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Distributed Hypothesis Testing with
Variable-Length Coding

Sadaf Salehkalaibar, IEEE Member and Michèle Wigger, IEEE Senior Member

Abstract—The problem of distributed testing against indepen-
dence with variable-length coding is considered when the average
and not the maximum communication load is constrained as in
previous works. The paper characterizes the optimum type-II
error exponent of a single-sensor single-decision center system
given a maximum type-I error probability when communication
is either over a noise-free rate-R link or over a noisy discrete
memoryless channel (DMC) with stop-feedback. Specifically, let
ε denote the maximum allowed type-I error probability. Then
the optimum exponent of the system with a rate-R link under
a constraint on the average communication load coincides with
the optimum exponent of such a system with a rate R/(1 − ε)
link under a maximum communication load constraint. A strong
converse thus does not hold under an average communication
load constraint. A similar observation also holds for testing
against independence over DMCs. With variable-length coding
and stop-feedback and under an average communication load
constraint, the optimum type-II error exponent over a DMC
of capacity C equals the optimum exponent under fixed-length
coding and a maximum communication load constraint when
communication is over a DMC of capacity C(1− ε)−1.

I. INTRODUCTION

Consider a distributed hypothesis testing problem with a
single decision center that aims at identifying the distribution
governing the sources observed at the decision center itself
and at various sensors. To facilitate this task, the sensors
communicate with the decision center over rate-limited links.
The focus is on binary hypothesis testing problems where
the sources are distributed according to one of only two
possible joint distributions, a joint distribution P under the null
hypothesis (H = H0) and a different joint distribution Q under
the alternative hypothesis (H = H1). The main interest of
this paper is in identifying the largest possible Stein-exponent
of such systems. That is, the maximum exponential decay of
the type-II error probability, i.e., the probability of deciding
H0 when H = H1, subject to a constraint on the type-I
error probability, i.e., on the probability of deciding H1 when
H = H0. Stein-exponents of distributed hypothesis testing
systems have widely been studied in the information-theoretic
literature, see for example [1]–[16]. In particular, Ahlswede
and Csiszár [1] have characterized the Stein-exponent of a
single-sensor system where the sensor communicates with
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the decision center over a noiseless rate-limited link in the
special case of testing against independence where Q (the joint
distribution under H1) equals the product of the marginals
of P (the distribution under H0). The Stein exponent of
this special case has also been solved in more complicated
scenarios with multiple sensors [4], with multiple sensors
and cooperation between sensors [7], with a single sensor
and successive refinement communication [5], with interactive
communication between sensor and decision center [8], with
a single sensor and multiple decision centers without and
with cooperation [12] and [16], and in a multi-hop envi-
ronment with multiple sensors and decision centers [11]. In
all these works, communication takes place over rate-limited
but noiseless links and the maximum allowed type-I error
probability ε→ 0. Sreekumar and Gündüz [17] identified the
Stein exponent of the basic single-sensor single-center system
when communication takes place over a discrete memoryless
channel (DMC). They showed that the Stein exponent of this
setup coincides with the Stein exponent of the scenario with
a noiseless link of rate equal to the capacity of the DMC. The
Stein exponent thus depends on the DMC’s transition law only
through its capacity. The extension to multiple sensors that
communicate with the single decision center over a discrete
memoryless multiple-access channel was presented in [18].
Most of the described results can easily be extended also to
generalized testing against independence where the distribu-
tion Q under H1 factorizes into the product of the marginals
but not necessarily equal to the marginals of P under H1 or to
testing against conditional independence as introduced in [4],
see also [12], [13], [17], [19]. Bounds on the Stein exponents
for general distributed hypothesis tests (not necessarily testing
against independence or conditional independence) have also
been derived for various of the described scenarios. For
example, Weinberg and Kochman [6] characterised the Stein-
exponent under an optimal detection rule, and Haim and
Kochman [20] provided improved exponents for some general
tests with binary sources.

In above results, the maximum allowed type-I error prob-
ability ε is taken to 0, which implies that the proofs are
built on “weak” converses. In contrast, Ahlswede and Csiszár
showed [1] that for single-sensor single-decision center setups
with a rate-limited noiseless link a “strong” converse holds,
i.e., the maximum type-II error exponent does not depend on
ε. This result is even more remarkable in that the optimum
Stein-exponent is not known for the general hypothesis testing
problem with a single noise-less link. Tian and Chen [5]
and Cao, Zhou, and Tan [15] proved strong converse results
for testing against independence in a single-sensor single-
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decision center setup under noiseless successive refinement
communication and in a two-sensor single decision center
setup with noiseless multi-hop communication. Two of the
main tools for deriving strong converse results are the change
of measure approach under the η-image characterization [1]
and the blowing-up lemma [21], [22] or the hypercontractivity
lemma [23].

Another line of works requires that the probability of
error decays exponentially under both hypotheses and studies
the pair of exponential decays that can simultaneously be
achieved. Han and Kobayashi studied the setup with one or
multiple sensors that are connected over a noiseless ratelimited
link with a single decision center. The extension to DMCs was
proposed in [24]. Recently, also a finite blocklength version
of this problem was studied in [25]. All these works contain
achievability results but no converses.

The described previous results measure communication load
in terms of the maximum number of transmitted bits or the
maximum number of channel uses. In this paper, we allow for
variable-length coding and consider average communication
loads. When communication is over a noise-free rate-limited
communication link, the average load is simply the expected
number of transmitted bits. When communication is over a
DMC, then we allow for variable-length coding with stop-
feedback from the receiver [26] and communication load is
characterised by means of the expected number of channel
uses. The feedback signal is assumed to be a function of the
channel output but not the source sequence observed at the
decision center. This models a setup where the decision center
learns its local observations only after the communication is
terminated. In this paper, we characterize the optimal Stein-
exponents of the single-sensor single-decision center system
for testing against independence when variable-length coding
is allowed and the average communication load is constrained.
The derived exponents coincide with the previously obtained
exponents with fixed-length coding (and a constraint on the
maximum communication load), except that the rates/capacity
of the communication links have to be multiplied by the
term (1 − ε)−1 where ε denotes the maximum allowed type-
I error probability. So, variable-length coding can be seen
as boosting the rate/capacity of the communication link by
the factor (1 − ε)−1. Notice that this implies in particular
that a strong converse result does not hold under variable-
length coding for hypothesis testing. This conclusion is in line
with previous related works e.g., [27]–[29] for compression
problems with non-zero error probability, which proved that a
strong converse established for fixed-length coding can break
down when variable-length coding is permitted. Our results
further show that the optimal Stein-exponent that is achievable
over a DMC depends only on the capacity of the channel but
not on other properties of the DMC.

These optimal Stein-exponents can be achieved by simple
modifications of the optimal schemes for fixed-length coding,
for the latter, see for example [1], [30]. The idea is to identify
an event Sn at the sensor that happens with probability ε′,
for ε′ slightly smaller than the largest admissible type-I error
probability ε. In the noiseless link setup, whenever event Sn
occurs, the sensor will send the single bit 0 to the decision

Fig. 1. Variable-length hypothesis testing.

center, which then declares Ĥ = H1. If the event Sn does not
occur, the sensor acts as in the scheme proposed by Ahlswede
and Csiszár [1]. The proposed strategy achieves a smaller type-
II error probability than the Ahlswede-Csiszár scheme and its
type-I error probability is increased at most by ε′ (namely
the probability of event Sn). The type-II error exponent of
the modified scheme thus coincides with Ahlswede-Czsiszár’s
exponent, and its type-I error probability can be bounded by
ε > ε′ when the number of observations is sufficiently large.
The expected communication rate is decreased by a factor
(1 − ε) since no rate is required in the event Sn. The main
technical contribution in this part is the converse showing
that the described simple strategy is optimal. The converse
combines Marton’s blowing up lemma [22] and a change of
measure argument using the η-image characterization similarly
to [1] and [5].

