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Whispering Secrets in a Crowd: Leveraging
Non-Covert Users for Covert Communications
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Abstract

This paper establishes the fundamental limits of a multi-access system where multiple users communicate to a legitimate
receiver in presence of an external warden. Only a specific subset of the users, called covert users, needs their communication to
remain undetected to the warden, while the remaining non-covert users have no such constraint. The fundamental limits show a
tradeoff between the different rates that are simultaneously achievable at the various users in function of the secret-key rates that
the different users share with the legitimate receiver. Interestingly, the presence of the non-covert users can enhance the capacities
of the covert users, especially under stringent secret-key budgets. Our findings underscore the essential requirement of employing
a multiplexing (coded time-sharing) strategy to exhaust the fundamental region of all rates that are simultaneously achievable at
the covert and the non-covert users. As a side-product of our results, we also establish the covert-capacity secret-key tradeoff for
standard single-user and multi-access covert communication systems (without non-covert users), i.e., the largest covert rates that
are achievable under given secret-key rate budgets. Previous works had only established the minimum secret-key rates required
at largest covert rates.

I. INTRODUCTION

Physical layer security leverages information-theoretic techniques and the characteristics of wireless channels to establish
secure communication preventing an attacker to intercept or decipher the transmitted data. A recent technique within

physical layer security is covert communication, which requires conveying information without being detected by adversaries
(wardens), by other users, or by network monitoring nodes. Such communication setups are relevant in future IoT and
sensor networks, e.g., when adversaries should not be able to detect certain monitoring activities. To maintain communication
undetectable (covert), users must remain silent for most of the time, which inherently allows them to transmit only a small
number of information bits. In the IoT context, such a small number of bits per device suffices for many applications, and
as such, covert communication seems an adequate approach to ensure secure IoT communication. Covert communication is
also inherently much more energy-efficient than conventional cryptographic algorithms, which is particularly beneficial for IoT
devices with stringent battery limitations.

The early work of [2] first characterized the fundamental limits of covert communications over AWGN channels. It showed
that it is possible to communicate covertly and reliably as long as the message satisfies the so-called square-root law, i.e.,
the number of communicated information bits scales like the square-root of the number of channel uses. (Recall that without
covertness constraints reliable communication is possible when the number of information bits scales linearly in the number
of channel uses.) Similar square-root laws were subsequently identified as the fundamental limits of covert communications
for various other channels and setups [2, 3, 4, 5]. More specifically, [5] considered communication over arbitrary Discrete
Memoryless Channels (DMC) and assumed the existence of an arbitrary large secret-key shared between the transmitter and the
legitimate receiver. In contrast, [4] assumed the more general setup of rate-limited secret-keys. In particular, it determined the
minimum secret-key rate required to communicate at the largest possible covert data-rate. In this work we strengthen this result
and characterize the required key-rate for any covert-rate, not only the maximum rate. Or rather, equivalently, we characterize
the largest covert data-rate that is achievable under any given key-rate budget. In all these works, covert communication takes
place in the square-root law regime. It has been shown that rates beyond this regime are possible when the warden has
uncertainty about the channel statistics [6, 7, 8, 9] or in the presence of a jammer [10, 11, 12].

Network covert communication with either multiple transmitters or multiple legitimate receivers has also been studied [13,
14, 15, 16]. In particular, [13] characterized the limits of covert communication over a single-transmitter two-receiver Broadcast
Channel (BC) when the transmitter sends a common non-covert message to both receivers and a covert message to only one of
them. The transmission of this covert message should not be detected by the non-intended receiver. The same communication
scenario was also studied in [14] but assuming that the code used to send the common message is fixed and given and
cannot be optimized to facilitate the embedding of the covert message. The BC setup with multiple legitimate receivers and an
external warden was also studied from a communication-theoretic perspective [15, 16], where it was empirically shown that
the detection error probability at the warden vanishes faster in the increasing number of legitimate receivers. The fundamental
limits of covert communication over a multi-transmitter single-receiver Discrete Memoryless Multi-Access Channel (DMMAC)
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were established in [17], assuming that communication from all transmitters has to remain undetected by the external warden.
Their work characterized the set of all covert data-rates that are simultaneously achievable from the various transmitters to
the legitimate receiver and the secret-key rates that are required to achieve the set of largest possible covert data-rates. In this
manuscript, we extend these findings and determine the minimum secret-key rates that are required to attain any achievable
set of covert data-rates, not only the largest data-rates. To this end, we consider a slightly more general model than in [17],
where the different transmitters have access to individual local randomness.

Additionally, the current work extends the result in [17] to a scenario that mixes covert and non-covert transmissions. The
covertness constraint thus imposes that the external warden cannot distinguish between the following two hypotheses:

H = 0: only non-covert users transmit (1)
H = 1: all users transmit. (2)

While the rates of non-covert transmissions are defined in the usual way, i.e., as

Rℓ =
log2 Mℓ

n
, (3)

for log2 Mℓ denoting the number of information bits sent by user ℓ and n the blocklength, the rates of the covert users and
their secret-key rates are defined according to the square-root law and normalized by the detection capability of the warden:

rℓ =
log2 Mℓ√
nδn

(4)

and
kℓ =

log2 Kℓ√
nδn

(5)

for log2 Kℓ denoting the number of secret-key bits shared between the covert user ℓ and the legitimate receiver and δn (as
defined precisely later) denoting an average divergence between the output distributions that the warden observes under the
two hypotheses (i.e., covert users transmitting or not). Note that in [4, 5] it was shown that the definitions in (4) and (5) are
meaningful in a setup with only covert users.

In this work, we determine the set of all covert, non-covert, and secret-key rates as defined in (3)–(5) that are simultaneously
achievable over a given DMMAC with an external warden. In particular, we identify the rates that are simultaneously achievable
without any shared secret-key at all. In our setup, we assume that the external warden has access to the non-covert messages.
Our achievability result is thus even robust under such a strong assumption regarding the warden, and trivially remains valid
also for less-powerful wardens.

Our fundamental tradeoff-region exhibits interesting tradeoffs between the covert and non-covert rates. In fact, for general
DMMACs, the largest covert rates are only achievable under reduced non-covert rates and vice versa. Interestingly, this tradeoff
even depends on the achievable key rates as we show through our theoretical findings and through numerical examples. The
described tradeoffs stem from the inherent tension regarding the choice of the statistics of the inputs at the non-covert users:
certain statistics induce DMMACs from the covert users to the legitimate receiver that allow for high covert rates, while
other statistics allow for high transmission rates for the non-covert messages themselves. In contrast, the input statistics of the
covert users do not influence the communication rates at the non-covert users, because to ensure undetectability the number
of non-zero symbols has to stay low (sub-linear in the blocklength) and thus the statistics of the covert users asymptotically
has no influence on the channel experienced by the non-covert transmissions.

To establish the fundamental tradeoff between the set of achievable rates, we propose a random coding scheme and an
information-theoretic converse result. The coding scheme multiplexes various instances of a general scheme over multiple
phases, where in each phase a different set of parameters is employed. Multiplexing allows to attain a somehow limited form
of collaboration between the distributed multi-access transmitters, despite the fact that they convey independent messages. As
we show, multiplexing is indeed required to exhaust the set of all achievable rates in our setup. The same holds also for non-
covert communication over a DMMAC [18]. In our mixed covert/non-covert setup, multiplexing is required even when there is
only a single covert and a single non-covert user. This contrasts the findings for the DMMAC when transmission from all users
needs to be covert. In such case, no multiplexing is required and instead the data stream from each user can be transmitted
using a standalone single-user coding scheme and in the decoding of a given covert message all other transmissions are ignored
[19]. In our coding scheme that we employ in a given phase, we use a similar coding idea for the covert users, while we use
a standard DMMAC coding scheme for the non-covert users. In the decoding of the non-covert users, the legitimate receiver
can simply ignore the covert users, since they anyways remain silent most of the time.



3

Notice that the study of mixed covert users and non-covert users is novel in this line of work, and so are the results on the
fundamental limits. Previous works had only considered setups with only non-covert or only covert users. However, even in the
works with only covert users, the minimum secret-key rate required to achieve covertness was only determined in the special
case of maximum covert transmission rates. The present work establishes the required secret-key rates for all achievable covert
rates, also when they are reduced. As already mentioned, our work also presents new results for the classical single-user and
multi-access covert communication scenarios as studied in [4, 17]. These new results are crucial to determine the set of covert
rates that are achievable over DMCs and DMMACs under any given secret-key budgets per user, which cannot be obtained
from the previous results in [4, 17].

To simplify notation, in most of this manuscript we restrict to binary input alphabets at the covert users and to two covert
and a single non-covert users. All results and proofs extend however to arbitrary input alphabets and arbitrary number of covert
and non-covert users in a straightforward way. For conciseness, we only present the main results for these extended setups in
our manuscript. As a final extension, we also present the fundamental tradeoff between the message and secret-key rates that
are simultaneously achievable in a three-transmitter and two-receiver Discrete Memoryless Interference Channel (DMIC) with
an external warden where two of the transmitters send individual covert messages to their corresponding legitimate receivers
and a third transmitter sends a common non-covert message to both legitimate receivers. Since in our mixed covert-/non-covert
DMMAC scheme, covert messages were decoded independently, it can also be applied to this DMIC setup with same rates.
Following the same arguments as in the converse proof for the DMMAC, it can then be shown that this scheme is also optimal
for the proposed DMIC setup, thus establishing its fundamental limits. In a similar spirit, [19] established the covert capacity
of the DMIC with only covert users based on the capacity-achieving covert DMMAC scheme and its analysis [17].

To summarize, our main contributions in this manuscript are:
• We characterize the fundamental limits of non-covert rates, covert rates, and secret-key rates that are simultaneously

achievable over a DMMAC with an external warden (Theorems 1, 2, 3 and 4). The related simulation and numerical
examples allow us to conclude that the presence of non-covert users can enhance the set of achievable rates of covert
users.

• We establish a connection of our result to the jammer assisted covert communication (Corollary 1).
• We extend our findings to the DMIC by establishing the fundamental limits of non-covert, covert, and secret-key rates

over a three-user DMIC with one non-covert and two covert users (Theorem 5).
• For single-user and DMMACs with only covert users, we establish the set of all covert rates that are achievable under a

given secret-key rate budget (Corollaries 2 and 3). Previous results had only determined the required secret-key rates for
maximum covert rates. Our results determine the required secret-key rates for any achievable set of covert rates. Notice
that for the DMMAC (but not for single-user channels), our scheme achieving minimum secret-key rates requires local
randomness at a part of the transmitters.

.
Notation: In this paper, we follow standard information theory notations. We use calligraphic fonts for sets (e.g. S) and note

by |S| the cardinality of a set S. The set [|1, p|] denotes the set of positive integers between 1 and p, i.e. [|1, p|] = {1, 2, . . . , p}.
Random variables are denoted by upper case letters (e.g., X), while their realizations are denoted by lowercase letters (e.g.
x). We write Xn and xn for the tuples (X1, . . . , Xn) and (x1, . . . , xn), respectively, for any positive integer n > 0. For a
distribution P on X , we note its product distribution on Xn by P⊗n(xn) =

∏n
i=1 P (xi). For two distributions P and Q on X ,

D(P∥Q) =
∑

x∈X P (x) log
(

P (x)
Q(x)

)
is the relative entropy. For two distributions P and Q on X , we say that P is absolutely

continuous with respect to (w.r.t.) Q, noted P ≪ Q, if for all x ∈ X we have P (x) = 0 if Q(x) = 0, which is equivalent to
the condition that the support of P is included in the support of Q. The logarithm and exponential functions are in base e and
motivated by continuity of the function t log t we define 0 log(0) = 0. We use Landau notation, i.e., for a function f(n) we
write f(n) = o(g(n)) if the ratio f(n)/g(n) vanishes as n → ∞, and we write f(n) = O(g(n)) if the cumulation points of
the ratio f(n)/g(n) are within a bounded interval.

Paper Outline: We present our main problem setup, namely a three-user Multiple Access Channel (MAC) with two covert
and one non-covert users, in the following Section II. The corresponding results are presented in Section III. Section IV extends
these results to arbitrary number of covert and non-covert users and arbitrary input alphabets, and to the interference channel
(IC). Section V concludes the article. The technical proofs are deferred to appendices.

II. THE MIXED COVERT/NON-COVERT THREE-USER MAC: SETUP

Consider the setup depicted in Figure 1 where three users communicate to a legitimate receiver in the presence of a warden.
Both Users 1 and 2 wish to communicate covertly, i.e., the warden should not be able to detect their communication. User 3
does not mind being detected by the warden, and we shall even assume that the warden knows its transmitted message.
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Fig. 1: Multi-access communication where communications from Users 1 and 2 have to remain undetectable to the external
warden.

We thus have two hypotheses H = 0 and H = 1, where under H = 0 only User 3 sends a message while under H = 1
all users send individual messages to the legitimate receiver. For simplicity, we assume that Users 1 and 2 produce inputs in
the binary alphabet X1 = X2 = {0, 1}. User 3’s input alphabet X3 is finite but arbitrary otherwise. The legitimate receiver
and the warden observe channel outputs in the finite output alphabets Y and Z . These outputs are produced by a discrete and
memoryless multi-access channel (DMMAC) with transition law ΓY Z|X1X2X3

(·, ·|·, ·, ·). This means, if Users 1–3 send input
symbols x1,i, x2,i, and x3,i in time slot i, then the legitimate receiver and the warden observe symbols Yi and Zi according
to the pmf ΓY Z|X1X2X3

(·, ·|x1,i, x2,i, x3,i), irrespective of the previously observed outputs and inputs.
Define the message, key sets, and sets of local randomness

M1 ≜ {1, . . . ,M1}, (6)
M2 ≜ {1, . . . ,M2}, (7)
M3 ≜ {1, . . . ,M3}, (8)
K1 ≜ {1, . . . ,K1}, (9)
K2 ≜ {1, . . . ,K2}, (10)
G1 ≜ {1, . . . ,G1}, (11)
G2 ≜ {1, . . . ,G2}, (12)

for given positive numbers M1, M2, M3, K1, K2, G1, and G2, and let the messages W1, W2, W3, the keys S1 and S2, and the
local randomness C1 and C2 be uniform over M1,M2, M3, K1, K2, G1, and G2, respectively. Secret-key S1 is known to User
1 and to the legitimate receiver, and message W1 and local randomness C1 are known to User 1 only. Similarly, secret-key
S2 is known to User 2 and to the legitimate receiver and message W2 and local randomness C2 are known to User 2 only. In
contrast, message W3 is known to User 3 and the warden.

Under H = 0:
Users 1 and 2 send the all-zero sequences

Xn
1 = 0n, (13)

Xn
2 = 0n, (14)

whereas User 3 applies some encoding function φ(n)
3 :M3 → Xn

3 to its message W3 and sends the resulting codeword

Xn
3 = φ

(n)
3 (W3) (15)

over the channel.

Under H = 1:
User 1 applies some encoding function φ(n)

1 :M1×K1×G1 → Xn
1 to its message W1, its secret-key S1 and its local randomness

C1, and sends the resulting codeword
Xn

1 = φ
(n)
1 (W1, S1, C1) (16)

over the channel. Similarly, User 2 applies some encoding function φ(n)
2 :M2×K2×G2 → Xn

2 to its message W2, its secret-key
S2 and its local randomness C2, and sends the resulting codeword

Xn
2 = φ

(n)
2 (W2, S2, C2) (17)

over the channel.
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User 3 constructs its channel inputs in the same way as before, see (15), since it is not necessarily aware of whether H = 0
or H = 1.

The legitimate receiver, which knows the hypothesis H, decodes the desired messages W3 (under H = 0) or (W1,W2,W3)
(under H = 1) based on its observed sequence of outputs Y n and its knowledge of the keys (S1, S2). Thus, under H = 0 it
uses a decoding function g(n)0 :Yn → M3 to produce the single guess

Ŵ3 = g
(n)
0 (Y n) (18)

and under H = 1 it uses a decoding function g(n)1 :Yn ×K1 ×K2 → M1 ×M2 ×M3 to produce the triple of guesses

(Ŵ1, Ŵ2, Ŵ3) = g
(n)
1 (Y n, S1, S2). (19)

Decoding performance of a tuple of encoding and decoding functions (φ
(n)
1 , φ

(n)
2 , φ

(n)
3 , g

(n)
0 , g

(n)
1 ) is measured by the error

probabilities under the two hypotheses:

Pe,0 ≜ Pr
(
Ŵ3 ̸=W3

∣∣∣ H = 0
)
, (20)

Pe,1 ≜ Pr
(
Ŵ3 ̸=W3 or Ŵ2 ̸=W2 or Ŵ1 ̸=W1

∣∣∣H = 1
)
. (21)

Communication is subject to a covertness constraint at the warden, which observes the channel outputs Zn as well as the
correct message W3. (Obviously, covertness assuming that the warden knows W3 implies also covertness in the setup where it
does not know W3.) For a given codebook C and for each w3 ∈ M3 and W3 = w3, we define the warden’s output distribution
under H = 1

Q̂n
C,w3

(zn) ≜
1

M1M2K1K2G1G2

∑

(w1,s1,c1)

∑

(w2,s2,c2)

Γ⊗n
Z|X1X2X3

(zn|xn1 (w1, s1, c1), x
n
2 (w2, s2, c2), x

n
3 (w3)), (22)

and under H = 0

Γ⊗n
Z|X1X2X3

(zn|0n, 0n, xn3 (w3)), (23)

and the divergence between these two distributions:

δn,w3
≜ D

(
Q̂n

C,w3
∥ Γ⊗n

Z|X1X2X3
(·|0n, 0n, xn3 (w3))

)
, ∀w3 ∈ M3. (24)

The choice of this measure for covertness is motivated by the fact that any binary hypothesis test at the warden satisfies [20]
α+ β ≥ 1− δn,w3

, for α and β the probabilities of miss-detection and false alarm, respectively. Ensuring a negligible δn,w3

for any w3 ∈ M3 is thus sufficient to achieve covertness irrespective of the message that is transmitted by the non-covert user.

