Constrained intra-cell and inter-cell cooperation in cellular networks

Roy Timo[†], Michèle Wigger[‡], and Shlomo Shamai^{††} [†]Technische Universität München [‡]Telecom ParisTech

^{††}Technion–Isreal Institute of Technology

Constrained intra-cell and inter-cell cooperation in cellular networks

BS-BS cooperation inside a cell

BS-BS or mobile-mobile cooperation across cells

BS-to-BS cooperation inside a cell: downlink

(Almost) lossless joint source-channel coding

Reliable communications for rates (R_1, R_2) possible, if \exists encodings and decodings s.t.

$$\mathbb{P}\Big[\big\{\hat{W}_1^n\neq W^n\big\}\cup\big\{\hat{W}_2^n\neq W^n\big\}\Big]\longrightarrow 0$$

[1] R. Timo and M. Wigger, "Slepian-Wolf coding for broadcasting with cooperative basestations," *IEEE Trans. Communications*, 2015.

Two scenarios for helper side-informations U_1^n and U_2^n

[2] D. Gunduz, E. Erkip, A. Goldsmith, and H. V. Poor, "Reliable joint source-channel cooperative transmission over relay networks," *IEEE Trans. Inform. Theory*, 2013.

Background: No helper basestations, $R_1 = R_2 = 0$

[3] E. Tuncel, "Slepian-Wolf coding over broadcast channels," IEEE Trans. Inform. Theory, 2006.

Source codebook, channel codebook & encoding

Decoding at Receiver 1

• Choose unique $w^n(i)$ common to both lists

Extension: Slepian-Wolf coding over BC with list decoding

• Receiver 1 outputs $\mathcal{L}_1 \subseteq \mathcal{W}^n$

 (D_1, D_2) -achievable if for $|\mathcal{L}_1| \leq 2^{nD_1}$ and $|\mathcal{L}_2| \leq 2^{nD_2}$: $\mathbb{P}\Big[\{W^n \notin \mathcal{L}_1\} \bigcup \{W^n \notin \mathcal{L}_2\}\Big] \to 0 \quad \text{as} \quad n \to \infty$

Slepian-Wolf coding over BC with list decoding

Lemma:

 $egin{aligned} &(D_1 \geq 0, D_2 \geq 0) ext{-achievable iff} \ &\exists X \sim P_X ext{ s.t.} \ & D_1 \geq H(W|V_1) - I(X;Y_1) \ & D_2 \geq H(W|V_2) - I(X;Y_2) \end{aligned}$

Slepian-Wolf coding over BC with list decoding

Base-station cooperation Model 2: $(W^n, V_1^n, V_2^n, U_1^n, U_2^n)$ i.i.d.

Theorem:

Reliable communication possible with helper rates (R_1, R_2) iff $\exists X, A_1, A_2$ s.t.

$H(W V_1, \mathbf{A}_1) \leq I(X; Y_1)$	$R_1 \geq I(U_1; A_1 V_1)$
$H(W V_2, \underline{A_2}) \leq I(X; Y_2)$	$R_2 \geq I(U_2; A_2 V_2)$

and $(W, V_1) - U_1 - A_1$ and $(W, V_2) - U_2 - A_2$

Base-station cooperation Model 2: $(W^n, V_1^n, V_2^n, U_1^n, U_2^n)$ i.i.d.

Theorem:

Reliable communication possible with helper rates (R_1, R_2) iff $\exists X, A_1, A_2$ s.t.

$$\begin{split} H(W|V_1,A_1) &\leq I(X;Y_1) & R_1 \geq I(U_1;A_1|V_1) \geq I(W;A_1|V_1) \\ H(W|V_2,A_2) &\leq I(X;Y_2) & R_2 \geq I(U_2;A_2|V_2) \geq I(W;A_2|V_2) \\ \text{and} & (W,V_1) - U_1 - A_1 \text{ and } & (W,V_2) - U_2 - A_2 \end{split}$$

Base-station cooperation Model 1: $U_{1,k} = \phi_1(X_k)$

Theorem:

