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Abstract

This paper analyzes the multiplexing gains (MG) for simultaneous transmission of delay-sensitive

and delay-tolerant data over interference networks. In the considered model, only delay-tolerant data can

profit from coordinated multipoint (CoMP) transmission or reception techniques, because delay-sensitive

data has to be transmitted without further delay. Transmission of delay-tolerant data is also subject to a

delay constraint, which is however less stringent than the one on delay-sensitive data. Different coding

schemes are proposed, and the corresponding MG pairs for delay-sensitive and delay-tolerant data

are characterized for Wyner’s linear symmetric network and for Wyner’s two-dimensional hexagonal

network with and without sectorization. Information-theoretic converses are established for all the three

models. For Wyner’s linear symmetric the bounds match whenever the cooperation rates are sufficiently

large or the delay-sensitive MG is small or moderate. These results show that on Wyner’s symmetric

linear network and for sufficiently large cooperation rates, the largest MG for delay-sensitive data can

be achieved without penalizing the maximum sum-MG of both delay-sensitive and delay-tolerant data.

Our achievable schemes show that a similar conclusion holds for Wyner’s hexagonal network only

for the model with sectorization. In the model without sectorization, a penalty in sum-MG is incurred

whenever one insists on a positive delay-sensitive MG.
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I. INTRODUCTION

One of the main challenges for future wireless communication systems is to accommodate

heterogeneous data streams with different delay constraints. This is also the focus of various

recent works, notably [1]–[7]. In particular, [1], [2] study a cloud radio access network (C-RAN)

under mixed-delay-constraints traffic. Specifically, users close to base stations (BS) transmit

delay-sensitive data, which is directly decoded at the BSs, and users that are further away send

delay-tolerant data, which is decoded at the central processor. In this paper we refer to delay-

tolerant data as “slow” messages, and to delay-sensitive data as “fast” messages. In [4], we

extended above C-RAN model to allow each user to send both “fast” and “slow” messages, and

to time-varying fading channels. The results in [4] show that at any “fast” rate, the stringent

delay constraint on “fast” messages penalizes the overall performance (sum-rate) of the system.

The work in [5] proposes a superposition approach over a fading channel to communicate

“fast” messages within single coherence blocks and “slow” messages over multiple blocks. In

[6] a scheduling algorithm is proposed for a K-user broadcast network that gives preference to

the communication of “fast” messages over “slow” messages. A related work was performed in

[7], where “fast” messages can be stored in a buffer during a single scheduling period.

The focus of the current work is on the benefits of cooperation for mixed-delay traffics,

assuming that only the transmissions of “slow” messages can profit from cooperation between

terminals, but not “fast” messages. Networks with transmitter- (Tx) and/or receiver- (Rx)

cooperation have been considered in many recent works including [8]–[18] but mostly only

with a single type of messages, namely the messages that we call “slow” messages. Huleihel

and Steinberg [8] considered two types of messages: one type that has to be decoded whether

or not the Rx-cooperation link is present, and the other that only has to be decoded when the

cooperation link is present. Inspired by this model, we studied Wyner’s soft-handoff model [22],

[23] with mixed-delay traffics in [19], where the Tx-cooperation messages can only depend on

the “slow” messages in the system and not on the “fast” messages, and “fast” messages have

to be decoded prior to the Rx-cooperation phase, whereas “slow” messages can be decoded

thereafter. Moreover, in [19] the total number of Tx- and Rx- cooperation rounds is constrained

also for the “slow” messages as proposed [18]. The problem setup that we consider in this

paper is different from the setups in [9]–[18] as each Tx wishes to send both “fast” and “slow”

messages, and is different from the setup in [19] as it covers networks with arbitrary interference
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graphs whereas in [19], we focus on Wyner’s soft-handoff model where the signal sent by each

transmitter interferes only the observed signal by the receiver to its right. The results in [19]

show that, in the high signal to noise ratio (SNR) regime, when both the Txs and the Rxs can

cooperate, and for sufficiently large cooperation rates, it is possible to accommodate the largest

possible rate for “fast” messages without penalizing the maximum sum-rate of both “fast” and

“slow” messages. When only Txs or only Rxs can cooperate, transmitting also “fast” messages

causes no penalty on the sum-rate at low “fast” rates, but the sum-rate decreases linearly at high

“fast” rates. Notice that the standard approach to combine the transmissions of “slow” and “fast”

messages is to time-share (schedule) the transmission of “slow” messages with the transmission

of “fast” messages. In this approach, the sum-rate decreases linearly with the rate of the “fast”

messages and attains the maximum sum-rate only when no “fast” messages are transmitted.

The focus of this paper is on the pairs of Multiplexing Gains (MG), also called degrees

of freedom or capacity prelogs, that are simultaneously achievable for “fast” and “slow”

messages. We propose a general coding scheme for any interference network with Tx- and Rx-

cooperation that simultaneously accommodates the transmissions of “slow” and “fast” messages,

and characterize their achievable MG pairs for two specific cellular network models: Wyner’s

linear symmetric model [22], [23] and Wyner’s two-dimensional hexagonal model [22] with

and without sectorization. In Wyner’s linear symmetric model, cells are aligned in a line and

interference is short range, so that transmissions in a cell are interfered only by transmissions

from the two neighbouring cells. Such a model is adequate for systems deployed along highways,

railroads or long corridors, see also [41]. In Wyner’s two-dimensional models, cells are of

hexagonal shapes and transmissions in a cell are interfered by the transmissions in the six

neighbouring cells. Sectorization occurs in this model if the BS employs directional antennas

pointed to three different directions, so that transmissions in these sectors do not interfere. The

hexagonal models are adequate for systems where BSs are spread in two dimensions. For all

three considered models, in this paper we assume that the various users of the same cell are

scheduled in different frequency bands. Interference thus occurs only from the mobile users in

neighbouring cells that are scheduled on the same frequency band.

We establish information-theoretic converses for all three models. For Wyner’s symmetric

network the converse bound matches the proposed set of achievable MG pairs when the

cooperation links are of sufficiently high prelogs or when the MG of “fast” messages is small.

These results show that when the prelog of the cooperation links is sufficiently large, for
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Wyner’s linear symmetric model, as for Wyner’s linear soft-handoff model [19], it is possible

to accommodate the largest possible MG for “fast” messages without penalizing the maximum

sum MG of both “fast” and “slow” messages. Our achievable schemes suggest that the same

also holds for the sectorized hexagonal model considered in this paper where each cell is divided

into three non-interfering sectors by employing directional antennas at the BSs [33]. In contrast,

for the considered non-sectorized hexagonal model, there seems to be a penalty in maximum

sum MG whenever the “fast” MG is larger than 0.

To achieve the described performances, we propose a novel coding scheme where we assign

“fast” and “slow” messages to different sets of transmitters in a way that “fast” transmissions

are interfered only by “slow” transmissions. Then we use precoding and successive interference

cancellation techniques to transmit each of the “fast” messages at full MG without disturbing

the transmission of “slow” messages. The transmission of “slow” messages can benefit from

cooperation by applying CoMP reception/ transmission in small subnets to jointly decode/encode

the “slow” messages at different Rxs/Txs. More specifically, in our coding scheme, we identify

a set of the Txs whose signals do not interfere. The chosen Txs send “fast” messages and

the others send “slow” messages or nothing. Communication of “fast” messages is thus only

interfered by transmissions of “slow” messages and this interference can be described during the

Tx-conferencing phase and precanceled at the “fast” Txs. Also, “fast” Rxs decode their messages

immediately and can describe their decoded messages during the Rx-conferencing phase to their

adjacent “slow” Rxs allowing them to subtract the interference from “fast” messages before

decoding their own “slow” messages. As a result, “fast” messages can be decoded based on

interference-free outputs and moreover, they do not disturb the transmission of “slow” messages.

CoMP transmission or reception [20], [21] for limited clusters is then employed to convey the

“slow” messages.

A. Organization

The rest of this paper is organized as follows. We end this section with some remarks on

notation. The following Sections II and III consider general interference networks and describe

the problem setup and the proposed coding scheme and its multiplexing gain region for such

a general network. Sections IV–VI specialize the results to the symmetric linear Wyner model

and to the two-dimensional hexagonal Wyner model. Section VII concludes the paper.
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Fig. 1: Wyner’s symmetric network. Black dashed arrows show interference links and purple

arrows cooperation links.

B. Notation

We use the shorthand notations “Rx” for “Receiver” and “Tx” for “Transmitter”. The set of

all integers is denoted by Z, the set of positive integers by Z+ and the set of real numbers by R.

For other sets we use calligraphic letters, e.g., X . Random variables are denoted by uppercase

letters, e.g., X , and their realizations by lowercase letters, e.g., x. For vectors we use boldface

notation, i.e., upper case boldface letters such as X for random vectors and lower case boldface

letters such as x for deterministic vectors.) Matrices are depicted with sans serif font, e.g., H.

We use [K] to denote the set {1, . . . , K}. We also write Xn for the tuple of random variables

(X1, . . . , Xn) and Xn for the tuple of random vectors (X1, . . . ,Xn).

II. PROBLEM DESCRIPTION

Consider a cellular interference network with K cells each consisting of one Tx and Rx pair.

Txs and Rxs are equipped with L antennas and we assume a regular interference pattern except

at the network borders. As an example, Fig. 1 shows Wyner’s symmetric network where each

cell corresponds to a Tx/Rx pair and the interference pattern is depicted with black dashed lines.

Each Tx k ∈ [K] sends a pair of independent messages M (F )
k and M (S)

k to Rx k ∈ [K]. The

“fast” message M (F )
k is uniformly distributed over the set M(F )

k , {1, . . . , b2nR
(F )
k c} and needs

to be decoded subject to a stringent delay constraint, as we explain shortly. The “slow” message

M
(S)
k is uniformly distributed over M(S)

k , {1, . . . , b2nR
(S)
k c} and is subject to a less stringent

decoding delay constraint. Here, n denotes the blocklength of transmission and R
(F )
k and R

(S)
k

the rates of transmissions of the “fast” and “slow” messages.

We consider a cooperation scenario where neighbouring Txs cooperate during DTx > 0 rounds

and neighbouring Rxs during DRx > 0 rounds. The total cooperation delay is constrained:

DTx + DRx ≤ D, (1)
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where D ≥ 0 is a given parameter of the system and the values of DTx and DRx are design

parameters and can be chosen arbitrary such that (1) is satisfied.

To describe the encoding at the Txs, denote by NTx(k) the set of all Txs that have a direct

cooperation link with a given Tx k ∈ [K]. We refer to NTx(k) as the Tx-neighbouring set of Tx k.

Neighbouring Txs can communicate to each other during DTx > 0 rounds, where this communica-

tion can only depend on “slow” messages but not on “fast” messages. In each conferencing round

j ∈ {1, . . . ,DTx}, Tx k sends a cooperation message T (j)
k→`

(
M

(S)
k ,

{
T

(1)
`′→k, . . . , T

(j−1)
`′→k

}
`′∈NTx(k)

)
to Tx ` if ` ∈ NTx(k). The cooperation communication is assumed noise-free but rate-limited:

DTx∑
j=1

H(T
(j)
k→`) ≤ µTx ·

n

2
log(P), k ∈ [K], ` ∈ NTx(k), (2)

for a given Tx-conferencing prelog µTx > 0 and where H(·) denotes the entropy function and

P > 0 is the average block power constraint.

Tx k computes its channel inputs Xn
k = (Xk,1, . . . ,Xk,n) ∈ RL×n as a function of its “fast”

and “slow” messages and of the DTx|NTx(k)| obtained cooperation messages:

Xn
k = f

(n)
k

(
M

(F )
k ,M

(S)
k , {T (1)

`′→k, . . . , T
(DTx)
`′→k }`′∈NTx(k)

)
. (3)

The channel inputs have to satisfy the average block-power constraint almost surely:

1

n

n∑
t=1

||Xk,t||2 ≤ P, ∀ k ∈ [K]. (4)

To describe the decoding, denote the Rx-neighbouring set of a given Rx k ∈ [K], i.e., the set

of all receivers that can directly exchange cooperation messages with Rx k, by NRx(k). Also,

define the interference set Ik as the the set of all Txs whose signals interfere at Rx k.

Decoding takes place in two phases. During the fast-decoding phase, each Rx k decodes its

“fast” message M (F )
k based on its channel outputs Yn

k = (Y k,1, . . . ,Y k,n) ∈ RL×n, where

Yn
k = Hk,kX

n
k +

∑
k̂∈Ik

Hk̂,kX
n
k̂

+ Zn
k , (5)

and Zn
k,k is i.i.d. standard Gaussian noise, and the fixed L-by-L full-rank matrix Hk̂,k models the

channel from Tx k̂ to the receiving antennas at Rx k. So, Rx k produces:

M̂
(F )
k = g

(n)
k

(
Yn
k

)
, (6)

using some decoding function g
(n)
k on appropriate domains. In the subsequent

slow-decoding phase, each Rx k ∈ [K] sends a conferencing message
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Q
(j)
k→`

(
Yn
k ,
{
Q

(1)
`′→k, . . . , Q

(j−1)
`′→k }`′∈NRx(k)

})
during cooperation round j ∈ {1, . . . ,DRx} to

Rx ` if ` ∈ NRx(k). The cooperative communication is noise-free, but rate-limited:
DRx∑
j=1

H(Q
(j)
k→`) ≤ µRx ·

n

2
log(P), k ∈ [K], ` ∈ NRx(k), (7)

for given Rx-conferencing prelog µRx > 0. Each Rx k decodes its desired “slow” message as

M̂
(S)
k = b

(n)
k

(
Yn
k ,
{
Q

(1)
`′→k, . . . , Q

(DRx)
`′→k

}
`′∈NRx(k)

)
, (8)

using some decoding function b(n)k on appropriate domains.

Throughout this article we assume short range interference and thus:

Ik ⊆ (NRx(k) ∩NTx(k)). (9)

Given power P > 0, maximum delay D ≥ 0, and cooperation prelogs µRx, µTx ≥ 0, average

rates (R̄
(S)
K (P), R̄

(F )
K (P)) are called achievable, if there exist rates {(R(F )

k , R
(S)
k )}Kk=1 satisfying

R̄
(F )
K :=

1

K

K∑
k=1

R
(F )
k , and R̄

(S)
K :=

1

K

K∑
k=1

R
(S)
k , (10)

and encoding, cooperation, and decoding functions for these rates satisfying constraints (1), (2),

(4), and (7) and so that the probability of error vanishes:

p(error) , P
[ ⋃
k∈[K]

((
M̂

(F )
k 6= M

(F )
k

)
∪
(
M̂

(S)
k 6= M

(S)
k

))]
→ 0 as n→∞. (11)

An MG pair (S(F ), S(S)) is called achievable, if for every positive integer K and power P > 0

there exist achievable average rates {R̄(F )
K (P), R̄

(S)
K (P)}P>0 satisfying

S(F ) , lim
K→∞

lim
P→∞

R̄
(F )
K (P)

1
2

log(P)
, and S(S) , lim

K→∞
lim
P→∞

R̄
(S)
K (P)

1
2

log(P)
. (12)

The closure of the set of all achievable MG pairs (S(F ), S(S)) is called optimal MG region and

denoted S?(µTx, µRx,D).