Our main interest and focus will be on coding schemes {(φ(n)
1 , φ

(n)
2 , φ

(n)
3 , g

(n)
0 , g

(n)
1 )}∞n=1 that guarantee reliable transmission

and undetectability at the warden in the sense of:

lim
n→∞

Pe,H = 0, H ∈ {0, 1}, (25)

lim
n→∞

δn,w3
= 0, ∀w3 ∈ M3. (26)

Our problem is thus multi-objective as we not only wish to have reliable communication from all the users to the legitimate
receiver, i.e. vanishing error probabilities (20) and (21), but also a vanishing detectability capability at the warden (24).

Remark 1 (Special Cases of Our Setup). The setup we introduced in this section includes canonical scenarios as special cases.
In fact, when the inputs X2 and X3 do not influence the outputs at the legitimate receiver, Users 2 and 3 can communicate
reliably only when M2 = M3 = 1 and the setup reduces to a covert single-user DMC (from User 1) as studied in [4, 5]. If
only the input of the non-covert user X3 does not influence the outputs, then we fall back to the two-user covert DMMAC
studied in [17].

If the non-covert user has no data to transmit, i.e., if M3 = 1, then the setup specializes to a covert two-user DMMAC with
a friendly jammer (User 3) whose inputs are revealed to the legitimate receiver and the warden.

We shall formally define these special cases in our results Section III-D.
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III. THE MIXED COVERT/NON-COVERT THREE USER MAC: RESULTS

We make the following assumptions to avoid degenerate conditions. For any x3 ∈ X3:

ΓY |X1X2X3
(·|0, 1, x3) ≪ ΓY |X1X2X3

(·|0, 0, x3), (27a)
ΓY |X1X2X3

(·|1, 0, x3) ≪ ΓY |X1X2X3
(·|0, 0, x3), (27b)

ΓZ|X1X2X3
(·|0, 1, x3) ≪ ΓZ|X1X2X3

(·|0, 0, x3), (27c)
ΓZ|X1X2X3

(·|1, 0, x3) ≪ ΓZ|X1X2X3
(·|0, 0, x3), (27d)

ΓZ|X1X2X3
(·|0, 1, x3) ̸= ΓZ|X1X2X3

(·|0, 0, x3), (27e)
ΓZ|X1X2X3

(·|1, 0, x3) ̸= ΓZ|X1X2X3
(·|0, 0, x3). (27f)

Conditions (27a) and (27b) exclude the situation in which the legitimate receiver can detect certain input symbols with
probability 1, in which case it has been shown that one can communicate O(

√
n log(n)) covert and reliable bits in a blocklength

n, see [4, Appendix G]. Conditions (27c) and (27d) prevent the warden to distinguish the covert users’ inputs with probability
1. Finally, (27e) and (27f) prevent that the warden’s output distribution does not depend on the covert users’ inputs, in which
case, covertness is trivial.

A. Useful Definitions

Before presenting our results we make the following definitions. Let {ωn}∞n=1 be a sequence satisfying

lim
n→∞

ωn = 0, (28a)

lim
n→∞

(
ωn

√
n− log n

)
= ∞, (28b)

and define
αn ≜

ωn√
n
. (29)

We further define for any x3 ∈ X3 the abbreviations

D(1)
Y (x3) ≜ D

(
ΓY |X1X2X3

(·|1, 0, x3) || ΓY |X1X2X3
(·|0, 0, x3)

)
, (30a)

D(2)
Y (x3) ≜ D

(
ΓY |X1X2X3

(·|0, 1, x3) || ΓY |X1X2X3
(·|0, 0, x3)

)
, (30b)

D(1,2)
Y (x3) ≜ D

(
ΓY |X1X2X3

(·|1, 1, x3) || ΓY |X1X2X3
(·|0, 0, x3)

)
, (30c)

D(1)
Z (x3) ≜ D

(
ΓZ|X1X2X3

(·|1, 0, x3) || ΓZ|X1X2X3
(·|0, 0, x3)

)
, (30d)

D(2)
Z (x3) ≜ D

(
ΓZ|X1X2X3

(·|0, 1, x3) || ΓZ|X1X2X3
(·|0, 0, x3)

)
, (30e)

D(1,2)
Z (x3) ≜ D

(
ΓZ|X1X2X3

(·|1, 1, x3) || ΓZ|X1X2X3
(·|0, 0, x3)

)
. (30f)

Define further the function

χ2(ρ1, ρ2, x3) ≜
∑

z∈Z

(
ρ1

ρ1+ρ2
ΓZ|X1X2X3

(z|1, 0, x3) + ρ2

ρ1+ρ2
ΓZ|X1X2X3

(z|0, 1, x3)− ΓZ|X1X2X3
(z|0, 0, x3)

)2

ΓZ|X1X2X3
(z|0, 0, x3)

. (31)

We have χ2(ρ1, ρ2, x3) the chi-squared distance between the mixture distribution
ρ1

ρ1 + ρ2
ΓZ|X1X2X3

(·|1, 0, x3) +
ρ2

ρ1 + ρ2
ΓZ|X1X2X3

(·|0, 1, x3), (32)

and ΓZ|X1X2X3
(z|0, 0, x3). Notice that χ2(ρ1, ρ2, x3) = χ2

(
ρ1

ρ1+ρ2
, ρ2

ρ1+ρ2
, x3

)
, i.e., any normalization of both ρ1 and ρ2 does

not change the χ2 distance.

B. A Basic Coding Scheme

Our first result in Theorem 1 is an achievability result, and we start by explaining the underlying coding scheme. In this
subsection we present a special case of the scheme, the general scheme is described in the following Subsection III-C. In this
special case, we have a deterministic scheme and we simply omit the local randomness in the notation; the general scheme
later can be randomized for one of the users.

Fix a finite alphabet T . Let {ωn} be a sequence satisfying (28) and define {αn} as in (29). Pick a pmf PTX3 over T ×X3

and the conditional pmfs

PX1,n|T (1 | t) = ρ1,tαn, t ∈ T , (33)
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PX2,n|T (1 | t) = ρ2,tαn, t ∈ T . (34)

Define the joint pmf
P

(n)
TX1X2X3Y

≜ PTX3PX1,n|TPX2,n|TΓY |X1X2X3
. (35)

Let also µn ≜ n−1/3.
Notice that while both pmfs PX1,n|T and PX2,n|T used to construct codebooks C1 and C2 depend on the blocklength n, the

pmf PX3|T used to construct C3 is independent of n.
Fix a large blocklength n and choose a type-vector π ∈ {0, 1

n ,
2
n , . . . ,

n−1
n , 1}T with entries summing to 1, i.e. ∥π∥1= 1,

and so that

|π(t)− PT (t)| ≤
1

n
, ∀t ∈ T , (36)

as well as π(t) = 0 whenever PT (t) = 0.

Codebook generation: Let tn = (t1, . . . , tn) be any sequence of type π, i.e., so that the empirical frequency of symbol t ∈ T in
tn equals π(t). The tn-sequence acts as a multiplexing sequence that indicates which distribution to use in the construction of
the different entries of the covert and non-covert codewords. As we see in the following, the i-th distribution used to construct
the i-th entries of all codewords is determined by the value of the symbol ti.

• For user 1, generate a codebook
C1 = {xn1 (1, 1), . . . , xn1 (M1,K1)} (37)

by drawing the i-th entry of each codeword xn1 (w1, s1) according to the pmf PX1,n|T (·|ti) independent of all other entries.
• For user 2, generate a codebook

C2 = {xn2 (1, 1), . . . , xn2 (M2,K2)} (38)

by drawing the i-th entry of each codeword xn2 (w2, s2) according to the pmf PX2,n|T (·|ti) independent of all other entries.
• For user 3, generate a codebook

C3 = {xn3 (1), . . . , xn3 (M3)} (39)

by drawing the i-th entry of each codeword xn3 (w3) according to the pmf PX3|T (·|ti) independent of all other entries.

Encoding and Decoding:
If H = 1, Users 1 and 2 send the codewords xn1 (W1, S1) and xn2 (W2, S2) respectively, and if H = 0 they send xn1 = 0n and
xn2 = 0n. User 3 sends the same codeword xn3 (W3) under both hypotheses.

The legitimate receiver, which observes Y n = yn and knows the secret-keys (S1, S2) and the true hypothesis H, performs
successive decoding starting with message W3 followed by the messages W1 and W2 in case H = 1. (The decoding procedure
is also summarized in Figure 2.)

More specifically, under both hypotheses, the legitimate receiver looks for a unique index w3 ∈ M3 satisfying

(tn, xn3 (w3), y
n) ∈ T n

µn
(PTX3Y ). (40)

If such a unique index w3 exists, the legitimate receiver sets Ŵ3 = w3. Otherwise it declares an error and stops.
Only under H = 1 and after decoding the message W3, the legitimate receiver decodes the messages of the two covert

users. These two decoding steps depend on the set

An
η ≜

{
(xn1 , x

n
2 , x

n
3 , y

n) ∈ Xn
1 ×Xn

2 ×Xn
3 × Yn : log

(
Γ⊗n
Y |X1X2X3

(yn|xn1 , xn2 , xn3 )
Γ⊗n
Y |X1X2X3

(yn|0n, 0n, xn3 )

)
≥ η

}
, (41)

where η is a given positive constant.
To decode message W1, the legitimate receiver looks for a unique index w1 satisfying

(
xn1 (w1, S1), 0

n, xn3 (Ŵ3), y
n
)
∈ An

η1
, (42)

where η1 is a positive constant that needs to be chosen judiciously. (Details on how to choose η1 and later η2 are presented
when we analyze the scheme, see Equations (160) and (162) in Appendix A.) If such a unique index w1 exists, the legitimate
receiver sets Ŵ1 = w1. Otherwise it declares an error and stops.

Similarly, to decode message W2, the legitimate receiver looks for a unique index w2 satisfying
(
0n, xn2 (w2, S2), x

n
3 (Ŵ3), y

n
)
∈ An

η2
, (43)

for a well chosen positive constant η2. If such a unique index w2 exists, it sets Ŵ2 = w2, and it declares an error otherwise.
We notice that the decoding of each covert message uses the previously decoded non-covert message, but assumes that the
other covert users send the all-zero sequence. In fact, the number of non-zero symbols is small in each block, and the all-zero
approximation seems not to cause any loss in optimality in terms of achievable rates.
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(Y n,H)

g
(n)
1 g

(n)
0 , g

(n)
1 g

(n)
1

Ŵ3Ŵ1 Ŵ2

Ŵ3Ŵ3

Xn
2 = 0n

S2

Xn
1 = 0n

S1

Fig. 2: Under H = 1, the non-covert message W3 is decoded first, followed by parallel decoding of the two covert messages.
Under H = 0 only W3 is decoded.

C. Generalization of the Coding Scheme

We propose a slight generalization of our coding scheme including two new parameters ϕ1, ϕ2 ∈ (0, 1]. In our description,
we assume ϕ1 ≥ ϕ2, otherwise we switch the roles of Users 1 and 2.

In the generalized scheme, communication at Users 1 and 2 is only over a fraction ϕ1 of the time; during the remaining
(1− ϕ1) fraction of time both users simply send the zero symbol. User 3 acts as before and transmits over the entire duration
of the blocklength n. See Figure 3 for an illustration of the scheme.

n

User 1

User 3

User 2

PX1,n|T 00...0

ϕ1 · n

n

dummy bits ∼ PX2,n|T 00...0

ϕ1 · nϕ2 · n

PX2,n|T

PX3|T

1

1

1 n

Fig. 3: Illustration of the code construction in the generalized coding scheme for the scenario ϕ1 ≥ ϕ2.

For each t ∈ T let
L(t) := {j ∈ [|1, n|]: tj = t}, (44)

and choose two disjoint subsets of time-instances L1(t),L1,2(t) ⊆ L(t) of sizes

|L1(t)| ≈ nPT (t)(ϕ1 − ϕ2) (45)
|L1,2(t)| ≈ nPT (t)ϕ2. (46)

Users 1 and 2 send the following channel inputs depending on whether a time slot i lies in the sets L1,2(t) or L1(t) for
some t or not.

• In all channel uses ∪t∈T L1,2(t): Users 1 and 2 transmit the corresponding symbols from the codewords xn1 (W1, S1) and
xn2 (W2, S2) as described in the basic scheme.

• For each t ∈ T , in channel uses L1(t): User 1 transmits the corresponding symbols from the codeword xn1 (W1, S1)
and User 2 sends i.i.d. inputs according to PX2,n|T=t

. Thus, in this scheme only User 2 uses its local randomness C2 to
generate the i.i.d. inputs in channel uses ∪t∈T L1(t).

• In the remaining channel uses (i.e., channel uses neither in ∪t∈T L1,2(t) nor in ∪t∈T L1(t)), Users 1 and 2 send input 0.

The legitimate receiver decodes message W3 as before, see (40). To decode message W1, it applies the decoding rule in
(42), but focusing only on channel uses ∪t∈T (L1,2(t) ∪ L1(t)). To decode message W2, it applies the decoding rule in (43),
but focusing only on channel uses ∪t∈T L1,2(t).

D. Main Results

Our first result is a finite blocklength achievability result based on the coding schemes described in the previous two
subsections.



9

Theorem 1. Fix any pmf PTX3
over finite alphabets T × X3 and (T,X3) ∼ PTX3

, any sequence {ωn}∞n=1 as in (28),
any pair (ϕ1, ϕ2) ∈ [0, 1]2, and any nonnegative tuple {(ρ1,t, ρ2,t)}t∈T . Then, for any ϵ > 0 and arbitrary small numbers
ξ1, ξ2, ξ3, ξ4, ξ5, ξ6 > 0 and for sufficiently large blocklengths n, we can find encoding and decoding functions {(φ(n)

1 , φ
(n)
2 , φ

(n)
3 ,

g
(n)
0 , g

(n)
1 )}n with message sizes M1,M2,M3 and secret-key sizes K1,K2 satisfying

log(M1) = (1− ξ1) · ϕ1 · ωn

√
nEPTX3

[
ρ1,TD(1)

Y (X3)
]
, (47)

log(M2) = (1− ξ2) · ϕ2 · ωn

√
nEPTX3

[
ρ2,TD(2)

Y (X3)
]
, (48)

log(M3) = (1− ξ3)nI(X3;Y | X1 = 0, X2 = 0, T ), (49)

log(M1) + log(K1) = (1 + ξ4) · ϕ1 · ωn

√
nEPTX3

[
ρ1,TD(1)

Z (X3)
]
, (50)

log(M2) + log(K2) = (1 + ξ5) · ϕ2 · ωn

√
nEPTX3

[
ρ2,TD(2)

Z (X3)
]
, (51)

and so that

Pe,H ≤ ϵ, ∀H ∈ {0, 1} (52)

and

1

M3

M3∑

W3=1

δn,W3 = (1 + ξ6) ·max(ϕ1;ϕ2) ·
ω2
n

2
EPTX3

[
(ρ1,T + ρ2,T )

2χ2(ρ1,T , ρ2,T , X3)
]
. (53)

(Notice that the parameter ϕℓ influences only the message and key sizes of User ℓ, ℓ ∈ {1, 2}, but not of User 3 − ℓ. The
expected divergence at the warden depends on the term max(ϕ1;ϕ2). )

Proof: Appendix A contains the proof in the special case ϕ1 = ϕ2 = 1, which is obtained by analyzing the basic coding
scheme in Section III-B.

The proof in the general case can be obtained by analyzing the generalized coding scheme in Section III-C. The analysis
is the same as in Appendix A, up to some small modifications that allow to introduce the factors ϕ1 and ϕ2. We explain the
modifications when ϕ1 ≥ ϕ2, otherwise we switch the indices 1 and 2.

• When analyzing Pe,1,1 in Appendix A, restrict to channel uses in ∪t∈T (L1,2(t) ∪ L1(t)) because only these chan-
nel uses are used for the decoding of message W1. Since approximately a fraction ϕ1 of the n channel uses are in
∪t∈T (L1,2(t) ∪ L1(t)), we obtain the additional factor ϕ1 in (47).

• When analyzing Pe,1,2 , restrict to channel uses in ∪t∈T L1,2(t) because only these channel uses are used for the decoding
of message W2. Since approximately a fraction ϕ2 of the n channel uses are in ∪t∈T L1,2(t), we obtain the additional
factor ϕ2 in (48).

• The details of the resolvability analysis are provided in Appendix B. The modifications for the generalized scheme allow
to introduce the factor ϕ1 for bounds (50) and (53) and the factor ϕ2 for bounds (51) and (53).

Remark 2. To achieve the performance in Theorem 1, the covert user 1 does not require access to local randomness to achieve
all tuples for which ϕ1 ≥ ϕ2. Similarly, covert user 2 does not require access to local randomness to achieve tuples for which
ϕ2 ≥ ϕ1. (Covert user 2 utilizes common randomness to generate the random inputs in channel uses ∪tL1(t)).

We observe the difference in the scalings of the logarithms of the covert-message size and the key sizes and the scaling
of the logarithm of the non-covert message size. While the formers grow in the order of ωn

√
n, and thus slowlier than

√
n,

the logarithm of the non-covert message size scales linearly in n. Communication from the non-covert user thus admits for a
positive communication-rate in the traditional sense (ratio between the number of information bits and channel uses), which
is not the case for the communications from the covert users.

It is further interesting to analyze the influence of the sequence {ωn}. The key and covert-message square-root-scalings
all depend on the vanishing sequence ωn. Increasing ωn proportionally increases the permissible covert-message size but also
quadratically increases the average divergence at the warden. Combined with the observation in the previous paragraph, we
conclude that we obtain meaningful rates for the covert-messages by dividing the log of their message sizes by the square-roots
of the blocklength n and the square-root of the averaged divergences. This leads to the following definition.