Reliable communications possible with helper rates (R_1, R_2) iff $\exists X \sim P_X$ s.t.

$$H(W|V_1) < I(X; Y_1) + \min \left\{ R_1, \ I(X; U_1|Y_1) \right\}$$
$$H(W|V_2) < I(X; Y_2) + \min \left\{ R_2, \ I(X; U_2|Y_2) \right\}$$

Base-station cooperation Model 1: $U_{1,k} = \phi_1(X_k)$

Theorem:

Reliable communications possible with helper rates (R_1, R_2) iff $\exists X \sim P_X$ s.t.

$$H(W|V_1) < I(X; Y_1) + \min \{R_1, I(X; U_1|Y_1)\}$$
$$H(W|V_2) < I(X; Y_2) + \min \{R_2, I(X; U_2|Y_2)\}$$

Encoding at Main BS

• Choose *i* s.t.
$$W^n = w^n(i)$$

• Send $x^n(i)$

Receiver 1 and Helper BS in Model 1 ($U_{k,t} = \phi_k(X_t)$)

 Helper BS 1: randomly hash U₁ⁿ (see deterministic relay channel)

• Mobile 1: recover U_1^n from helper bits, side-info V_1^n , and outputs Y_1^n , and do:

Decoding at Receiver 1 in Model 2: $(W^n, V_1^n, V_2^n, U_1^n, U_2^n)$ i.i.d.

• Helper BS 1: use Wyner's helper source code to compress V_1^n into A_1^n

• Mobile 1: recover A_1^n from helper bits and side-info Y_1^n , and do:

Summary on intra-cell cooperation

• Slepian-Wolf coding over BCs revisited with list-decoding

• BS cooperation Model 1: $U_1^n = \phi_1(X^n)$

 \rightarrow List decoding and hash & forward optimal

- BS cooperation Model 2: Uⁿ₁ directly correlated with Wⁿ
 → List decoding and Wyner-Ziv coding optimal
- · Results extend to bandwidth mismatched case and many receivers

Intercell cooperation: BS-to-BS or mobile-to-mobile cooperation

• Cooperation over digital links of given capacities

of conferencing rounds limited due to latency or complexity constraints

• For small networks: 1 or 2 rounds sufficient

[4] R. Timo, S. Shamai, M. Wigger, "Conferencing in Wyner's asymmetric interference network: effect of number of rounds," in *Proc. of ITW*, 2015.

Wyner's Asymmetric Soft-Handoff Model

- K transmitter/receiver pairs (K = 6 above)
- Channel gains $\{\alpha_k\}$ fixed, constant, non-zero
- ullet Memoryless Gaussian noises of variance σ^2 and equal power constraints P

Goal

Determine message rates R_1, \ldots, R_K s.t. $\forall k \colon \Pr(\hat{M}_k \neq M_k) \to 0$ as $n \to \infty$

Wyner's Asymmetric Soft-Handoff Model

• K transmitter/receiver pairs (K = 6 above)

- Channel gains $\{\alpha_k\}$ fixed, constant, non-zero
- Memoryless Gaussian noises of variance σ^2 and equal power constraints P

Goal

Determine message rates R_1, \ldots, R_K s.t. $\forall k \colon \Pr(\hat{M}_k \neq M_k) \to 0$ as $n \to \infty$

Communication takes place in 4 phases

- Transmitter-conferencing in $\kappa_{\mathsf{Tx}} \geq 1$ rounds
- Cooperative communication over network
- Receiver-conferencing over $\kappa_{\mathsf{Rx}} \geq 1$ rounds
- Cooperative decoding