For the DMC, our optimal strategy takes place over two
phases. In the first shorter phase, the transmitter sends a
dedicated sequence wn0 if event Sn occurs and it sends a dif-
ferent sequence wn1 otherwise. The decision center performs a
Neyman-Pearson test to detect which of the two sequences has
been transmitted. If it detects wn0 , it declares directly Ĥ = H1

and sends a stop signal. Otherwise, the sensor proceeds to
phase 2, where it applies the fixed-length coding scheme
proposed in [30] that achieves the optimal Stein-exponent
under fixed-length coding for testing against independence
over a DMC. In the proposed variable-length strategy the type-
II error probability is decreased compared to the fixed-length
scheme in [30], the type-I error probability is increased by
at most ε′, and for large numbers of observations, the average
number of channel uses is decreased approximately by a factor
(1− ε′). This last observation holds because the first phase is
much smaller than the second phase and transmission stops
after the first phase with probability close to ε′. We again
prove the corresponding converse result. This proof requires
some additional steps and considerations concerning the noisy
channel law and the stop-feedback compared to the converse
for the noise-less link.

The paper is organized as follows. In Section II, the dis-
tributed hypothesis testing problem over a noiseless link is
studied and the result on the noisy channel is provided in
Section III. The proofs of the converses for the noiseless and
noisy setups are provided in Sections IV and V, respectively.
The paper is concluded in Section VI.

We conclude the introduction with some remarks on
notation.

Notation:

Random variables are denoted by capital letters, e.g.,



3

X, Y, and their realizations by lower-case letters, e.g., x,
y. Script symbols such as X and Y stand for alphabets of
random variables, and Xn and Yn for the corresponding
n-fold Cartesian product alphabets. We denote by X ? and Y?
the sets of all finite-length strings over X and Y respectively.
The set of real numbers is denoted by R, the set of positive
real numbers by R+, the set of integers by Z, and the set
of positive integers by Z+. Sequences of random variables
(Xi, ..., Xj) and realizations (xi, . . . , xj) are abbreviated by
Xj
i and xji . When i = 1, then we also use Xj and xj instead

of Xj
1 and xj1.

We write the probability mass function (pmf) of a discrete
random variable X as PX . The conditional pmf of X given
Y is written as PX|Y . The distributions of Xn, Y n and
(Xn, Y n) are denoted by PXn , PY n and PXnY n , respectively.
The notation PnXY denotes the n-fold product distribution.

The term D(P‖Q) stands for the Kullback-Leibler (KL)
divergence between two pmfs P and Q over the same alphabet.
For a given PX and a constant µ > 0, the set of sequences with
the same type PX is denoted by T (n)(PX). We use T (n)

µ (PX)
to denote the set of µ-typical sequences in Xn:

T (n)
µ (PX) ={
xn :

∣∣∣∣ |{i : xi = x}|
n

− PX(x)

∣∣∣∣ ≤ µPX(x), ∀x ∈ X

}
, (1)

where |{i : xi = x}| is the number of positions where the
sequence xn equals x. Similarly, T (n)

µ (PXY ) stands for the
set of jointly µ-typical sequences whose definition is as in (1)
with x replaced by (x, y).

For any positive integer number m ≥ 1, we use string(m)
to denote the bit-string of length dlog2(m)e representing m.
We further use sans serif font for finite-length bit-strings, e.g.,
M for a random bit-string and m for a deterministic bit-string.
The function len(m) returns the length of a given bit-string m.

The Hamming distance between two sequences xn and yn

is denoted by dH(xn, yn). For any a, b ∈ [0, 1], we denote
the binary entropy function of a by hb(a) and define a ? b ,
a(1− b) + b(1− a).

II. DISTRIBUTED HYPOTHESIS TESTING OVER A
POSITIVE-RATE NOISELESS LINK

A. System Model
Consider the distributed hypothesis testing problem with a

transmitter and a receiver in Fig. 1. The transmitter observes
the source sequence Xn and the receiver observes the source
sequence Y n. Under the null hypothesis

H = H0 : (Xn, Y n) ∼ i.i.d. PXY , (2)

for a given pmf PXY , whereas under the alternative hypothesis

H = H1 : (Xn, Y n) ∼ i.i.d. PX · PY , (3)

where PX and PY denote the marginals of PXY . Upon
observing Xn, the transmitter computes the binary message
string M ∈ {0, 1}? using a possibly stochastic encoding
function

φ(n) : Xn → {0, 1}?, (4)

so
M = φ(n)(Xn), (5)

in a way that the expected1 message length satisfies

E [len(M)] ≤ nR. (6)

It then sends the binary message string M over a noise-free
bit pipe to the receiver.

The goal of the communication is that the receiver can
determine the hypothesis H based on its observation Y n and
its received message M. Specifically, the receiver produces the
guess

Ĥ = g(n)(Y n,M) (7)

using a decoding function g(n) : Yn × {0, 1}? → {H0, H1}.
Denoting by M the set of all realizations of the binary
message string M, we can partition the space M× Yn into
an acceptance region for hypothesis H0

An ,
{

(m, yn) : g(n)(yn,m) = H0

}
, (8)

and the corresponding rejection region

Rn , (M×Yn)\An. (9)

Definition 1: For any ε ∈ [0, 1) and for a given rate R ∈
R+, a type-II exponent θ ∈ R+ is (ε, R)-achievable if there
exists a sequence of functions {(φ(n), g(n))}n≥1, such that the
corresponding acceptance and rejection regions lead to a type-I
error probability

αn , Pr[(M, Y n) ∈ Rn|H = H0] (10)

and a type-II error probability

βn , Pr[(M, Y n) ∈ An|H = H1] (11)

satisfying for sufficiently large blocklengths n:

αn ≤ ε, (12)

and

lim inf
n→∞

1

n
log

1

βn
≥ θ. (13)

The optimal exponent θ∗ε (R) is the supremum of all (ε, R)-
achievable type-II exponents θ ∈ R+.

B. Optimal Type-II Error Exponent

The following theorem establishes the optimal type-II error
exponent θ∗ε (R).

Theorem 1: The optimal type-II error exponent with
variable-length coding is

θ∗ε (R) = max
PU|X :

|U|≤|X|+1
R≥(1−ε)I(U ;X)

I(U ;Y ), (14)

Proof: Here we only prove achievability. The converse is
more technical and proved in Section IV.

1The expectation in (6) is with respect to the law of Xn which equals Pn
X

under both hypotheses.
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Achievability: Fix a large blocklength n, a small number
µ ∈ (0, ε), and a conditional pmf PU |X such that:

R = (1− ε+ µ)(I(U ;X) + µ). (15)

Define the joint pmf

PUXY , PU |X · PXY (16)

and randomly generate an n-length codebook CU of rate R
by picking all entries i.i.d. according to the marginal pmf PU .
The realization of the codebook

CU ,
{
un(m) : m ∈

{
1, . . . , b2nRc

}}
(17)

is revealed to all terminals.
Finally, choose a subset Sn ⊆ T (n)

µ/2 (PX) such that

Pr [Xn ∈ Sn] = ε− µ. (18)

Transmitter: Assume it observes Xn = xn. If

xn /∈ Sn, (19)

it looks for an index m ∈ {1, . . . , b2nRc} such that

(un(m), xn) ∈ T (n)
µ/2 (PUX). (20)

If successful, it picks one of these indices uniformly at
random and sends the binary representation of the chosen
index over the noiseless link. So, if the chosen index is
m∗ ∈ {1, . . . , b2nRc}, it sends the corresponding length-nR
bit-string

M = string(m∗). (21)

Otherwise it sends the single bit M = [0].
Receiver: If it receives the single bit M = [0], it declares

Ĥ = H1. Otherwise, if the bit string M corresponds to a given
index m ∈ {1, . . . , b2nRc}, it checks whether (un(m), yn) ∈
T (n)
µ (PUY ). If successful, it declares Ĥ = H0, and otherwise

it declares Ĥ = H1.
Analysis: The proposed coding scheme is analyzed when

averaged over the random code construction. By standard
arguments it can then be concluded that the desired exponent is
achievable also for at least one realizations of the codebooks.

Since a single bit is sent when xn ∈ Sn, the expected
message length can be bounded as:

E [len(M)] = Pr[Xn ∈ Sn] · E [len(M)|Xn ∈ Sn]

+ Pr[Xn /∈ Sn] · E [len(M)|Xn /∈ Sn] (22)
≤ (ε− µ) · 1 + (1− ε+ µ) · n(I(U ;X) + µ),

(23)

which for sufficiently large n is further bounded as (see (15)):

E [len(M)] < nR. (24)

To bound the type-I and type-II error probabilities, we
notice that when xn /∈ Sn, the scheme coincides with
the one proposed by Ahlswede and Csiszár in [1]. When
xn ∈ Sn, the transmitter sends the single bit M = [0] and
the receiver declares H1. The type-II error probability of our
scheme is thus no larger than the type-II error probability
of the Ahlswede-Csiszár scheme in [1], and the type-I error

probability is at most Pr[Xn ∈ Sn] = ε−µ larger than for this
Ahlswede-Csiszár scheme. Since the type-I error probability
of the Ahlswede-Csiszár scheme tends to 0 as n→∞ [1], the
type-I error probability here is bounded by ε, for sufficiently
large values of n and all choices of µ ∈ (0, ε). Combining
these considerations with (24), and letting n→∞ and µ→ 0
establishes the achievability part of the proof.