Definition 1. A non-negative tuple (r1, r2, R3, k1, k2) is achievable if there exists a sequence (in the blocklength n) of tuples1

(M1,M2,M3,K1,K2,G1,G2) and encoding/decoding functions (φ
(n)
1 , φ

(n)
2 , φ

(n)
3 , g

(n)
0 , g

(n)
1 ) satisfying

lim
n→∞

Pe,H = 0, ∀H ∈ {0, 1}, (54)

1Not to overload notation, we did not add a superscript (n) to the parameters M1,M2,M3,K1,K2. They however all depend on the blocklength n.
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lim
n→∞

δn,W3
= 0, ∀W3 ∈ M3, (55)

and

rℓ = lim inf
n→∞

log(Mℓ)√
n 1

M3

∑M3

W3=1 δn,W3

, ∀ℓ ∈ {1, 2}, (56)

R3 = lim inf
n→∞

log(M3)

n
, (57)

kℓ = lim sup
n→∞

log(Kℓ)√
n 1

M3

∑M3

W3=1 δn,W3

, ∀ℓ ∈ {1, 2}. (58)

The following theorem determines the set of all achievable rate-key tuples (r1, r2, R3, k1, k2).

Theorem 2. A nonnegative rate-key tuple (r1, r2, R3, k1, k2) is achievable if, and only if, there exists a pmf over T ×X3 with
T = {1, . . . , 6} and (T,X3) ∼ PTX3 , a nonnegative tuple {(ρ1,t, ρ2,t)}t∈T , and a pair (β1, β2) ∈ [0, 1]2 so that the following
inequalities hold:

rℓ ≤ βℓ
√
2

EPTX3

[
ρℓ,TD(ℓ)

Y (X3)
]

√
EPTX3

[
(ρ1,T + ρ2,T )

2 · χ2(ρ1,T , ρ2,T , X3)
] , ∀ℓ ∈ {1, 2}, (59)

R3 ≤ I(X3;Y | X1 = 0, X2 = 0, T ), (60)

kℓ ≥ βℓ
√
2

EPTX3

[
ρℓ,T

(
D(ℓ)

Z (X3)− D(ℓ)
Y (X3)

)]

√
EPTX3

[
(ρ1,T + ρ2,T )

2 · χ2(ρ1,T , ρ2,T , X3)
] , ∀ℓ ∈ {1, 2}, (61)

where recall that D(ℓ)
Y (·) and D(ℓ)

Z (·) are defined in (30).

Proof: The achievability proof essentially follows from Theorem 1, by setting ϕℓ = βℓ max(ϕ1;ϕ2) and taking n → ∞.
For details, see Appendix C. For the proof of the converse, see Appendix D.

Lemma 1. The set of five-dimensional vectors (r1, r2, R3, k1, k2) satisfying Inequalities (59)–(61) for some choice of pmfs
PTX3 and nonnegative pairs {(ρ1,t, ρ2,t)}t∈T is a convex set.

Proof: See Appendix E.

Remark 3. Whenever the numerator in (61) is negative, no secret-key is required to establish covert communication in our
setup. In particular, whenever D(1)

Z (x3) < D(1)
Y (x3) and D(2)

Z (x3) < D(2)
Y (x3) for all x3 ∈ X3, Condition (61) is always

satisfied.

Our theorem includes various interesting special cases. For example, when User 3 has no message to transmit (M3 = 1
and R3 = 0), its inputs act as a jamming sequence that shapes the channel and in addition is known to the warden and the
legitimate receiver. We then obtain the following corollary.

Corollary 1 (User 3 acting as a Friendly Jammer). When User 3 sends no message (M3 = 1 and R3 = 0), it acts as a friendly
jammer whose inputs are known to the warden and to the legitimate receiver. In this case, a rate-key tuple (r1, r2, k1, k2)
for Users 1 and 2 is achievable if, and only if, (59) and (61) hold for some choice of PTX3

and pairs {(ρ1,t, ρ2,t)}t∈T and
(β1, β2) ∈ [0, 1]2.

Our theorem also includes results for the two-user covert DMMAC and the single-user covert DMC as specials cases. In
both cases our results are stronger than the previously known findings in [17] and [4], because we not only determine the
required key rate at the largest covert communication rates, but at all rates. The special case of the two-user covert DMMAC
is obtained if in our setup we assume that either X3 = {x3} is a singleton or that the output distributions at the legitimate
receiver and the warden ΓY |X1X2X3

and ΓZ|X1X2X3
do not depend on the input X3. Interestingly, in these cases the cardinality

of T can be set to 1 without loss in optimality. So no multiplexing (coded time-sharing) is needed. Moreover, when T = {t},
then the single parameters ρ1,t and ρ2,t can be chosen to sum to 1 without loss in optimality. These observations are made
precise in the following corollary and its proof.

Corollary 2 (Only Two Covert Users). Assume that X3 = {x3} or that for any x3 ∈ X3:

ΓY |X1X2X3
(y|x1, x2, x3) = ΓY |X1X2

(y|x1, x2), (62a)
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ΓZ|X1X2X3
(y|x1, x2, x3) = ΓZ|X1X2

(z|x1x2). (62b)

Then R3 = 0 and a message and secret-key rates tuple (r1, r2, k1, k2) is achievable if, and only if, there exist nonnegative
numbers ρ1, ρ2 ≥ 0 summing to 1 (ρ1 + ρ2 = 1) and β1, β2 ∈ [0, 1] so that

r1 ≤ β1
√
2
ρ1D

(
ΓY |X1X2

(·|1, 0) || ΓY |X1X2
(·|0, 0)

)
√
χ2(ρ1, ρ2)

, (63)

r2 ≤ β2
√
2
ρ2D

(
ΓY |X1X2

(·|0, 1) || ΓY |X1X2
(·|0, 0)

)
√
χ2(ρ1, ρ2)

, (64)

k1 ≥ β1
√
2
ρ1
(
D
(
ΓZ|X1X2

(·|1, 0) || ΓZ|X1X2
(·|0, 0)

)
− D

(
ΓY |X1X2

(·|1, 0) || ΓY |X1X2
(·|0, 0)

))
√
χ2(ρ1, ρ2)

, (65)

k2 ≥ β2
√
2
ρ2
(
D
(
ΓZ|X1X2

(·|0, 1) || ΓZ|X1X2
(·|0, 0)

)
− D

(
ΓY |X1X2

(·|0, 1) || ΓY |X1X2
(·|0, 0)

))
√
χ2(ρ1, ρ2)

, (66)

where we use the abbreviations

ΓY |X1X2
(y|x1, x2) ≜ ΓY |X1X2X3

(y|x1, x2, x3), (67)

ΓZ|X1X2
(y|x1, x2) ≜ ΓZ|X1X2X3

(y|x1, x2, x3), (68)

χ2(ρ1, ρ2) ≜
∑

z∈Z

(
ρ1 · ΓZ|X1X2

(z|1, 0) + ρ2 · ΓZ|X1X2
(z|0, 1)− ΓZ|X1X2

(z|0, 0)
)2

ΓZ|X1X2
(z|0, 0) . (69)

Proof: We present the proof assuming that X3 = {x3} is a singleton. Under the assumptions (62) the proof is similar.
We start by proving that without loss in generality in Theorem 2 one can restrict to constant T . To this end, define

ρ̄ℓ ≜ EPT
[ρℓ,T ], and notice that when X3 is a constant x3, the numerators of (59) and (61) simplify to ρ̄ℓ · D(ℓ)

Y (x3) and
ρ̄ℓ ·

(
D(ℓ)

Z (x3)− D(ℓ)
Y (x3)

)
, respectively. Moreover, in this case, the denominator of (59) and (61) can be lower bounded as:

EPT

[
(ρ1,T + ρ2,T )

2 · χ2(ρ1,T , ρ2,T , x3)
]

= EPT

(∑

z∈Z

(
ρ1,TΓZ|X1X2X3

(z|1, 0, x3) + ρ2,TΓZ|X1X2X3
(z|0, 1, x3)− (ρ1,T + ρ2,T )ΓZ|X1X2X3

(z|0, 0, x3)
)2

ΓZ|X1X2X3
(z|0, 0, x3)

)

≥
∑

z∈Z

(
ρ̄1 · ΓZ|X1X2X3

(z|1, 0, x3) + ρ̄2 · ΓZ|X1X2X3
(z|0, 1, x3)− (ρ̄1 + ρ̄2) · ΓZ|X1X2X3

(z|0, 0, x3)
)2

ΓZ|X1X2X3
(z|0, 0, x3)

, (70)

where the inequality holds by the convexity of the square-function and Jensen’s inequality.
We conclude that replacing ρ1,t and ρ2,t by the respective expectations ρ̄1 and ρ̄2 (and thus T by a constant) does not change

the numerator of the right-hand sides of (59) and (61), while it divides all the denominators by the same factor
√
γ ≥ 1, for γ

the ratio between the left- and right-hand sides of (70). Dividing βℓ by
√
γ, we can recover the same constraints on the rates

and keys, from which we started. There is thus no reason to consider non-constant random variables T .
Notice further that for a single T = t the rate and key expressions in Theorem 2 only depend on the normalized coefficients
ρ1,t

ρ1,t+ρ2,t
and ρ2,t

ρ1,t+ρ2,t
but not on the absolute values of ρ1,t and ρ2,t, because χ2(ρ1,t, ρ2,t, x3) also only depends on the

ratios ρ1,t

ρ1,t+ρ2,t
and ρ2,t

ρ1,t+ρ2,t
but not on their absolute values. This implies that without loss in generality we can restrict to

ρ1,t + ρ2,t = 1, which establishes the above corollary.

Remark 4. Corollary 2 strengthens the results in [17] for two covert users because in Corollary 2 we characterize the required
secret-key rates for all achievable covert rates, not only the ones on the boundary of the achievable region. We recall that we
need local randomness only at one of the users.

In a similar way, we can recover the fundamental limits for a single-user communication system. We start from Corollary
2 (where ρ1 + ρ2 = 1) and assume that for any x1, x2, x3:

ΓY |X1X2X3
(y|x1, x2, x3) = ΓY |X1

(y|x1), (71a)
ΓZ|X1X2X3

(y|x1, x2, x3) = ΓZ|X1
(z|x1), (71b)

for some conditional pmf ΓY |X1
. This immediately implies that Users 2 and 3 cannot communicate reliably, i.e., we can restrict

to r2 = k2 = R3 = 0. Moreover, under Assumption (71b), we have

χ2(ρ1, ρ2) =
∑

z∈Z

(
ρ1 · ΓZ|X1

(z|1) + ρ2 · ΓZ|X1
(z|0)− (ρ1 + ρ2)·ΓZ|X1

(z|0)
)2

ΓZ|X1
(z|0) (72)
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=
∑

z∈Z

(
ρ1 · ΓZ|X1

(z|1)− ρ1 · ΓZ|X1
(z|0)

)2

ΓZ|X1
(z|0) (73)

= ρ21 ·
∑

z∈Z

(
ΓZ|X1

(z|1)− ΓZ|X1
(z|0)

)2

ΓZ|X1
(z|0) , (74)

where in (72) we used that ρ1+ρ2 = 1. Therefore, the ρ1-factor cancels in constraints (59) and (61) and the following corollary
is obtained. Define

DY ≜ D
(
ΓY |X1

(·|1) || ΓY |X1
(·|0)

)
, (75)

DZ ≜ D
(
ΓZ|X1

(·|1) || ΓZ|X1
(·|0)

)
, (76)

χ2 ≜
∑

z∈Z

(
ΓZ|X1

(z|1)− ΓZ|X1
(z|0)

)2

ΓZ|X1
(z|0) . (77)

We have the following corollary.

Corollary 3 (Only a Single Covert User). Assume (71) and r2 = k2 = R3 = 0. Then a message and secret-key rate pair for
User 1 (r1, k1) is achievable if, and only if, there exists a number β1 ∈ [0, 1] so that

r1 ≤ β1
√
2
DY√
χ2
, (78)

k1 ≥ β1
√
2
DZ − DY√

χ2
. (79)

Defining the secret-key covert-capacity tradeoff r⋆1(k1) as the largest rate achievable given a key-rate budget k1,

r⋆1(k1) = max {r1 : (r1, k1) is achievable} , (80)

we have:

r⋆1(k1) = min

{
k1

DY

max{DZ − DY , 0}
,
√
2
DY√
χ2

}
. (81)

For channels where DZ > DY , the secret-key covert-capacity tradeoff is thus linearly increasing in the secret-key rate
k1 ∈

[
0,
√
2DZ−DY√

χ2

]
, and saturates to the largest covert rate for all larger secret-key rates, see Figure 4. In particular, for 1

additional key bit, one can transmit DY

DZ−DY
covert message bits. For channels where DZ ≤ DY the covert capacity is constant

and does not require any positive secret-key rate.

×

×

k1

r∗1

√
2DZ−DY√

χ2

√
2 DY√

χ2

1

Fig. 4: The secret-key covert-capacity tradeoff for the scenario DZ > DY .

Again, Corollary 3 not only recovers the result in [4] but even strengthens it, because in [4] the required secret-key rate is
characterized only for covert capacity and not for achievable covert rates. In particular, based on the results in [4] it is not
possible to characterize the secret-key covert capacity tradeoff r⋆1(k1).

Remark 5. Corollary 3 can be achieved with a deterministic scheme where the single user does not have access to additional
local randomness.
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E. Numerical examples

Consider binary input alphabets for all three users, i.e. X1 = X2 = X3 = {0, 1}, and output alphabets Y = Z = {1, . . . , 6}.
Assume the channel transition laws

ΓY |X1X2X3
=




0.28 0.26 0.02 0.01 0.18 0.25
0.12 0.36 0.29 0.06 0.11 0.06
0.17 0.14 0.25 0.10 0.13 0.21
0.05 0.15 0.31 0.28 0.01 0.20
0.08 0.18 0.02 0.25 0.39 0.08
0.05 0.21 0.13 0.28 0.03 0.30
0.15 0.05 0.10 0.17 0.33 0.20
0.05 0.25 0.10 0.20 0.10 0.30




,

(82a)

and

ΓZ|X1X2X3
=




0.15 0.11 0.57 0.01 0.06 0.10
0.15 0.41 0.12 0.15 0.06 0.11
0.23 0.02 0.01 0.48 0.10 0.16
0.14 0.17 0.21 0.12 0.24 0.12
0.01 0.12 0.19 0.15 0.19 0.34
0.10 0.11 0.15 0.14 0.18 0.32
0.05 0.15 0.15 0.20 0.10 0.35
0.10 0.10 0.27 0.13 0.20 0.20




,

(82b)

where the six columns correspond to the six output symbols 1, . . . , 6 and the eight rows correspond to the eight distinct
triples (x1, x2, x3) in increasing alphabetical ordering, i.e., (0, 0, 0), (0, 0, 1), . . . , (1, 1, 1). Notice that above channels satisfy
Conditions (27).

Figure 5 illustrates the set of achievable triples (r1, r2, R3) according to Theorem 2 for the channels in (82) and maximum
secret-key rate budgets k1, k2 ≤ 0.8.
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Fig. 5: Rate-region (r1, r2, R3) for the channels in (82) and secret-key rate budgets k1, k2 ≤ 0.8.

For better visualization, in Figure 6, we also show the two-dimensional tradeoff between the rates (r2, R3) for k1, k2 ≤ 0.8
and r1 fixed to 0.25, 0.5, or 0.75. Furthermore, in Figure 7, we plot the tradeoff between the two covert users (r1, r2) for
secret-key rates k1, k2 ≤ 0.8 at different values of R3 ∈ {0.1965, 0.15, 0.05}.

It is also interesting to study the influence of the non-covert user on the set of achievable (r2, k2) rate-key pairs. To this
end, in Figure 8 we plot the maximum achievable rate r2 as a function of the secret-key rate k2 without accounting for rates
r1 or r3. We compare this maximum rate to the maximum rate achievable for deterministic inputs X3 = 0 and X3 = 1. We
observe that the gain in optimizing over a randomized input X3 achieves larger gains than a simple convex-hull operation.

Finally, in Figure 9 we show that a multiplexing (coded time-sharing) strategy is better than a single phase transmission.
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Fig. 6: Rate-region (r2, R3) for secret-key rates k1, k2 ≤ 0.8 and different rates r1.

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

Covert rate r1

C
ov

er
t

ra
te
r 2

R3 = 0.1965
R3 = 0.15
R3 = 0.05

Fig. 7: Rate-region (r1, r2) for secret-key rate k1, k2 ≤ 0.8 and different rates R3.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

Secret-key rate k2

C
ov

er
t

ra
te
r 2

Fig. 8: Covert rate r2 as a function of the secret-key rate k2 when optimizing over PX3T (solid line) and when choosing
X3 = 0 or X3 = 1 deterministically (dashed and dash-dotted lines) for a covert rate r1 = 0.1 and a secret-key rate k1 ≤ 0.8.

0 0.1 0.2 0.3 0.4
0

0.1

0.2

Covert rate r2

N
on

-C
ov

er
t

ra
te
R

3

Fig. 9: Rate-region (r2, R3) for secret-key rates k1, k2 ≤ 0.8 and r1 = 0.5 in function of the allowed cardinality |T |: we have
|T |= 6 for the solid line and a degenerate region with |T |= 1 for the dashed line.
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IV. EXTENSIONS

In this section, we broaden the scope of our findings from the multi-access scenario with 2 covert users and 1 non-covert
user and with binary covert input alphabets {0, 1} to:

• arbitrary numbers of covert and non-covert users;
• arbitrary finite input alphabets at the covert users; and
• the interference channel with two covert users and one non-covert user.

A. Arbitrary Number of Covert and Non-Covert Users

Consider the setup depicted in Figure 10 where Lc covert users and Lnc non-covert users communicate individual messages
W1, . . . ,WL for L ≜ Lc +Lnc, to a legitimate receiver in the presence of a warden. Each message Wℓ is uniformly distributed
over the set Mℓ ≜ {1, . . . ,Mℓ}, ℓ ∈ {1, . . . , L}, and independent of all other messages. Covert users can secure their
transmissions at hand of secret-keys Sℓ which are uniform over the sets {1, . . . ,Kℓ} and independent of each other and the
messages, and also with independent local randomness Cℓ, which is uniform over {1, . . . ,Gℓ}. The legitimate receiver and
the warden observe channel outputs produced by a memoryless interference channel with finite output alphabets Y and Z
and transition law ΓY Z|X1···XL

. Similarly to Section II, it is assumed that the messages WLc+1, . . . ,WL transmitted by the
non-covert users are known to the warden.

Fig. 10: Multi-access communication model with Lc ≥ 0 covert users and Lnc ≥ 0 non-covert users.