• Tx-conferencing: Messages can spread over κ_{Tx} transmitters to left & right

Phase 1: Transmitter-conferencing

• Tx-conferencing: Messages can spread over κ_{Tx} transmitters to left & right

Phase 1: Transmitter-conferencing

• Tx-conferencing: Messages can spread over κ_{Tx} transmitters to left & right

Phase 2: Cooperative communication over network

• Tx-conferencing: Messages can spread over κ_{Tx} transmitters to left & right

Phase 3: Receiver-conferencing

• Tx-conferencing: Messages can spread over κ_{Tx} transmitters to left & right

Phase 4: Clustered decoding

• Tx-conferencing: Messages can spread over κ_{Tx} transmitters to left & right

High-SNR Performance: Multiplexing-Gain Per User

• Sum-capacity: C_{Σ} maximum sum of rates $R_1 + R_2 + \cdots + R_K$ s.t. $p(error) \rightarrow 0$

• Asymptotic multiplexing gain per user S:

Sum-capacity:
$$C_{\Sigma} \approx S \cdot \frac{K}{2} \log(1 + P/\sigma^2), \qquad P/\sigma^2 \gg 1$$

• Conferencing prelogs μ_{Tx} and μ_{Rx} :

$$R_{\mathrm{Tx}} = \mu_{\mathsf{Tx}} \cdot \frac{1}{2} \log(1 + P/\sigma^2) \qquad \text{and} \qquad R_{\mathrm{Rx}} = \mu_{\mathsf{Rx}} \cdot \frac{1}{2} \log(1 + P/\sigma^2)$$

Result I : Converse

Theorem

$$\mathcal{S} \leq \min\left\{1\,,\,\frac{2\mu_{\mathsf{Tx}}+2\mu_{\mathsf{Rx}}+1}{2}\,,\,\frac{2\kappa_{\mathsf{Tx}}+2\kappa_{\mathsf{Rx}}+1}{2\kappa_{\mathsf{Tx}}+2\kappa_{\mathsf{Rx}}+2}\right\}$$

$$\mathcal{S} \leq \min\left\{1\,,\,\frac{2\mu_{\mathsf{Rx}}+1}{2}\,,\,\frac{2\kappa_{\mathsf{Rx}}+1}{2\kappa_{\mathsf{Rx}}+2}\right\},\qquad\qquad \text{if }\mu_{\mathsf{Tx}}=0$$

$$\mathcal{S} \le \min\left\{1\,,\,\frac{2\mu_{\mathsf{Tx}}+1}{2}\,,\,\frac{2\kappa_{\mathsf{Tx}}+1}{2\kappa_{\mathsf{Tx}}+2}\right\},\qquad\qquad \text{if }\mu_{\mathsf{Rx}}=0$$

[5] A. Lapidoth, N. Levy, S. Shamai (Shitz), and M. Wigger, "Cognitive Wyner networks with clustered decoding," IEEE Trans. on Information Theory, Oct. 2014.

Result II : Achievability

Theorem

Let

$$\frac{\mu_{\mathsf{Tx}}}{\kappa_{\mathsf{Tx}}} \geq \frac{\mu_{\mathsf{Rx}}}{\kappa_{\mathsf{Rx}}}$$

Then,

$$S \geq S^{Ach} = \begin{cases} \frac{2\mu_{\mathsf{Tx}} + 2\mu_{\mathsf{Rx}} + 1}{2} & \text{if } 2\frac{\mu_{\mathsf{Tx}}}{\kappa_{\mathsf{Tx}}}(1 + \kappa_{\mathsf{Tx}}) + 2\mu_{\mathsf{Rx}} \leq 1\\ \\ \frac{2\kappa_{\mathsf{Tx}} + 2\mu_{\mathsf{Rx}} + 1}{2\kappa_{\mathsf{Tx}} + 2} & \text{otherwise} \\ \\ \frac{2\kappa_{\mathsf{Tx}} + 2\kappa_{\mathsf{Rx}} + 1}{2\kappa_{\mathsf{Tx}} + 2\kappa_{\mathsf{Rx}} + 2} & \text{if } 2\frac{\mu_{\mathsf{Rx}}}{\kappa_{\mathsf{Rx}}}(1 + \kappa_{\mathsf{Tx}}) + 2\mu_{\mathsf{Rx}} > 1. \end{cases}$$