For comparison, recall the result in [1] which showed that
under fixed-length coding, i.e., when instead of the average
message length only the maximum message length is con-
strained by nR, the optimal type-II error exponent equals:

θ∗FL(R) = max
PU|X :

|U|≤|X|+1
R≥I(U ;X)

I(U ;Y ). (25)

Under fixed-length coding, the optimal type-II error exponent
does hence not depend on the maximum allowed type-I error
probability ε and we say that a “strong converse” holds. Our
result in Theorem 1 shows that such a “strong converse” does
not hold under variable-length coding and also quantifies the
gain in type-II error exponent as a function of the maxi-
mum allowed type-I error probability. We thus encounter a
similar situation as in source coding with a small positive
error probability, where various works [27]–[29] have shown
that variable-length coding allows to decrease the required
compression rate below the entropy of the source.

We present two examples to further illustrate the gain of
variable-length coding compared to fixed-length coding.

Example 1: Suppose that the source alphabets are binary
with PX = PY ∼ Bern( 1

2 ) and the conditional pmf PY |X is
given by

PY |X(y|x) =

(
1− α α
α 1− α

)
, (26)

where 0 ≤ α < 1
2 . We can write the following set of

inequalities:

θ∗ε (R) = max
PU|X :

|U|≤|X|+1
R≥(1−ε)I(U ;X)

I(U ;Y ) (27)

= max
PU|X :

|U|≤|X|+1

1−hb(X|U)≤ R
1−ε

1− hb(Y |U)

(28)

= 1− hb

(
h−1

b

(
1− R

1− ε

)
? α

)
(29)

Notice that the last equality holds by Ms. Gerber’s lemma [31,
p. 19].

Following similar steps, it can be shown that the optimal
type-II error exponent under variable-length coding evaluates
to

θ∗FL(R) = 1− hb
(
h−1

b (1−R) ? α
)
. (30)

Fig. 2 shows the optimal error exponents θ∗ε (R) and θ∗FL(R)
in functions of the parameter α for ε = 0.1 and R = 0.8.
The gain of variable-length coding compared to fixed-length
coding seems to be particularly pronounced for small values
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Fig. 2. Comparison of fixed-length and variable-length codings for Example 1.

of α, where the sources are highly correlated under the null
hypothesis H0.

Though we have proved Theorem 1 only for finite alphabets,
we will evaluate it for a Gaussian example, as it is often done
in the information-theoretic literature.

Example 2: Given ρ ∈ [0, 1], define the two covariance
matrices

K0
XY =

[
1 ρ
ρ 1

]
and K1

XY =

[
1 0
0 1

]
. (31)

Under the null hypothesis,

H = H0 : (X,Y ) ∼ N (0,K0
XY ), (32)

and under the alternative hypothesis,

H = H1 : (X,Y ) ∼ N (0,K1
XY ). (33)

The above setup can model a communication scenario with
a jammer. Under the null hypothesis, the jammer interferes
with the communication and the observations at the transmitter
and receiver are correlated with each other where the corre-
lation is modelled by the parameter ρ. Under the alternative
hypothesis, the jammer remains silent and the observations
Xn and Y n are independent of each other. The goal of the
system is to detect the presence of the jammer.

To characterize the optimal type-II error exponent in the
above example, notice that under H = H0, one can write
Y = ρX+Z with Z a zero-mean Gaussian random variable of
variance 1−ρ2 and independent of X . Consider the following
set of equalities:

θ∗G,ε(R) = max
PU|X :

R≥(1−ε)I(U ;X)

I(U ;Y ) (34)

=
1

2
log

(
1

1− ρ2 + ρ2 · 2−
2R
1−ε

)
, (35)

where (35) is a well-known inequality based on the entropy-
power inequality (EPI) [31, pp. 22]. Notice that the maximum
in (34) is achieved by jointly Gaussian (U,X).

Following similar steps, one can show that the optimal type-

II error exponent under fixed-length coding evaluates to:

θ∗G,FL(R) =
1

2
log

(
1

1− ρ2 + ρ2 · 2−2R

)
. (36)

Fig. 3 shows the optimal error exponents θ∗G,ε(R) and θ∗G,FL(R)
in function of the parameter ρ for ε = 0.1 and R = 0.8. For
large values of the parameter ρ where the sources are highly
correlated under the null hypothesis, variable-length coding
outperforms fixed-length coding.

III. TESTING OVER A DISCRETE MEMORYLESS CHANNEL
(DMC)

A. System Model

Consider a hypothesis testing system with a single trans-
mitter and a single receiver where communication is over a
discrete memoryless channel (DMC) with input alphabet W ,
output alphabet V , and transition law ΓV |W (·|·). The number
of channel uses is a random quantity, because the transmitter
stops transmission after receiving a feedback signal from the
receiver. This stop feedback-signal is without error or delay.

As in the previous section, the transmitter observes the
source sequence Xn and the receiver observes the side-
information sequence Y n, where

under H = H0 : (Xn, Y n) ∼ i.i.d. PXY , (37)

and

under H = H1 : (Xn, Y n) ∼ i.i.d. PX · PY . (38)

Fig. 4. Hypothesis testing over a noisy channel with variable-length coding
and stop feedback.
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Based on the source sequence Xn, the transmitter generates
an infinite-length stream

W ′∞(Xn) = W ′1,W
′
2, . . . (39)

and for each channel use prior to the stop-feedback, it sends
the corresponding symbol of the sequence W ′∞(Xn) over
the channel. For each time-instant k, let Lk = 1 indicate that
the receiver has not yet sent the stop-symbol, and Lk = 0
otherwise. We then have for the time-k channel input Wk:

Wk = W ′k, if Lk = 1, for k = 1, 2, . . . . (40)

Let τn denote the transmission duration, i.e.,

τn := min{k ≥ 1: Lk = 0}. (41)

The receiver observes the random channel outputs
V1, V2, . . . , Vτn corresponding to the inputs W1,W2, . . . ,Wτn

fed to the given DMC ΓV |W . At each time k = 1, 2, . . ., the
receiver decides whether the communication should continue
(Lk = 1) or not (Lk = 0). For simplicity, we assume that
the decision Lk is only a function of the first k − 1 channel
outputs V1, . . . , Vk−1 but not of Y n, in which case τn is
a stopping time of the filtration σ{V k}k≥1. The described
setup models for example a situation where the receiver
learns the side-information Y n only after the communication
has terminated. Thus, in our scenario:

Lk = e
(n)
k (V k), (42)

for each k = 1, 2, . . . and some stopping function ek : Vk →
{0, 1}. The stopping functions determine the set of all output
strings for which the receiver stops the transmission:

Vstop ,
{
vτ ∈ V? : e(n)

τ (vτ ) = 0 and e(n)
τ−1(vτ−1) = 1

}
.

(43)
where here vτ−1 denotes the first τ − 1 symbols of vτ .

Once transmission stops, the receiver has observed the
channel outputs V τn ∈ Vstop and the side-information Y n.
Based on these observations, it has to guess the hypothesis
Ĥ = H0 or Ĥ = H1. To this end, it chooses a subset
An ⊂ Vstop × Yn, which we call the acceptance region,
and it decides on Ĥ = H0 whenever (V τn , Y n) ∈ An.

Conversely, it decides on Ĥ = H1 whenever (V τn , Y n) lies
in the complement Rn , (Vstop×Yn)\An, which we call the
rejection region.