Remark 1: In (12), we let K → ∞ to remove the boundary effects. The coding scheme

proposed in the following Section III can be implemented for arbitrary values of K.
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III. CODING SCHEMES AND ACHIEVABLE MULTIPLEXING GAINS

We describe various coding schemes that either transmit both “fast” and “slow” messages

(Subsections III-A and III-B) or only “slow” messages (Subsection III-C), and a scheme that

does not use any kind of cooperation (Subsection III-D).

An important building block in our coding schemes is CoMP transmission or CoMP reception.

Depending on which of the two is used, the scheme requires more Tx- or Rx-cooperation rates.

So, depending on the application, any of the two can be advantageous. In some applications,

cooperation rates might however be too low to employ either of the two. In this case, the proposed

schemes can be time-shared with alternative schemes that require less or no cooperation rates at

all. Alternatively, the proposed schemes can be employed with a smaller number of cooperation

rounds D′ < D, which also reduces the required cooperation prelog in all our schemes.

A. Coding scheme to transmit both “fast” and “slow” messages with CoMP reception:

Split the total number of conferencing rounds between Tx- and Rx-conferencing as:

DTx = 1 and DRx = D− 1. (13)

1) Creation of subnets and message assignment: Each network is decomposed into three

subsets of Tx/Rx pairs, Tsilent, Tfast and Tslow, where

• Txs in Tsilent are silenced and Rxs in Tsilent do not take any action.

• Txs in Tfast send only “fast” messages. The corresponding Txs/Rxs are called “fast”.

• Txs in Tslow send only “slow” messages. The corresponding Txs/Rxs are called “slow”.

We choose the sets Tsilent, Tfast and Tslow in a way that:

• the signals sent by the “fast” Txs do not interfere; and

• silencing the Txs in Tsilent decomposes the network into non-interfering subnets such that in

each subnet there is a dedicated Rx, called master Rx, that can send a cooperation message

to any other “slow” Rx in the same subnet in at most
⌊DRx−1

2

⌋
cooperation rounds.

For example, consider Wyner’s symmetric model (described in detail in Section IV) where Txs

and Rxs are aligned on a grid and cooperation is possible only between neighbouring Txs or

Rxs. Interference at a given Rx is only from adjacent Txs. The network is illustrated in Figure 2.

This figure also shows a possible decomposition of the Tx/Rx pairs into the sets Tsilent (in white),

Tfast (in yellow) and Tslow (in blue) when D = 6. The proposed decomposition creates subnets
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Fig. 2: Illustration of message assignment and cooperation in Wyner’s symmetric network.

with 7 active Tx/Rx pairs where the Rx in the center of any subnet (e.g. Rx 4 in the first

subnet) can serve as a master Rx as it reaches any slow (blue) Rx in the same subnet in at

most bDRx − 1/2c = b(D− 2)/2c = 2 cooperation rounds. As required, transmissions from fast

(yellow) Txs are only interfered by transmissions from slow (blue) Txs.

2) Precanceling of “slow” interference at “fast” Txs: Any “slow” Tx k′ quantizes its pre-

computed input signal Xn
k′ (how this signal is generated will be described under item 5)) and

describes the quantised signal X̂n
k′ during the last Tx-cooperation round to all its neighbouring

“fast” Txs, which then precancel this interference on their transmit signals. (Here, there is only

a single Tx-cooperation round, but this item will be reused in later subsections where DTx > 1.)

Fig. 2 illustrates the sharing of the described quantization information with neighbouring “fast”

Txs for Wyner’s symmetric model.

To describe this formally, for each k ∈ {1, . . . , K}, we define the “slow” interfering set

I(S)k , Ik ∩ Tslow. (14)

Also, we denote by Un
k(M

(F )
k ) the non-precoded input signal precomputed at a given “fast”

Tx k. (The following item 3) explains how to obtain Un
k(M

(F )
k ).) Tx k sends the inputs

Xn
k = Un

k(M
(F )
k )−

∑
k′∈I(S)

k

H−1k,kHk′,kX̂
n

k′ , (15)

over the channel. Since each “fast” Rx k is not interfered by the signal sent at any other “fast”

Tx, the precoding in (15) makes that a “fast” Rx k observes the almost interference-free signal

Y n
k = Hk,kU

n
k +

∑
k′∈I(S)

k

Hk′,k(X
n
k′ − X̂

n

k′) + Zn
k

︸ ︷︷ ︸
disturbance

, (16)

where the variance of above disturbance is around noise level and does not grow with P.



10

3) Transmission of “fast” messages: Each “fast” Tx k encodes its desired message M (F )
k using

a codeword U
(n)
k (M

(F )
k ) from a Gaussian point-to-point code of power P. The corresponding

Rx k applies a standard point-to-point decoding rule to directly decode this “fast” codeword

without Rx-cooperation from its “almost” interference-free outputs Yk, see (16).

4) Canceling “fast” interference at “slow” Rxs: According to the previous item 3), all

“fast” messages are decoded directly from the outputs without any Rx-cooperation. During the

first Rx-cooperation round, all “fast” Rxs can thus share their decoded messages with all their

neighbouring “slow” Rxs, which can cancel the corresponding interference from their receive

signals. More formally, we define the fast interference set

I(F )
k , Ik ∩ Tfast (17)

as the set of “fast” Txs whose signals interfere at Rx k. Each “slow” Rx k forms the new signal

Ŷ
n

k := Y n
k −

∑
k̂∈I(F )

k

Hk̂,kX
n
k̂
(M̂

(F )

k̂
), (18)

and decodes its desired “slow” message based on this new signal following the steps described

in the following item 5). Fig. 2 illustrates with yellow arrows the sharing of decoded “fast”

messages with neighbouring “slow” Rxs in Wyner’s symmetric model.

5) Transmission and reception of “slow” messages using CoMP reception: Each “slow” Tx k

encodes its message M (S)
k using a codeword Xn

k(M
(S)
k ) from a Gaussian point-to-point code of

power P. “Slow” messages are decoded based on the new outputs Ŷ
n

k in (18). CoMP reception

is employed to decode all “slow” messages in a given subnet. That means, each “slow” Rx k

applies a rate-L
2

log(1 + P) quantizer to the new output signal Ŷ
n

k , and sends the quantization

information over the cooperation links to the master Rx in its subnet. Each master Rx reconstructs

all the quantized signals and jointly decodes the “slow” messages, before sending them back to

their intended Rxs. By item 4) the influence of “fast” transmissions has been canceled on the

“slow” receive signals.

6) MG Analysis: In the described scheme, all transmitted “fast” and “slow” messages can be

sent reliably at MG L because all interference is cancelled (up to noise level) either at the Tx

or the Rx side, and because Txs and Rxs are equipped with L antennas each.

The presented coding scheme thus achieves the MG pair(
S(F ) = S

(F )
both, S(S) = S

(S)
both

)
, (19)
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where

S
(F )
both , L · lim

K→∞

|Tfast|
K

and S
(S)
both , L · lim

K→∞

|Tslow|
K

. (20)

The scheme we described so far requires different cooperation rates on the various Tx- or

Rx-cooperation links. To evenly balance the load on the Tx-cooperation links and on the Rx-

cooperation links, different versions of the scheme with different choices of the sets Tsilent, Tfast

and Tslow and different cooperation routes can be time-shared. The main quantity of interest

is then the average cooperation load, which for the scheme above is characterized as follows.

During the single Tx-cooperation round, each “fast” Tx k receives a quantised version of the

transmit signal of each of its “slow” interferers k̂ ∈ I(S)k . Since each quantisation message is of

prelog L, the average required Tx-cooperation prelog equals

µ
(r)
Tx,both , L · lim

K→∞

∑
k∈Tfast

|I(S)k |
QK,Tx

, (21)

where QK,Tx denotes the total number of Tx-cooperation links in the network.

There are three types of Rx-cooperation messages. In the first Rx-cooperation round, each

“slow” Rx k obtains a decoded message from each of its “fast” interferers k̂ ∈ I(F )
k . The total

number of messages sent in this first round is thus
∑

k∈Tslow
|I(F )
k | and each is of prelog L. In Rx-

cooperation rounds 2, . . . , bDRx−1
2
c+1, “slow” Rxs send quantized versions of their output signals

to the master Rx in the same network. Each of these messages is of prelog L and the total number

of such messages equals
∑

k∈Tslow
γRx,k, where γRx,k denotes the number of cooperation rounds

required for “slow” Rx k to reach the master Rx in its subnet. In rounds bDRx−1
2
c+ 2, . . . ,DRx,

the master Rx sends the decoded messages to all the “slow” Rxs in the subnet. Each of these

messages is again of prelog L and the total number of such messages is again
∑

k∈Tslow
γRx,k. To

summarize, each of the transmitted messages is of prelog L and thus the average cooperation

prelog required per Rx-cooperation link is:

µ
(r)
Rx,both , L · lim

K→∞

∑
k∈Tslow

(
|I(F )
k |+ 2γRx,k

)
QK,Rx

, (22)

where QK,Rx denotes the total number of Rx-cooperation links in the network.

Remark 2: If the master Rx of a subnet is a “fast” Rx, it does not have to send its decoded

message to its “slow” neighbours, because it decodes all “slow” messages jointly. In this case,

less Rx-cooperation prelog is required.
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B. Coding scheme to transmit both “fast” and “slow” messages with CoMP transmission:

This second scheme splits the total number of cooperation rounds D as:

DTx = D− 1 and DRx = 1. (23)

Similarly to the previous Subsection III-A, the scheme is described by 5 items:

1) Creation of subnets and message assignment: This item is similar to item 1) of Subsection

III-A, but the sets Tsilent, Tfast and Tslow are chosen in a way that:

• as before, the signals sent by the “fast” Txs do not interfere; and

• silencing the Txs in Tsilent decomposes the network into non-interfering subnets so that in

each subnet there is a dedicated master Tx that can send a cooperation message to any other

“slow” Tx in the same subnet in at most
⌊DTx−1

2

⌋
cooperation rounds.

Items 2)-4) remain as described in Subsection III-A. Item 5) is replaced by the following item.

5) Transmission and reception of “slow” messages using CoMP transmission: “Slow” messages

are transmitted using standard CoMP transmission techniques that can ignore interference from

“fast” Txs (due to the post-processing in item 4)) but account for the modified interference graph

and the modified channel matrix between slow messages caused by the precanceling performed

under item 2). The receivers decode based on the new outputs Ŷ
n

k in (18).

We describe CoMP transmission in this context more formally. During the first bDTx−1
2
c Tx-

cooperation rounds, each “slow” Tx of a subnet, sends its message to the master Tx of the

subnet. This latter encodes all received “slow” messages using individual Gaussian codebooks

and precodes them so as to cancel all the interference from other “slow” messages at the

corresponding Rxs. I.e., it produces signals so that when they are transmitted over the active

antennas in the cell, the signal observed at each “slow” Rx only depends on the “slow” message

sent by the corresponding Tx but not on the other “slow” messages. The master Tx applies a

Gaussian vector quantizer on these precoded signals and sends the quantization information over

the cooperation links to the corresponding Txs during the Tx-cooperation rounds bDTx−1
2
c+ 1 to

DTx− 1. This is possible by the way we defined the master Txs. All “slow” Txs reconstruct the

quantized signals X̂
n

k intended for them and send them over the network: Xn
k , X̂

n

k .

Each “slow” Rx k decodes its desired message from the modified output sequence Ŷ
n

k defined

in (18) using a standard point-to-point decoder.

Analysis: Similarly to Subsection III-A, each transmitted message can be sent reliably at MG

L, and thus the scheme achieves the MG pair in (19).
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The load on the different cooperation links is again unevenly distributed across links, and

thus, by time-sharing and symmetry arguments, the average Rx- and Tx-cooperation rates are

the limiting quantities. The required average Rx-cooperation rate is easily characterized as:

µ
(t)
Rx,both , L · lim

K→∞

∑
k∈Tslow

|I(F )
k |

QK,Rx
, (24)

because Rx-cooperation takes place in a single round, during which each “slow” Rx k learns

all decoded “fast” messages that interfere their receive signals and these messages are of MG

L. To calculate the required average Tx-cooperation rate, define for each k ∈ Tslow the positive

parameter γTx,k to be the number of cooperation hops required from Tx k to reach the master Tx in

its subnet. During the first bDTx−1
2
c Tx-cooperation rounds, a total of

∑
k∈Tslow

γTx,k cooperation

messages of MG L are transmitted from the “slow” Txs to the master Txs in their subnet.

The same number of Tx-cooperation messages, all of MG L, is also conveyed during rounds

bDTx−1
2
c+ 1, . . . , 2bDTx−1

2
c, now from the master Tx to the “slow” Txs in the subnet. During the

last round, “slow” Txs convey their messages to the adjacent “fast” Txs that are interfered by their

signals. Some of these signals, however have already been shared during Tx-cooperation rounds

bDTx−1
2
c+1, . . . , 2bDTx−1

2
c, and thus do not have to be sent again. The total number of cooperation

messages during the last Tx-cooperation rounds is thus only equal to
∑

k∈Tfast
|I(S)k | − q, where

q denotes the number of the messages that have already been sent in previous rounds. We will

chracterize the value of q when we analyze specific networks. To summarize, the average required

Tx-cooperation rate of our scheme is:

µ
(t)
Tx,both , L · lim

K→∞

∑
k∈Tslow

2γTx,k +
∑

k∈Tfast
|I(S)k | − q

QK,Tx
. (25)

C. Coding scheme to transmit only “slow” messages with CoMP reception and transmission:

In principle, since any “fast” message satisfies the constraints on “slow” messages, we can use

the schemes provided in Subsections III-A and III-B to send only “slow” messages. Sometimes,

the following scheme however performs better because it requires less Tx- or Rx-cooperation

rates. Choose a set Tsilent ⊆ [K] and silence the Txs in this set, which decomposes the network

in non-interfering subnets. The remaining Txs in Tslow := [K]\Tsilent send only “slow” messages

using CoMP transmission or reception. The set Tsilent thus has to be chosen such that in each

subnet there is a dedicated master Rx (or master Tx), which can be reached by any other Rx

(Tx) in the subnet in at most
⌊

D
2

⌋
cooperation rounds. Both versions achieve the MG pair(
S(F ) = 0, S(S) = S(S)

max

)
, (26)
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where

S(S)
max , L · lim

K→∞

|Tslow|
K

. (27)

The CoMP-reception scheme requires no Tx-cooperation but average Rx-cooperation prelog

µ
(r)
Rx,S , L · lim

K→∞

∑
k∈Tslow

2γRx,k

QK,Rx
, (28)

and the CoMP-transmission scheme no Tx-cooperation but average Tx-cooperation rate

µ
(t)
Tx,S , L · lim

K→∞

∑
k∈Tslow

2γTx,k

QK,Tx
, (29)

where recall that γRx,k, γTx,k ∈ {1, . . . ,
⌊

D
2

⌋
} denote the number of cooperation hops required

from a Rx k or a Tx k to reach the master Rx or the master Tx in its subnet.