Each covert user ℓ = 1, . . . , Lc produces its channel inputs Xn
ℓ ≜ (Xℓ,1, . . . , Xℓ,n) in the binary input alphabet Xℓ = {0, 1},

while each non-covert user ℓ = Lc + 1, . . . , L produces inputs Xn
ℓ pertaining to an arbitrary finite alphabet Xℓ. Under H = 0

only the non-covert users transmit their messages:

Xn
ℓ (Wℓ) = φ

(n)
ℓ (Wℓ), ℓ ∈ {Lc + 1, . . . , L}, (83)

for some encoding function φ(n)
ℓ (·) on appropriate domains, while the covert users send the all-zero sequences:

Xn
ℓ = 0n ℓ ∈ {1, . . . , Lc}. (84)

In this case, the output distribution induced at the warden is given by Γ⊗n
Z|XcXnc

(· | 0n,Xn
nc(Wnc)), where we define

Wnc ≜ (WLc+1, . . . ,WL) (85)

and where
Xn

nc(Wnc) ≜ (Xn
Lc+1(WLc+1), . . . , X

n
L(WL)). (86)

Under H = 1 all users communicate. That means, (83) continues to hold, but (84) has to be replaced by

Xn
ℓ (Wℓ, Sℓ) = φ

(n)
ℓ (Wℓ, Sℓ, Cℓ), ℓ ∈ {1, . . . , Lc}, (87)

for appropriate encoding functions. Thus, under H = 1, the output distribution induced at the warden is given by

Q̂n
C,wnc

(zn) ≜
1

∏Lc
ℓ=1 MℓKℓCℓ

∑

wc,sc,cc

Γ⊗n
Z|XcXnc

(zn|Xn
c (wc, sc),X

n
nc(wnc)) . (88)

where we define wc ≜ (w1, . . . , wLc), sc ≜ (s1, . . . , sLc), and cc ≜ (c1, . . . , cLc), and

Xn
c (wc, sc, cc) ≜ (Xn

1 (w1, s1, c1), . . . , X
n
Lc
(wLc , sLc , cLc)). (89)
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The error probabilities under the two hypotheses are defined as:

Pe,0 ≜ Pr


 ⋃

ℓ=Lc+1,...,L

Ŵℓ ̸=Wℓ

∣∣∣∣∣H = 0


 , (90)

Pe,1 ≜ Pr


 ⋃

ℓ=1,...,L

Ŵℓ ̸=Wℓ

∣∣∣∣∣H = 1


 . (91)

For a given non-covert messages vector wnc, covertness at the warden is measured by the divergence

δn,wnc ≜ D
(
Q̂n

C,wnc

∥∥∥ Γ⊗n
Z|XcXnc

(zn | 0n,Xn
nc(wnc))

)
. (92)

Definition 2. A tuple (r1, . . . , rLc , RLc+1, . . . , RL, k1, . . . , kLc) is achievable if there exists a sequence (in the blocklength n)
of tuples (M1, . . . ,ML,K1, . . . ,KLc ,G1, . . . ,GLc) and encoding/decoding functions {(φ(n)

1 , . . . , φ
(n)
L , g

(n)
0 , g

(n)
1 )} satisfying

lim
n→∞

Pe,H = 0, ∀H ∈ {0, 1} (93)

lim
n→∞

δn,Wnc = 0, ∀Wnc ∈ MLc+1 × . . .×ML (94)

and

rℓ = lim inf
n→∞

log(Mℓ)√
nEWnc [δn,Wnc ]

, ℓ ∈ {1, . . . , Lc}, (95)

(96)

Rℓ = lim inf
n→∞

log(Mℓ)

n
, ℓ ∈ {Lc + 1, . . . , L}, (97)

kℓ = lim sup
n→∞

log(Kℓ)√
nEWnc [δn,Wnc ]

, ℓ ∈ {1, . . . , Lc}, (98)

where Wnc is uniformly distributed over the set of all possible vectors wnc.

For conciseness, and similarly to (30a), (30b), (30d), (30e), for any ℓ ∈ {1, . . . , Lc}, and tuple xnc ∈ XLc+1 × . . .×XL, we
define the abbreviations

D(ℓ)
Y (xnc) = D

(
ΓY |XcXnc(· | eℓ,xnc)∥ΓY |XcXnc(· | 0,xnc)

)
, (99)

D(ℓ)
Z (xnc) = D

(
ΓZ|XcXnc(· | eℓ,xnc)∥ΓZ|XcXnc(· | 0,xnc)

)
, (100)

where eℓ denotes the ℓ-th canonical basis vector eℓ = (0, . . . , 0, 1, 0, . . . , 0) of dimension Lc. Redefine also the set T ≜
{1, . . . , L+ Lc + 1}, and for any nonnegative tuple ρ = (ρ1, . . . , ρL) and xnc ∈ XLc+1 × · · · XL, define (similarly to (31)):

χ2(ρ,xnc) ≜
∑

z∈Z

(∑Lc
ℓ=1

ρℓ

∥ρ∥1
ΓZ|XcXnc(z | eℓ,xnc)− ΓZ|XcXnc(z | 0,xnc)

)2

ΓZ|XcXnc(z | 0,xnc)
. (101)

Theorem 3. A message and secret-key rate tuple (r1, . . . , rLc , RLc+1, . . . , RL, k1, . . . , kLc) is achievable if, and only if, there
exists a random variable T over T and a random tuple Xnc ≜ (XLc+1, . . . , XL) over XLc+1 × · · · × XL of joint pmf PTXnc ,
as well as a set of nonnegative tuples {ρt ≜ (ρ1,t, . . . , ρLc,t)}t∈T and numbers β1, . . . , βLc ∈ [0, 1], so that the following
inequalities hold:

rℓ ≤ βℓ
√
2

EPTXnc

[
ρℓ,TD(ℓ)

Y (Xnc)
]

√
EPTXnc

[∥ρT ∥21·χ2(ρT ,Xnc)]
, ∀ℓ ∈ {1, . . . , Lc}, (102)

∑

j∈J
Rj ≤ I(Xnc,J ;Y |Xc = 0,Xnc,J c , T ), ∀J ⊆ {Lc+1, . . . , L}, (103)

kℓ ≥ βℓ
√
2
EPTXnc

[
ρℓ,T

(
D(ℓ)

Z (Xnc)− D(ℓ)
Y (Xnc)

)]

√
EPTXnc

[∥ρT ∥21·χ2(ρT ,Xnc)]
, ∀ℓ ∈ {1, . . . , Lc}. (104)

where for any subset of non-covert users J ⊆ {Lc+1, . . . , L}:

Xnc,J = {Xℓ : ℓ ∈ J }. (105)
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Proof: A straightforward extension of the proof of Theorem 2 and omitted.

Lemma 2. The set of (L+ Lc)-dimensional vectors (r1, . . . , rLc , RLc+1, . . . , RL, k1, . . . , kLc) satisfying Inequalities (102) −
(104) for some choice of pmfs PTXnc

, tuples {ρt}t∈T , and numbers β1, . . . , βLc ∈ [0, 1] is a convex set.

Proof: Similar to the proof of Lemma 2 in Appendix E and omitted.

B. Arbitrary Input Alphabets at the Covert Users

We extend the result in the previous subsection to arbitrary input alphabets Xℓ at the covert user ℓ ∈ {1, . . . , Lc}. The only
restriction is that each Xℓ contains the 0 symbol, which we still consider to be the “off-symbol” sent under H = 0.

To state our main result for arbitrary covert input alphabets, we extend Definition (101) as follows. Given a tuple ρ ≜
(ρ1, . . . , ρLc), a set of pmfs {ψℓ(·)}Lc

ℓ=1 over Xℓ\{0}, and a tuple xnc, define:

χ2(ρ, {ψℓ},xnc) ≜
∑

z∈Z

(∑Lc
ℓ=1

ρℓ

∥ρ∥1

∑
xℓ∈Xℓ

ψℓ(xℓ)ΓZ|XcXnc(z | xℓ · eℓ,xnc)− ΓZ|XcXnc(z | 0,xnc)
)2

ΓZ|XcXnc(z | 0,xnc)
. (106)

In a similar way, we extend the definitions of (99) and (100), which now depend on the non-zero symbol xℓ ∈ Xℓ used by
the covert user ℓ. For given xℓ ∈ Xℓ\{0} and xnc, define:

D(ℓ)
Y (xℓ,xnc) = D

(
ΓY |XcXnc(· | xℓ · eℓ,xnc)∥ΓY |XcXnc(· | 0,xnc)

)
, (107)

D(ℓ)
Z (xℓ,xnc) = D

(
ΓZ|XcXnc(· | xℓ · eℓ,xnc)∥ΓZ|XcXnc(· | 0,xnc)

)
. (108)

Theorem 4 (Arbitrary Covert Input Alphabets). A message and secret-key rate tuple (r1, . . . , rLc , RLc+1, . . . , RL, k1, . . . , kLc)
is achievable if, and only if, there exists a tuple of random variables (T,Xnc) over T ×XLc+1×· · ·×XL distributed according
to a joint pmf PTXnc , nonnegative tuples {ρt ≜ (ρ1,t, . . . , ρLc,t)}t∈T and numbers β1, . . . , βLc ∈ [0, 1], and sets of marginal
pmfs {ψT ≜ {ψ1,t, . . . , ψLc,t}}t∈T over X1\0, . . . ,XLc\{0} so that the following inequalities hold:

rℓ ≤ βℓ
√
2
EPTXnc

[
ρℓ,T

∑
xℓ∈Xℓ

ψℓ,T (xℓ) · D(ℓ)
Y (xℓ,Xnc)

]

√
EPTXnc

[∥ρT ∥21·χ2(ρT ,ψT ,Xnc)]
, ∀ℓ ∈ {1, . . . , Lc}, (109)

∑

j∈J
Rj ≤ I(Xnc,J ;Y |Xc = 0,Xnc,J c , T ), ∀J ⊆ {Lc + 1, . . . , L}, (110)

kℓ ≥ βℓ
√
2
EPTXnc

[
ρℓ,T

∑
xℓ∈Xℓ

ψℓ,T (xℓ) ·
(
D(ℓ)

Z (xℓ,Xnc)− D(ℓ)
Y (xℓ,Xnc)

)]

√
EPTXnc

[∥ρT ∥21·χ2(ρT ,ψT ,Xnc)]
, ∀ℓ ∈ {1, . . . , Lc}. (111)

Proof: Achievability can be proved by analyzing an extension of the coding schemes proposed in Sections III-B and III-C,
where in the code construction the entries of the codewords at a covert User ℓ = 1, . . . , Lc are drawn conditionally i.i.d. given
the tn sequence according to the conditional pmf

PXℓ,n|T (xℓ|t) = ψℓ,t(xℓ) · ρℓ,t · αn, xℓ ∈ Xℓ\{0} (112)

and
PXℓ,n|T (0|t) = 1− ρℓ,t · αn. (113)

The converse proof is obtained by generalizing the converse in Appendix D to non-binary input alphabets at the covert users,
similarly to [21, Appendix G].
Details of both proofs are omitted.

C. Interference channels

In this section, we consider the two-receiver discrete memoryless interference channel (DMIC) in Figure 11. We have two
covert users, each sending a message to their respective legitimate receiver and a non-covert user sending a common message
to both legitimate receivers. The transition law of the DMIC is denoted ΓY1Y2Z|X1X2X3

.
Encodings are as defined in Section II for the multi-access channel. Decoding now takes place at two different legitimate

receivers ℓ ∈ {1, 2}, which both know the hypothesis H.
Under H = 0 each of the two legitimate receivers ℓ decodes the common message W3 by producing the guess

Ŵ
(ℓ)
3 = g

(n)
0,ℓ (Y

n
ℓ ) (114)
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Fig. 11: Interference channel with two covert users and a non-covert user sending a common message to both legitimate
receivers.

using a decoding function g(n)0,ℓ (·).
Under H = 1, it uses a decoding function g(n)ℓ :Yn ×Kℓ → Mℓ ×M3 to produce the pair of guesses

(Ŵℓ, Ŵ
(ℓ)
3 ) = g

(n)
ℓ (Y n

ℓ , Sℓ). (115)

Achievability is defined analogously to the DMMAC, see Definition 1, but where the definitions of the probabilities of error
(20) and (21) need to be replaced by

Pe,0 ≜ Pr
(
Ŵ

(1)
3 ̸=W3 or Ŵ (2)

3 ̸=W3

∣∣∣H = 0
)
, (116)

Pe,1 ≜ Pr
(
Ŵ

(1)
3 ̸=W3 or Ŵ (2)

3 ̸=W3 or Ŵ2 ̸=W2 or Ŵ1 ̸=W1

∣∣∣H = 1
)
. (117)

Let T ≜ {1, . . . , 7}. We have the following theorem for the DMIC.

Theorem 5. A message and secret-key rates tuple (r1, r2, R3, k1, k2) is achievable over the DMIC ΓY1Y2Z|X1X2X3
if, and

only if, there exists a pair of random variables (T,X3) over T × X3 distributed according to a pmf PTX3 over T and X3,
nonnegative tuples {(ρ1,t, ρ2,t)}t∈T , and β1, β2 ∈ [0, 1], so that for all ℓ ∈ {1, 2}, the following three inequalities hold:

rℓ ≤ βℓ
√
2

EPTX3

[
ρℓ,TD(ℓ)

Yℓ
(X3)

]

√
EPTX3

[
(ρ1,T + ρ2,T )

2
χ2(ρ1,T , ρ2,T , X3)

] , (118)

R3 ≤ min (I(X3;Y1 | X1 = 0, X2 = 0, T ); I(X3;Y2 | X1 = 0, X2 = 0, T )) , (119)

kℓ ≥ βℓ
√
2

EPTX3

[
ρℓ,T

(
D(ℓ)

Z (X3)− D(ℓ)
Yℓ

(X3)
)]

√
EPTX3

[
(ρ1,T + ρ2,T )

2
χ2(ρ1,T , ρ2,T , X3)

] . (120)

Notice that here in Theorem 5, we have a different output signal Yℓ for each legitimate receiver ℓ ∈ {1, 2}.
Proof: Analogous to the DMMAC proof, but with the following modifications for the achievability and converse proofs.

1) Achievability: In the decoding, (40) needs to be replaced by the following two conditions (one for each legitimate
receiver)

(tn, xn3 (w3), y
n
1 ) ∈ T n

µn
(PTX3Y1

), (121)

(tn, xn3 (w3), y
n
2 ) ∈ T n

µn
(PTX3Y2), (122)

and (42) and (43) need to be replaced by

(xn1 (w1, S1), 0
n, xn3 (Ŵ

(1)
3 ), yn1 ) ∈ An

η1
, (123)

and
(0n, xn2 (w2, S2), x

n
3 (Ŵ

(2)
3 ), yn2 ) ∈ An

η2
. (124)

Accordingly, in the analysis, the DMMAC output Y also need to be replaced by either of the two DMIC outputs Y1 or Y2.
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2) Converse: Replace the DMMAC output Y by the two DMIC outputs Yℓ when deriving the bounds on rℓ and on kℓ, and
perform the steps to bound R3 twice: once using output Y1 instead of Y and once using output Y2.

Notice that now the rate of the non-covert message is the minimum rate at which the legitimate receivers can decode the
non-covert message. This is because (121) requires condition

R3 ≤ I(X3;Y1 | X1 = 0, X2 = 0, T ) (125)

for reliable decoding, whereas (122) requires

R3 ≤ I(X3;Y2 | X1 = 0, X2 = 0, T ). (126)

V. CONCLUSION

This paper characterizes the fundamental limits of a multi-access communication setup with covert users (sharing common
secret-keys of fixed rates with the legitimate receiver) and non-covert users, all communicating with the same legitimate receiver
in presence of a warden. Our findings illustrate an intricate interplay among three pivotal quantities: the covert users’ rates,
the non-covert users’ rate and the secret-key rates. Similarly to multi-access scenarios without covert constraints, our results
emphasize the necessity of a multiplexing (coded time-sharing) strategy in the code constructions, so as to exhaust the entire
tradeoff of achievable covert and non-covert rates. This holds even with only a single non-covert user. Our results also prove
that the presence of the non-covert users can increase the covert-capacity under a stringent secret-key rate constraint.

The scenario considered in this work contains as interesting special cases covert communication over a single-user DMC
or over a DMMAC (without non-covert users). Our results also imply new findings for these previously studied special cases.
In fact, with our new results, we can characterize the minimum secret-key rates that are required to achieve any set over
covert data-rates, while previous works only characterized the secret-key rates required to transmit at largest covert rates. With
our new results we can thus determine the set of covert rates that are achievable over a DMC or a DMMAC under a given
stringent secret-key budget, which was not possible with the previous findings. Notice that while for the single-user DMC our
findings apply both to setups with and without local randomness at the transmitter, for the DMMAC our scheme requires local
randomness at least at some of the transmitters when we do not communicate at largest possible covert data-rates.

We further showed that our findings on the mixed covet and non-covert DMMAC naturally also extend to related setups
including the interference channels or channels with a friendly jammer. Further interesting research directions include studies
of fading channels, or non-synchronized transmissions.

APPENDIX A
PROOF OF THEOREM 1

A. Analysis of the Decoding Error Probability of the Scheme in Section III-B

In this section, we analyze the expected error probabilities EC [Pe,0] and EC [Pe,1], where expectations are with respect to
the random codebooks.