The type-I error probability is then defined as:

αn , PV τnY n(Rn) = 1− PV τnY n(An), (44)

and the type-II error probability as:

βn , PV τnP
n
Y (An). (45)

Definition 2: For any ε ∈ [0, 1) and a given bandwidth
mismatch factor κ ∈ R+, we say that a type-II error exponent
θ ∈ R+ is (ε, κ)-achievable if there exists a sequence of
encoding functions, stopping functions, and acceptance regions{
{Φ(n)

k }k≥1, {e(n)
k }k≥1,An

}
n≥1

, such that the corresponding
sequences of type-I and type-II error probabilities satisfy for
sufficiently large blocklengths n:

αn ≤ ε, (46)

and

lim inf
n→∞

1

n
log

1

βn
≥ θ, (47)

and the average transmission duration E[τn] satisfies

lim sup
n→∞

E [τn]

n
≤ κ. (48)

Given κ ∈ R+, the optimal exponent θ∗DMC,ε(κ) is the
supremum of all (ε, κ)-achievable type-II error exponents
θ ∈ R+.

B. Optimal Error Exponent
Theorem 2: The optimal type-II exponent over a DMC

(W,V,ΓV |W ) with variable-length coding and stop feedback
is:

θ∗DMC,ε(κ) = max
PU|X :

|U|≤|X|+1
κC≥(1−ε)I(U ;X)

I(U ;Y ), (49)

where C denotes the capacity of the DMC (W,V,ΓV |W ).
Proof: The converse is proved in Section V. The achiev-

ability in the following subsection III-C.
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Under fixed-length coding, the optimal type-II error expo-
nent is [17], [32]

θ∗DMC,FL(κ) := max
PU|X :

|U|≤|X|+1
κC≥I(U ;X)

I(U ;Y ), (50)

irrespective of the allowed type-I error probability ε, and thus a
“strong converse” holds under fixed-length coding. In contrast,
our result in Theorem 2 shows that under variable-length
coding a “strong converse” does not hold and it characterises
the gain in optimal type-II error exponent when a type-I error
probability of ε > 0 is tolerated.

C. Coding Scheme Achieving the Optimal Exponent

We now prove achievability of the exponent in (50). Choose
two different symbols w0, w1 ∈ W such that the KL-
divergence of the output distributions induced by these inputs
is positive, i.e., such that

D(Γw0
‖Γw1

) > 0, (51)

where

Γw0
(·) , Γ(·|w0), Γw1

(·) , Γ(·|w1). (52)

Further, choose a positive number ε′ ∈ (0, ε) close to ε and
a function q : Z+ → Z+ that satisfies the following two
conditions:

lim
n→∞

q(n) =∞ (53)

lim
n→∞

q(n)

n
= 0. (54)

Define
µ , ε− ε′. (55)

Fix two pmfs PU |X and PW and a positive rate R so that
the following two conditions hold:

R = I(U ;X) + µ, (56)

R <
κ

1− ε′
I(W ;V ). (57)

Define PUX , PU |X · PX and PWV , PW · ΓV |W .
Fix now a large blocklength n and generate two codebooks

CU ,
{
un(m) : m ∈ {1, . . . , b2nRc}

}
, (58)

CW ,
{
wn
′
(m) : m ∈ {0, . . . , b2nRc}

}
, (59)

where
n′ ,

nκ

1− ε′
, (60)

and where the entries of the two codebooks are picked i.i.d.
according to the pmfs PU and PW , respectively. Furthermore,
choose a subset Sn ⊆ T (n)

µ/2 (PX) such that

Pr [Xn ∈ Sn] = ε′. (61)

The coding scheme decomposes into two phases.
Phase 1: Consists of the first q(n) channel uses.

Transmitter: Given that it observes Xn = xn, the transmit-
ter sends the q(n) inputs

(W1, . . . ,Wq(n)) =

{
w
⊗q(n)
1 , if Xn ∈ Sn,

w
⊗q(n)
0 , otherwise,

(62)

where for any input symbol w ∈ W ,

w⊗j , (w, . . . , w︸ ︷︷ ︸
j times

), j ∈ Z+. (63)

Receiver: Upon observing the first q(n) channel outputs
V1, . . . , Vq(n), the receiver performs a Neyman-Pearson test
to decide on whether the transmitter sent w⊗q(n)

0 or w⊗q(n)
1 .

This test only depends on the channel outputs but not on the
receiver’s side-information Y n. The threshold of the test is set
so that the probability of declaring w⊗q(n)

1 when w⊗q(n)
0 was

sent, equals µ/3.

If the receiver detects w⊗q(n)
1 , then it decides on

Ĥ = H1 (64)

and sends the stop feedback Lq(n) = 0 to the transmitter,
which stops transmission.

If the receiver instead detects w⊗q(n)
0 , then it waits to make

a decision and also does not send the stop feedback. Both the
transmitter and the receiver move on to Phase 2. In this second
phase, the receiver will ignore all outputs from the first phase.

Phase 2: This second phase consists of n′ channel uses.
Tansmitter: It looks for a codeword un(m) such that

(un(m), xn) ∈ T (n)
µ/2 (PUX). If no such index exists, it sends

wn
′
(0) over the channel. If one or multiple such indices can be

found, the transmitter picks m∗ uniformly at random among
them and sends the corresponding channel codeword wn

′
(m∗)

over the channel.
Receiver: Let vn

′

2 denote the n′ channel outputs observed at
the receiver during this second phase. The receiver looks for
a unique index m ∈ {0, . . . , b2nRc} such that

(wn
′
(m), vn

′
) ∈ T (n′)

µ (PWV ). (65)

If m = 0 or none of the indices satisfy the condition, the
receiver declares Ĥ = H1. Otherwise, it produces the decoded
message M̂ ∈ {1, . . . , b2nRc} equal to the unique index m
and proceeds with the following hypothesis test: if M̂ = m̂
and

(un(m̂), yn) ∈ T (n)
µ (PUY ), (66)

then the receiver declares Ĥ = H0, otherwise it declares Ĥ =
H1.

In any case it sends the stop-feedback to stop the transmis-
sion, Lq(n)+n = 0.
Analysis: We first analyze the expected transmission duration.
Notice that for the described scheme, the transmission duration
does not depend on the hypothesis, because it only depends on
Xn and the DMC which have same distributions under both
hypotheses.

When transmission goes to phase 2, i.e., Lq(n) = 1, then
the transmission duration equals τn = n′ + q(n) and when
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Lq(n) = 0, then τn = q(n). Therefore,

E [τn] = q(n) + n′ · Pr
[
Lq(n) = 1

]
. (67)

To bound Pr
[
Lq(n) = 1

]
, we notice that by the way we set

the threshold for the Neyman-Pearson test:

Pr
[
Lq(n) = 1

∣∣∣(W1, . . . ,Wq(n)) = w
⊗q(n)
0

]
= 1−µ/3. (68)

Moreover, by the property of the Neyman-Pearson test, when
n (and thus q(n)) is sufficiently large, the probability of going
to phase 2 after sending w⊗q(n)

1 in phase 1 is bounded as:

2−q(n)(D(Γw0
‖Γw1

)+µ)

≤ Pr
[
Lq(n) = 1

∣∣∣(W1, . . . ,Wq(n)) = w
⊗q(n)
1

]
≤ 2−q(n)(D(Γw0

‖Γw1
)−µ). (69)

Using that in phase 1 the sequence w
⊗q(n)
1 is sent with

probability ε′ and the sequence w⊗q(n)
0 with probability 1−ε′,

we conclude that

Pr
[
Lq(n) = 1

]
= Pr

[
(W1, . . . ,Wq(n)) = w

⊗q(n)
0

]
·Pr

[
Lq(n) = 1

∣∣∣(W1, . . . ,Wq(n)) = w
⊗q(n)
0

]
+ Pr

[
(W1, . . . ,Wq(n)) = w

⊗q(n)
1

]
·Pr

[
Lq(n) = 1

∣∣∣(W1, . . . ,Wq(n)) = w
⊗q(n)
1

]
(70)

≤ (1− ε′) · (1− µ/3) + ε′ · 2−q(n)(D(Γw0
‖Γw1

)−µ). (71)

Since q(n)→∞ as n→∞, for sufficiently large n:

Pr
[
Lq(n) = 1

]
≤ 1− ε′, (72)

and by (67):

E [τn] ≤ q(n) + (1− ε′)n′. (73)

Dividing both sides of the above inequality by n and letting
n→∞, we obtain by (54)

lim
n→∞

E [τn]

n
≤ κ. (74)

We analyze the probability of error averaged over the
random choice of the codebook. To simplify notation, we in-
troduce a virtual transmitter/receiver pair that always continues
to Phase 2 (irrespective of the outcome of the Neyman-Pearson
test), and we denote by M̂2 the decoded message produced by
this virtual receiver and by Ĥ2 its guess at the end of Phase
2. Notice that when Lq(n) = 1, then Ĥ2 = Ĥ.