D. Coding scheme without cooperation:

Choose a set of Txs Tsilent ⊆ [K] so that the remaining Txs Tactive := [K]\Tsilent do not interfere,

and send “slow” or “fast” over the resulting interference-free links. The scheme requires no

cooperation and achieves for any β ∈ [0, 1] the MG pair(
S(F ) = βSno-coop, S(S) = (1− β)Sno-coop

)
, (30)

where

Sno-coop , L · lim
K→∞

(
1− |Tsilent|

K

)
. (31)

IV. WYNER’S SYMMETRIC LINEAR MODEL

Consider Wyner’s symmetric linear cellular model where cells are aligned in a single dimension

and signals of users that lie in a given cell interfere only with signals sent in the two adjacent

cells. See Figure 1 where the interference pattern is illustrated by black dashed lines. We assume

that the various mobile users in a cell are scheduled on different frequency bands, and focus on

a single mobile user per cell (i.e., on a single frequency band). We shall further assume that the

number of cells K and the maximum delay D are even.

The input-output relation of the network is

Y k,t = Hk,kXk,t + Hk−1,kXk−1,t + Hk+1,kXk+1,t + Zk,t, (32)

where X0,t = 0 for all t, and the interference set at a given user k is

Ik = {k − 1, k + 1}, (33)
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where indices out of the range [K] should be ignored. In this model, Rxs and Txs can cooperate

with the two Rxs and Txs in the adjacent cells, so

NTx(k) = {k − 1, k + 1} and NRx(k) = {k − 1, k + 1}. (34)

Fig. 1 illustrates the interference pattern of the network and the available cooperation links. As

can be seen from this figure, Txs 1 and K and Rxs 1 and K have a single outgoing cooperation

link and all other Txs and Rxs in this network have two outgoing cooperation links. Thus, the

total numbers of Tx- and of Rx-cooperation links both are

QK,Tx = QK,Rx = 2K − 2. (35)

A. Choice of Tx/Rx Sets for the Schemes in Section III

1) “Fast” and “slow” messages with CoMP reception: For the mixed-delay scheme, choose

the Tx/Rx set association in Fig. 2, where “fast” Tx/Rx pairs are in yellow, “slow” in blue, and

silenced in white. I.e., set

Tsilent =

{
` (D + 2) : ` = 1, . . . ,

⌊
K

D + 2

⌋}
, (36a)

Tfast = {1, 3, . . . , K − 1}, (36b)

Tslow = {1, . . . , K}\{Tsilent, Tfast}. (36c)

For this choice, transmissions of “fast” messages are interfered only by transmissions of “slow”

messages and for any `, the Tx/Rx pairs in

T` , {`(D + 2) + 1, . . . , (`+ 1)(D + 2)− 1} (37)

form a subnet for which Rx `(D + 2) + D/2 + 1 can act as the master Rx because it can be

reached by any “slow” Rx (i.e., even Rx) in its subnet in at most (DRx− 1)/2 cooperation hops.

By (20) and (36), the scheme achieves the MG pair (S(F ) = S
(F )
both, S

(S) = S
(S)
both) where

S
(F )
both ,

L

2
and S

(S)
both , L · D

2(D + 2)
. (38)

To analyze the required cooperation prelogs of the scheme, µ(r)
Tx,both and µ

(r)
Rx,both, we evaluate

the formulas in (21) and (22). We have for each subnet ` ∈ {1, . . . , bK/(D + 2)c}:∑
k∈Tfast∩T`

|I(S)k | = 2 + 2(D/2− 1) = D. (39)
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In the limit K →∞, we obtain

µ
(r)
Tx,both = L · D

2(D + 2)
. (40)

To calculate the required Rx-cooperation prelog µ
(r)
Rx,both, notice that |I(F )

k | = 2. Since there

are D/2 “slow” Rxs in each subnet T`:∑
k∈Tslow∩T`

|I(F )
k | = 2 · D

2
= D. (41)

In addition, Rxs also exchange cooperation messages to enable CoMP reception. Thereby, the

quantization message produced by a “slow” Rx k = `(D + 2) + i, for i ∈ {2, 4, . . . ,D− 2}, has

to propagate over γRx,k = |D/2+1− i| hops to reach the subnet’s master Rx. If D/2+1 is even,∑
k∈Tslow∩T`

γRx,k =
∑

i∈{2,4,...,D/2−1}

2 · (D/2 + 1− i) =
1

2

(
D2

4
− 1

)
. (42)

Then, according to (22), (35), (41), and (42), when D/2 + 1 is even, in the limit as K →∞:

µ
(r)
Rx,both = L ·

D + D2

4
− 1

2(D + 2)
, for D/2 + 1 even. (43)

When D/2 + 1 is odd, the sum in (42) evaluates to D2

8
. Moreover, in this case, the master Rx

is a “fast” Rx. It does not have to send its decoded message to any neighbour, as it locally

decodes all “slow” messages of the subnet. So, (see also Remark 2), the nominator in (22) can

be reduced by 2. Putting all these together, we obtain µ(r)
Rx,both = L · D+D2

4
−2

2(D+2)
when D/2+1 is odd.

2) “Fast” and “slow” messages with CoMP transmission: Choose the same cell association

as for the CoMP reception scheme described in (36) and depicted in Fig. 2. Under this cell

association, Tx D/2 + 1 can act as a master Tx because it can be reached by any “slow” (even)

Tx in its subnet in at most (DTx − 1)/2 cooperation rounds. Since the same cell partitioning is

used, namely (36), this scheme achieves the same MG pair as with CoMP reception, see (38).

Moreover, by (24) and (41) in the limit as K →∞, the required average Rx-cooperation prelog

is

µ
(t)
Rx,both = L · D

2(D + 2)
. (44)

Similarly, consider (25) and (39) and notice that for D/2 + 1 even,∑
k∈Tslow∩T`

γTx,k =
∑

i∈{2,4,...,D/2−1}

2(D/2 + 1− i) =
1

2

(
D2

4
− 1

)
, (45)

whereas for D/2 + 1 odd, this sum evaluates to D2

8
. We consider the q-term in (25), which

characterizes the number of quantization messages describing the “slow” signals that are counted
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twice: once for the CoMP transmission and once for the interference mitigation at “fast”

transmitters. In each subnet, D/2 − 1 such messages are double-counted, when D/2 + 1 is

even, and D/2 messages are double-counted when D/2 + 1 is odd. Therefore, and according to

(25), (39), (45), when K →∞, the average Tx-cooperation prelog required by the scheme is

µ
(t)
Tx,both = L ·

D + D2

4
− 1− D/2 + 1

2(D + 2)
= L · D

8
, (46)

irrespective of whether D/2 + 1 is even or odd.

3) Transmitting only “slow” messages with CoMP reception and transmission: Consider the

scheme in Subsection III-C that transmits only “slow” messages, either using CoMP transmission

or CoMP reception. For both schemes we regularly silence every D + 2nd Tx, i.e., as in the two

previous subsections, Tsilent ,
{
`(D + 2): ` = 1, . . . , b K

D+2
c
}

. Also, we set Tslow = [K]\Tsilent.

These choices are permissible, because all Txs (or Rxs) in a subnet T` = {(` − 1)(D + 2) +

1, . . . , `(D + 2)−1} can reach the subnet’s central Tx (`−1)(D + 2) + D + 1 (or Rx (`−1)(D +

2) + D + 1) in at most D/2 cooperation hops.

By (27), the scheme in Subsection III-C achieves the MG pair (S(F ) = 0, S(S) = S
(S)
max) where

S(S)
max , L · D + 1

D + 2
. (47)

With CoMP reception, this scheme does not use any Tx-cooperation. To calculate the Rx-

cooperation prelog, we use the fact that Rx k = `(D + 2) + i, for positive integers ` and

i ≤ D + 1, reaches the master Rx in its subnet in γRx,k = |D/2 + 1− i| hops. Since:

2
∑
k∈T`

γRx,k = 4

D/2∑
i=1

i =
D(D + 2)

2
, (48)

by (28), in the limit as K →∞, the average Rx-cooperation prelog tends to

µ
(r)
Rx,S = L · D

4
. (49)

Similar conclusions show that when CoMP transmission is used instead of CoMP reception, the

scheme requires zero Rx-cooperation prelog and a Tx-cooperation prelog of µ(t)
Tx,S = µ

(r)
Rx,S.

4) No-cooperation scheme: Consider the no-cooperation scheme in Subsection III-D. For

Wyner’s symmetric network we create non-interfering point-to-point links by silencing all even

Txs in the network, i.e., by choosing Tsilent , {2, 4, . . . 2bK2 c}. Since all odd receivers remain

active, the sum-prelog in (31) for this network evaluates to

Sno-coop ,
L

2
. (50)
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B. Achievable MG Regions

Recall the definitions of S(F )
both, S(S)

both, S(S)
max, Sno-coop in (38), (47), and (50) and the definitions of

µ
(r)
Tx,both, µ

(r)
Rx,both, µ

(t)
Rx,both, µ

(t)
Tx,both in (40), (43), (46), and (44). Define further

α , max

{
min

{
µTx

µ
(r)
Tx,both

,
µRx

µ
(r)
Rx,both

}
, min

{
µTx

µ
(t)
Tx,both

,
µRx

µ
(t)
Rx,both

}}
, (51)

and

S
(S)
sym,1(α) , αS(S)

max + (1− α)Sno-coop (52)

S
(F )
sym,2(α) , αS

(F )
both + (1− α)Sno-coop and S

(S)
sym,2(α) , αS

(S)
both (53)

S
(F )
sym,3(α) , αS

(F )
both and S

(S)
sym,3(α) , αS

(S)
both + (1− α)S(S)

max. (54)

According to the arguments in the previous subsection, the following regions of MG pairs are

achievable depending on the available cooperation prelogs µTx and µRx.

Theorem 1 (Achievable MG Region: Wyner’s Symmetric Model): Assume D ≥ 2 and even.

When µRx ≥ µ
(r)
Rx,both and µTx ≥ µ

(r)
Tx,both; or when µRx ≥ µ

(t)
Rx,both and µTx ≥ µ

(t)
Tx,both:

convex hull
(

(0, 0), (0, S(S)
max), (S

(F )
both, S

(S)
both), (Sno-coop, 0)

)
⊆ S?(µTx, µRx,D). (55)

When µRx ≥ µ
(r)
Rx,S and µTx < µ

(r)
Tx,both; or when µTx ≥ µ

(t)
Tx,S and µRx < µ

(t)
Rx,both:

convex hull
(

(0, 0), (0, S(S)
max), (S

(F )
sym,3(α), S

(S)
sym,3(α)),

(S
(F )
sym,2(α), S

(S)
sym,2(α)), (Sno-coop, 0)

)
⊆ S?(µTx, µRx,D). (56)

When µRx < µ
(r)
Rx,both or when µTx < µ

(t)
Tx,both:

convex hull
(

(0, 0), (0, S
(S)
sym,1(α)), (S

(F )
sym,2(α), S

(S)
sym,2(α)), (Sno-coop, 0)

)
⊆ S?(µTx, µRx,D). (57)

Proposition 1 (Outer Bound on the MG Region: Wyner’s Symmetric Model): Any MG pair

(S(F ), S(S)) in S?(µTx, µRx,D) satisfies

S(F ) ≤ L

2
, (58)

S(F ) + S(S) ≤ L · D + 1

D + 2
. (59)

Proof: Follows by specializing the MAC-Lemma for interference networks with conferencing

[18, Lemma 1] to Wyner’s symmetric network and to the choices

Joutputs ,
⋃

`∈{1,...,d K
2(D+2)

e}

{2 + (`− 1)(2D + 4), . . . , `(2D + 4)− 1} , (60)
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Jinputs ,
⋃

`∈{1,...,d K
2(D+2)

e}

{D + 2 + (`− 1)(2D + 4), . . . ,D + 3 + (`− 1)(2D + 4)} , (61)

Jmessages ,
⋃

`∈{1,...,d K
2(D+2)

e}

{D + 2− DTx + (`− 1)(2D + 4), . . . ,D + 3 + DTx + (`− 1)(2D + 4)} .(62)

Corollary 1: If(
µRx ≥ µ

(r)
Rx,both and µTx ≥ µ

(r)
Tx,both

)
or

(
µRx ≥ µ

(t)
Rx,both and µTx ≥ µ

(t)
Tx,both

)
, (63)

the optimal MG region S?(µTx, µRx,D) coincides with the trapezoid in (55).

Proof: Follows directly by Theorem 1 and Proposition 1.

By Corollary 1, for large cooperation prelogs µTx and µRx, imposing a stringent delay constraint

on the “fast” messages never penalizes the maximum achievable sum-MG of the system: the

same sum-MG can be achieved as if only “slow” messages were sent.

The next corollary characterizes the optimal MG region S?(µTx, µRx,D) when one of the

two cooperation prelogs (µTx or µRx) is small and the other large, and when S(F ) lies below

a certain threshold. The corollary shows that also in this regime the same maximum sum-MG

can be achieved as if only “slow” messages were sent. When S(F ) exceeds this threshold, our

achievable MG region in (56) shows a penalty in sum-MG which increases linearly with the

“fast” MG. In this regime we do not have a matching converse result.

Corollary 2: Assume that(
µRx ≥ µ

(r)
Rx,S and µTx < µ

(r)
Tx,both

)
or

(
µTx ≥ µ

(t)
Tx,S and µRx < µ

(t)
Rx,both

)
. (64)

For any S(F ) ∈ [0, α · L
2
], where α is defined in (51), the pair (S(F ), S(S)) lies in the optimal MG

region S?(µTx, µRx,D) if, and only if, it is in the trapezoid described on the LHS of (56).

Proof: Follows directly by Theorem 1, see (56), and by Proposition 1, and because the sum

S
(F )
sym,3(α) + S

(S)
sym,3(α) = L · D+1

D+2
coincides with the maximum sum MG.