1) Analysis of EC [Pe,0]: By standard arguments and because for all t ∈ T , PX1,n
(0 | t) and PX2,n

(0 | t) tend to 1 as
n→ ∞:

lim
n→∞

EC [Pe,0] = 0 (127)

whenever
lim

n→∞
1

n
log(M3) ≤ I(X3;Y | X1 = 0, X2 = 0, T ). (128)

2) Analysis of EC [Pe,1]: Define the probabilities

Pe,1,1 ≜ Pr
(
Ŵ1 ̸=W1

∣∣∣H = 1
)
, (129)

Pe,1,2 ≜ Pr
(
Ŵ2 ̸=W2

∣∣∣H = 1
)
, (130)

Pe,1,3 ≜ Pr
(
Ŵ3 ̸=W3

∣∣∣H = 1, Ŵ1 =W1, Ŵ2 =W2

)
, (131)

and notice that by the union bound we have

Pe,1 ≤ Pe,1,1 + Pe,1,2 + Pe,1,3. (132)

In the following, we analyze each of the three summands separately.
Analyzing EC [Pe,1,1]:



20

By the symmetry of the code construction and the uniformity of the messages and the key, we can assume that W1 = 1,
S1 = 1 and W3 = w3. Then, we have:

EC [Pe,1,1] ≤ Pr[(Xn
1 (1, 1), 0

n, Xn
3 (w3), Y

n) /∈ An
η1
] +

M1∑

w1=2

Pr[(Xn
1 (w1, 1), 0

n, Xn
3 (w3), Y

n) ∈ An
η1
] (133)

We first analyze a specific term in the summation of (133). For any w1 ∈ [|2,M1|] we have:

Pr[(Xn
1 (w1, 1), 0

n, Xn
3 (w3), Y

n) ∈ An
η1
] (134)

= E
Xn

1 (w1,1),Xn
3 (w3),Y n

[{
1(Xn

1 (w1, 1), 0
n, Xn

3 (w3), Y
n) ∈ An

η1

}]
(135)

(a)

≤ e−η1 E
Xn

1 (w1,1),Xn
3 (w3),Y n



Γ⊗n
Y |X1X2X3

(Y n|Xn
1 (w1, 1), 0

n, Xn
3 (w3))

Γ⊗n
Y |X1X2X3

(Y n|0n, 0n, Xn
3 (w3))

1
{
(Xn

1 (w1, 1), 0
n, Xn

3 (w3), Y
n) ∈ An

η1

}
︸ ︷︷ ︸

≤1


(136)

(b)

≤ e−η1 E
Xn

1 (w1,1),Xn
3 (w3),Y n

[
Γ⊗n
Y |X1X2X3

(Y n|Xn
1 (w1, 1), 0

n, Xn
3 (w3))

Γ⊗n
Y |X1X2X3

(Y n|0n, 0n, Xn
3 (w3))

]
(137)

= e−η1

n∏

i=1

E
X1,i(w1,1),X3,i(w3),Yi

[
ΓY |X1X2X3

(Yi|X1,i(w1, 1), 0, X3,i(w3))

ΓY |X1X2X3
(Yi|0, 0, X3,i(w3))

]
(138)

= e−η1

∏

t∈T

(
E

PX3Y |T=tPX1,n|T=t

[
ΓY |X1X2X3

(Y |X1, 0, X3)

ΓY |X1X2X3
(Y |0, 0, X3)

])nπ(t)

(139)

(c)
= e−η1

∏

t∈T


 E

PX3Y |T=t


 Γ

(t)
Y |X2X3

(Y |0, X3)

ΓY |X1X2X3
(Y |0, 0, X3)






nπ(t)

. (140)

Here, (a) holds by the definition of the set An
η1

in (41); (b) by replacing the indicator function by the all-one function and (c)
upon defining

Γ
(t)
Y |X2X3

(y|x2, x3) ≜
∑

x1∈{0,1}
PX1,n|T (x1 | t)ΓY |X1X2X3

(y|x1, x2, x3). (141)

For any t ∈ T we have:

EPX3Y |T=t


 Γ

(t)
Y |X2X3

(Y |0, X3)

ΓY |X1X2X3
(Y |0, 0, X3)


 = 1− ρ1,tαn + ρ1,tαn · EPX3Y |T=t

[
ΓY |X1X2X3

(Y |1, 0, X3)

ΓY |X1X2X3
(Y |0, 0, X3)

]
(142)

Under our assumption (27a) that for any x3 we have ΓY |X1=1,X2=0,X3=x3
≪ ΓY |X1=0,X2=0,X3=x3

, we can conclude that
ΓY |X1X2X3

(y|1,0,x3)

ΓY |X1X2X3
(y|0,0,x3)

is uniformly upper-bounded for all realizations of y and x3, i.e.,

ΓY |X1X2X3
(y|1, 0, x3)

ΓY |X1X2X3
(y|0, 0, x3)

≤ ∆Y , (143)

for some finite ∆Y > 0. We continue with this upper bound to deduce

EPX3Y |T=t

[
ΓY |X1X2X3

(Y |1, 0, X3)

ΓY |X1X2X3
(Y |0, 0, X3)

]

= EPX3|T=t

[
(1− ρ1,tαn)(1− ρ2,tαn)

∑

y

ΓY |X1X2X3
(y|1, 0, X3) + ρ1,tαn(1− ρ2,tαn)

∑

y

ΓY |X1X2X3
(y|1, 0, X3)

2

ΓY |X1X2X3
(y|0, 0, X3)

+(1− ρ1,tαn)ρ2,tαn

∑

y

ΓY |X1X2X3
(y|1, 0, X3)

ΓY |X1X2X3
(y|0, 0, X3)

· ΓY |X1X2X3
(y|0, 1, X3)

+ρ1,tρ2,tα
2
n

∑

y

ΓY |X1X2X3
(y|1, 0, X3)

ΓY |X1X2X3
(y|0, 0, X3)

· ΓY |X1X2X3
(y|1, 1, X3)

]
(144)

≤ EPX3|T=t

[
(1− ρ2,tαn)(1− ρ1,tαn) +

(
(ρ1,t + ρ2,t)αn − ρ1,tρ2,tα

2
n

)
∆Y

]
(145)

= (1− ρ2,tαn)(1− ρ1,tαn) +
(
(ρ1,t + ρ2,t)αn + ρ1,tρ2,tα

2
n

)
∆Y (146)
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which with (142) yields:

EPX3Y |T=t


 Γ

(t)
Y |X2X3

(Y |0, X3)

ΓY |X1X2X3
(Y |0, 0, X3)


 ≤ 1− ρ1,t(ρ1,t + ρ2,t)α

2
n(1−∆Y ) +O(α3

n). (147)

Combining (140) with (147), we obtain:
M1∑

w1=2

E
Xn

1 (w1,1),Xn
3 (w3),Y n

[
1
{
(Xn

1 (w1, 1), 0
n, Xn

3 (w3), y
n) ∈ An

η1

}]

≤ M1e
−η1

∏

t∈T

(
1− ρ1,t(ρ1,t + ρ2,t)α

2
n(1−∆Y ) +O(α3

n)
)nπ(t)

(148)

= M1e
−η1en

∑
t∈T π(t) log(1−ρ1,t(ρ1,t+ρ2,t)α

2
n(1−∆Y )+O(α3

n)) (149)

≤ M1e
−η1e−n

∑
t∈T π(t)(ρ1,t(ρ1,t+ρ2,t)α

2
n(1−∆Y )+O(α3

n)) (150)

≤ M1e
−η1e−ω2

n

∑
t∈T (PT (t)+µn)[ρ1,t(ρ1,t+ρ2,t)(1−∆Y )+O(αn)] (151)

Notice that the term in the last exponent tends to 0 as n→ ∞ because ωn → 0 and the sum over t is bounded. We conclude
that the term in (151), and thus the sum in (133), tend to 0 as n→ ∞, if

lim
n→∞

(logM1 − η1) = −∞. (152)

We next bound the first summand on the right-hand side of (133). To this end, start by noticing the following:

Pr

[
log

(
Γ⊗n
Y |X1X2X3

(Y n|Xn
1 (1, 1), 0

n, Xn
3 (w3))

Γ⊗n
Y |X1X2X3

(Y n|0n, 0n, Xn
3 (w3))

)
≤ η1

]
= Pr

[
n∑

i=1

log

(
ΓY |X1X2X3

(Yi|X1,i, 0, X3,i)

ΓY |X1X2X3
(Yi|0, 0, X3,i)

)
≤ η1

]
(153)

where X1,i, X3,i and Yi denote the i-th entries of Xn
1 (1, 1), X

n
3 (w3), and Y n, and probabilities are with respect to the

randomness in the code construction and the channel. For each i ∈ {1, . . . , n}, consider the random variable

Ξi ≜ log

(
ΓY |X1X2X3

(Yi|X1,i, 0, X3,i)

ΓY |X1X2X3
(Yi|0, 0, X3,i)

)
, (154)

where as above, the tuple (X1,i, X3,i, Yi) follows the joint pmf PX1,ti
(x1)PX3|T=ti(x3)ΓY |X1X2X3

(y|x1, 0, x3). Let

ΛY ≜ min
(x1,x3,y)

log

(
ΓY |X1X2X3

(y|x1, 0, x3)
ΓY |X1X2X3

(y|0, 0, x3)

)
, (155)

where the minimum is only over triples (x1, x3, y) for which the ratio ΓY |X1X2X3
(y|x1,0,x3)

ΓY |X1X2X3
(y|0,0,x3)

is non-zero. (Since we prevent
the ratio inside the log from being 0 and the sets X1,X3,Y are all finite, the minimum must exist.) By above definition and
Assumption (27a), we have Pr[|Ξi|≤ c] = 1 for c ≜ max{|log ΛY |, |log∆Y |}. Moreover, the first and second moments of the
random variable Ξi, for i ∈ {1, . . . , n}, satisfy

E [Ξi]
(a)
= ρ1,tiαnEPX3|T=ti

·
[
D(1)

Y (X3)
]

(156)

E
[
Ξ2
i

] (b)

≤ ρ1,tiαn · (log∆Y )
2, (157)

where (a) and (b) hold because when x1 = 0 the log term in the definition of Ξi, (154), is zero. We can thus apply a large
deviation argument to bound the probability

Pr

[
1

n

n∑

i=1

Ξi < αnEπPX3|T

[
ρ1,TD(1)

Y (X3)
]
− a

]
, (158)

for any a > 0. Since above probability coincides with the probabilities in (153) for η1 = n
(
αnEπPX3|T

[
ρ1,TD(1)

Y (X3)
]
− a
)

,
we obtain by Bernstein’s inequality:

Pr

[
log

(
Γ⊗n
Y |X1X2X3

(Y n|Xn
1 (1, 1), 0

n, Xn
3 (w3))

Γ⊗n
Y |X1X2X3

(Y n|0n, 0n, Xn
3 (w3))

)
≤ η1

]
≤ 2e

− na2

αnEπ [ρ1,T ](log ∆Y )2+2/3ac , (159)

for any η1 ≥ n
(
αnEπPX3|T

[
ρ1,TD(1)

Y (X3)
]
− a
)

. Noting that limn→∞ π(t) → PT (t), we specialize above bound to the
choice

η1 = (1− µ1)nαnEPTX3

[
ρ1,TD(1)

Y (X3)
]

(160)
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for an arbitrary µ1 ∈ (0, 1), in which case a scales as αn and the exponent scales as −nαn = −ωn
√
n and thus tends to −∞

in the limit as n → ∞. As a consequence, the probability (159), and thus (153), vanish exponentially fast in the blocklength
n as n→ ∞.

Choosing further

log(M1) = (1− ξ1)αnnEPTX3

[
ρ1,TD(1)

Y (X3)
]
, (161)

for any small number ξ1 > µ1 by (152), we finally conclude that the entire probability EC [Pe,1,1] on the right-hand side of
(133) vanishes exponentially fast in the blocklength.

Analyzing EC [Pe,1,2]:
By symmetry, the same steps allow one to conclude also that for any small numbers µ2 > 0 and ξ2 > µ2 and under the

choices

η2 ≜ (1− µ2)αnnEPTX3

[
ρ2,TD(2)

Y (X3)
]
, (162)

log(M2) = (1− ξ2)αnnEPTX3

[
ρ2,TD(2)

Y (X3)
]
, (163)

the probability of decoding error EC [Pe,1,2] of Message W2 vanishes exponentially fast in the blocklength n.
Analyzing EC [Pe,1,3]:

As in the analysis of Pe,0, we deduce that under condition (128):

lim
n→∞

EC [Pe,1,3] = 0 (164)

B. Channel Resolvability Analysis

1) Auxiliary Lemma and Definitions: We will need the following lemma, which is an immediate consequence of [17,
Lemma 1].

Lemma 3. For each blocklength n, consider two pmfs PX1,n and PX2,n over the binary alphabets X1 = X2 = {0, 1}
respectively, such that

lim
n→∞

PXℓ,n
(1) = 0, ℓ ∈ {1, 2}. (165)

Let X3, Z , and ΓZ|X1X2X3
be as defined earlier. Then, for all sufficiently large values of n, the conditional pmfs

ΓZ|X3
(z | x3) ≜

∑

(x1,x2)∈X1×X2

PX1,n
(x1)PX2,n

(x2)ΓZ|X1X2X3
(z|x1, x2, x3), x3 ∈ X3, z ∈ Z, (166)

satisfy

D(ΓZ|X3
(· | x3) ∥ΓZ|X1X2X3

(· | 0, 0, x3) (167)

= (1 + o(1)) ·
(
PX1,n

(1) + PX2,n
(1)
)2

2
χ2

(
PX1,n(1)

PX1,n
(1) + PX2,n

(1)
,

PX2,n(1)

PX1,n
(1) + PX2,n

(1)
, x3

)
. (168)

The following definitions will be useful in our resolvability analysis. For any t ∈ T , define the averaged channels

Γ
(t)
Z|X3

(z|x3) ≜
∑

(x1,x2)∈X1×X2

PX1,n|T (x1 | t)PX2,n|T (x2 | t)ΓZ|X1X2X3
(z|x1, x2, x3), (169)

Γ
(t)
Z|X2X3

(z|x2, x3) ≜
∑

x1

PX1,n|T (x1 | t)ΓZ|X1X2X3
(z|x1, x2, x3), (170)

Γ
(t)
Z|X1X3

(z|x1, x3) ≜
∑

x2

PX2,n|T (x2 | t)ΓZ|X1X2X3
(z|x1, x2, x3), (171)

and the corresponding product channels

Γ̃n
Z|X3

(zn | xn3 ) ≜
n∏

i=1

Γ
(ti)
Z|X3

(zi | x3,i), (172)

Γ̃n
Z|X2X3

(zn | xn2 , xn3 ) ≜
n∏

i=1

Γ
(ti)
Z|X2X3

(zi | x2,i, x3,i), (173)

Γ̃n
Z|X1X3

(zn | xn1 , xn3 ) ≜
n∏

i=1

Γ
(ti)
Z|X1X3

(zi | x1,i, x3,i). (174)
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2) The Proof: Recall that the warden’s output distribution under H = 1 for a given codebook C and message w3 ∈ M3:

Q̂n
C,w3

(zn) =
1

M1M2

1

K1K2

M1∑

w1=1

K1∑

s1=1

M2∑

w2=1

K2∑

s2=1

Γ⊗n
Z|X1X2X3

(zn|xn1 (w1, s1), x
n
2 (w1, s2), x

n
3 (w3)). (175)

In this section, we show the limit

EC
[
D
(
Q̂n

C,w3

∥∥∥Γ⊗n
Z|X1X2X3

(·|0n, 0n, xn3 (w3))
)]

→ 0 ∀w3 ∈ M3, (176)

where expectation is with respect to the random code construction. Fix a message w3 ∈ W3 and a codeword xn3 (w3). We start
by expanding the divergence of interest as follows:

D
(
Q̂n

C,w3

∥∥∥Γ⊗n
Z|X1X2X3

(·|0n, 0n, xn3 (w3))
)
= D

(
Q̂n

C,w3

∥∥∥Γ̃n
Z|X3

)
+ D

(
Γ̃n
Z|X3

∥∥∥Γ⊗n
Z|X1X2X3

(·|0n, 0n, xn3 (w3))
)

(177)

+
∑

zn

(
Q̂n

C,w3
(zn)− Γ̃n

Z|X3
(zn | xn3 (w3))

)
log

(
Γ̃n
Z|X3

(zn | xn3 (w3))

Γ⊗n
Z|X1X2X3

(·|0n, 0n, xn3 (w3))

)
.