Consider first the type-I error probability. When Lq(n) = 0

then Ĥ = H1 with probability 1. Therefore, for sufficiently
large values of n:

Pr
[
Ĥ = H1

∣∣∣H = H0

]
(75)

= Pr
[
Lq(n) = 0

∣∣∣H = H0

]
+ Pr

[
Ĥ = H1, Lq(n) = 1

∣∣∣H = H0

]
(76)

= Pr
[
Lq(n) = 0, (W1, . . . ,Wq(n)) = w

⊗q(n)
0

∣∣∣H = H0

]

+ Pr
[
Lq(n) = 0, (W1, . . . ,Wq(n)) = w

⊗q(n)
1

∣∣∣H = H0

]
+ Pr

[
Ĥ = H1, Lq(n) = 1

∣∣∣H = H0

]
(77)

≤ Pr
[
Lq(n) = 0

∣∣∣(W1, . . . ,Wq(n)) = w
⊗q(n)
0 ,H = H0

]
+ Pr

[
(W1, . . . ,Wq(n)) = w

⊗q(n)
1

∣∣∣H = H0

]
+ Pr

[
Ĥ2 = H1, Lq(n) = 1

∣∣∣H = H0

]
(78)

≤ Pr
[
Lq(n) = 0

∣∣∣(W1, . . . ,Wq(n)) = w
⊗q(n)
0 ,H = H0

]
+ Pr

[
(W1, . . . ,Wq(n)) = w

⊗q(n)
1

∣∣∣H = H0

]
+ Pr

[
Ĥ2 = H1

∣∣∣H = H0

]
(79)

≤ µ/3 + (µ/3 + ε′) + µ/3 = ε, (80)

where the last inequality holds by the threshold chosen for
the Neyman-Pearson test, by the properties of the typical set
and the set Sn, and because both the probability of channel
decoding error and of wrong hypothesis testing vanish as n→
∞, see for example [18].

Before analyzing the type-II error probability, we notice that
Ĥ = H0 is only possible when Lq(n) = 1 and M̂ 6= 0, in
which case Ĥ2 = Ĥ and M̂2 = M̂ ≥ 1. Therefore, for the
type-II error probability:

Pr
[
Ĥ = H0

∣∣∣H = H1

]
= Pr

[
Ĥ = H0, Lq(n) = 1, M̂ 6= 0

∣∣∣H = H1

]
(81)

= Pr
[
Ĥ2 = H0, Lq(n) = 1, M̂2 6= 0

∣∣∣H = H1

]
(82)

≤ Pr
[
Ĥ2 = H0

∣∣∣M̂2 6= 0,H = H1

]
(83)

= Pr
[
(Un(M̂2), Y n) ∈ T (n)

µ (PUY )
∣∣∣M̂2 6= 0,H = H1

]
. (84)

Under H1, the observations Y n are i.i.d. according to PY
and independent of (Un(M̃), M̃), and thus by a conditional
version of Sanov’s theorem and continuity of the mutual
information measure:

Pr
[
(Un(M̂2), Y n) ∈ T (n)

µ (PUY )
∣∣∣M̂2 6= 0,H = H1

]
≤ 2−n(I(U ;Y )+δ(µ)), (85)

where δ(µ) is a function that tends to 0 as µ→ 0. Combining
these last two inequalities, one obtains:

Pr
[
Ĥ = H0

∣∣∣H = H1

]
≤ 2−n(I(U ;Y )+δ(µ)). (86)

Taking n→∞ and µ→ 0, it can be concluded that averaged
over the random code construction the desired error exponent
is achievable. By standard arguments it then follows that there
exist deterministic codebooks achieving the desired exponents.

IV. PROOF OF CONVERSE TO THEOREM 1

Before proving the converse, we state a standard auxiliary
lemma commonly used for hypothesis testing converses.
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Lemma 1: Let Q and P be arbitrary pmfs over a discrete
and finite set Z and A be a subset of Z . Then,

− logQ(A) ≤ 1

P (A)
(D(P‖Q) + 1). (87)

Proof: By the data processing inequality for KL-
divergence:

D(P‖Q) ≥ P (A) log
P (A)

Q(A)
+ (1− P (A)) log

(1− P (A))

(1−Q(A))
(88)

= −Hb(P (A))− P (A) logQ(A)

−(1− P (A)) log(1−Q(A)). (89)

Upper bounding Hb(P (A)) by 1 and (1 − P (A)) log(1 −
Q(A)) by 0, and rearranging terms yields the desired inequal-
ity.

We now prove the desired converse. Fix an achievable
exponent θ < θ∗ε (R) and a sequence of encoding and decision
functions so that (12) and (13) are satisfied. Further fix a
blocklength n > 0 and let M and Ĥ be the bit-string message
and the guess produced by the chosen encoding and decision
functions for this given blocklength. Let then µ, η be small
positive numbers and define Bn(η) as a subset of Xn ×M:

Bn(η) ,{
(xn,m) : Pr

[
Ĥ = H0

∣∣Xn = xn,M = m,H = H0

]
≥ η

}
.

(90)

By the constraint on the type-I error probability, (12),

1− ε
≤

∑
(xn,m)∈Bn(η)

Pr
[
Ĥ = H0

∣∣∣Xn = xn,M = m,H = H0

]
·PXnM(xn,m)

+
∑

(xn,m)∈(Xn×M)\Bn(η)

Pr
[
Ĥ = H0

∣∣∣Xn = xn,M = m,H = H0

]
·PXnM(xn,m) (91)

≤ PXnM(Bn(η)) + η(1− PXnM(Bn(η))), (92)

and as a consequence:

PXnM(Bn(η)) ≥ 1− ε− η
1− η

. (93)

We next define the subset Dn(η) of Xn ×M:

Dn(η) , Bn(η) ∩ (T (n)
µ (PX)×M) (94)

By [21, Lemma 2.12]:

PnX(T (n)
µ (PX)) ≥ 1− |X |

2µn
, (95)

which combined with (93) and the general identity Pr(A ∩
B) ≥ Pr(A) + Pr(B)− 1 implies:

PXnM(Dn(η)) ≥ 1− ε− η
1− η

− |X |
2µn

, ∆n. (96)

Define finally the random variables (M̃, X̃n, Ỹ n) as the
restriction of the triple (M, Xn, Y n) to (Xn,M) ∈ Dn(η).

The probability distribution of the restricted triple is given by:

PM̃X̃nỸ n(m, xn, yn) , PnXY (xn, yn) · 1 {(x
n,m) ∈ Dn(η)}
Pr(Dn(η))

(97)

This implies in particular:

PX̃n(xn) ≤ PnX(xn) ·∆−1
n , (98)

PỸ n(yn) ≤ PnY (yn) ·∆−1
n , (99)

PM̃(m) ≤ PM(m) ·∆−1
n (100)

and

D (PX̃n‖P
n
X) ≤ log ∆−1

n . (101)

We are now ready to provide a lower bound on the expected
rate and an upper bound on the type-II error exponent with
the desired single-letter correspondences in the asymptotic
regimes where the blocklength grows to∞ and the parameters
µ, η → 0.
Lower bound on the expected rate: Define the random vari-
able L̃ , len(M̃) and notice that by the rate constraint (6):

nR ≥ E [L] (102)
= E [L|(Xn,M) ∈ Dn(η)] · PXnM(Dn(η))

+E [L|Xn /∈ Dn(η)] · (1− PXnM(Dn(η))) (103)
≥ E [L|Xn ∈ Dn(η)] · PXnM(Dn(η)) (104)

= E
[
L̃
]
· PXnM(Dn(η)) (105)

≥ E
[
L̃
]
·∆n, (106)

where (105) holds because M̃ is obtained by restricting M to
the event (Xn,M) ∈ Dn(η) and L̃ denotes the length of M̃;
and step (106) holds by the definition of ∆n in (96).

Now, since L̃ is a function of M̃, we have:

H(M̃) = H(M̃, L̃) (107)
= H(M̃|L̃) +H(L̃) (108)

=
∑
`

Pr(L̃ = `)H(M̃|L̃ = `) +H(L̃) (109)

≤
∑
`

Pr(L̃ = `)`+H(L̃) (110)

= E[L̃] +H(L̃) (111)

≤ nR

∆n
+H(L̃) (112)

≤ nR

∆n
+
nR

∆n
hb

(
∆n

nR

)
(113)

=
nR

∆n

(
1 + hb

(
∆n

nR

))
. (114)

Here, (112) follows from (106); and (113) holds because when
E[L̃] ≤ nR

∆n
, then the entropy of L̃ can be at most that of a

Geometric distribution with mean nR
∆n

, which is nR
∆n
·hb
(

∆n

nR

)
.