Figures 3 and 4 illustrate the inner and outer bounds (Theorem 1 and Proposition 1) on the

MG region with D = 6 and D = 10, and different values of µRx and µTx. As can be seen in

Figure 3 and as also explained in Corollary 1, when µRx ≥ 2.625 and µTx ≥ 1.125, or when

µRx ≥ 1.125 and µTx ≥ 2.25 the inner bound in (55) and the outer bound match. In the former

case, the inner bound is achievable using the scheme in Subsection IV-A1 based on CoMP

reception, and in the latter case it is achievable using the scheme in Subsection IV-A2 based on

CoMP transmission. As explained in Corollary 2, when only one of the two cooperation prelogs
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Fig. 3: Inner and outer bounds on S?(µTx, µRx,D) for the symmetric Wyner network for different

values of µRx and µTx, and for L = 3 and D = 6. The brown dotted line is the time-sharing

region.
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Fig. 4: Inner and outer bounds on S?(µTx, µRx,D) for the symmetric Wyner network for different

values of µRx and µTx, and for L = 3 and D = 10. The brown dotted line is the time-sharing

region.

is large and the other small (e.g., µRx ≥ 4.5 and µTx = 0.5; or µTx ≥ 4.5 and µRx = 0.5) the

inner bound in (56) matches the outer bound of Proposition 1 only for S(F ) < α · L
2
, where α

is defined in (51). For larger values of S(F ), the maximum “slow” MG S(S) achieved by our

schemes decreases linearly with S(F ). For example, for D = 6 and (µRx ≥ 4.5, µTx = 0.5) or
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(µTx ≥ 4.5, µRx = 0.5) when S(F ) ≥ α · L
2

increases by ∆ then S(S) decreases by approximately

1.75∆ and the sum-MG by 0.75∆. The behaviour changes again when both µRx and µTx are

moderate or small, e.g., µRx = 0.5 and µTx = 1 or µRx = 1 and µTx = 0.5. In this case, the

sum-MG achieved by our inner bound is constant over all regimes of S(F ). We finally notice that

in these small cooperation-prelog regimes our inner bounds remain unchanged for D = 6, 8, 10.

The reason is that in this regime, even when D > 6, it is more advantageous to reduce the

number of cooperation rounds to 6 in order to satisfy the cooperation prelogs than to time-share

different schemes with D > 6 cooperation rounds. The brown dotted line is the the result of time-

sharing the scheme in Subsection IV-A3 that transmit only “slow” messages with the scheme in

Subsection IV-A4 when only “fast” messages are transmitted. The scheme in Subsection IV-A3

is based on CoMP reception and to achieve the maximum “slow” MG requires µRx ≥ 4.5 for

D = 6 and µRx ≥ 7.5 for D = 10. The sum-MG in this scheme decreases linearly with the “fast”

MG.

V. HEXAGONAL NETWORK

Consider a network with K hexagonal cells, where each cell consists of one single mobile

user (MU) and one BS. The signals of users that lie in a given cell interfere with the signals

sent in the 6 adjacent cells. The interference pattern of our network is depicted by the black

dashed lines in Fig. 5, i.e., the interference set Ik contains the indices of the 6 neighbouring

cells whose signals interfere with cell k. The input-output relation of the network is as in (89).

Each Rx k (BS of a cell) can cooperate with the six Rxs in the adjacent cells, i.e., |NRx(k)| = 6.

Thus, the number of Rx-cooperation links QK,Rx in this network is approximately equal to 6K

(up to edge effects). Similarly, each Tx (MU of a cell) can cooperate with the six Txs in the

adjacent cells and thus |NTx(k)| = 6 and QK,Tx ≈ 6K.

To describe the setup and our schemes in detail, we parametrize the locations of the Tx/Rx

pair in the k-th cell by a number ok in the complex plane C. Introducing the coordinate vectors

ex =

√
3

2
− 1

2
i and ey = i, (65)

as in Figure 5, the position ok of Tx/Rx pair k can be associated with integers (ak, bk) satisfying

ok , ak · ex + bk · ey. (66)

The interference set Ik and the neighbouring sets can then be expressed as

NTx(k) = NRx(k) = Ik =
{
k′ : |ak − ak′ | = 1 and |bk − bk′| = 1
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ex

ey

Fig. 5: Illustration of the hexagonal network. Small circles indicate Txs and Rxs, black solid

lines the cell borders, and black dashed lines interference between cells.

and |ak − ak′ − bk + bk′ | = 1
}
. (67)

For simplicity we assume an even-valued D satisfying

D
2
− 1 mod 3 = 0. (68)

Other cases can be treated in a similar way.

We specify the Tx/Rx set associations for the schemes in Section III. See Appendix A for a

detailed analysis. For the no-cooperation scheme in Subsection III-D choose

Tactive = {k ∈ [K] : (ak + bk) mod 3 = 0} (69)

and Tsilent = [K]\Tactive. The corresponding cell association is shown in Figure 6a where active

cells are in yellow and silenced in white. By (31), the sum-MG achieved by this scheme is

Sno-coop =
L

3
. (70)

We next explain the Tx/Rx set association for sending only “slow” messages as in Subsec-

tion III-C, see also [37]. Set τ = D
2

+ 1 and choose Tx k (Rx k) as a master Tx (Rx), if it

belongs to

Tmaster = {k ∈ [K] : (ak mod τ = 0) and (bk mod τ = 0) and (|ak + bk| mod 3τ = 0)} .(71)

To describe the silenced Tsilent, we define for any integers x and τ ≥ 0:

x[−τ,2τ ] , ((x+ τ) mod 3τ)− τ, (72)

where mod denotes the standard modulo operator. In fact, the operator x[−τ,2τ ] ressembles the

standard mod 3τ operator, but it shifts every number into the interval [−τ, 2τ) and not into

[0, 3τ). We then set

Tsilent =
{
k : max{|ak[−τ,2τ)|, |bk[−τ,2τ)|, |ak[−τ,2τ) − bk[−τ,2τ)|} = τ

}
(73)
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(a) No-cooperation scheme (b) Cooperative scheme

Fig. 6: Cell associations for the schemes in the hexagonal network.

and Tslow = [K]\Tsilent. Figure 6b shows the proposed cell association for D = 6: blue or yellow

are the active “slow” cells and white the silenced cells. Master Txs (Rxs) are depicted with

green borders. We observe that the choice in (73) silences all Tx/Rx pairs which lie D
2

+ 1 hops

away from a master Tx/Rx pair. As we detail out in Appendix A, by (26) and (27), this choice

establishes an achievable MG pair of (S(F ) = 0, S(S) = S
(S)
max), where

S(S)
max , L · 4 + 3D(D + 2)

3(D + 2)2
. (74)

Moreover, by (28) and (29), with CoMP reception or CoMP transmission the scheme requires

average Rx- or Tx-cooperation prelogs equal to

µ
(t)
Tx,S = µ

(r)
Rx,S = L · D(D + 1)

9(D + 2)
. (75)

Finally, we turn to the scheme that sends both “fast” and “slow” messages in Subsections III-A

and III-B. Here, we set τ = D
2

and choose the set of master Txs (Rxs) as in (71), but for this

new value of τ . Similarly, we choose the silenced set Tsilent as in (73) but again for the new

value τ = D
2

. The “fast” transmit set Tfast is chosen in the same way as Tactive in (69), and

Tslow = [K]\{Tsilent∪Tfast}. The cell association is depicted in Figure 6b for D = 8, where “fast”

cells are in yellow, “slow” cells in blue, and master cells are designated with green borders.

As detailed out in Appendix A, by (20), the proposed cell association achieves the MG pair

(S(F ) = S
(F )
both, S

(S) = S
(S)
both) where

S
(F )
both ,

L

3

(
1− 2(D− 2)

D2

)
and S

(S)
both ,

2L

3

(
1− 2

D

)
, (76)
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and by (21) and (22) the average Tx- and Rx-cooperation prelogs with CoMP reception are

µ
(r)
Tx,both , L · (D− 2)(3D− 4)

9D2 and µ
(r)
Rx,both , L · 2D3 + 3D2 − 30D + 32

27D2 , (77)

and with CoMP transmission they are

µ
(t)
Tx,both , L · 2D3 − 12D− 28

27D2 and µ
(t)
Rx,both , L · (D− 2)(3D− 4)

9D2 . (78)

A. Achievable MG Region

Recall the definitions of Sno-coop, S(S)
max, S(F )

both, S(S)
both in (70), (74), and (76), and the definitions

of µ(r)
Tx,both, µ(r)

Rx,both, µ(t)
Tx,both and µ(t)

Rx,both in (77) and (78). Define

α1 , max

{
min

{
µTx

µ
(r)
Tx,both

,
µRx

µ
(r)
Rx,both

}
, min

{
µTx

µ
(t)
Tx,both

,
µRx

µ
(t)
Rx,both

}}
, α2 , max

{
µTx

µ
(t)
Tx,S

,
µRx

µ
(r)
Rx,S

}
.(79)

Also, define

S
(F )
hexa,1(α1) , α1S

(F )
both, S

(S)
hexa,1(α1) , α1S

(S)
both + (1− α1)S

(S)
max, (80)

S
(F )
hexa,2(α1) , α1S

(F )
both + (1− α1)Sno-coop, S

(S)
hexa,2(α1) , α1S

(S)
both, (81)

S
(S)
hexa(α2) , α2S

(S)
max + (1− α2)Sno-coop. (82)

Theorem 2 (Achievable MG Region: Hexagonal Model): Assume D ≥ 2, even, and D
2
− 1

mod 3 = 0.

When µRx ≥ max{µ(r)
Rx,both, µ

(r)
Rx,S} and µTx ≥ µ

(r)
Tx,both; or when µTx ≥ max{µ(t)

Tx,both, µ
(t)
Tx,S} and

µRx ≥ µ
(t)
Rx,both; then:

convex hull
(

(0, 0), (0, S(S)
max), (S

(F )
both, S

(S)
both), (Sno-coop, 0)

)
⊆ S?(µTx, µRx,D). (83)

When µ
(r)
Rx,both ≤ µRx < µ

(r)
Rx,S and µTx ≥ µ

(r)
Tx,both; or when µ

(t)
Tx,both ≤ µTx < µ

(t)
Tx,S and µRx ≥

µ
(t)
Rx,both; then:

convex hull
(

(0, 0), (0, S
(F )
both + S

(S)
both), (S

(F )
both, S

(S)
both), (Sno-coop, 0)

)
⊆ S?(µTx, µRx,D). (84)

When µRx ≥ µ
(r)
Rx,S and µTx < µ

(r)
Tx,both; or when µTx ≥ µ

(t)
Tx,S and µRx < µ

(t)
Rx,both; then:

convex hull
(

(0, 0), (0, S(S)
max), (S

(F )
hexa,1(α1), S

(S)
hexa,1(α1)),

(S
(F )
hexa,2(α1), S

(S)
hexa,2(α1)), (Sno-coop, 0)

)
⊆ S?(µTx, µRx,D). (85)

When µRx < µ
(r)
Rx,both or when µTx < µ

(t)
Tx,both, then:

convex hull
(

(0, 0), (0, S
(S)
hexa(α2)), (S

(F )
hexa,2(α1), S

(S)
hexa,2(α1)), (Sno-coop, 0)

)
⊆ S?(µTx, µRx,D).(86)
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Fig. 7: Inner and outer bounds on S?(µTx, µRx,D) for the hexagonal model for D = 8, L = 3

and different values of µRx and µTx. The dotted brown line shows the time-sharing line.

Proposition 2 (Outer Bound on The MG Region: Hexagonal Model): Any MG pair (S(F ), S(S))

in S?(µTx, µRx,D) satisfies

S(F ) ≤ L

2
, (87)

S(F ) + S(S) ≤ min

{
L

2
+ 2µRx + 2µTx, L

(
1− 1

2(1 + D)

)}
. (88)

Proof: Follows by extending the converse in [37, Theorem 2] to the hexagonal model

without sectors and with both Tx- and Rx-cooperation. See Appendix C for details.

Figure 7 illustrates the inner and outer bounds (Theorem 2 and Proposition 2 ) on the MG

region for D = 8, and different values of µRx and µTx. We observe that, unlike Wyner’s symmetric

model, the sum-MG of this network always decreases as S(F ) increases, irrespective of the

cooperation prelogs µTx, µRx. Moreover, maximum S(F ) = 1
3

in our bound is only achieved for

S(S) = 0. We remark here that for certain channel matrices (in fact for many but not for all)

“fast” MG S(F ) is achievable using interference alignment [38]–[40]. For these channel matrices

of course our inner bound can be improved accordingly.

In Figure 7, we can distinguish 4 behaviours for the achieved MG region: 1) If both µRx

and µTx are above given thresholds, for D = 8 and either (µTx ≥ 0.6, µRx ≥ 2.4) or (µTx ≥

0.63, µRx ≥ 2.4), then the points (0, S
(S)
max) and (S

(F )
both, S

(F )
both) are both achievable. 2) When one

of the two cooperation prelogs remains very high (µRx or µTx larger than 2.4) but the other one
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“S”
“W” “E”

(a)
(b) D = 8

Fig. 8: Illustration of sectorized hexagonal network. (a) Dashed lines indicate interference

between sectors and thick lines cell borders. (b) Txs in white sectors are deactivated, Txs in

yellow sectors send “fast” messages and Txs in blue sectors send “slow” messages.

becomes relatively small, only (0, S
(S)
max) is achievable, but not (S

(F )
both, S

(F )
both). The largest achievable

S(S) is thus not reduced as long as S(F ) remains small; for larger values of S(F ) the maximum

achievable S(S) however suffers significantly. The reason is that our schemes that send both

“fast” and “slow” messages inherently require both Tx- and Rx-cooperation of sufficiently high

cooperation prelogs. As a consequence, the maximum S(S) that our schemes achieve for large

S(F ) highly depends on the smaller of the two cooperation prelogs µTx and µRx. 3) When both

µTx, µRx are moderate, we can still achieve the MG pair (S
(F )
both, S

(F )
both) but not (0, S

(S)
max). In the

regime of small S(F ) there is thus a penalty in S(S) and sum MG compared to the case of high

cooperation prelogs but not in the regime of large S(F ). 4) Finally, when both cooperation prelogs

become small then neither of the two points (0, S
(S)
max) and (S

(F )
both, S

(F )
both) is achievable anymore.

The brown dotted line is the resulting region under the traditional scheduling scheme that time-

shares the scheme achieving the point (0, S
(S)
max) with the scheme achieving the point (Sno-coop, 0).