Tight when μ_{Tx} and μ_{Rx} small or large and when $\mu_{Tx} = 0$ or $\mu_{Rx} = 0$

Result III : Without limitation on number of conferencing rounds

Theorem

$$\mathcal{S}_{\infty} = \min\left\{1, rac{2\mu_{\mathsf{Tx}} + 2\mu_{\mathsf{Rx}} + 1}{2}
ight\}$$

Comparison for $\kappa_{Tx} = \kappa_{Rx}$ and $\mu_{Tx} = 2\mu_{Rx} = \mu$

• For small conferencing prelogs $\kappa = 1$ suffices!

• For finite κ , multiplexing gain per user saturates below 1

• With Tx-conferencing:
$$\hat{X}_k = f_k(M_1, \dots, M_k)$$
 or $\hat{X}_k = f_k(M_{k+1}, \dots, M_K)$

• With Tx-conferencing:
$$\hat{X}_k = f_k(M_1, \dots, M_k)$$
 or $\hat{X}_k = f_k(M_{k+1}, \dots, M_K)$

• With Tx-conferencing:
$$\hat{X}_k = f_k(M_1, \dots, M_k)$$
 or $\hat{X}_k = f_k(M_{k+1}, \dots, M_K)$

• With Rx-conferencing: $\hat{M}_k = g_k(Y_1^n, \dots, Y_k^n)$ or $\hat{M}_k = g_k(Y_{k+1}^n, \dots, Y_K^n)$

 \rightarrow Interference cancelation technique causes interference to propagate!

•
$$\mu_{\text{Tx}} = 1/2 \text{ or } \mu_{\text{Rx}} = 1/2 \implies S_{\kappa=\infty} = 1$$

$$\begin{array}{c}
M_1 & M_2 & M_3 & M_4 & M_5 & M_6 \\
\hline \text{Tx 1} & \text{Tx 2} & \text{Tx 3} & \text{Tx 3} \\
\overset{\text{almost}}{\text{ranceled}} & & \alpha_5 X_1^n & \text{almost} & \alpha_6 X_5^n \\
\overset{\text{canceled}}{\oplus Z_1^n} & \overset{\text{def}}{\oplus Z_2^n} & \overset{\text{def}}{\oplus Z_2^n} & \overset{\text{def}}{\oplus Z_3^n} & \overset{\text{def}}{\oplus Z_4^n} & \overset{\text{def}}{\oplus Z_4^n} & \overset{\text{def}}{\oplus Z_4^n} & \overset{\text{def}}{\to Z_4^n} & \overset{\text{def}}{\to Z_6^n} \\
\overset{\text{def}}{\oplus Z_4^n} & \overset{\text{def}}{\to Z_4^n} & \overset{\text{def}}{\to Z_6^n} & \overset{\text{def}}{\to Z_6^n} & \overset{\text{def}}{\to Z_6^n} \\
\overset{\text{def}}{\to Z_4^n} & \overset{\text{def}}{\to Z_4^n} & \overset{\text{def}}{\to Z_6^n} & \overset{\text{def}}{\to Z_6^n} \\
\overset{\text{def}}{\to Z_4^n} & \overset{\text{def}}{\to Z_4^n} & \overset{\text{def}}{\to Z_6^n} & \overset{\text{def}}{\to Z_6^n} \\
\overset{\text{def}}{\to Z_4^n} & \overset{\text{def}}{\to Z_6^n} & \overset{\text{def}}{\to Z_6^n} \\
\overset{\text{def}}{\to Z_6^n} & \overset{\text{def}}{\to Z_6^n} & \overset{\text{def}}{\to Z_6^n} \\
\overset{\text{def}}{\to Z_6^n} & \overset{\text{def}}{\to Z_6^n} & \overset{\text{def}}{\to Z_6^n} \\
\overset{\text{def}}{\to Z_6^n} & \overset{\text{def}}{\to Z_6^n} & \overset{\text{def}}{\to Z_6^n} \\
\overset{\text{def}}{\to Z_6^n} & \overset{\text{def}}{\to Z_6^n} & \overset{\text{def}}{\to Z_6^n} \\
\overset{\text{def}}{\to Z_6^n} & \overset{\text{def}}{\to Z_6^n} & \overset{\text{def}}{\to Z_6^n} \\
\overset{\text{def}}{\to Z_6^n} & \overset{\text{def}}{\to Z_6^n} & \overset{\text{def}}{\to Z_6^n} \\
\overset{\text{def}}{\to Z_6^n} & \overset{\text{def}}{\to Z_6^n} & \overset{\text{def}}{\to Z_6^n} \\
\overset{\text{def}}{\to Z_6^n} & \overset{\text{def}}{\to Z_6^n} & \overset{\text{def}}{\to Z_6^n} \\
\overset{\text{def}}{\to Z_6^n} & \overset{\text{def}}{\to Z_6^n} & \overset{\text{def}}{\to Z_6^n} \\
\overset{\text{def}}{\to Z_6^n} & \overset{\text{def}}{\to Z_6^n} & \overset{\text{def}}{\to Z_6^n} \\
\overset{\text{def}}{\to Z_6^n} & \overset{\text{def}}{\to Z_6^n} & \overset{\text{def}}{\to Z_6^n} \\
\overset{\text{def}}{\to Z_6^n} & \overset{\text{def}}{\to Z_6^n} & \overset{\text{def}}{\to Z_6^n} \\
\overset{\text{def}}{\to Z_6^n} & \overset{\text{def}}{\to Z_6^n} & \overset{\text{def}}{\to Z_6^n} \\
\overset{\text{def}}{\to Z_6^n} & \overset{\text{def}}{\to Z_6^n} & \overset{\text{def}}{\to Z_6^n} & \overset{\text{def}}{\to Z_6^n} \\
\overset{\text{def}}{\to Z_6^n} & \overset{\text{def}}{\to Z_6^n} & \overset{\text{def}}{\to Z_6^n} & \overset{\text{def}}{\to Z_6^n} \\ & \overset{\text{def}}{\to Z_6^n} & \overset{$$