On the other hand, we can lower bound H(M̃) in the
following way:

H(M̃) ≥ I(M̃; X̃n) (115)
= H(X̃n)−H(X̃n|M̃) (116)
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= −
∑
xn

PX̃n(xn) logPX̃n(xn)−H(X̃n|M̃) (117)

≥ −
∑
xn

PX̃n(xn) logPXn(xn) + log ∆n

−H(X̃n|M̃) (118)

= −
∑
xn

PX̃n(xn)

n∑
t=1

logPX(xt) + log ∆n

−H(X̃n|M̃) (119)

= −
n∑
t=1

∑
xt

PX̃t(xt) logPX(xt) + log ∆n

−H(X̃n|M̃) (120)

=

n∑
t=1

H(X̃t) +

n∑
t=1

D(PX̃t‖PX) + log ∆n

−H(X̃n|M̃) (121)

=

n∑
t=1

[
H(X̃t)−H(X̃t|M̃, X̃t−1)

]
+

n∑
t=1

D(PX̃t‖PX) + log ∆n (122)

=

n∑
t=1

I(Ũt; X̃t) +

n∑
t=1

D(PX̃t‖PX) + log ∆n (123)

= nI(ŨT ; X̃T |T )

+

n∑
t=1

∑
x∈X

PX̃T |T=t(x) log
PX̃T |T=t(x)

PX(x)
+ log ∆n

(124)
= nI(ŨT ; X̃T |T )

+

n∑
t=1

∑
x∈X

PX̃T |T=t(x) log
PX̃T |T=t(x)

PX̃T (x)

+

n∑
t=1

∑
x∈X

PX̃T |T=t(x) log
PX̃T (x)

PXt(x)
+ log ∆n

(125)
= nI(ŨT ; X̃T |T ) + nI(X̃T ;T )

+nD(PX̃T ‖PXT ) + log ∆n (126)

≥ nI(ŨT , T ; X̃T ) + log ∆n (127)
= nI(Ũ ; X̃T ) + log ∆n, (128)

where

• (118) holds by (98);
• (119) holds because Xn is i.i.d. under PnX ;
• (123) holds by defining Ũt , (M̃, X̃t−1);
• (126) holds because T is chosen uniformly over
{1, . . . , n};

• (128) follows by defining Ũ , (ŨT , T ).

Combining (114) and (128), we obtain:

R ≥
I(Ũ ; X̃T ) + 1

n log ∆n

1 + hb
(

∆n

nR

) ·∆n, (129)

and conclude that in the limit n → ∞ the rate R needs
to be lower bounded by the limit of the mutual information
I(Ũ ; X̃) 1−η−ε

1−η .

Upper bound on the type-II error exponent: For each string
m ∈ {0, 1}?, define the following set:

An(m) , {yn : (m, yn) ∈ An}, (130)

By definition of the set Dn(η):

PnY |X(An(m)|xn) ≥ η, (xn,m) ∈ Dn(η). (131)

Let now {`n}n≥1 be a sequence satisfying limn→∞ `n/
√
n =

∞ and limn→∞ `n/n = 0, and define for each m ∈ M the
blown up region

Â`nn (m) , {ỹn : ∃yn ∈ An(m) s.t. dH(ỹn, yn) ≤ `n} .
(132)

By (131) and the blowing-up lemma [22, remark p. 446]:

PnY |X

(
Â`nn (m)

∣∣∣xn) ≥ 1−
√
n ln 1/η

`n
= 1− λn,

(xn,m) ∈ Dn(η), (133)

where we defined λn ,
√
n ln 1/η

`n
. (Notice that λn goes to

zero as n→∞.) Defining the new acceptance region

Â`nn ,
⋃

m∈M
{m} × Â`nn (m), (134)

and taking expectation over (133), we obtain:

PM̃Ỹ n(Â`nn ) =∑
(xn,m)∈Dn(η)

PnY |X(Â`nn (m)|xn) · PX̃nM̃(xn,m) ≥ 1− λn.

(135)

We next show that the probability of this new acceptance
region under the product distribution PM̃PỸ n is close (in terms
of exponential decay rate) to the type-II error probability of
our original hypothesis testing problem:

PM̃PỸ n(Â`nn ) ≤ PMPnY (Â`nn ) ·∆−2
n (136)

≤ PMPnY (An) · enhb(`n/n) · |Y|`n ·K`n
n ·∆−2

n

(137)
= βn · enhb(`n/n) · |Y|`n ·K`n

n ·∆−2
n , (138)

where we defined Kn , miny:PY (y′)>0 PY (y), and where
(136) holds by (98) and (137) by [21, see the Proof of Lemma
5.1]. Define δn , − 2

n log ∆n+ `n
n log(Kn|Y|)+hb(`n/n) and

notice that δn → 0 as n→∞. We rewrite (138) as

− 1

n
log βn ≤ −

1

n
logPM̃PỸ n(Â`nn ) + δn (139)

≤ 1

n(1− λn)
[D
(
PM̃Ỹ n‖PM̃PỸ n

)
+ 1] + δn

(140)

=
1

n(1− λn)

[
I(M̃; Ỹ n) + 1

]
+ δn (141)

=
1

n(1− λn)

[ n∑
t=1

I(M̃; Ỹt|Ỹ t−1) + 1
]

+ δn
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(142)

≤ 1

n(1− λn)

[ n∑
t=1

I(M̃, Ỹ t−1; Ỹt) + 1
]

+ δn

(143)

≤ 1

n(1− λn)

[ n∑
t=1

I(M̃, X̃t−1︸ ︷︷ ︸
=Ũt

; Ỹt) + 1
]

+ δn

(144)

=
1

n(1− λn)

[ n∑
t=1

I(Ũt; Ỹt) + 1
]

+ δn (145)

=
1

n(1− λn)
[I(ŨT ; ỸT |T ) + 1] + δn (146)

≤ 1

1− λn
[I(ŨT , T︸ ︷︷ ︸

=Ũ

; ỸT ) + 1] + δn (147)

≤ 1

1− λn
[I(Ũ ; ỸT ) + 1] + δn, (148)

where
• (140) holds by Lemma 1 and Inequality (135);
• (144) holds by the Markov chain Ỹ t−1 → (M̃, X̃t−1)→
Ỹt.

The alphabet of Ũ grows exponentially in n. However, by
Charathodory’s theorem, for each blocklength n there exists a
random variable Un over an alphabet of size |X | + 1 and so
that the Markov chain Un → X̃T → ỸT and the equalities
I(Un; X̃T ) = I(Ũ ; X̃T ) and I(Un; ỸT ) = I(Ũ ; ỸT ) are
satisfied. We can thus replace in (129) and (148) the random
variable Ũ by this new random variable Un.

The proof is then concluded by taking n → ∞ and then
µ, η → 0. In fact, recall that X̃n ∈ T (n)

µ/2 (PX) and Ỹ n

is obtained by passing X̃n through the memoryless channel
PY |X , which implies that as n → ∞ and µ → 0 the
distribution of PX̃T ỸT tends to PXY . By standard continuity
considerations, by the modified bounds (129) and (148) with
Ũ replaced by Un, and because all random variables have fixed
and finite alphabet sizes, we can then conclude that

lim
n→∞

− 1

n
log βn ≤ I(U ;Y ) (149)

for a random variable U satisfying

R ≥ I(U ;X)(1− ε) (150)

and the Markov chain U → X → Y and (X,Y ) ∼ PXY .
This concludes the proof of the converse.

V. PROOF OF CONVERSE TO THEOREM 2

Fix an achievable exponent θ < θ∗DMC,ε(κ) and a sequence
of encoding functions {Φ(n)

1 ,Φ
(n)
2 , . . .}n≥1, stopping func-

tions {e(n)
1 , e

(n)
2 , . . .}n≥1, and acceptance/rejection regions

{An,Rn}n≥1 so that (46)–(48) are satisfied. Further fix a
large blocklength n, and let τn,W τn , V τn be the stopping
time, channel inputs and outputs as implied by these encoding
and stopping functions. Let µ, η be small positive real numbers
and define

σ , ln(n) · n (151)

and a new acceptance region Anew
n ⊆ An which only contains

output sequences vτ of length not exceeding σ:

Anew
n , {(vτ , yn) ∈ V? × Yn : (vτ , yn) ∈ An and τ ≤ σ} .