(178)

Defining ∇0 as the minimum probability in the support of ΓZ|X1X2X3
(z|0, 0, x3(w3)):

∇0 = min
z,x3∈supp(ΓZ|X1X2X3

(z|0,0,x3(w3)))
ΓZ|X1X2X3

(z|0, 0, x3(w3)), (179)

by Pinsker’s inequality2, we can conclude the following:
∣∣∣D
(
Q̂n

C,w3

∥∥∥Γ⊗n
Z|X1X2X3

(·|0n, 0n, xn3 (w3))
)
− D

(
Γ̃n
Z|X3

∥∥∥Γ⊗n
Z|X1X2X3

(·|0n, 0n, xn3 (w3))
)∣∣∣ (180)

≤ D
(
Q̂n

C,w3

∥∥∥Γ̃n
Z|X3

)
+ n log

(
1

∇0

)√
1

2
D
(
Q̂n

C,w3

∥∥∥Γ̃n
Z|X3

)
. (181)

We shall separately analyze the divergences D(Γ̃n
Z|X3

(· | xn3 (w3))∥Γ⊗n
Z|X1X2X3

(·|0n, 0n, xn3 (w3))) and D
(
Q̂n

C,w3

∥∥∥Γ̃n
Z|X3

)
, or

more precisely, their expectations over the choices of the codebooks.
Analysis of the expected divergence D

(
Q̂n

C,w3

∥∥∥Γ̃n
Z|X3

(· | xn3 )
)

: Let Zn be the output sequence observed at the warden under

H = 1 and W3 the message of the non-covert user. Given that W3 = w3 and for given codebooks C, we then have Zn ∼ Q̂n
C,w3

.
Consider the average (over the codebooks) expected divergence

E
C

[
D
(
Q̂n

C,w3

∥∥∥Γ̃n
Z|X3

(· | Xn
3 (w3))

)]

= E
{Xn

1 (w1,s1)},{Xn
2 (w2,s2)},Xn

3 (w3)

[∑

zn

Q̂n
C,w3

(zn) log

(
Q̂n

C,w3
(zn)

Γ̃n
Z|X3

(zn | Xn
3 (w3))

)]
(182)

(a)
= E

{Xn
1 (w1,s1)},{Xn

2 (w2,s2)},Xn
3 (w3)

[

E
Zn

[
log

(∑
(w′

1,w
′
2,s

′
1,s

′
2)
Γ⊗n
Z|X1X2X3

(Zn|Xn
1 (w

′
1, s

′
1), X

n
2 (w

′
2, s

′
2), X

n
3 (w3))

M1M2K1K2 · Γ̃n
Z|X3

(Zn | Xn
3 (w3))

)]]

(183)
(b)

≤ E
Xn

1 (1,1),
Xn

2 (1,1),
Xn

3 (w3),Z
n

[
log

(
E

{Xn
1 (w1,s1)}\Xn

1 (1,1),
{Xn

2 (w2,s2)}\Xn
2 (1,1)

[∑
(w′

1,w
′
2,s

′
1,s

′
2)
Γ⊗n
Z|X1X2X3

(Zn|Xn
1 (w

′
1, s

′
1), X

n
2 (w

′
2, s

′
2), X

n
3 (w3))

M1M2K1K2 · Γ̃n
Z|X3

(Zn | Xn
3 (w3))

)]
(184)

= E


log




∑

(w1,w2,s1,s2)

E
{Xn

1 (w1,s1)}\Xn
1 (1,1),

{Xn
2 (w2,s2)}\Xn

2 (1,1)

[
Γ⊗n
Z|X1X2X3

(Zn|Xn
1 (w

′
1, s

′
1), X

n
2 (w

′
2, s

′
2), X

n
3 (w3))

M1M2K1K2 · Γ̃n
Z|X3

(Zn | Xn
3 (w3))

]



 (185)

(c)
= E

[
log

(
(M1K1 − 1)(M2K2 − 1)

M1M2K1K2
+

Γ⊗n
Z|X1X2X3

(Zn|Xn
1 (1, 1), X

n
2 (1, 1), X

n
3 (w3))

M1M2K1K2 · Γ̃n
Z|X3

(Zn | Xn
3 (w3))

2For any two distributions P and Q on the same alphabet X we have V(P,Q) ≤
√

D(P,Q)
2

.
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+
∑

(w′
2,s

′
2 )̸=(1,1)

E
Xn

2 (w′
2,s

′
2)

[
Γ⊗n
Z|X1X2X3

(Zn|Xn
1 (1, 1), X

n
2 (w

′
2, s

′
2), X

n
3 (w3))

M1M2K1K2 · Γ̃n
Z|X3

(Zn | Xn
3 (w3))

]

+
∑

(w′
1,s

′
1 )̸=(1,1)

E
Xn

1 (w′
1,s

′
1)

[
Γ⊗n
Z|X1X2X3

(Zn|Xn
1 (w

′
1, s

′
1), X

n
2 (1, 1), X

n
3 (w3))

M1M2K1K2 · Γ̃n
Z|X3

(Zn | Xn
3 (w3))

]


 (186)

(d)
= E

[
log

(
(M1K1 − 1)(M2K2 − 1)

M1M2K1K2
+

Γ⊗n
Z|X1X2X3

(Zn|Xn
1 (1, 1), X

n
2 (1, 1), X

n
3 (w3))

M1M2K1K2 · Γ̃n
Z|X3

(Zn | Xn
3 (w3))

+
(M2K2 − 1)Γ̃n

Z|X1X3
(Zn|Xn

1 (1, 1), X
n
3 (w3))

M1M2K1K2 · Γ̃n
Z|X3

(Zn | Xn
3 (w3))

+
(M1K1 − 1)Γ̃n

Z|X2X3
(Zn|Xn

2 (1, 1), X
n
3 (w3))

M1M2K1K2 · Γ̃Z|X3
(Zn | Xn

3 (w3))

)]
(187)

≤ E

[
log

(
1 +

Γ⊗n
Z|X1X2X3

(Zn|Xn
1 (1, 1), X

n
2 (1, 1), X

n
3 (w3))

M1M2K1K2 · Γ̃n
Z|X3

(Zn | Xn
3 (w3))

+
Γ̃n
Z|X1X3

(Zn|Xn
1 (1, 1), X

n
3 (w3))

M1K1 · Γ̃n
Z|X3

(Zn | Xn
3 (w3))

+
Γ̃n
Z|X2X3

(Zn|Xn
2 (1, 1), X

n
3 (w3))

M2K2 · Γ̃n
Z|X3

(Zn | Xn
3 (w3))

)]
, (188)

where in before equation (c) the warden’s output sequence Zn is generated from Xn
1 (W1, S1), Xn

2 (W2, S2), and Xn
3 (w3)

according to the memoryless channel law Γ⊗n
Z|X1X2X3

, and starting with (c) it is generated according to the same channel law
but based on the random codewords Xn

1 (1, 1), X
n
2 (1, 1), and Xn

3 (w3).
Above sequence of (in)equalities are justified as follows:

(a) holds by rewriting the summation as an expectation over Zn;
(b) holds by applying Jensen’s inequality over all expectations except the expectations over Xn

1 (W1, S1), X
n
2 (W2, S2), X

n
3 (w3), Z

n

and by assuming that W1 =W2 = S1 = S2 = 1 and thus Zn is generated from Xn
1 (1, 1), X

n
2 (1, 1), and Xn

3 (w3) according
to Γ⊗n

Z|X1X2X3
. This assumption is without loss of optimality by the symmetry of the code construction;

(c),(d) hold by the linearity of expectation and because for (w′
1, s

′
1) ̸= (1, 1) and (w′

2, s
′
2) ̸= 1

E
Xn

1 (w′
1,s

′
1),X

n
2 (w′

2,s
′
2)

[
Γ⊗n
Z|X1X2X3

(Zn|Xn
1 (w

′
1, s

′
1), X

n
2 (w

′
2, s

′
2), X

n
3 (w3))

]
= Γ̃n

Z|X3
(Zn | Xn

3 (w3)) (189)

and

E
Xn

1 (w′
1,s

′
1)

[
Γ⊗n
Z|X1X2X3

(Zn|Xn
1 (w

′
1, s

′
1), X

n
2 (1, 1), X

n
3 (w3))

]
= Γ̃n

Z|X2X3
(Zn | Xn

2 (1, 1), X
n
3 (w3)) (190)

E
Xn

2 (w′
2,s

′
2)

[
Γ⊗n
Z|X1X2X3

(Zn|Xn
1 (1, 1), X

n
2 (w

′
2, s

′
2), X

n
3 (w3))

]
= Γ̃n

Z|X1X3
(Zn | Xn

1 (1, 1), X
n
3 (w3)). (191)

Define for any triple θ = (θ0, θ1, θ2) the set

Bn
θ ≜

{
(xn1 , x

n
2 , x

n
3 , z

n) ∈ Xn
1 ×Xn

2 ×Xn
3 ×Zn : log

(
Γ⊗n
Z|X1X2X3

(zn | xn1 , xn2 , xn3 )
Γ⊗n
Z|X1X2X3

(zn | 0n, 0n, xn3 )

)
≤ θ0,

log

(
Γ̃n
Z|X1X3

(zn | xn1 , xn3 )
Γ⊗n
Z|X1X2X3

(zn | 0n, 0n, xn3 )

)
≤ θ1,

log

(
Γ̃n
Z|X2X3

(zn | xn2 , xn3 )
Γ⊗n
Z|X1X2X3

(zn | 0n, 0n, xn3 )

)
≤ θ2

}
, (192)

and denote by A and B the events {(Xn
1 (1, 1), X

n
2 (1, 1), X

n
3 (w3), Z

n) ∈ Bn
θ} and {(Xn

1 (1, 1), X
n
2 (1, 1), X

n
3 (w3), Z

n) /∈ Bn
θ}

respectively. Using the total law of expectation we rewrite (188) as:

E
{Xn

1 (w′
1,s

′
1)}(w′

1,s′1),{Xn
2 (w′

2,s
′
2)}(w′

2,s′2),X
n
3 (w3)

[
D
(
Q̂n

C,w3

∥∥∥Γ̃n
Z|X3

(· | Xn
3 (w3))

)]

≤ E

[
log

(
1 +

Γ⊗n
Z|X1X2X3

(Zn|Xn
1 (1, 1), X

n
2 (1, 1), X

n
3 (w3))

M1M2K1K2 · Γ̃n
Z|X3

(Zn | Xn
3 (w3))

+
Γ̃n
Z|X1X3

(Zn | Xn
1 , X

n
3 )

M1K1 · Γ̃n
Z|X3

(Zn | Xn
3 (w3))

+
Γ̃n
Z|X2X3

(Zn | Xn
2 , X

n
3 )

M2K2 · Γ̃n
Z|X3

(Zn | Xn
3 (w3))

)∣∣∣∣∣(X
n
1 (1, 1), X

n
2 (1, 1), X

n
3 (w3), Z

n) ∈ Bn
θ

]
· Pr[A]
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+E

[
log

(
1 +

Γ⊗n
Z|X1X2X3

(Zn|Xn
1 (1, 1), X

n
2 (1, 1), X

n
3 (w3))

M1M2K1K2 · Γ̃n
Z|X3

(Zn | Xn
3 (w3))

+
Γ̃n
Z|X1X3

(Zn | Xn
1 , X

n
3 )

M1K1 · Γ̃n
Z|X3

(Zn | Xn
3 (w3))

+
Γ̃n
Z|X2X3

(zn | Xn
2 , X

n
3 )

M2K2 · Γ̃n
Z|X3

(Zn | Xn
3 (w3))

)∣∣∣∣∣(X
n
1 (1, 1), X

n
2 (1, 1), X

n
3 (w3), Z

n) /∈ Bn
θ

]
· Pr[B]. (193)

To bound the first summand, we observe:

E

[
log

(
1 +

Γ⊗n
Z|X1X2X3

(Zn|Xn
1 (1, 1), X

n
2 (1, 1), X

n
3 (w3))

M1M2K1K2 · Γ̃n
Z|X3

(Zn | Xn
3 (w3))

+
Γ̃n
Z|X1X3

(Zn | Xn
1 , X

n
3 )

M1K1 · Γ̃n
Z|X3

(Zn | Xn
3 (w3))

+
Γ̃n
Z|X2X3

(Zn | Xn
2 , X

n
3 )

M2K2 · Γ̃n
Z|X3

(Zn | Xn
3 (w3))

)∣∣∣∣∣(X
n
1 (1, 1), X

n
2 (1, 1), X

n
3 (w3), Z

n) ∈ Bn
θ

]
· Pr[A]

(a)

≤ E

[
log

(
1 +

eθ0Γ⊗n
Z|X1X2X3

(Zn|0n, 0n, Xn
3 (w3))

M1M2K1K2 · Γ̃n
Z|X3

(Zn | Xn
3 (w3))

+
eθ1Γ⊗n

Z|X1X2X3
(Zn|0n, 0n, Xn

3 (w3))

M1K1 · Γ̃n
Z|X3

(Zn | Xn
3 (w3))

+
eθ2Γ⊗n

Z|X1X2X3
(Zn|0n, 0n, Xn

3 (w3))

M2K2 · Γ̃n
Z|X3

(Zn | Xn
3 (w3))

)∣∣∣∣∣(X
n
1 (1, 1), X

n
2 (1, 1), X

n
3 (w3), Z

n) ∈ Bn
θ

]
· Pr[A] (194)

≤ eθ0

M1M2K1K2
E

[
Γ⊗n
Z|X1X2X3

(Zn|0n, 0n, Xn
3 (w3))

Γ̃n
Z|X3

(Zn | Xn
3 (w3))

]
+

eθ1

M1K1
E

[
Γ⊗n
Z|X1X2X3

(Zn|0n, 0n, Xn
3 (w3))

Γ̃n
Z|X3

(Zn | Xn
3 (w3))

]

+
eθ2

M2K2
E

[
Γ⊗n
Z|X1X2X3

(Zn|0n, 0n, Xn
3 (w3))

Γ̃n
Z|X3

(Zn | Xn
3 (w3))

]
(195)

(b)
=

eθ0

M1M2K1K2
·
∑

xn
3

∑

zn

P⊗n
X3|T (x

n
3 | tn)Γ⊗n

Z|X1X2X3
(zn|0n, 0n, xn3 )

+
eθ1

M1K1
·
∑

xn
3

∑

zn

P⊗n
X3|T (x

n
3 | tn)Γ⊗n

Z|X1X2X3
(zn|0n, 0n, xn3 )

+
eθ2

M2K2
·
∑

xn
3

∑

zn

P⊗n
X3|T (x

n
3 | tn)Γ⊗n

Z|X1X2X3
(zn|0n, 0n, xn3 ) (196)

(c)
=

eθ0

M1M2K1K2
+

eθ1

M1K1
+

eθ2

M2K2
, (197)

where (a) holds by the definition of the set Bn
θ in (192); (b) holds because (Xn

3 (w3), Z
n) ∼ Γ̃n

Z|X3
P⊗n
X3|T ; and (c) holds

because for all t ∈ T the term PX3|T (x3 | t)ΓZ|X1X2X3
(z | 0, 0, x3) denotes a valid probability distribution over X3 ×Z and

hence sums to 1.
To bound the second summand in (193), remark that by the definition of Γ̃n

Z|X3
in (172), for any pair (xn3 , z

n):

Γ̃n
Z|X3

(zn | xn3 ) =
n∏

i=1

∑

(x1,i,x2,i)∈X1×X2

PX1,n(x1,i | ti)PX2,n(x2,i | ti)ΓZ|X1X2X3
(z|x1,i, x2,i, x3,i) (198)

=

n∏

i=1

[
ρ1,tiρ2,tiα

2
nΓZ|X1X2X3

(zi|1, 1, x3,i) + ρ1,tiαn(1− ρ2,tiαn)ΓZ|X1X2X3
(zi|1, 0, x3,i)

+(1− ρ1,tiαn)ρ2,tiαnΓZ|X1X2X3
(zi|0, 1, x3,i)

+(1− ρ1,tiαn)(1− ρ2,tiαn)ΓZ|X1X2X3
(zi|0, 0, x3,i)

]
(199)

≥
n∏

i=1

(1− ρ1,tiαn)(1− ρ2,tiαn)ΓZ|X1X2X3
(zi|0, 0, x3,j) (200)

≥
n∏

i=1

(1− ρ1,tiαn)(1− ρ2,tiαn)∇0. (201)

We can thus conclude that for any (xn1 , x
n
2 , x

n
3 , z

n)∈ Xn
1 ×Xn

2 ×Xn
3 ×Zn the following bound holds:

log

(
1 +

Γ⊗n
Z|X1X2X3

(zn|xn1 , xn2 , xn3 )
M1M2K1K2 · Γ̃n

Z|X3
(zn | xn3 )

+
Γ̃n
Z|X1X3

(zn|xn1 , xn3 )
M1K1 · Γ̃n

Z|X3
(zn | xn3 )

+
Γ̃n
Z|X2X3

(zn|xn2 , xn3 )
M2K2 · Γ̃n

Z|X3
(zn | xn3 )

)



26

= log

(
1

Γ̃n
Z|X3

(zn | xn3 )

)
+ log

(
Γ̃n
Z|X3

(zn | xn3 ) +
Γ⊗n
Z|X1X2X3

(zn|xn1 , xn2 , xn3 )
M1M2K1K2

+
Γ̃n
Z|X1X3

(zn|xn1 , xn3 )
M1K1

+
Γ̃n
Z|X2X3

(zn|xn2 , xn3 )
M2K2

)
(202)

(a)

≤ log

(
1∏n

i=1(1− ρ1,tiαn)(1− ρ2,tiαn)∇0

)
+ log(4) (203)

=

n∑

i=1

log

(
1

(1− ρ1,tiαn)(1− ρ2,tiαn)∇0

)
+ log(4) (204)

≤
n∑

i=1

log

(
1

(1− ρ1,tiαn)(1− ρ2,tiαn)∇0

)
+ n

∑

t∈T
π(t) log(4) (205)

=
∑

t∈T
nπ(t) log

(
4

(1− ρ1,tαn)(1− ρ2,tαn)∇0

)
. (206)

Therefore,

E

[
log

(
1 +

Γ⊗n
Z|X1X2X3

(Zn|Xn
1 (1, 1), X

n
2 (1, 1), X

n
3 (w3))

M1M2K1K2 · Γ̃n
Z|X3

(Zn | Xn
3 (w3))

+
Γ̃n
Z|X1X3

(Zn|Xn
1 (1, 1), X

n
3 (w3))

M1K1 · Γ̃n
Z|X3

(Zn | Xn
3 (w3))

+
Γ̃n
Z|X2X3

(Zn|Xn
2 (1, 1), X

n
3 (w3))

M2K2 · Γ̃n
Z|X3

(Zn | Xn
3 (w3))

)∣∣∣∣∣(X
n
1 (1, 1), X

n
2 (1, 1), X

n
3 (w3), Z

n) /∈ Bn
θ

]

≤
∑

t∈T
nπ(t) log

(
4

(1− ρ1,tαn)(1− ρ2,tαn)∇0

)
. (207)

We proceed to analyze the probability of the event B, which by the union bound can be upper bounded as follows:

Pr [B] ≤ Pr

[
log

(
Γ⊗n
Z|X1X2X3

(Zn | Xn
1 (1, 1), X

n
2 (1, 1), X

n
3 (w3))

Γ⊗n
Z|X1X2X3

(Zn|0n, 0n, Xn
3 (w3))

)
≥ θ0

]
+ Pr

[
log

(
Γ̃n
Z|X1X3

(Zn | Xn
1 (1, 1), X

n
3 (w3))

Γ⊗n
Z|X1X2X3

(Zn|0n, 0n, Xn
3 (w3))

)
≥ θ1

]

+ Pr

[
log

(
Γ̃n
Z|X2X3

(Zn | Xn
2 (1, 1), X

n
3 (w3))

Γ⊗n
Z|X1X2X3

(Zn|0n, 0n, Xn
3 (w3))

)
≥ θ2

]
(208)

= Pr

[
n∑

i=1

log

(
ΓZ|X1X2X3

(Zi|X1,i, X2,i, X3,i)

ΓZ|X1X2X3
(Zi|0, 0, X3,i)

)
≥ θ0

]
+ Pr




n∑

i=1

log


 Γ

(ti)
Z|X1X3

(Zi|X1,i, X3,i)

ΓZ|X1X2X3
(Zi|0, 0, X3,i)