To achieve the point (0, S
(S)
max), this scheme requires µRx ≥ 2.4 and µTx = 0 while using CoMP

reception, and µRx = 0 and µTx ≥ 2.4 while using CoMP transmission. Comparing the slope

of this line with the slopes of the regions achieved under our proposed scheme show that the

penalty of transmitting “fast” messages on sum-MG is very large in this scheme.
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VI. SECTORIZED HEXAGONAL MODEL

Reconsider the cellular network with K hexagonal cells and cell coordinate system spanned by

the vectors ex and ey introduced in the previous section. Here, each cell consists of three sectors

denoted by “S”, “W”, and “E”, see Figure 8a, and we also number the sectors from 1 to 3K. A

single 3L-antenna Rx (BS) is associated to each cell and a single L-antenna Tx to each sector.

Each Rx decodes the 3 “slow” and the 3 “fast” messages of the Txs in the 3 sectors corresponding

to its cell. Rxs are equipped with directional antennas, where each set of L antennas at a given

Rx (BS) points to one of the three sectors of its cell. Therefore, communications from different

sectors in the same cell do not interfere, see Fig. 8a where interference is depicted by dashed

lines. Interference is short-range, and transmission in the grey-shaded sector of Fig. 8a is, e.g.,

interfered by the transmissions in the four adjacent pink-shaded sectors. The interference set

ITx,k′ of sector k′ is thus the set of indices of the 4 adjacent sectors that lie in a different cell.

For the purpose of this section, we thus modify the setup in Section II in that we have 3K Txs

and K Rxs and each Rx k observes the output signals Yn
k := (Yn

k1
,Yn

k2
,Yn

k3
), where k1, k2, k3

denote the three sectors in cell k, and

Yn
ki

= Hki,kiX
n
ki

+
∑
k̂∈Iki

Hk̂,kiX
n
k̂

+ Zn
ki
, i ∈ {1, 2, 3}. (89)

We consider per-sector MGs, and accordingly the average rates in (10) are normalized with

respect to 3K and not K. All other definitions of Section II remain unchanged.

Each Rx k (BS of a cell) can cooperate with the Rxs in the six adjacent cells, i.e., |NRx(k)| = 6

and QK,Rx ≈ 6K. Each Tx (MU of a cell) can cooperate with the four Txs in the adjacent sectors

of different cells, i.e. |NTx(k)| = 4 and since there are 3K Txs, QK,Tx ≈ 12K. Assume D even.

The coding schemes and results in Section III apply also to this modified setup, if

Tsilent, Tactive, Tfast, Tslow ⊆ [3K] and the MG results (20), (27), and (31) are normalized with

respect to 3K and not K. We only consider CoMP reception, and thus Tmaster ⊆ [K].

A. Tx/Rx Set Associations and MG Region

We specify the Tx/Rx set associations for our schemes of Section III. For the no cooperation

scheme, define the active set Tactive as the set of either the “W” sectors, the “E” sectors, or the

“S” sectors of all cells. This achieves the sum-MG

Sno-coop ,
L

3
. (90)
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For the cooperative schemes, we pick the set of master cells Tmaster as in (71) for τ = D
2

. Unlike

in the hexagonal model in Section V, it suffices to silence certain sectors of layer D/2 around each

master cell. Consider the subnet that has its master cell kmaster at the origin akmaster = bkmaster = 0,

for which we keep active all 3 sectors of the corner cells in layer D/2 that have coordinates

(ak = D/2, bk = 0), (ak = 0, bk = D/2), and (ak = −D/2, bk = −D/2), and we silence all 3

sectors of the remaining 3 corner cells of this layers, which have coordinates (ak = D/2, bk =

D/2), (ak = −D/2, bk = 0), and (ak = 0, bk = −D/2). We further silence in this layer D/2

the “S” sector of all non-corner cells with coordinates |bk| = D/2 and sign(ak) = sign(bk); the

“E” sector of all non-corner cells with coordinates |ak| = D/2 and sign(ak) = sign(bk); and the

“W” sector of all non-corner cells with coordinates sign(ak) 6= sign(bk). As for the hexagonal

model, all Txs that lie less than D/2 cell hops from a master cell are kept active. The proposed

sector association splits the entire network into equal non-interfering subnets (up to edge effects

that vanish as K →∞), each consisting of a master cell, all sectors of the cells in the D/2− 1

surrounding layers, and none or one sector in each cell of layer D/2. The proposed cell and

sector association is shown in Figure 8b for D = 8, where yellow and blue sectors are active

and white are silenced. The borders of the subnets are shown by red lines.

As shown in Appendix B, when sending only “slow” messages the proposed sector association

achieves (S(F ) = 0, S(S) = S
(S)
max) where

S(S)
max , L · 3D− 2

3D
, (91)

and it requires an average Rx-cooperation prelog of

µ
(r)
Rx,S = L · (D− 1)

3
. (92)

In the scheme sending both “fast” and “slow” messages, the Txs in the “yellow” sectors of

Figure 8b send “fast” messages and the Txs in the “blue” sectors send “slow” messages. We

describe the cell association more formally for a subnet whose master cell is at the origin. All

other subnets are equal. All active sectors in layer-D/2 of this subnet send “fast” messages,

but all sectors in the cells satisfying one of the three following conditions only send “slow”

messages: (ak ≥ 0 and bk = 0) or (ak = 0 and bk ≥ 0) or (ak = bk ≤ 0). All other cells have

exactly one “fast” sector and two “slow” sectors. Specifically, cells with ak, bk > 0 send a “fast”

message in their “W” sector; cells with ak < 0 and bk > ak send a “fast” message in their “S”

sector; and cells with bk < 0 and ak > bk send a “fast” message in their “E” sector.
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Fig. 9: Inner and outer bounds on S?(µTx, µRx,D) for the sectorized hexagonal model for D = 4,

L = 3 and different values of µRx and µTx. The brown dotted line is the time-sharing region.

We prove in Appendix B that the proposed sector association achieves the MG pair

S
(F )
both ,

L

3
, and S

(S)
both , L · 2D− 2

3D
, (93)

and requires average Tx- and Rx-cooperation prelogs

µ
(r)
Tx,both , L · (D− 1)

3D
and µ

(r)
Rx,both , L · 2D2 − 5

9D
. (94)

Recall definitions (90)–(93) and define

α1 ,
µTx

µ
(r)
Tx,both

and α2 , min

{
µTx

µ
(r)
Tx,both

,
µRx

µ
(r)
Rx,both

}
, (95)

S(F )
sec (α1) , α1S

(F )
both, S(S)

sec (α1) , α1S
(S)
both + (1− α1)S

(S)
max, (96)

S
(F )
sec,1(α2) , α2S

(F )
both + (1− α2)Sno-coop, S

(S)
sec,1(α2) , α2S

(S)
both, (97)

S
(S)
sec,2(α2) , α2S

(S)
max + (1− α2)Sno-coop. (98)

The following theorem is proved in Appendix B.

Theorem 3 (Achievable MG Region: Sectorized Hexagonal Model): Assume D ≥ 2 and even.

• When µRx ≥ µ
(r)
Rx,both and µTx ≥ µ

(r)
Tx,both;

convex hull
(

(0, 0), (0, S(S)
max), (S

(F )
both, S

(S)
both), (Sno-coop, 0)

)
⊆ S?(µTx, µRx,D). (99)

• When µRx ≥ µ
(r)
Rx,S and µTx < µ

(r)
Tx,both;

convex hull
(

(0, 0), (0, S(S)
max), (S(F )

sec (α1), S
(S)
sec (α1)),
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(S
(F )
sec,1(α2), S

(S)
sec,1(α2)), (Sno-coop, 0)

)
⊆ S?(µTx, µRx,D). (100)

• When µRx < µ
(r)
Rx,both and µTx < µ

(r)
Tx,both;

convex hull
(

(0, 0), (0, S
(S)
sec,2(α2)), (S

(F )
sec,1(α2), S

(S)
sec,1(α2)), (Sno-coop, 0)

)
⊆ S?(µTx, µRx,D).(101)

Proposition 3 (Outer Bound on The MG Region: Sectorized Hexagonal Model): Any MG pair

(S(F ), S(S)) in S?(µTx, µRx,D) satisfies

S(F ) ≤ L

2
, (102)

S(F ) + S(S) ≤ min

{
L

2
+

2µRx + 4µTx

3
, L

(
1− 1

2(1 + D)

)}
. (103)

Proof: Follows by an extension of the converse in [37, Theorem 2] to both Tx- and Rx-

cooperation. See Appendix D for details.

Figure 9 illustrates the inner and outer bounds (Theorem 3 and Proposition 3) on the MG region

for D = 4, and different values of µRx and µTx. As can be seen from this figure, when µRx ≥ 2.25

and µTx ≥ 0.75, there is no penalty in sum MG even at maximum “fast” MG. It also can be

seen from this figure that transmitting “fast” messages using the traditional time-sharing scheme

(brown dotted line) at any “fast” MG has a penalty on sum-MG.

VII. CONCLUSIONS

We proposed a coding scheme for general interference networks that accommodates the

transmission of both delay-sensitive and delay-tolerant messages. We characterized the MG

region of Wyner’s symmetric network for certain parameters and derived inner bounds on

the achievable MG region for general parameters, as well as for the sectorized and non-

sectorized hexagonal model. The results for Wyner’s symmetric model showed that it is possible

to accommodate the largest possible MG for delay-sensitive messages, without penalizing the

maximum sum MG of both delay-sensitive and delay-tolerant messages. Our proposed scheme

suggests a similar behaviour for the sectorized hexagonal model, when one restricts to one-shot

interference alignment. For the non-sectorized hexagonal model this does not seem to be the

case, and our results always show a penalty in sum MG whenever the delay-sensitive MG is

not zero. These results indicate that each network needs to be carefully analyzed to determine

whether a sum MG penalty exists under mixed-delay traffics. Nevertheless, in this paper we

proposed a joint coding scheme for mixed-delay traffics that significantly improves the sum MG

compared to a classical scheduling approach.
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Our proposed coding schemes suggest that in the regime of high delay-sensitive MGs, it is

important to have sufficiently high cooperation prelogs both at the Tx- and the Rx-side to attain

the same sum MG as when only delay-tolerant messages are sent. Moreover, in this regime, Tx-

cooperation seems to be slightly more beneficial under mixed-delay traffics than Rx-cooperation.

An interesting line of future research is to analyze the effect of delay-sensitive messages on

generalized Wyner models with fading coefficients and finite precision channel state information.

Here also the notion of generalized degrees of freedom (GDoF) is of interest, see also [36].

APPENDIX A

ANALYSES FOR THE HEXAGONAL MODEL

We prove that the Tx/Rx set associations proposed in Section V are permissible and we provide

details on how to compute the corresponding MG pairs and cooperation prelogs.

A. No Cooperation Scheme

Fig. 6a shows the active Txs in yellow and the silenced Txs in white. It is easily seen that

transmissions in yellow cells do not interfere, as they pertain to non-neighbouring cells.

More formally, we consider two different Txs k and k′ in the active set Tactive defined in (69),

and we prove by contradiction that Tx k′ cannot be in the neighbouring set Ik of Tx k. Assume

that k′ ∈ Ik. Then, by (67), either (ak′ = ak + 1, bk′ = bk + 1) or (ak′ = ak − 1, bk′ = bk − 1).

Each of these two cases however violates the active set condition (69), which implies

(ak + bk) mod 3 = 0 and (ak′ + bk′) mod 3 = 0. (104)

We thus obtained the desired contradiction.

To see that the scheme achieves a sum-MG of Sno-coop we notice that in the limit as K →∞,

the active set Tactive defined in (69) includes a third of all Txs simply because a third of the integer

pairs (a, b) satisfy (a + b) mod 3 = 0 and because for each integer pair (a, b) corresponds a

Tx.

B. Coding scheme to transmit only “slow” messages with CoMP reception or transmission

As mentioned in the main body, and as is easily seen in Figure 6b, the silenced set Tsilent

consists of all cells that are exactly D
2

+ 1 cell hops away from the next master cell. All other

cells have a master cell that lies less than D
2

+ 1 cell hops away. In other words, each master
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cell is surrounded by D/2 layers of active cells sending “slow” messages, where in total these

D/2 layers contain
∑D/2

i=1 6i = 3
4
D(D + 2) cells. Such a subnet is then surrounded by a layer of

6 · (D
2

+ 1) = 3D + 6 silenced cells, each lying D/2 + 1 cell hops away from the master cell.

Among these layer-(D/2 + 1) cells, 6 of them (namely the corner cells) belong to the silenced

layer of three different master cells, and the remaining 3D belong to the silenced layer of two

master cells. One can therefore add a set of (6/3+3D/2) silenced cells (2 corner cells and 3D/2

non-corner cells) to each of the subnets to partition the entire network of K cells into subsets

of size

s , 1 +
3

4
D(D + 2) + (6/3 + 3D/2) =

3(D + 2)2

4
. (105)

By these considerations, and because master cells themselves also send “slow” messages,

lim
K→∞

|Tslow|
K

=
1 + 3

4
D(D + 2)

3
4
(D + 2)

=
4 + 3D(D + 2)

3(D + 2)2
, (106)

and as a result, by (26) and (27), the proposed cell association achieves the MG pair (S(F ) =

0, S(S) = S
(S)
max) with S

(S)
max defined in (74).