(152)

Define also the set

Dn(η) ,
{

(xn, wσ) :

Pr
[
(V τn , Y n) ∈ Anew

n |H = H0, X
n = xn,W ′σ = wσ

]
≥ η

}
∩
(
T (n)
µ (PX)×Wσ

)
. (153)

Notice that the set Dn(η) is defined in terms of the random
variable W ′σ but not Wσ because the actual transmission
duration might be shorter than σ, i.e. τn < σ is possible.

By standard arguments, we have

1− ε ≤ PV τnY n(An) (154)

= Pr[τn ≤ σ] · PV τnY n(An|τn ≤ σ)

+ Pr[τn ≥ σ]PV τnY n(An|τn ≥ σ) (155)

≤ PV τnY n(Anew
n ) +

E[τn]

σ
(156)

≤ PV τnY n(Anew
n ) +

κ+ η

ln(n)
(157)

=
∑
xn,wσ

PXnW ′m(xn, wσ)

·
∑

(vτ ,yn)∈Anew
n

PV τnY n|XnW ′σ (vτ , yn|xn, wσ)

+
κ+ η

ln(n)
(158)

=
∑

(xn,wσ)∈Dn(η)

PXnW ′m(xn, wσ)

·
∑

(vτ ,yn)∈Anew
n

PV τnY n|XnW ′σ (vτ , yn|xn, wσ)

+
∑

(xn,wσ)∈Dcn(η)

PXnW ′σ (xn, wσ)

·
∑

(vτ ,yn)∈Anew
n

PV τY n|XnW ′σ (vτ , yn|xn, wσ)

+
κ+ η

ln(n)
(159)

≤ PXnW ′σ (Dn(η)) + (1− PXnW ′σ (Dn(η))) · η

+
κ+ η

ln(n)
, (160)

where

• (156) follows from the definition of the new acceptance
region Anew

n in (152) and from Markov’s inequality;
• (157) follows from (48) and the definition σ = ln(n) · n.
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This implies

PXnW ′σ (Dn(η)) ≥
1− ε− η − κ+η

ln(n)

1− η
− |X |

2µn
, ∆n.

(161)

Define then the random tuple
(X̃n, Ỹ n, τ̃n, W̃ ′

σ
, W̃ τ̃n , Ṽ τ̃n) as the restriction of the

tuple (Xn, Y n, τn,W
′σ,W τn , V τn) to (Xn,W ′σ) ∈ Dn(η).

(Here we consider both sequences W ′σ and W τ̃n but the
restriction is only on sequences W

′σ .) The restricted pmf is
given by

PX̃nỸ nτ̃nW̃ ′σW̃ τ̃n Ṽ τ̃n (xn, yn, τ, wσ, wτ , vτ ) (162)

,
PXnW ′σ (xn, wσ)

PXnW ′σ (Dn(η))
· 1 {(xn, wσ) ∈ Dn(η)}

·PnY |X(yn|xn) · PτnW τnV τn |W ′σXn(τ, wτ , vτ |wσ, xn),

(163)

and satisfies

PX̃nW̃ τ̃n (xn, wτ ) ≤ PXnW τn (xn, wτ ) ·∆−1
n , (164)

PỸ n(yn) ≤ PnY (yn) ·∆−1
n , (165)

PṼ τ̃n (vτ ) ≤ PV τn (vτ ) ·∆−1
n . (166)

Communication constraint: Similarly to (106), we obtain:

E[τn] ≥ E[τ̃n] ·∆n, (167)

Since the original transmission durations {τn}∞n=1 have to
satisfy (48), for arbitrary η > 0 and all sufficiently large
blocklengths n:

E[τ̃n] ≤ E[τn]∆−1
n ≤ n(κ+ η)∆−1

n , (168)

Following the same steps as in (116)–(128) but where M̃ is
replaced by Ṽ τ̃n , we obtain:

I(Ṽ τ̃n ; X̃n) ≥ nI(Ũ ; X̃T ) + log ∆n, (169)

where here Ũ is defined as (Ṽ τ̃n , X̃T−1, T ) for T uniformly
distributed over {1, . . . , n} independent of (Ṽ τ̃n , X̃n, Ỹ n).

In the following, we upper bound I(Ṽ τ̃n ; X̃n) by n times
the capacity C of the DMC ΓV |W plus some additive terms
that vanish in the asymptotic regimes n → ∞ and η, µ → 0.
Define for i = 1, 2, . . . the random variables L̃i , 1 {τ̃n ≥ i}
and

V̂i ,

{
Ṽi, if τ̃n ≥ i,
0, if τ̃n < i.

(170)

Notice that we can write I(Ṽ τ̃n ; X̃n) as:

I(Ṽ τ̃n ; X̃n) = I(L̃∞, V̂∞; X̃n) (171)

=
∞∑
i=1

I(L̃i, V̂i; X̃
n|L̃i−1, V̂ i−1) (172)

=

∞∑
i=1

I(L̃i; X̃
n|L̃i−1, V̂ i−1)

+

∞∑
i=1

I(V̂i; X̃
n|L̃i, V̂ i−1)

(173)

=

∞∑
i=1

I(L̃i; X̃
n|L̃i−1, V̂ i−1)

+

∞∑
i=1

I(Ṽi; X̃
n|L̃i = 1, L̃i−1, Ṽ i−1) · Pr[L̃i = 1] (174)

≤
∞∑
i=1

H(L̃i|L̃i−1) +

∞∑
i=1

H(Ṽi) · Pr[L̃i = 1]

−
∞∑
i=1

H(Ṽi|L̃i = 1, L̃i−1, W̃i, Ṽ
i−1, X̃n) · Pr[L̃i = 1]

(175)
= H(L̃∞)

+

∞∑
i=1

(
H(Ṽi)−H(Ṽi|W̃i)

)
· Pr[L̃i = 1] (176)

= H(L̃∞) +

∞∑
i=1

I(Ṽi; W̃i) · Pr[L̃i = 1] (177)

≤ H(L̃∞) + C ·
∞∑
i=1

Pr[L̃i = 1] (178)

≤ H(τ̃n) + C ·
∞∑
i=1

Pr[τ̃n ≥ i] (179)

= H(τ̃n) + C · E[τ̃n] (180)

≤ n(κ+ η)

∆n
· hb

(
∆n

n(κ+ η)

)
+ nC(κ+ η)∆−1

n , (181)

where
• (171) holds because there is a bijective function from

(L̃∞, V̂∞) to Ṽ τ̃n ;
• (174) holds because when L̃i = 0 then V̂i is deterministic

and when L̃i = 1 then V̂i = Ṽi;
• (177) holds because when L̃i = 1 the Markov chain Ṽi →
W̃i → (L̃i−1, Ṽ i−1, X̃n) holds;

• (178) holds because PṼi|W̃i
= ΓVi|Wi

and thus the mutual
information term I(Ṽi; W̃i) is upper bounded by the
capacity C of the channel;

• (179) holds because there exists a bijective function from
τ̃n to L̃∞ and by the definition of L̃i; and

• (181) holds only for sufficiently large values of n, by
(168) and because when E[τ̃n] ≤ n(κ+η)

∆n
, then the en-

tropy of τ̃n can be at most that of a Geometric distribution
with mean n(κ+η)

∆n
, which is n(κ+η)

∆n
· hb

(
∆n

n(κ+η)

)
.

Combining (128) and (181), we conclude that for all suffi-
ciently large values of n:

(κ+ η)C ≥ I(Ũ ; X̃T ) ·∆n +
∆n

n
log ∆n

−(κ+ η) · hb

(
∆n

n(κ+ η)

)
, (182)

and in particular, (κ + η) 1−η
1−η−εC upper bounds the limit of

the mutual information I(Ũ ; X̃T ) as n→∞.

