lemma immedi-

ately follows because we always have R̃†f,max-exc(D, C) ≥
0. We henceforth restrict attention to the nontrivial case
Rd∗(f(D), C) > 0.

Suppose, to the contrary of Lemma 24, that R̃†f,max-exc(D, C)
is strictly smaller than Rd∗(f(D), C) and, therefore, there
exists some γ > 0 such that

R̃†f,max-exc(D, C) ≤ Rd∗(f(D), C)− γ. (73)

By the continuity and monotonicity of Rd∗(f(D), C) and each
f`, there exists some distortion tuple D′ such that

Rd∗(f(D
′), C) = Rd∗(f(D), C)− γ

2
(74)

where D′` > D` for all ` ∈ L.
Now recall Definition 5 and the operational meaning of

R̃†f,max-exc(D, C). There exists a sequence of (n,M(n)
c ,M(n))-

codes satisfying (3a), (3b) and (27). On combining (3b), (73)
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and (74), we see that the delivery-phase rates of this sequence
of codes satisfy

lim sup
n→∞

1

n
log |M(n)| ≤ Rd∗

(
f(D′), C

)
− γ

2
. (75)

Now consider the excess-distortion performance of the se-
quence of (n,M(n)

c ,M(n))-codes w.r.t. the separable distortion
functions d∗. Let

Bn =
⋃

`∈L

{
d̄∗` (X̂

n
` , X

n
` ) ≥ f`(D

′
`)
}
,

and let Bcn denote the complement of Bn. Notice that we have

Bn =
⋃

`∈L

{
fd`(X̂

n
` , X

n
` ) ≥ D′`

}
.

Since the asymptotic delivery-phase rate is strictly smaller than
the informational RDC function (75), the strong converse in
Theorem 14 yields

lim sup
n→∞

P
[
Bn
]

= 1.

Let
ζ = min

`∈L

(
D′` −D`

)
.

We now have

E
[

max
`∈L

(
fd`(X̂

n
` , X

n
` )−D`

)]

= E
[

max
`∈L

(
fd`(X̂

n
` , X

n
` )−D`

)∣∣∣Bn
]

P
[
Bn
]

+ E
[

max
`∈L

(
fd`(X̂

n
` , X

n
` )−D`

)∣∣∣Bcn
]

P
[
Bcn
]

a
≥ E

[
max
`∈L

(
fd`(X̂

n
` , X

n
` )−D`

)∣∣∣Bn
]

P
[
Bn
]

−
(

min
`∈`

D`

)
P
[
Bcn
]

b
≥ ζ P

[
Bn
]
−
(

min
`∈`

D`

)
P
[
Bcn
]
, (76)

where (a) follows because fd`(X̂
n
` , X

n
` ) is nonnegative; and

(b) follows because, conditioned on Bn, there must exist at
least one `′ ∈ L such that

fd`′(X̂
n
`′ , X

n
`′) ≥ D′`′ > D`′

and thus

max
`∈L

(
fd`(X̂

n
` , X

n
` )−D`

)
≥ fd`′(X̂

n
`′ , X

n
`′)−D`′ > ζ.

Finally, we have

0
a
= lim sup

n→∞
E
[

max
`∈L

(
fd`(X̂

n
` , X

n
` )−D`

)]

b
≥ lim sup

n→∞

[
ζ P
[
Bn
]
− (min

`∈L
D`)P

[
Bcn
]]

c
> 0,

where (a) follows from (27), (b) follows from (76), and
(c) follows because P[Bn] → 1 by the strong converse
Theorem 14 and ζ > 0. The above contradiction implies that
R̃†f,max-exc(D, C) cannot be strictly smaller than Rd∗(f(D), C).

To complete the proof of Theorem 16 we need only combine
the above lemmas:

R̃†f,max-exc(D, C)
a
≤ R‡f (D, C)

b
= R‡d∗

(
f(D), C

)
c
= Rd∗(f(D), C)
d
≤ R̃†f,max-exc(D, C),

where (a) uses Lemma 23, (b) uses Lemma 22, (c) uses
Lemma 21, and (d) uses Lemma 24. �
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