• With Tx-conferencing:
$$\hat{X}_k = f_k(M_1, \dots, M_k)$$
 or $\hat{X}_k = f_k(M_{k+1}, \dots, M_K)$

• With Rx-conferencing:
$$\hat{M}_k = g_k(Y_1^n, \dots, Y_k^n)$$
 or $\hat{M}_k = g_k(Y_{k+1}^n, \dots, Y_k^n)$

Coding Scheme for $\kappa = 1$

Interference mitigation causes interference to propagate

For finite κ_{Tx} and κ_{Rx} : need to switch off transmitters \Rightarrow saturation of S even when $\mu_{Tx}, \mu_{Rx} \to \infty$

•
$$\mu_{\mathsf{Tx}} = 1/2$$
 or $\mu_{\mathsf{Rx}} = 1/2 \implies \mathcal{S} = 5/6$

• Tx-conferencing: M_k and Rx-conferencing: $\hat{Y}_k^n = g_k(Y_k^n)$

 \rightarrow achievable also with oblivious-codebooks

Extension: Conferencing Links to Multiple Left-& Right-Neighbours

• Combination of presented schemes

•
$$S = \frac{\kappa_{Tx}(t_L+t_R)+\kappa_{Rx}(r_L+r_R)+1}{\kappa_{Tx}(t_L+t_R)+\kappa_{Rx}(r_L+r_R)+2}$$
 even when $\mu_{Tx}, \mu_{Rx} \to \infty$

Summary and Outlook on: Cooperation across cells

- For small conferencing prelogs $\kappa_{Tx} = \kappa_{Rx} = 1$ suffice!
- For finite κ_{Tx} , κ_{Rx} , multiplexing gain per user saturates below 1
- Duality between transmitter-cooperation and receiver-cooperation

- In future: analyze different cooperation constraints
 - oblivious codebooks
 - more accurate latency and complexity constraints? (mobiles!)