With CoMP reception, the scheme does not send any Tx-cooperation messages but only Rx-

cooperation messages. To calculate the Rx-cooperation prelog, notice that for each Rx k we have

γRx,k = i ∈ {1, . . . ,D/2} if Rx k lies i hops away from the next master cell. Fix a master cell

kmaster ∈ Tmaster and define Tsubnet as the set including this master cell as well as the D/2 layers

around it:

Tsubnet ,

{
k : max{|ak − akmaster|, |bk − bkmaster|, |ak − akmaster − bk + bkmaster |} ≤

D
2

}
. (107)

Since in this subnet Tsubnet there are 6i Rxs with γRx,k = i, for each i = 1, . . . ,D/2:

2
∑

k∈Tsubnet

γRx,k = 2

D/2∑
i=1

6i2 =
D(D + 2)(D + 1)

2
, (108)

and since by a sandwiching argument K−1
∑

k∈Tslow
γRx,k → s−1

∑
k∈Tsubnet

γRx,k as K →∞:

lim
K→∞

2
∑

k∈Tslow
γRx,k

K
=

2
∑

k∈Tsubnet
γRx,k

s
(109)

=
D(D + 2)(D + 1)/2

3
4
(D + 2)2

=
2D(D + 1)

3(D + 2)
. (110)

Finally, because limK→∞
QK,Rx
K

= 6, according to (28) the required Rx-cooperation prelog equals

µ
(r)
Rx,S = L · D(D + 1)

9(D + 2)
. (111)

With CoMP transmission, this scheme does not require any Rx-cooperation messages and

consumes a Tx-cooperation prelog of µ(t)
Tx,S = µ

(r)
Rx,S.
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C. Coding Scheme to transmit both “fast” and “slow” messages with CoMP reception

Consider the cell association described for this scheme in the main body of the paper. That

means,

Tsilent =

{
k : max{|ak[−τ,2τ)|, |bk[−τ,2τ)|, |ak[−τ,2τ) − bk[−τ,2τ)|} =

D
2

}
, (112)

where the operator x 7→ x[−τ,2τ ] is defined in (72). Similarly, the set of master cells is given by

Tmaster =

{
k ∈ [K] :

(
ak mod

D
2

= 0

)
and

(
bk mod

D
2

= 0

)
and

(
|ak + bk| mod

3D
2

= 0

)}
. (113)

This choice decomposes the network into equal subnets of active cells, each one surrounding

one of the master cells. For a given master cell kmaster, the subnet is given by:

Tsubnet ,

{
k : max{|ak − akmaster|, |bk − bkmaster|, |ak − akmaster − bk + bkmaster|} ≤

D
2
− 1

}
. (114)

Notice that the subnet is defined in a similar way as in (107) in the preceding subsection, except

that D is replaced by D− 2. That means, it contains the master cell kmaster and the D/2− 1 cell

layers (i.e., the cells with γRx,k = 1, . . . ,D/2− 1) surrounding it. Therefore:

|Tsubnet| = 1 +

D
2
−1∑
i=1

6i = 1 +
3

4
D(D− 2) (115)

Cell-layer D/2 (the cells with γRx,k = D/2) around each master cell is silenced. It consists of

6 corner cells, which are D/2 cell hops away from 3 different master cells, and of 3D − 6

non-corner cells, which lie D/2 cell hops away from two different master cells. Similarly to the

previous section, one can build a cell partitioning by simply associating a third of the corner

cells and half of the non-corner cells of layer D/2 to each master cell. Any subset of such a

partition is then of size (up to some edge effects that vanish as K →∞)

s ,

(
1 +

3

4
D(D− 2)

)
+

(
2 +

3D− 6

2

)
=

3

4
D2. (116)

Recall further that we chose Tfast = {k : (ak+bk) mod 3 = 0} and Tslow = [K]\(Tfast∪Tsilent).

Since all subnets are equal (there can be some edge effects that vanish as K → ∞), by

some sandwiching arguments, we obtain that K−1|Tfast| → s−1|Tsubnet ∩ Tfast| and K−1|Tslow| →

s−1|Tsubnet∩Tslow| as K →∞. By the following Lemma 1, we then obtain the asymptotic ratios:

lim
K→∞

|Tfast|
K

=
|Tsubnet ∩ Tfast|

s
=

D2 − 2D + 4

3D2 (117)



34

lim
K→∞

|Tslow|
K

=
|Tsubnet ∩ Tslow|

s
=

2D− 4

3D
. (118)

By (20), this establishes the achievability of the desired MG pair in (76).

Lemma 1: The number of “fast” Txs in Tsubnet equals

|Tfast ∩ Tsubnet| =
D2

4
− D

2
+ 1, (119)

and the number of “slow” Txs in Tsubnet equals

|Tslow ∩ Tsubnet| =
D2

2
− D. (120)

Proof: For ease of notation, assume that kmaster = 0.

Define the sector of the subnet Tsubnet with positive coordinates ak > 0 and bk ≥ 0 (recall that

we assume kmaster = 0):

T +
subnet ,

{
k : 0 < a ≤ D

2
− 1, 0 ≤ b ≤ D

2
− 1

}
⊆ Tsubnet. (121)

Since the angle between the coordinate vectors ex and ey is 2π
3

and the sets Tfast and Tsubnet are

rotationally-invariant with respect to this angle,

|Tsubnet ∩ Tfast| = 3|T +
subnet ∩ Tfast|+ 1, (122)

where the 1 has to be added to account for the “fast” master cell at the origin.

To calculate the size of the set T +
subnet ∩ Tfast, notice that by Assumption (68), D

2
− 1 is a

multiple of 3 and thus for each value of b ∈ {0, 1, . . . , D
2
− 1} there are exactly

D
2
−1
3

values

a ∈ {1, . . . , D
2
− 1} so that the sum a+ b is a multiple of 3. Therefore,

|Tfast ∩ T +
subnet| =

D
2
·

D
2
− 1

3
, (123)

and

|Tfast ∩ Tsubnet| = 3|Tfast ∩ T +
subnet|+ 1 =

D2

4
− D

2
+ 1. (124)

Since all cells in Tsubnet that are not elements of Tfast belong to Tslow, we obtain by (115) and

(124) that

|Tslow ∩ Tsubnet| = |Tsubnet| − |Tfast ∩ Tsubnet| =
(

1 +
3

4
D(D− 2)

)
−
(

D2

4
− D

2
+ 1

)
=

D2

2
− D

(125)

We analyze the required cooperation prelogs. As in the previous subsection, γTx,k = γRx,k = i

for every cell k that lies i cell hops away from its next master cell, for i = 1, . . . ,D/2 − 1.
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Moreover, for each “fast” Tx k with γTx,k ∈ {1, . . . ,D/2−2} the size of the “slow” interfering set

I(S)k is equal to 6, and when γTx,k = D/2−1 the size of this set is equal to 3 for the corner “fast”-

cells and it is equal to 4 for the other “fast”-cells of this layer. By Assumption (68), the 6 corner

cells are all “fast” cells. In fact, they are given by (ak = D
2
−1, bk = 0), (ak = D

2
−1, bk = D

2
−1),

(ak = 0, bk = D
2
−1), (ak = −D

2
+1, bk = 0), (ak = −D

2
+1, bk = −D

2
+1), (ak = 0, bk = −D

2
+1),

for which ak+bk is a multiple of D
2
−1 and by (68) divisible by 3. Between any two corner cells

there are D
2
− 2 cells with γTx,k = D

2
− 1, and (D

2
− 4)/3 of them are fast cells. (This can be seen

by the previously mentioned rotation invariance of both sets Tsubnet and Tfast with respect to the

angle 2π
3

, and because the non-corner cells in T +
subnet with γTx,k = D

2
− 1 either have coordinates

ak = D
2
− 1 and bk = 1, . . . , D

2
− 2 or they have coordinates ak = 1, . . . , D

2
− 2 and bk = D

2
− 1.

It is easily seen that since D
2
− 1 is a multiple of 3, a total number of 2

(
D
2
− 4
)
/3 of these cells

have sum ak + bk that is divisible by 3.)

Since there are 6 “fast” corner cells with γTx,k = D/2− 1, we conclude that there are 6 ·
(

D
2
−

4
)
/3 “fast” non-corner cells with γTx,k = D/2− 1. Combining these considerations with (124),

we conclude that∑
k∈Tfast∩Tsubnet

∣∣∣I(S)k

∣∣∣
=

∑
k∈Tfast∩Tsubnet :
γTx,k 6=D

2
−1

6 +
∑

k∈Tfast∩Tsubnet :
γTx,k=

D
2
−1

k a non-corner cell

4 +
∑

k∈Tfast∩Tsubnet :
γTx,k=

D
2
−1

k a corner cell

3 (126)

= 6 · |Tfast ∩ Tsubnet| − 2 ·
∣∣∣∣{k ∈ Tfast ∩ Tsubnet : γTx,k =

D
2
− 1 and k a non-corner cell

}∣∣∣∣
−3 ·

∣∣∣∣{k ∈ Tfast ∩ Tsubnet : γTx,k =
D
2
− 1 and k a corner cell

}∣∣∣∣ (127)

= 6 ·
(

D2

4
− D

2
+ 1

)
− 2 · 6 ·

D
2
− 4

3
− 3 · 6 (128)

=
(3D− 4)(D− 2)

2
=

3D2

2
− 5D + 4. (129)

Since QK,Rx
K

→ 6 and since, by a sandwiching argument, 1
K

∑
k∈Tfast

|I(S)k | →

s−1
∑

k∈Tfast∩subnet |I
(S)
k | as K →∞:

lim
K→∞

∑
k∈Tfast

∣∣∣I(S)k

∣∣∣
QK,Rx

= lim
K→∞

∑
k∈Tfast∩Tsubnet

∣∣∣I(S)k

∣∣∣
sQK,Rx/K

=
(3D−4)(D−2)

2
3
4
D2 · 6

=
(3D− 4)(D− 2)

9D2 . (130)

Then, by (21):

µ
(r)
Tx,both = L · (3D− 4)(D− 2)

9D2 . (131)
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To calculate the Rx-cooperation prelog, we notice that for each “slow” cell k with γRx,k ∈

{1, . . . ,D/2 − 2} the “fast” interfering set I(F )
k is of size 3, and for each “slow” cell k with

γRx,k = D/2 − 1 it is of size 2. As explained previously, among the 6 ·
(

D
2
− 1
)

cells with

γRx,k = D
2
− 1, there are 6 “fast” corner cells and D− 8 “fast” non-corner cells. The remaining

are “slow” cells, and therefore∑
k∈Tslow∩Tsubnet

|I(F )
k | = 3|Tslow ∩ Tsubnet| − |{k ∈ (Tslow ∩ Tsubnet) : γTx,k = D/2− 1}| (132)

= 3

(
D2

2
− D

)
−
(

6 ·
(

D
2
− 1

)
− 6− (D− 8)

)
=

3D2

2
− 5D + 4. (133)

To calculate the sum
∑

k∈Tslow∩Tsubnet
γRx,k, we first characterize the number of “fast” cells in

the sector T +
subnet that have γRx,k = i, for i = 1, . . .D/2− 1. A cell k ∈ T +

subnet has γRx,k = i if it

has coordinates of the form ak = i and bk = 0, . . . , i− 1 or ak = 1, . . . , i and bk = i. To count

the number of “fast” cells in this set, we distinguish different cases for i mod 3:

• If i mod 3 = 0, then there are 2i/3 “fast” cells among these cells (namely the cells (ak =

i, bk = 0), (ak = i, bk = 3), . . . , (ak = i, bk = i), (ak = i− 3, bk = i), . . . , (ak = 3, bk = i))

and the remaining 4i/3 cells are “slow” cells.

• If i mod 3 = 1, then there are 2(i− 1)/3 “fast” cells among these cells (namely the cells

(ak = i, bk = 2), (ak = i, bk = 5), . . . , (ak = i, bk = i− 2), (ak = i− 2, bk = i), . . . , (ak =

2, bk = i)) and the remaining 2(2i+ 1)/3 cells are “slow” cells.

• If i mod 3 = 2, then there are 2(i+ 1)/3 “fast” cells among these cells (namely the cells

(ak = i, bk = 1), (ak = i, bk = 4), . . . , (ak = i, bk = i− 1), (ak = i− 1, bk = i), . . . , (ak =

1, bk = i)) and the remaining 2(2i− 1)/3 cells are “slow” cells.

By the rotation invariance of all relevant sets with respect to the angle 2π/3, we conclude that

|{k ∈ Tslow ∩ Tsubnet : γRx,k = i}| =


4i i mod 3 = 0,

4i+ 2 i mod 3 = 1,

4i− 2 i mod 3 = 2.

(134)

and since D
2
− 1 is a multiple of 3, see (68):

∑
k∈Tslow∩Tsubnet

γRx,k =

D
2
−1∑
i=1

4i2 + 2

D
2−1

3∑
j=1

(3j − 2)− 2

D
2−1

3∑
j=1

(3j − 1) (135)

=
D3 − 3D2 + 4

6
. (136)
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Putting (129) and (136) together, we obtain:∑
k∈Tslow∩Tsubnet

(
|I(F )
k |+ 2γRx,k

)
=

3D2

2
− 5D + 4 + 2 ·

(
D3 − 3D2 + 4

6

)
(137)

=
2D3 + 3D2 − 30D + 32

6
. (138)

Since QK,Rx
K

→ 6 and, by a sandwiching argument, K−1
∑

k∈Tslow
|I(F )
k | →

s−1
∑

k∈Tslow∩Tsubnet
|I(F )
k | as K →∞:

lim
K→∞

∑
k∈Tslow

∣∣∣I(F )
k

∣∣∣+ 2γRx,k

QK,Rx
= lim

K→∞

∑
k∈Tfast∩Tsubnet

∣∣∣I(S)k

∣∣∣+ 2γRx,k

sQK,Rx/K

=
2D3 + 3D2 − 30D + 32

6 · 3
4
D2 · 6

(139)

=
2D3 + 3D2 − 30D + 32

27D2 . (140)

By (22), the average Rx-cooperation prelog is

µ
(r)
Rx,both = L · 2D3 + 3D2 − 30D + 32

27D2 . (141)

D. Coding scheme to transmit both “fast” and “slow” messages with CoMP transmission

We choose the same cell association as in the previous subsection. Consequently, the scheme

achieves the same MG pair and the single-round Rx-cooperation prelog coincides with the single-

round Tx-cooperation prelog in the previous Subsection A-C (see (131)):

µ
(t)
Rx,both = µ

(r)
Tx,both. (142)

To calculate the average Tx-cooperation prelog, we first consider the q-term in (25), which

characterizes the number of quantization messages describing the “slow” signals that are counted

twice: once for the CoMP transmission and once for the interference mitigation at “fast” Txs.

Since the master Tx is a “fast”-Tx, all 6 incoming messages are counted twice. Moreover, for

each “fast”-Tx k in layer i (i.e., with γTx,k = i), for i ∈ {1, . . . , D
2
−2}, there are 2 neighbouring

“slow” Txs in the subsequent layer i + 1. Thus for each such “fast” Tx, there are 2 messages

that are double-counted. Repeating the arguments that justify (128), we obtain that

|{k ∈ Tsubnet ∩ Tfast : γTx,k = i}| =
(

D2

4
− D

)
− (6 + D− 8) =

D2

4
− 3D

2
+ 2. (143)

Therefore,

qsubnet = 6 + 2

(
D2 − 6D + 12

4
− 1

)
=

D2

2
− 3D + 10. (144)
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Fig. 10: Illustration of the scheme without cooperation in the sectorized hexagonal network.

The sum
∑

k∈Tslow∩Tsubnet
2γTx,k+

∑
k∈Tfast∩Tsubnet

|I(S)k | can be calculated as in the previous subsection

for the scheme with CoMP reception. Specifically, since γTx,k = γRx,k, the sum
∑

k∈Tslow∩Tsubnet
γTx,k

is given by the right-hand side of (138). The sum
∑

k∈Tfast∩Tsubnet
|I(S)k | is calculated in (129). This

establishes: ∑
k∈Tslow∩Tsubnet

2γTx,k +
∑

k∈Tfast∩Tsubnet

|I(S)k | − qsubnet =
2D3 − 12D− 28

6
. (145)

By now standard asymptotic arguments and by (25), the average Tx-cooperation prelog is then

obtained by dividing (145) by s = 3
4
D2 and multiplying it by the number of antennas L:

µ
(t)
Tx,both = L · 2D3 − 12D− 28

27D2 . (146)

APPENDIX B

CODING SCHEMES AND ANALYSIS IN THE SECTORIZED HEXAGONAL MODEL

In this appendix we prove that the Tx/Rx set associations proposed in Subsection VI are

permissible and we provide details on how to compute the corresponding MG pairs and

cooperation prelogs.