Upper bounding the type-II error exponent:
By definition,

PṼ τ̃n Ỹ n|X̃nW̃ ′σ (Anew
n |xn, wσ) ≥ η, ∀(xn, wσ) ∈ Dn(η).
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(183)

We now expand the region Anew
n to a subset of Vσ ×Yn, i.e.,

we expand all channel output sequences to be of same length
σ:

Aexp
n ,

{
(vσ, yn) ∈ Vσ × Yn : ∃(ṽτ , yn) ∈ An and

v̄σ−τ : vσ = (ṽτ , v̄σ−τ )
}
. (184)

Similarly, let Ṽ ′σ = (Ṽ ′1 , . . . , Ṽ
′
σ) be outputs of the DMC

ΓV |W for inputs W̃ ′σ , and in particular V ′k = Ṽk with
probability 1 when k ≤ τ̃n. Then,

PṼ ′σỸ n|X̃nW̃ ′σ (Aexp
n |xn, wσ) = PṼ τ̃n Ỹ n|X̃nW̃ ′σ (Anew

n |xn, wσ)

(185)
≥ η. (186)

By the blowing-up lemma [22, Remark on p. 446],

PṼ ′σỸ n|X̃nW̃ ′m(Âexp,`n
n |xn, wσ) ≥ 1−

√
(n+ σ) ln(1/η)

`n
(187)

= 1− νn, (188)

where we defined νn ,
√

(n+σ) ln(1/η)

`n
and the blown up

region

Âexp,`n
n , {(ṽσ, ỹn) : ∃(vσ, yn) ∈ Aexp

n s.t.
dH(ṽσ, vσ) + dH(ỹn, yn) ≤ `n}.

(189)

Averaging over the sequences (xn, wσ) ∈ Dn we obtain:

PṼ ′σỸ n(Âexp,`n
n ) ≥ 1− νn. (190)

Since Âexp,`n
n is the expanded region of Ânew,`n

n , we further
have:

PṼ τ̃n Ỹ n(Ânew,`n
n ) = PṼ ′mỸ n(Âexp,`n

n ) (191)
≥ 1− νn. (192)

Notice next:

PṼ τ̃nPỸ n(Ânew,`n
n ) ≤ PV τnPnY (Ânew,`n

n ) ·∆−2
n (193)

≤ PV τnPnY (Anew
n ) ·K`n

n ·∆−2
n (194)

≤ βn ·K`n
n ·∆−2

n , (195)

where

Kn ,
ne

`n
pq|Y||V| (196)

and

p , max
y,y′ : PY (y′)>0

PY (y)

PY (y′)
(197)

q , max
w,v,v′:ΓV |W (v′|w)>0

ΓV |W (v|w)

ΓV |W (v′|w)
. (198)

Here, (193) holds by (165)–(166); step (194) holds by [21,
Proof of Lemma 5.1], and step (195) because the original
acceptance region includes the new region: An ⊇ Anew

n .

We use (195) to bound the type-II error exponent of the

original test:

− 1

n
log βn ≤ −

1

n
logPṼ τ̃nPỸ n(Ânew,`n

n )− 2

n
log ∆n

+
`n
n

logKn (199)

≤ 1

n(1− νn)
(D(PṼ τ̃n Ỹ n‖PṼ τ̃nPỸ n) + 1))

− 2

n
log ∆n +

`n
n

logKn, (200)

where the second inequality holds by Lemma 1 stated at the
beginning of Appendix IV and by Inequality (190).

We continue to single-letterize the divergence term:

1

n
D(PṼ τ̃n Ỹ n‖PṼ τ̃nPỸ n) =

1

n
I(Ṽ τ̃n ; Ỹ n) (201)

=
1

n

n∑
t=1

I(Ṽ τ̃n ; Ỹt|Ỹ t−1) (202)

≤ 1

n

n∑
t=1

I(Ṽ τ̃n , Ỹ t−1; Ỹt) (203)

≤ 1

n

n∑
t=1

I(Ṽ τ̃n , X̃t−1; Ỹt) (204)

=
1

n

n∑
t=1

I(Ũt; Ỹt) (205)

= I(ŨT ; ỸT |T ) (206)
≤ I(ŨT , T ; ỸT ) (207)
= I(Ũ ; ỸT ), (208)

where (204) holds by the Markov chain Ỹ t−1 →
(Ṽ τ̃n , X̃t−1)→ Ỹt.

Combining (200) with (148), we obtain:

− 1

n
log βn ≤

1

1− νn

(
I(Ũ ; ỸT ) +

1

n

)
− 2

n
log ∆n

+
`n
n

logKn. (209)

When n→∞, then νn → 0, 2
n log ∆n → 0, and `n

n logKn →
0. So, the asymptotic type-II error exponent is upper bounded
by the limit of I(Ũ ; ỸT ) as n→∞.

We analyze this limit by first noticing that Charathodory’s
theorem implies that for each blocklength n there exists a
random variable Un over an alphabet of size |X |+1 satisfying
the Markov chain Un → X̃T → ỸT and the equalities
I(Un; X̃T ) = I(ŨT ; X̃T ) and I(Un; ỸT ) = I(ŨT ; ỸT ). We
can thus replace in (129) and (148) the random variable Ũ by
this new random variable Un.

The proof is concluded by taking n→∞ and then µ, η →
0. In fact, recall that X̃n ∈ T (n)

µ (PX) and Ỹ n is obtained
by passing X̃n through the channel PY |X , which implies that
as n → ∞ and µ → 0 the distribution of PX̃T ỸT tends to
PXY . By standard continuity considerations, by the modified
bounds (182) and (209) with Ũ replaced by Un, and because
all random variables have fixed and finite alphabet sizes, we
can then conclude that

lim
n→∞

− 1

n
log βn ≤ I(U ;Y ) (210)
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for a random variable U satisfying

κ · C
1− ε

≥ I(U ;X) (211)

and the Markov chain U → X → Y and (X,Y ) ∼ PXY .

VI. CONCLUDING REMARKS

We established the optimal type-II error exponent of a
distributed testing against independence problem under a con-
straint on the probability of type-I error and on the expected
communication rate. This result can be seen as a variable-
length coding version of the well-known result by Ahlswede
and Csiszár [1] which holds under a maximum rate-constraint.
Interestingly, when the type-I error probability is constrained
to be at most ε ∈ (0, 1), then the optimal type-II error
exponent under an expected rate constraint R coincides with
the optimal type-II error exponent under a maximum rate
constraint R/(1 − ε). Thus, unlike in the scenario with a
maximum rate constraint, here a strong converse does not hold,
because the optimal type-II error exponent depends on the
allowed type-I error probability ε. This latter observation is not
surprising in view of similar results that have previously been
obtained on variable-length coding for compression systems
with positive error probabilities [27]–[29]; in fact also these
results show that the minimum compression rate is decreased
as a function of the allowed error probability. The contribution
of this paper thus rather lies in the converse proofs of the
results.

We also considered testing against independence over a
DMC with variable-length coding and stop feedback. As we
show, the optimal type-II error exponent depends on the DMC
transition law only through its capacity. More specifically,
under a type-I error probability constraint ε ∈ (0, 1), the
optimal type-II error exponent with variable-length coding
over a DMC with capacity C coincides with the optimal type-
II error exponent under fixed-length coding over a DMC with
capacity C/(1 − ε). Thus, a strong converse result does not
hold for this setup, neither.

The paper considered setups where the marginal distri-
butions are the same under both hypotheses. The presented
results hold also when this assumption is relaxed, the important
assumption is the independence of the sources under the
alternative hypothesis H1. An interesting future direction is
to investigate whether also this assumption can be relaxed
and similar results apply for testing against conditional in-
dependence. Another interesting line of future research is
to study the optimal exponents under variable-length coding
when both the type-I and the type-II error probability are
required to decay exponentially fast, as considered in [2],
[24]. In such a setup the sensor can “give up” (i.e., send
a dummy [0] bit-string message) only on a set of source
sequences that has a probability of error that decreases at least
exponentially fast in the blocklength. However, modifying a
coding scheme only with such a small probability has no effect
on the expected rate compared to the original scheme, and thus
will not yield the desired improvement in exponents compared
to the corresponding fixed-length scheme. A more promising
approach is to assign different (non-negligible) lengths to

different codeword sequences as also considerd in [24], [33].
It would be interesting to see whether such a variable-length
coding approach can result in improved exponents. Yet another
interesting extension is to analyze the benefits of variable-
length coding in the finite block-length regime and to try to
improve over Watanabe’s error probabilities [25] that are based
on fixed-length coding. Like in the two-exponents scenario, a
promising approach seems to be to assign different codeword
lengths to different source sequences.
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