 ≥ θ1




+ Pr




n∑

i=1

log


 Γ

(ti)
Z|X2X3

(Zi|X2,i, X3,i)

ΓZ|X1X2X3
(Zi|0, 0, X3,i)


 ≥ θ2


 (209)

To show that the quantity in (209) vanishes we will make use of Bernstein’s inequality. First we notice the expectations
n∑

i=1

E
[
log

(
ΓZ|X1X2X3

(Zi|X1,i, X2,i, X3,i)

ΓZ|X1X2X3
(Zi | 0, 0, X3,i)

)]

=
∑

t∈T
nπ(t)E

[
log

(
ΓZ|X1X2X3

(Z | X1, X2, X3)

ΓZ|X1X2X3
(Z | 0, 0, X3)

) ∣∣∣∣T = t

]
(210)

(a)
= n

∑

t∈T
π(t)EPX3|T=t

[
ρ1,tρ2,tα

2
nD

(1,2)
Z (X3) + ρ1,tαn(1− ρ2,tαn)D(1)

Z (X3) + (1− ρ1,tαn)ρ2,tαnD(2)
Z (X3)

∣∣∣∣T = t

]
(211)

= n
∑

t∈T
π(t)EPX3|T=t

[
ρ1,tαnD(1)

Z (X3) + ρ2,tαnD(2)
Z (X3)

∣∣∣∣T = t

]
+ nO(α2

n) (212)

= nαnEπPX3|T

[
ρ1,TD(1)

Z (X3) + ρ2,TD(2)
Z (X3)

]
+ nO(α2

n), (213)

where the first expectation is taken with respect to the law PX1,n|T=tPX2,n|T=tPX3|T=tΓZ|X1X2X3
. Also, Equality (a) holds

because when (x1, x2) = (0, 0), the log term is zero.
In a similar way, we have:

n∑

i=1

E
[
log

(
ΓZ|X1X3

(Zi|X1,i, X3,i)

ΓZ|X1X2X3
(Zi | 0, 0, X3,i)

)]



27

= n
∑

t∈T
π(t)E

[
log

(∑
x2
PX2|T (x2 | t)ΓZ|X1X2X3

(Z | X1, x2, X3)

ΓZ|X1X2X3
(Z | 0, 0, X3)

) ∣∣∣∣T = t

]
(214)

= n
∑

t∈T
π(t)E

[
log

(
ρ2,tαnΓZ|X1X2X3

(Z | X1, 1, X3) + (1− ρ2,tαn)ΓZ|X1X2X3
(Z | X1, 0, X3)

ΓZ|X1X2X3
(Z | 0, 0, X3)

) ∣∣∣∣T = t

]
(215)

= n
∑

t∈T
π(t)E

[
log

(
ΓZ|X1X2X3

(Z | X1, 0, X3)

ΓZ|X1X2X3
(Z | 0, 0, X3)

·
(
1 + ρ2,tαn

(
ΓZ|X1X2X3

(Z | X1, 1, X3)

ΓZ|X1X2X3
(Z | X1, 0, X3)

− 1

))) ∣∣∣∣T = t

]
(216)

= n
∑

t∈T
π(t)E

[
log

ΓZ|X1X2X3
(Z | X1, 0, X3)

ΓZ|X1X2X3
(Z | 0, 0, X3)

∣∣∣∣T = t

]

+n
∑

t∈T
π(t) E

[
log

(
1 + ρ2,tαn

(
ΓZ|X1X2X3

(Z | X1, 1, X3)

ΓZ|X1X2X3
(Z | X1, 0, X3)

− 1

)) ∣∣∣∣T = t

]
(217)

where the expectations are with respect to the law PX1,n|T=tPX3|T=tΓ
(t)
Z|X1X3

. For the first summand, we have:

n
∑

t∈T
π(t)E

[
log

ΓZ|X1X2X3
(Z | X1, 0, X3)

ΓZ|X1X2X3
(Z | 0, 0, X3)

∣∣∣∣T = t

]

= n
∑

t∈T
π(t)ρ1,tαn(1− ρ2,tαn) E

PX3|T=t
ΓZ|X1=1,X2=0,X3

[
log

(
ΓZ|X1X2X3

(Z | 1, 0, X3)

ΓZ|X1X2X3
(Z | 0, 0, X3)

) ∣∣∣∣T = t

]
+O(α2

n) (218)

= αnnEπPX3|T

[
ρ1,TD(1)

Z (X3)
]
+O(α2

n), (219)

because the logarithmic term vanishes when x1 = 0 and by using the definition of the distribution Γ
(t)
Z|X1X3

. For the second

summand, we use the upper bound log(1 + x) ≤ x− x2

2 to obtain:

n
∑

t∈T
π(t) E

PX1,n|T=tPX3|T=tΓ
(t)

Z|X1X3

[
log

(
1 + ρ2,tαn

(
ΓZ|X1X2X3

(Z | X1, 1, X3)

ΓZ|X1X2X3
(Z | X1, 0, X3)

− 1

)) ∣∣∣∣T = t

]

≤ n
∑

t∈T
π(t)ρ2,tαnE

[
ΓZ|X1X2X3

(Z | X1, 1, X3)

ΓZ|X1X2X3
(Z | X1, 0, X3)

− 1

∣∣∣∣T = t

]
+O(α2

n) (220)

= n
∑

t∈T
π(t)ρ2,tαnEPX1,n|T=t

PX3,tΓZ|X1,X2=0,X3

[
ΓZ|X1X2X3

(Z | X1, 1, X3)

ΓZ|X1X2X3
(Z | X1, 0, X3)

− 1

∣∣∣∣T = t

]
+O(α2

n) (221)

= n
∑

t∈T
π(t)ρ2,tαnEPX1,n|T=t

PX3,tΓZ|X1,X2=0,X3
[ΓZ|X1X2X3

(Z | X1, 1, X3)− 1

∣∣∣∣T = t ] +O(α2
n) (222)

= +O(α2
n), (223)

where the last equation holds because the expectation EΓZ|X1=x1,X2=0,X3
[ΓZ|X1X2X3

(Z | x1, 1, X3)] = 1 for any value of x1.
Combining (217), (219), and (223), we obtain:

n∑

i=1

E
[
log

(
ΓZ|X1X3

(Zi|X1,i, X3,i)

ΓZ|X1X2X3
(Zi | 0, 0, X3,i)

)]
≤ αnnEπPX3|T

[
ρ1,TD(1)

Z (X3)
]
+O(α2

n), (224)

Likewise,
n∑

i=1

E
[
log

(
ΓZ|X2X3

(Zi|X2,i, X3,i)

ΓZ|X1X2X3
(Zi | 0, 0, X3,i)

)]
≤ αnnEπPX3|T

[
ρ2,TD(2)

Z (X3)
]
+O(α2

n). (225)

Then, notice that the variances satisfy:

E
[
log2

(
ΓZ|X1X2X3

(Z | X1, X2, X3)

ΓZ|X1X2X3
(Z | 0, 0, X3)

)]
(a)
= O(αn), (226)

and,

E
[
log2

(
ΓZ|X1X3

(Z | X1, X3)

ΓZ|X1X2X3
(Z | 0, 0, X3)

)]
(b)

≤O(αn), (227)

and

E
[
log2

(
ΓZ|X2X3

(Z | X2, X3)

ΓZ|X1X2X3
(Z | 0, 0, X3)

)]
(c)

≤O(αn), (228)
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where similarly to (157), (a) follows because when (x1, x2) = (0, 0), the log term is zero, whereas (b) and (c) follows by first
splitting the log term and using the Taylor expansion and then using the same argument as for (a). Since limn→∞ π(t) → PT (t)
and limn→∞ α2

n = 0, Bernstein’s inequality allows us to conclude that with the choices

θ0 ≜ (1 + ξ4)αnnEPTX3

[
ρ1,TD(1)

Z (X3) + ρ2,TD(2)
Z (X3)

]
, (229a)

θ1 ≜ (1 + ξ5)αnnEPTX3

[
ρ1,TD(1)

Z (X3)
]
, (229b)

θ2 ≜ (1 + ξ6)αnnEPTX3

[
ρ2,TD(2)

Z (X3)
]
, (229c)

for any ξ4 > 0, ξ5 > 0, ξ6 > 0 there exists a constant B1 > 0, B2 > 0 and B3 > 0 so that for sufficiently large blocklengths
n:

Pr [B] ≤ e−B1nαn + e−B2nαn + e−B3nαn (230a)

Plugging (230) into (209) and further combining it with (193), (197), and (207), we finally obtain

E
{Xn

1 w′
1,s

′
1)}w′

1,s′1),{Xn
2 w′

2,s
′
2)}w′

2,s′2),X
n
3 (w3)

[
D
(
Q̂n

C,w3

∥∥∥Γ̃n
Z|X3

(· | Xn
3 (w3))

)]

≤ eθ0

M1M2K1K2
+

eθ1

M1K1
+

eθ2

M2K2
+ nET

[
log

(
4

(1− ρ1,Tαn)(1− ρ2,Tαn)∇0

)]
·
(
e−B1nαn + e−B2nαn + e−B3nαn

)

(231)

We notice that the second summand tends to 0 because ne−na decays for any positive a > 0. If moreover,

lim supn→∞
(
log (M1M2K1K2)− (1 + ξ4)αnnEPTX3

[
ρ1,TD(1)

Z (X3) + ρ2,TD(2)
Z (X3)

])
= −∞, (232a)

lim supn→∞
(
log (M1K1)− (1 + ξ5)αnnEPTX3

[
ρ1,TD(1)

Z (X3)
])

= −∞, (232b)

lim supn→∞
(
log (M2K2)− (1 + ξ6)αnnEPTX3

[
ρ2,TD(2)

Z (X3)
])

= −∞, (232c)

then also the first summand of (231) tends to 0 exponentially fast.
Notice that for small values ξ4, ξ5, ξ6 and large blocklengths n Constraint (232a) is redundant in view of the per-user secret-

key constraints (232b) and (232c).

Analysis of divergence D(Γ̃n
Z|X3

(· | xn3 (w3))∥Γ⊗n
Z|X1X2X3

(·|0n, 0n, xn3 (w3))):
Recall that Γ̃n

Z|X3
and Γ⊗n

Z|X1X2X3
(·|0n, 0n, xn3 (w3)) are both product distributions and thus

D(Γ̃n
Z|X3

(· | xn3 (w3))∥Γ⊗n
Z|X1X2X3

(·|0, 0, xn3 (w3)))

=
∑

t∈T

∑

i∈{1,...,t}:
ti=t

D(Γ(t)
Z|X3

(z | x3)∥ΓZ|X1X2X3
(·|0, 0, x3,i(w3))) (233)

=
∑

(t,x3)∈T

∑

i∈{1,...,t}:
ti=t

x3,i(t)=x3

D(Γ(t)
Z|X3

(z | x3)∥ΓZ|X1X2X3
(·|0n, 0n, x3)) (234)

(a)
=

∑

(x3,t)∈X3×T
nλt(x3) (1 + o(1)) · (ρ1,tαn + ρ2,tαn)

2

2
χ2(ρ1,t, ρ2,t, x3)

(b)
=

∑

(x3,t)∈X3×T
λt(x3) (1 + o(1)) · (ρ1,t + ρ2,t)

2 · ω2
n

2
χ2(ρ1,t, ρ2,t, x3), (235)

where in (a) we used the definition

λt(x3) ≜
1

n

n∑

i=1

1{x3,j(w3) = x3, ti = t} (236)

and we applied Lemma 3 for each value of t individually, also using the fact

χ2(a, b, x3) = χ2

(
a

a+ b
,

b

a+ b
, x3

)
; (237)

and in (b) we used the definition of αn.
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Since both Pe,0 and Pe,1 vanish as n→ ∞, and by the decoding rule in (40), we can conclude that the sequence of codes
in Theorem 1 satisfies for each (x3, t) ∈ X3 × T

lim
n→∞

∣∣λt(x3)− PT (t)PX3|T (x3 | t)
∣∣ = 0. (238)

Concluding the Divergence Proof: With this observation, combining (246) with (231) and (235), under Condition (231), we
obtain:

1

M3

M3∑

w3=1

δn,w3
= (1 + o(1))

ω2
n

2
EPT

[
(ρ1,T + ρ2,T )

2EPX3|T

[
χ2(ρ1,T , ρ2,T , X3)

]]
. (239)

C. Concluding the Achievability Proof:

By standard averaging arguments it can then be shown that there must exist at least one sequence of codebooks {Cn}n for
which the probabilities of error under the two hypotheses tend to 0 as n→ ∞ and with message and secret-key sizes as well
as divergence satisfying

logM1 = (1− ξ1)αnnEPTX3

[
ρ1,TD(1)

Y (X3)
]
, (240)

logM2 = (1− ξ2)αnnEPTX3

[
ρ2,TD(2)

Y (X3)
]
, (241)

logM3 = (1− ξ3)nI(X3;Y |X1 = 0,X2 = 0, T ), (242)

log (M1K1) = (1 + ξ5)αnnEPTX3

[
ρ1,TD(1)

Z (X3)
]
, (243)

log (M2K2) = (1 + ξ6)αnnEPTX3

[
ρ2,TD(2)

Z (X3)
]
, (244)

1

M3

M3∑

w3=1

δn,w3
= (1 + o(1))

ω2
n

2
EPT

[
(ρ1,T + ρ2,T )

2EPX3|T

[
χ2(ρ1,T , ρ2,T , X3)

]]
. (245)

APPENDIX B
MODIFICATIONS FOR THE GENERALIZED SCHEME

For simplicity of notation we assume that ∪tL1,2(t) = {1, . . . , n2} and ∪tL1(t) = {n2 + 1, . . . , n1}. We denote the first
n2 symbols of the corresponding codewords by xn2

1 (w1, s1), xn2
2 (w2, s2), and xn2

3 (w3) and the following n1 −n2 symbols of
the corresponding codewords by xn1

1,n2+1(w1, s1) and xn1
3,n2+1(w3).

It is easy to observe that the divergence term δn,w3
now only depends on the first n1 channel uses, as the terms corresponding

to the last n − n1 channel uses are zero. In analogy to (180) we can then obtain the bound (notice the new blocklength n1
instead of n):

∣∣∣D
(
Q̂n1

C,w3

∥∥∥Γ⊗n1

Z|X1X2X3
(·|0n1 , 0n1 , xn1

3 (w3))
)
− D

(
Γ̃n1

Z|X3

∥∥∥Γ⊗n1

Z|X1X2X3
(·|0n1 , 0n1 , xn1

3 (w3))
)∣∣∣

≤ D
(
Q̂n1

C,w3

∥∥∥Γ̃n1

Z|X3

)
+ n1 log

(
1

∇0

)√
1

2
D
(
Q̂n1

C,w3

∥∥∥Γ̃n1

Z|X3

)
, (246)

where xn1
3 (w3) denotes the first n1 symbols of codeword xn3 (w3) and Q̂n1

C,w3
denotes the pmf of the warden’s first n1 output

symbols. For the generalized scheme we have:

Q̂n1

C,w3
(zn1) ≜

1

M1M2K1K2

∑

(w1,s1)

∑

(w2,s2)

Q̂n1

C,w1,w2,w3,s1,s2
(zn1), (247)

where for any valid (w1, w2, w3, s1, s2)∈ M1 ×M2 ×M3 ×K1 ×K2, we have:

Q̂n1

C,w1,w2,w3,s1,s2
(zn1) ≜ Γ⊗n2

Z|X1X2X3
(zn2 |xn2

1 (w1, s1), x
n2
2 (w2, s2), x

n2
3 (w3))

·Γ̃(n2→n1)
Z|X1X3

(zn1
n2+1|xn1

1,n2+1(w1, s1), x
n1
3,n2+1(w3)), (248)

for zn1
n2+1 ≜ (zn2+1, . . . , zn−1) and for Γ̃

(n2→n1)
Z|X1X3

defined in analogy to Γ̃n
Z|X1X3

in (174) but based on the sequence
tn2+1, . . . , tn1

:

Γ̃
(n2→n1)
Z|X1X3

(zn1
n2+1|xn1

1,n2+1(w1, s1), x
n1
3,n2+1(w3)) ≜

n1∏

i=n2+1

Γ
(ti)
Z|X1X3

(zi | x1,i, x3,i). (249)

Following similar steps as in (233)–(239), one can bound the second divergence on the left-hand side of (246) as:

D
(
Γ̃n1

Z|X3

∥∥∥Γ⊗n1

Z|X1X2X3
(·|0n1 , 0n1 , xn1

3 (w3))
)
= (1 + o(1))

n1
n

· ω
2
n

2
EPT

[
(ρ1,T + ρ2,T )

2EPX3|T

[
χ2(ρ1,T , ρ2,T , X3)

]]
(250)
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To bound the divergence term on the right-hand side of (246), we slightly modify the steps in (182)–(197). In particular,
we write:

E
C

[
D
(
Q̂n1

C,w3

∥∥∥Γ̃n1

Z|X3
(· | Xn1

3 (w3))
)]

= E


log




∑

(w1,w2,s1,s2)

E
{Xn1

1 (w1,s1)}\Xn1
1 (1,1),

{Xn2
2 (w2,s2)}\Xn2

2 (1,1)

[
Q̂n1

C,w1,w2,w3,s1,s2
(Zn1)

M1M2K1K2 · Γ̃n1

Z|X3
(Zn1 | Xn1

3 (w3))

]




 (251)

≤ E


log




∑

(w1,s1 )̸=(1,1)
(w2,s2 )̸=(1,1)

E
X

n1
1 (w1,s1)

X
n2
2 (w2,s2)

[
Q̂n1

C,w1,w2,w3,s1,s2
(Zn1)

M1M2K1K2 · Γ̃n1

Z|X3
(Zn1 | Xn1

3 (w3))

]
+

Q̂n1

C,1,1,w3,1,1
(Zn1)

M1M2K1K2 · Γ̃n1

Z|X3
(Zn1 | Xn1

3 (w3))

+
∑

(w2,s2) ̸=(1,1)

E
X

n2
2 (w2,s2)

[
Q̂n1

C,1,w2,w3,1,s2
(Zn1)

M1M2K1K2 · Γ̃n1

Z|X3
(Zn1 | Xn1

3 (w3))

]