A. No cooperation scheme

Figure 10 shows the active Txs in yellow and the silenced Txs in white. It is easily seen that

transmissions in yellow sectors do not interfere, as they pertain to non-neighbouring sectors.

This scheme requires no cooperation messages and achieves the sum MG in (90).
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B. Coding scheme to transmit only “slow” messages with CoMP reception

As explained in the main body of the paper, the proposed cell association splits the network

into non-interfering subnets. Moreover, in layer D/2 3 corner cells are completely silenced and

each of the remaining cells contains exactly one active sector pertaining to the subnet. The total

number of active sectors per cell is thus

sactive = 3 + 3

D/2−1∑
i=1

6i+ (3D− 3) = 9D2/4− 3D/2. (147)

A valid sector partitioning can be obtained by associating all sectors of the cell partitioning

proposed for the hexagonal model to the same subset, which then contains (by (116) and because

each cell contains 3 sectors):

ssectors = 3
3

4
D2. (148)

By these considerations

lim
K→∞

|Tslow|
K

=
sactive

ssectors
=

9D2/4− 3D/2
9D2/4

=
3D− 2

3D
, (149)

and as a result, by (26) and (27), the proposed cell association achieves the MG pair (S(F ) =

0, S(S) = S
(S)
max) with S

(S)
max defined in (91).

With CoMP reception, this scheme does not use any Tx-cooperation messages and µ(r)
Tx,S = 0.

To calculate the required Rx-cooperation prelog, notice that for each k ∈ Tsubnet, γRx,k = i if k

lies in the i-th layer around the master cell. Since in each layer i ∈ {1, . . . ,D/2− 1} there are

6i cells and thus 18i sectors and in layer D/2 there are 3D−3 active sectors as explained above,

2
∑

k∈Tsubnet

γRx,k = 2 ·

D/2−1∑
i=1

(18i) · i+ (3D− 3) · D/2

 =
3D2(D− 1)

2
. (150)

and by a sandwiching argument

lim
K→∞

2
∑

k∈Tslow
γRx,k

K
=

2
∑

k∈Tsubnet
γRx,k

ssector
=

(3D2(D− 1))/2
3D2

4

= 2(D− 1). (151)

Since limK→∞
QK,Rx
K

= 6, according to (28) the required Rx-cooperation prelog equals

µ
(r)
Rx,S = L · (D− 1)

3
. (152)
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C. Coding scheme to transmit both “fast” and “slow” messages with CoMP reception

Consider the cell and sector association for this network described in the main body of the

paper and illustrated in Fig. 8b for D = 8 where white sectors are deactivated, Txs in yellow

sectors send “fast” messages, and Txs in blue sectors send “slow” messages. As explained in the

preceeding subsection, the network is split into subnets and the total number of active sectors

in a subnet is 9D2/4− 3D/2, see (147).

We count the number of “fast” sectors in a subnet Tsubnet surrounding a master cell at the origin.

Notice that all subnets are symmetric and have same number of “fast” and “slow” sectors. As

explained in the main body of the paper, each cell in layer D/2 has 1 active “fast” sector

pertaining to the subnet, except for 3 three corner cells that are completely desactivated. The

number of “fast” sectors in layer D/2 is thus 3D− 3. In each layer-i with i ∈ {1, . . . , D
2
− 1},

each cell has exactly one “fast’ sector, except the cells with coordinates satisfying one of the

three conditions: (ak = 0 and bk > 0) or (ak > 0 and bk = 0) or (ak = bk < 0). There are

3(D/2− 1) such cells, and thus the total number of “fast” sectors in layers i = 1, . . . ,D/2− 1

is:
D/2−1∑
i=1

6i− 3(D/2− 1) = 3
D(D− 2)

4
− 3D

2
+ 3 =

3

4
D2 − 3D + 3. (153)

Since the master cell sends “slow” messages only, we obtain that the number of “fast” sectors

in subnet Tsubnet equals

|Tfast ∩ Tsubnet| = (3D− 3) +

(
3

4
D2 − 3D + 3

)
=

3

4
D2. (154)

Since the total number of active Txs in this subnet equals sactive = 9D2

4
− 3D

2
, see (147), the

subnet’s number of “slow” Txs is:

|Tslow ∩ Tsubnet| =
6D2

4
− 3D

2
. (155)

We notice that similarly to the previous subsection, one can obtain a valid cell partitioning

by associating a subset of s = 33
4
D2 cells to each master cell. Since each cell has 3 sectors

and because all subnets are equal, applying standard sandwiching arguments to eliminitate edge

effects for finite number of users K, we obtain:

lim
K→∞

|Tfast|
K

=
|Tfast ∩ Tsubnet|

3s
=

3D2

4

9D2

4

=
1

3
(156)

and

lim
K→∞

|Tslow|
K

=
|Tslow ∩ Tsubnet|

3s
=

6D2

4
− 3D

2

9D2

4

=
2D− 2

3D
. (157)
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By (19) and (20), this establishes the achievability of the MG pair (93).

To analyze the cooperation prelog of the sector association, notice that for each “fast” Tx/Rx k

with γRx,k ∈ {1, . . . ,D/2− 1} the size of the “slow” interfering set I(S)k is equal to 4, and when

γRx,k = D/2 the size of this set is equal to 2 for the three active corner cells and equal to 3 for

the other non-corner cells. Considering the fact that the number of “fast” Txs with γRx,k = D
2

equals 3D− 3, then by (154) we conclude that

∑
k∈Tfast∩Tsubnet

|I(S)k | = 4

(
3D2

4
− (3D− 3)

)
+ 2 · 3 + 3(3D− 6) = 3D(D− 1). (158)

According to (21), the average Tx-cooperation prelog required for the scheme is

µ
(r)
Tx,both = L · (D− 1)

9D
. (159)

Fig. 8b also shows that the size of the “fast” interference set I(F )
k is equal to 2 for each “slow”

Tx k. To precisely calculate the number of required Rx-cooperation messages, notice that each

non-corner “fast”-Rx k with γRx,k = D
2

sends its decoded message to two of its neighbours and

each corner “fast”-Rx k with γRx,k = D
2

sends its decoded message to only one neighbouring Rx.

As there are 3D− 6 non-corner Rxs and 3 active corner Rxs in this layer, then the total number

of cooperation messages by these Rxs equals 6D − 9. Any other “fast” Rx who is not in this

layer has to send its decoded messages to 3 of its neighbours. By (154), thus these “fast” Rxs

send in total 3(3D2

4
− (3D− 3)) cooperation messages to their neighbours. Each Rx decoding a

“slow” message also sends the quantized version of its channel outputs to the next master Rx.

Among the Rxs with γRx,k = i, there are 6i − 3 Rxs observing two “slow” signals and 3 Rxs

observing 3 “slow” signals. To sum up, the total number of Rx-cooperation messages transmitted

in this scheme is∑
k∈Tslow∩Tsubnet

|I(F )
k |+ 2γRx,k = 6D− 9 + 3(

3D2

4
− (3D− 3)) + 4

D
2
−1∑
i=1

i(6i− 3) + 6

D
2
−1∑
i=1

3i

=
D(2D2 − 5)

2
. (160)

Thus according to (22), the average Rx-cooperation prelog required by the scheme is

µ
(r)
Rx,both = L · 2D2 − 5

9D
. (161)
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APPENDIX C

PROOF OF PROPOSITION 2

The proof idea of our upper bounds is similar to [18, Lemma 1]. While [18, Lemma 1] is

for Wyner’s linear soft-handoff model, here we prove a similar result for the hexagonal model.

Technically, the main novelty is in identifying appropriate cell partitionings based on which the

genie information will be defined.

We first prove

S(F ) + S(S) ≤ L

2
+ 2(µTx + µRx). (162)

Partition the cells of the network alternately into red and white cells as depicted in Figure 11,

and define

Mred := {(M (S)
k ,M

(F )
k ) : k is a red cell} (163)

Xred := {Xn
k : k is a red cell} (164)

Yred := {Yn
k : k is a red cell} (165)

Ywhite := {Yn
k : k is a white cell} (166)

Zred := {Znk : k is a red cell} (167)

Zwhite := {Zk : k is a white cell}. (168)

Moreover, for each Tx-cooperation round j = 1, . . . ,DTx define the Tx-cooperation message set

T(j)
white→red :=

{
T

(j)
k→k′ : k is a white cell, k′ is a red cell

}
, (169)

where message sets T(j)
red→red, T(j)

red→white, and T(j)
white→white are defined analogously, and for each

Rx-cooperation round j = 1, . . . ,DRx define the Rx-cooperation message set

Q(j)
white→red :=

{
Q

(j)
k→k′ : k is a white cell, k′ is a red cell

}
, (170)

where again message sets Q(j)
red→red, Q(j)

red→white, and Q(j)
white→white are defined analogously.

To prove the converse, for each blocklength n fix encoding, cooperation, and decoding

functions so that for sufficiently large blocklength n the probability of error does not exceed

ε > 0. We show in the following that a super-receiver observing the three items listed in

the following can decode all transmitted messages {(M (S)
k ,M

(F )
k ) : k = 1, . . . , K} correctly

whenever the K BSs decode them correctly in the original setup. The super-receiver’s probability
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Fig. 11: Cell partitioning used for the first part of the converse bound (88).

of error thus cannot be larger than the original probability of error, which was upper-bounded

by ε. The three items are:

1) all output signals in red cells, Yred;

2) all conferencing messages from white to red cells, T(1)
white→red, . . . ,T

(DTx)
white→red and

Q(1)
white→red, . . . ,Q

(DRx)
white→red; and

3) the genie-information

G := H̃white→whiteH̃
−1
white→redZred − Zwhite, (171)

where for each pair of colours c, c′ ∈ {red, white} we denote by H̃c,c′ the channel matrix

from mobile users in cells of colour c to BSs in cells of colour c′. In particular, we impose

that the diagonal entries of the matrix H̃white→red measure the channel coefficients from

mobile users in a sector of a white cell to the BS of an adjacent interfering sector in a

red cell. (The matrix H̃white→red is invertible with probability 1 because of the interference

structure of the network and because all channel matrices are full rank, so the genie-

information in (171) is well-defined.)

The super-receiver decodes the messages {M (F )
k ,M

(S)
k } by means of the following seven

decoding steps:

1) For each round j = 1, . . . ,DRx, it applies the appropriate Rx-cooperation functions to the

red output signals Yred and the previous rounds’ Rx-cooperation messages {Q(j′)
white→red}

j−1
j′=1

and {Q(j′)
red→red}

j−1
j′=1. This allows the super-receiver to compute the current round-j Rx-

cooperation messages Q(j)
red→red. (Notice that knowledge of output signals in white cells or

conferencing messages sent to white cells are not required for this computation.)

2) It applies the appropriate decoding functions {g(n)k , b
(n)
k : k is a red cell} to the output

signals Yred and the Rx-cooperation messages {Q(j)
red→red}

DRx
j=1 to decode messages Mred.
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3) For each Tx-cooperation round j = 1, . . . ,DTx, it applies the appropriate Tx-cooperation

functions to the red messages Mred and the previous rounds’ Tx-cooperation messages

{T(j′)
white→red}

j−1
j′=1 and {T(j′)

red→red}
j−1
j′=1 to obtain the current round-j Tx-cooperation messages

T(j)
red→red.

4) It applies the encoding functions {f (n)
k } to the previously decoded messages Mred and

the reconstructed Tx-cooperation messages {T(j)
white→red}

DTx
j=1 and {T(j′)

red→red}
DTx
j=1 to construct

input signals Xred.

5) With the input and output signals sent and received in red cells, Xred and Yred, it reconstructs

the output signals received at the BSs in the white cells by forming:

Ywhite = H̃white→whiteH̃
−1
white→red(Yred − H̃red→redXred)

+ H̃red→whiteXred −G. (172)

6) For each Rx-cooperation round j = 1, . . . ,DRx, it applies the appropriate Rx-cooperation

functions to the white and red output signals Ywhite and Yred and to the observed

and previously calculated Rx-cooperation messages {Q(j′)
white→red}

j−1
j′=1 and {Q(j′)

red→white}
j−1
j′=1,

{Q(j′)
red→red}

j−1
j′=1, {Q(j′)

white→white}
j−1
j′=1, to compute the current round-j Rx-cooperation messages

Q(j)
red→white and Q(j)

white→white.

7) It applies the appropriate decoding functions {g(n)k , b
(n)
k : k is a white cell} to the output

signals Ywhite and the observed or reconstructed Rx-cooperation messages {Q(j)
red→white}

DRx
j=1

and {Q(j)
white→white}

DRx
j=1 so as to decode messages Mwhite.

The above arguments imply that any 2K-tuple (R
(F )
1 , . . . , R

(F )
K , R

(S)
1 , . . . , R

(S)
K ) that is achiev-

able over the original network from mobile users to BSs is also achievable over the network

from mobile users to the super-receiver. So, by Fano’s inequality:

K(R̄
(F )
K + R̄

(S)
K )− εn

≤ 1

n
I
(
M

(F )
1 , . . . ,M

(F )
K ,M

(S)
1 , . . . ,M

(S)
K ;Yred,T(1)

white→red, . . . ,T
(DTx)
white→red,Q

(1)
white→red, . . . ,Q

(DRx)
white→red,G

)
=

1

n
I
(
M

(F )
1 , . . . ,M

(F )
K ,M

(S)
1 , . . . ,M

(S)
K ;Yred

)
+

1

n
I
(
M

(F )
1 , . . . ,M

(F )
K ,M

(S)
1 , . . . ,M

(S)
K ;T(1)

white→red, . . . ,T
(DTx)
white→red,Q

(1)
white→red, . . . ,Q

(DRx)
white→red|G,Yred

)
+

1

n
I
(
M

(F )
1 , . . . ,M

(F )
K ,M

(S)
1 , . . . ,M

(S)
K ;G

∣∣Yred
)
, (173)

where εn is a function that tends to zero as n→∞.
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We notice that the first summand in (173) has DoF at most L · |Ired|, where Ired :=

{k : cell k is red}; the second summand in (173) has DoF at most 4|Iwhite| · (µTx + µRx), where

Iwhite := {k : cell k is white}; and the third summand in (173) has zero DoF because, for any

N :

I(M
(F )
1 , . . . ,M

(F )
K ,M

(S)
1 , . . . ,M

(S)
K ;G|Yred) ≤ h(G)− h(G|Zred) (174)

= h(G)− h(Zwhite), (175)

which is finite and does not grow with power P, irrespectively of the chosen encoding,

cooperation, and decoding functions. Dividing (173) by 1/2 log(1 + P) and taking the limit

P→∞, we obtain the following bound on the DoF:

K · (S(F ) + S(S)) ≤ L|Ired|+ 4|Iwhite| · (µTx + µRx). (176)

Dividing the above by K and letting K →∞ establishes the desired bound after noticing that

lim
K→∞

|Ired|
K

= lim
K→∞

|Iwhite|
K

= 1/2. (177)

We now prove the second upper bound

S(F ) + S(S) ≤ L ·
(

1− 1

2 + 2D

)
. (178)

To prove the converse, fix a sequence (in the blocklength n) of encoding, cooperation, and

decoding functions with DTx and DRx Tx- and Rx-cooperation rounds with vanishing probability

of error as the blocklength increases.

Fix now a blocklength n and partition the set of cells {1, . . . , K} into red, purple, blue, and

white cells as shown in Figure 12. That means, every 2(D + 1)-th column has only white cells,

all columns in the middle of two white columns have only red cells, the DTx columns to the left

and right of red columns have only purple cells, and all remaining columns consist of only blue

cells.

The sets

Ired := {k : cell k is red}, (179)

Iwhite := {k : cell k is white}, (180)

Iblue := {k : cell k is blue}, (181)

Ipurple := {k : cell k is purple}, (182)
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then satisfy the following limiting behaviours:

lim
K→∞

|Iwhite|
K

=
1

2(D + 1)
, (183a)

lim
K→∞

|Iblue|+ |Ired|+ |Iyellow|
K

=
2D− 1

2(D + 1)
. (183b)

Define for each color c ∈ {red, purple, blue, white}:

Mc := {(M (F )
k ,M

(S)
k ) : cell k is of color c}, (184)

Xc := {Xk : cell k is of color c}, (185)

Yc := {Yk : cell k is of color c}, (186)

Zc := {Zk : cell k is of color c}. (187)

Moreover, for each Tx-cooperation round j = 1, . . . ,DTx define the Tx-cooperation message set

T(j)
purple/red→purple/red :=

{
T

(j)
k→k′ : k is a purple or red cell and less than

j hops away from a blue cell, k′ is a purple or red cell
}
, (188)

and for each Rx-cooperation round j = 1, . . . ,DRx define the Rx-cooperation message sets

Q(j)
blue/purple/red→blue/purple/red :=

{
Q

(j)
k→k′ : k is a blue or red cell and less than

j hops away from a white cell, k′ is a red cell
}
, (189)

and

Q(j)
all→white/blue :=

{
Q

(j)
k→k′ : k is any cell, k′ is a white or blue cell

}
. (190)

Notice that T(j)
purple/red→purple/red contains only the round-j Tx-cooperation messages that can be

propagated to a red cell within the remaining DTx− j Tx-cooperation rounds. In other words, it

contains only Tx-cooperation messages that potentially can influence the encodings at the red Txs.

Since red and blue cells are DTx+1 cell hops apart, the Tx-cooperation messages T(j)
purple/red→purple/red

in particular do not depend on the messages of blue or white cells, and as a consequence can be

computed from the messages in red and purple cells. Similarly, Q(j)
blue/purple/red→blue/purple/red contains

only the round-j Rx-cooperation messages that can be propagated to a red pruple cell within

the remaining DRx − j Rx-cooperation rounds and thus serve in the decoding of red or purple

messages. Since red and purple cells are at least DRx cell hops apart, the Rx-cooperation messages

Q(j)
blue/purple/red→blue/purple/red do not depend on the outputs of white cells and can be computed from

the outputs in blue, purple, and red cells. These properties will be crucial later on in the proof.



47

Fig. 12: Proposed cell-partitioning when D = 3.

Notice that a super-receiver with the three items described shortly can decode all the 2K

messages {M (F )
1 , . . . ,M

(F )
K ,M

(S)
1 , . . . ,M

(S)
K } with probability of error at most ε. The mentioned

three items are:

• all output signals in red cells, Yred;

• all output signals in blue cells, Yblue;

• the genie-information

G := H̃white/blue/purple→whiteH̃
−1
white/blue/purple→red/blue/purpleZred/blue/purple − Zwhite, (191)

where H̃white/blue/purple→white denotes the channel matrix from Txs in white, purple, or blue cells

to Rxs in white cells and H̃white/blue/purple→red/blue/purple denotes the channel matrix from Txs in

white, purple, or blue cells to Rxs in red, purple, or blue cells. In particular, we impose that

the diagonal entries of the matrix H̃white/blue /purple→red/blue/purple indicate the channel coefficients

from Txs in white, purple, or blue cells to the Rxs of adjacent interfering red, purple, or

blue cells. This way, and since the channel matrices are full rank, H̃white/purple/blue→red/purple/blue

is square (recall that we assume the same number of red and white cells) and invertible.

The genie-information in (194) is thus well-defined.

Notice that if the super-receiver performs the following seven decoding steps, then it decodes

all 2K messages M (F )
1 , . . . ,M

(F )
K ,M

(S)
1 , . . . ,M

(S)
K correctly whenever the K BSs decode them

correctly in the original setup. The super-receiver’s probability of error can thus not be larger

than the probability of error in the original setup.

The seven decoding steps at the super-receiver are:

1) For each Rx-cooperation round j = 1, . . . ,DRx, it applies the appropriate Rx-cooperation

functions to the output signals Yred,Ypurple and Yblue and to the previously computed Rx-



48

cooperation messages {Q(j′)
blue/purple/red→blue/purple/red}

j−1
j′=1 so as to obtain the current round-j Rx-

cooperation messages Q(j)
blue/purple/red→blue/purple/red. (Notice that knowledge of output signals

in white cells or conferencing messages exchanged with white cells are not required for

this computation.)

2) It applies the appropriate decoding functions {g(n)k , b
(n)
k } to the output signals Yred and

Ypurple and to the Rx-cooperation messages {Qj
blue/purple/red→blue/purple/red}

DRx
j′=1 so as to decode

messages Mred and Mpurple.

3) For each Tx-cooperation round j = 1, . . . ,DTx, it applies the appropriate Tx-cooperation

functions to the decoded red and purple messages Mred and Mpurple and to the previous

rounds’ Tx-cooperation messages {T(j′)
purple/red→purple/red}

j−1
j′=1to obtain the current round-j Tx-

cooperation messages T(j)
purple/red→purple/red.

4) It applies the encoding functions {f (n)
k } to the previously decoded messages Mred and the

reconstructed Tx-cooperation messages {T(j)
purple/red→purple/red}

DTx
j=1 to construct input signals

Xred.

5) It reconstructs the output signals received at the BS in the white cells Ywhite as:

Ywhite = H̃white/blue/purple→whiteH̃
−1
white/blue/purple→red/blue/purple(Yred/blue/purple−H̃red→red/blue/purpleXred)−G.

(192)

6) It iteratively reconstructs all Rx-cooperation messages {Q(j)
all→white/blue}

DRx
j=1 intended to blue

or white cells.

7) It applies the appropriate decoding functions {g(n)k , b
(n)
k } to the observed and reconstructed

output signals Ywhite and Yblue to decode messages Mwhite and Mblue.

The above arguments imply that any 2K-tuple (R
(F )
1 , . . . , R

(F )
K , R

(S)
1 , . . . , R

(S)
K ) that is achiev-

able over the original network from mobile users to BSs is also achievable over the network

from mobile users to the super-receiver. So, by Fano’s inequality:

K(R̄
(F )
K + R̄

(S)
K ) ≤ 1

n
I
(
M

(F )
1 , . . . ,M

(F )
K ,M

(S)
1 , . . . ,M

(S)
K ;Yred,Ypurple,Yblue,G

)
+ εn

=
1

n
I
(
M

(F )
1 , . . . ,M

(F )
K ,M

(S)
1 , . . . ,M

(S)
K ;Yred,Ypurple,Yblue

)
+

1

n
I
(
M

(F )
1 , . . . ,M

(F )
K ,M

(S)
1 , . . . ,M

(S)
K ;G

∣∣Yred,Ypurple,Yblue
)

+εn, (193)

where εn tends to 0 as n→∞.
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Notice that the first summand has MG at most L(|Ired|+ |Iblue|), whereas the second summand

has zero MG because

I(M
(F )
1 , . . . ,M

(F )
K ,M

(S)
1 , . . . ,M

(S)
K ;G|Yred,Ypurple,Yblue) ≤ h(G)− h(G|Zred,Zpurple,Zblue)

= h(G)− h(Zwhite), (194)

Dividing by log(1 + P) and taking the limit P→∞, we thus obtain:

K(S(F ) + S(S)) ≤ L(|Ired|+ |Iblue|). (195)

Dividing by K and letting K →∞ yields the desired bound, by (183).

APPENDIX D

PROOF OF PROPOSITION 3

We start by proving the upper bound

S(F ) + S(S) ≤ L

2
+

2

3
µRx +

4

3
µTx. (196)

For each power P > 0, fix a sequence of encoding, cooperation and decoding functions so

that the average block power constraint is satisfied and for sufficiently large blocklength n, the

probability of error does not exceed ε. Partition the network into red and white cells as depicted

in Fig. 13. Define

M(F )
red := {M (F )

k : k is a mobile user in a red cell}

M(S)
red := {M (S)

k : k is a mobile user in a red cell}

Xred := {Xk : k is a mobile user in a red cell}

Yred := {Yk̃ : k̃ is a red cell}

Ywhite := {Yk̃ : k̃ is a white cell}

Fix also an arbitrary pair (DTx,DRx) such that DTx + DRx = D. Then, for each round j =

1, . . . ,DTx, we introduce the following shortcut for transmitter conferencing messages

T(j)
C1→C2

:= {T j,(n)k→` : k is in a cell colored in C1, ` is in a cell colored in C2}

where k and ` are random mobile users and C1 and C2 are cell colors, i.e., C1, C2 ∈ {red,white}.

Also, for each j′ = 1, . . . ,DRx, define the following shortcuts:

Q(j′)
C1→C2

:= {Qj′,(n)

k̃→` : k̃ is a cell colored in C1, ` is a cell colored in C2}.
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Fig. 13: Cell partitioning used for the first part of the converse bound (103).

Consider a virtual super receiver that observes Yred, Twhite→red, Qwhite→red and genie information

G

G = Ywhite − H−1white→red(Yred − Hred→redXred)− Hred→whiteXred, (197)

where HC1→C2 denotes the channel matrix from the mobile users in the cells of color C1 to

the basestations in the cells of color C2. Because these matrices are square and the channel

coefficients are drawn i.i.d according to a continues distribution, they are invertible. Notice that

G satisfies

lim
P→∞

1

log(1 + P)
I(M1, . . . ,M3K ;G|Yred,T(1)

white→red, . . . ,

T(DTx)
white→red,Q

(1)
white→red, . . . ,Q

(DRx)
white→red) = 0, (198)

irrespective of the fixed encoding, cooperation and decoding functions.

Consider now Algorithm 1. If the virtual super receiver follows Algorithm 1, then it decodes

all the 3K messages {Mk} correctly whenever the K BSs decode them correctly in the original

setup.

We can therefore conclude that any tuple (R1, . . . , R3K) with Rk = R
(F )
k + R

(S)
k and k =

1, . . . , 3K, that is achievable over the original network to the BSs is also achievable over the

network to the virtual super receiver. So, by Fano’s inequality:

3K(R(F ) +R(S)) ≤ 1

n
I(M1, . . . ,M3K ;Yred,T(1)

white→red,

. . . ,T(DTx)
white→red,Q

(1)
white→red, . . . ,Q

(DRx)
white→red,G) +

ε

n

=
1

n
I(M1, . . . ,M3K ;Yred)

+
1

n
I(M1, . . . ,M3K ;T(1)

white→red, . . . ,T
(DTx)
white→red,
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Algorithm 1
1: Initialization:

2: for j′ = 1, . . . ,DRx do

3: Apply the cooperation functions ψj
′,(n)

k̃→` to Yred and {Q(j′′)
white→red}

j′−1
j′′=1 and {Q(j′′)

red→red}
j′−1
j′′=1.

4: Compute Q(j′)
white→red and Q(j′)

red→red.

5: end for

6: Apply the decoding function g(n)
k̃

to Yred and {Q(j′)
white→red}

DRx
j′=1 and {Q(j′)

red→red}
DRx
j′=1 to decode

messages Mred. This yields M̂red.

7: for j = 1, . . . ,DTx do

8: Apply the transmitter conferencing functions ξ
j,(n)
k→` to M̂red, {T(j′′)

white→red}
j−1
j′′=1 and

{T(j′′)
red→red}

j−1
j′′=1.

9: Compute T(j)
white→red and T(j)

red→red.

10: end for

11: Apply the encoding function f
(n)
k to the decoded messages M̂red, {T(j)

white→red}
DTx
j=1 and

{T(j)
red→red}

DTx
j=1 to construct Xred.

12: Reconstruct Ywhite with Xred, Yred, and the genie information G.

13: for j′ = 1, . . . ,DRx do

14: Apply the cooperation functions ψ
j′,(n)

k̃→` to Ywhite, Yred and to {Q(j′′)
red→white}

j′−1
j′′=1 and

{Q(j′′)
white→white}

j′−1
j′′=1.

15: Compute Q(j′)
red→white and Q(j′)

white→white.

16: end for

17: Apply the decoding function g
(n)

k̃
to Ywhite and {Q(j′)

red→white}
DRx
j′=1 and {Q(j′)

white→white}
DRx
j′=1 to

decode messages Mwhite.

18: End

Q(1)
white→red, . . . ,Q

(DRx)
white→red|Yred)

+
1

n
I(M1, . . . ,M3K ;G|Yred,T(1)

white→red, . . . ,

T(DTx)
white→red,Q

(1)
white→red, . . . ,Q

(DRx)
white→red) +

ε

n
, (199)

By considering (198) and dividing (199) by 1
2

log(1+P) and taking the limits ε→ 0 and P→∞,
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the following bound is obtained on the multiplexing gain region:

3K(S(F ) + S(S)) ≤ 3L|Ired|+ 4(K − |Ired|)(µRx + 2µTx). (200)

where |Ired| := {i : cell i is red}, and

lim
K→∞

|Ired|
K

=
1

2
. (201)

Finally, by considering (201) and dividing (200) by 3K, when K → ∞ the desired bound is

established. The second part of the bound (103) is proved in an analogous way to the proof of

the second part of the bound (88). See Appendix C.
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