+
∑

(w1,s1 )̸=(1,1)

E
X

n1
1 (w1,s1)

[
Q̂n1

C,w1,1,w3,s1,1
(Zn1)

M1M2K1K2 · Γ̃n1

Z|X3
(Zn1 | Xn1

3 (w3))

]


 (252)

(a)
= E

[
log

(
(M1K1 − 1)(M2K2 − 1)

M1M2K1K2
+

Q̂n1

C,1,1,w3,1,1
(Zn1)

M1M2K1K2 · Γ̃n1

Z|X3
(Zn1 | Xn1

3 (w3))

+
(M2K2 − 1)Γ̃n1

Z|X1X3
(Zn1 |Xn1

1 (1, 1), Xn1
3 (w3))

M1M2K1K2 · Γ̃n
Z|X3

(Zn1 | Xn1
3 (w3))

+
(M1K1 − 1)Γ̃n2

Z|X2X3
(Zn2 |Xn2

2 (1, 1), Xn2
3 (w3))

M1M2K1K2 · Γ̃n2

Z|X3
(Zn2 | Xn2

3 (w3))

)]

(253)

≤ E

[
log

(
1 +

Q̂n1

C,1,1,w3,1,1
(Zn1)

M1M2K1K2 · Γ̃n1

Z|X3
(Zn1 | Xn1

3 (w3))

+
Γ̃n1

Z|X1X3
(Zn1 |Xn1

1 (1, 1), Xn1
3 (w3))

M1K1 · Γ̃n1

Z|X3
(Zn1 | Xn1

3 (w3))
+

Γ̃n2

Z|X2X3
(Zn2 |Xn2

2 (1, 1), Xn2
3 (w3))

M2K2 · Γ̃n2

Z|X3
(Zn2 | Xn2

3 (w3))

)]
(254)

where in (a) we used that

E
X

n1
1 (w1,s1)

X
n2
2 (w2,s2)

[
Q̂n1

C,w1,w2,w3,s1,s2
(zn1)

]
= Γ̃n1

Z|X3
(zn1 |Xn1

3 (w3)) (255)

and

E
X

n1
1 (w1,s1)

[
Q̂n1

C,w1,1,w3,s1,1
(zn2)

]
= Γ̃n2

Z|X2X3
(zn2 |Xn2

2 (1, 1), Xn2
3 (w3)) · Γ̃n2→n1

Z|X3
(zn1

n2+1|Xn1
3,n2+1(w3)) (256)

E
X

n2
2 (w2,s2)

[
Q̂n1

C,1,w2,w3,1,s2
(zn1)

]
= Γ̃n1

Z|X1X3
(zn1 |Xn1

1 (1, 1), Xn1
3 (w3)) (257)

and we simplified the last fraction by noting that

Γ̃n2

Z|X2X3
(zn2 |Xn2

2 (1, 1), Xn2
3 (w3)) · Γ̃n2→n1

Z|X3
(zn1

n2+1|Xn1
3,n2+1(w3))

Γ̃n1

Z|X3
(Zn1 | Xn1

3 (w3))
=

Γ̃n2

Z|X2X3
(Zn2 |Xn2

2 (1, 1), Xn2
3 (w3))

Γ̃n2

Z|X3
(Zn2 | Xn2

3 (w3))
. (258)

Define now for any triple θ = (θ0, θ1, θ2) the set:3

Bn1

θ ≜

{
(xn1

1 , xn2
2 , xn1

3 , zn1) ∈ Xn1
1 ×Xn2

2 ×Xn1
3 ×Zn1 :

log

(
Γ⊗n2

Z|X1X2X3
(zn2 | xn2

1 , xn2
2 , xn2

3 ) · Γ̃n2→n1

Z|X1X3
(zn1

n2+1 | xn1
1,n2+1, x

n1
3,n2+1)

Γ⊗n1

Z|X1X2X3
(zn1 | 0n1 , 0n1 , xn1

3 )

)
≤ θ0,

3Notice that xn2
2 is of length n2 while the other sequences are of length n1.
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log

(
Γ̃n1

Z|X1X3
(zn1 | xn1

1 , xn1
3 )

Γ⊗n1

Z|X1X2X3
(zn1 | 0n1 , 0n1 , xn1

3 )

)
≤ θ1,

log

(
Γ̃n2

Z|X2X3
(zn2 | xn2

2 , xn2
3 )

Γ⊗n2

Z|X1X2X3
(zn2 | 0n2 , 0n2 , xn2

3 )

)
≤ θ2

}
, (259)

and denote by A and B the events {(Xn1
1 (1, 1), Xn2

2 (1, 1), Xn1
3 (w3), Z

n1) ∈ Bn1

θ } and {(Xn1
1 (1, 1), Xn2

2 (1, 1), Xn1
3 (w3), Z

n1) /∈
Bn1

θ } respectively.
We then continue by similar steps to (193)–(231), where the superscript n to has to be changed to n1 or n2 accordingly,

and the joint law Γ⊗n
Z|X1X2X3

to Γ⊗n2

Z|X1X2X3
· Γ̃n2−n1

Z|X1X3
. In particular we apply Bernstein’s inequality to analyze the probability

of set B, and replace (210) –(225) by the following expresssions:

E

[
log

(
Γ⊗n2

Z|X1X2X3
(Zn2 | Xn2

1 (1, 1), Xn2
2 (1, 1), Xn2

3 (w3)) · Γ̃n2→n1

Z|X1X3
(Zn1

n2+1 | Xn1
1,n2+1(1, 1), X

n1
3,n2+1)(w3)

Γ⊗n1

Z|X1X2X3
(Zn1 | 0n1 , 0n1 , Xn1

3 (w3))

)]

≤ αn

(
n2EπPX3|T

[
ρ1,TD(1)

Z (X3) + ρ2,TD(2)
Z (X3)

]
+ (n1 − n2)EπPX3|T

[
ρ1,TD(1)

Z (X3))
])

+ nO(α2
n) (260a)

and

E

[
log

(
Γ̃n1

Z|X1X3
(Zn1 | Xn1

1 (1, 1), Xn1
3 (w3))

Γ⊗n1

Z|X1X2X3
(Zn1 | 0n1 , 0n1 , Xn1

3 (w3))

)]
≤ αnn1EπPX3|T

[
ρ1,TD(1)

Z (X3)
]
+O(α2

n) (260b)

E

[
log

(
Γ̃n2

Z|X2X3
(Zn2 | Xn2

2 (1, 1), Xn2
3 (w3))

Γ⊗n2

Z|X1X2X3
(Zn2 | 0n2 , 0n2 , Xn2

3 (w3))

)]
≤ αnn2EπPX3|T

[
ρ2,TD(2)

Z (X3)
]
+O(α2

n). (260c)

These steps allow us to conclude that whenever

lim supn→∞
(
log (M1M2K1K2)− (1 + ξ4)αnEPTX3

[
n1ρ1,TD(1)

Z (X3) + n2ρ2,TD(2)
Z (X3)

])
= −∞, (261a)

lim supn→∞
(
log (M1K1)− (1 + ξ5)αnn1EPTX3

[
ρ1,TD(1)

Z (X3)
])

= −∞, (261b)

lim supn→∞
(
log (M2K2)− (1 + ξ6)αnn2EPTX3

[
ρ2,TD(2)

Z (X3)
])

= −∞, (261c)

then the divergence on the right-hand side of (246) tends to 0 exponentially fast, and thus the approximation

D
(
Γ̃n1

Z|X3

∥∥∥Γ⊗n1

Z|X1X2X3
(·|0n1 , 0n1 , xn1

3 (w3))
)
= (1 + o(1))

n1
n

ω2
n

2
EPT

[
(ρ1,T + ρ2,T )

2EPX3|T

[
χ2(ρ1,T , ρ2,T , X3)

]]
(262)

is exponentially tight. We notice that in an asymptotic sense condition (261a) is redundant in view of (261b) and (261c). This
concludes the resolvability analysis by considering that n1 ≈ nϕ1 and n2 ≈ nϕ2 and that αn = ωn

√
n.

APPENDIX C
ACHIEVABILITY PROOF TO THEOREM 2

Start by noticing that without loss in generality in Theorem 1 one can replace Constraint (47) by the difference between
constraints (47) and (50) and Constraint (48) by the difference between constraints (48) and (51). Taking n → ∞ with these
new constraints proves achievability of the following quintuple (r1, r2, R3, k1, k2) for arbitrary pmfs PTX3 , nonnegative tuples
{(ρ1,t, ρ2,t)}t∈T , and pairs (ϕ1, ϕ2) ∈ [0, 1]2:

rℓ =
ϕℓ√

max(ϕ1;ϕ2)

√
2

EPTX3

[
ρℓ,TD(ℓ)

Y (X3)
]

√
EPTX3

[
(ρ1,T + ρ2,T )

2 · χ2(ρ1,T , ρ2,T , X3)
] , ∀ℓ ∈ {1, 2}, (263)

R3 = I(X3;Y | X1 = 0, X2 = 0, T ), (264)

kℓ =
ϕℓ√

max(ϕ1;ϕ2)

√
2

EPTX3

[
ρℓ,T

(
D(ℓ)

Z (X3)− D(ℓ)
Y (X3)

)]

√
EPTX3

[
(ρ1,T + ρ2,T )

2 · χ2(ρ1,T , ρ2,T , X3)
] , ∀ℓ ∈ {1, 2}, (265)

where we use the definition 0/0 = 0. Define βℓ ≜ ϕℓ√
max(ϕ1;ϕ2)

and notice that it lies in [0, 1]. Notice further that the equalities

on the message rates r1, r2, R3 can be relaxed into ≤-inequalities because it is always possible to reduce the message rate
by introducing dummy data-bits. Moreover, it is possible to relax the inequalities on the secret-key rates k1 and k2 into ≥-
inequalities because it is always possible to ignore some of the secret-key bits. These latter observations establish achievability
of the theorem.
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APPENDIX D
CONVERSE PROOF TO THEOREM 2

The converse proof relies on elements from the proofs of [4, Theorem 3], [5, Theorem 1 and 2] , [22, Theorem 2] and [23,
Section 5.2.3].

Consider a sequence of length-n codes with vanishing probability of error Pe,H → 0 and vanishing covertness constraints
δn,w3

→ 0 as the blocklength n → ∞. Consider now a fixed blocklength n, and let Xn
1 , X

n
2 , X

n
3 be the random inputs

generated under the chosen codes and Y n as well as Zn the corresponding outputs at the legitimate receiver and the warden
under H = 1. Define also a random variable T to be uniform over the set of channel uses [|1, n|], independent of the inputs
Xn

1 , X
n
2 , X

n
3 and the outputs Y n and Zn. With these definitions, since the three users have independent messages and keys,

the joint pmf of the time-averaged inputs and outputs has the following form:

PX1,T ,X2,T ,X3,T ,YT ,ZT ,T (x1, x2, x3, y, z, t) = PT (t)PX1|T (x1 | t)PX2|T (x2 | t)PX3|T (x3 | t)ΓY Z|X1X2X3
(y, z | x1, x2, x3).

(266)
For our converse proof, we also define αn,i,ℓ as the probability of Xℓ,i equal 1:

αn,i,ℓ ≜ Pr[Xℓ,i = 1], i ∈ {1, . . . , n}, ℓ ∈ {1, 2}, (267)

and the derived positive quantities

ρn,i,ℓ ≜
αn,i,ℓ∑n

i=1
αn,i,1+αn,i,2

n

, i ∈ {1, . . . , n}, ℓ ∈ {1, 2}. (268)

We observe that by the uniform law of T :

EPT
[ρn,T,1 + ρn,T,2] =

1

n

n∑

i=1

n
αn,i,1 + αn,i,2∑n
i=1 αn,i,1 + αn,i,2

= 1. (269)

A. Auxiliary Lemmas:

We will make use of the following lemma, which is an extension of [4, Lemma 1]. Recall the definitions in (30).

Lemma 4. Let X1, X2 be binary over {0, 1} and T,X3, Y over arbitrary finite alphabets T , X3, and Y , with joint pmf of
the form PTPX1|TPX3|TΓY |X1,X2,X3

. Then, for any x2 ∈ {0, 1} and t ∈ T :

I(X1;Y | X2 = x2, X3, T = t) = PX1|T=t(1)EPX3|T=t

[
D(ΓY |X1X2X3

(· | 1, x2, X3)||ΓY |X1X2X3
(·|0, 0, X3))

]

−EPX3|T=t

[
D(ΓY |X2X3

(· | x2, X3)||ΓY |X1X2X3
(·|0, 0, X3))

]
. (270)

Similarly, for any x1 ∈ {0, 1} and t ∈ T :

I(X2;Y | X1 = x1, X3, T = t) = PX2|T=t(1)EPX3|T=t

[
D(ΓY |X1X2X3

(· | x1, 1, X3)||ΓY |X1X2X3
(·|0, 0, X3))

]

−EPX3|T=t
[D(ΓY |X1X3

(· | x1, X3)||ΓY |X1X2X3
(·|x1, 0, X3))]. (271)

Proof: Follows by simple rewriting. Details omitted.
The following lemma is a direct consequence of Lemma 4 and the nonnegativity of Kullback-Leibler divergence.

Lemma 5. Let (T,X1, X2, X3, Y ) be as in Lemma 4 where in addition we assume that for any t ∈ T :

lim
n→∞

PX1|T=t(1) = lim
n→∞

PX2|T=t(1) = 0. (272)

Then:

I(X1;Y | X2, X3, T = t) ≤ PX1|T=t(1)
(
EPX3|T=t

[
D(1)

Y (X3)
]
+ o(1)

)
(273)

I(X2;Y | X1, X3, T = t) ≤ PX2|T=t(1)
(
EPX3|T=t

[
D(2)

Y (X3)
]
+ o(1)

)
(274)

Proof: We can write the mutual information term as follows:

I(X1;Y | X2, X3, T = t)

= PX2|T=t(0)I(X1;Y | X2 = 0, X3, T = t) + PX2|T=t(1)I(X1;Y | X2 = 1, X3, T = t) (275)
≤ I(X1;Y | X2 = 0, X3, T = t) + PX2|T=t(1)I(X1;Y | X2 = 1, X3, T = t) (276)
(a)

≤ PX1|T=t(1)EPX3|T=t

[
D(1)

Y (X3)
]
+ PX2|T=t(1) · PX1|T=t(1)EPX3|T=t

[
D(ΓY |X1X2X3

(· | 1, 1, X3)||ΓY |X1X2X3
(·|0, 0, X3))

]

= PX1|T=t(1)
(
EPX3|T=t

[
D(1)

Y (X3)
]
+ o(1)

)
, (277)

where (a) holds by Lemma 4.
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Similarly, one can show that

I(X2;Y | X1, X3, T = t) ≤ PX2|T=t(1)
(
EPX3|T=t

[
D(2)

Y (X3)
]
+ o(1)

)
. (278)

B. Lower bound on 1
M3

∑M3

w3=1 δn,w3
:

Recalling also the definition of Q̂n
C,w3

(zn) in (22), we obtain for a specific code C:

1

M3

M3∑

w3=1

δn,w3

=
1

M3

M3∑

w3=1

∑

zn

Q̂n
C,w3

(zn) log

(
Q̂n

C,w3
(zn)

Γ⊗n
Z|X1X2X3

(zn|0n, 0n, xn3 (w3))

)
(279)

(a)

≥ 1

M3

M3∑

w3=1

n∑

i=1

∑

zi

Q̂
(i)
C,w3

(zi) log

(
Q̂

(i)
C,w3

(zi)

ΓZ|X1X2X3
(zi|0, 0, x3i(w3))

)
(280)

=
1

M3

M3∑

w3=1

n∑

i=1

D
(
Q̂

(i)
C,w3

∥ΓZ|X1X2X3
(·|0, 0, x3i(w3))

)
(281)

(b)
=

1

M3

M3∑

w3=1

n∑

i=1

D
(
αn,i,1αn,i,2ΓZ|X1X2X3

(· | 1, 1, x3i(w3)) + αn,i,1(1− αn,i,2)ΓZ|X1X2X3
(· | 1, 0, x3i(w3))

+ (1− αn,i,1)αn,i,2ΓZ|X1X2X3
(· | 0, 1, x3i(w3)) + (1− αn,i,1)(1− αn,i,2)ΓZ|X1X2X3

(· | 0, 0, x3i(w3))

∥ΓZ|X1X2X3
(·|0, 0, x3i(w3))

)
, (282)

where (a) holds by the memoryless nature of the channel and by defining Q̂(i)
C,w3

(zi) as the probability of the event Zi = zi
conditioned on W3 = w3, and by writing out the expectations over the independent random variables X1,i and X2,i.

Notice that since for all w3 ∈ M3 we have that limn→∞ δn,w3
= 0, by (282) we can conclude that

lim
n→∞

αn,i,ℓ = 0, ∀i ∈ {1, . . . , n}, ℓ ∈ {1, 2}. (283)

Combining (282), (283) and Lemma 3, we can conclude that

1

M3

M3∑

w3=1

δn,w3 ≥ nEPTX3

[
(1 + o(1))

(αn,T,1 + αn,T,2)
2

2
χ2
n(ρn,T,1, ρn,T,2, X3)

]
, (284)

where we define the time random variable T to be uniform over {1, . . . , n} and independent of all other random variables.

C. Upper bound on log(M1):

Since the message W1 is uniform over {1, . . . ,M1} and independent of the local randomness C1, C2, we have

log(M1) = H(W1) (285)
= H(W1 |W2, S1, S2,W3) (286)
= I(W1;Y

n |W2, S1, S2,W3) +H(W1 | Y n,W2, S1, S2, C1, C2,W3) (287)
(a)

≤ I(W1;Y
n |W2, S1, S2, C1, C2, X

n
2 , X

n
3 ) +Hb(Pe,1) + Pe,1 log(M1) (288)

=
1

1− Pe,1
(I(W1;Y

n |W2, S1, S2, C1, C2, X
n
2 , X

n
3 ) +Hb(Pe,1)) (289)

(b)
=

1

1− Pe,1

(
n∑

i=1

H(Yi | Y i−1,W2, S1, S2, C1, C2, X
n
2 , X

n
3 )

−H(Yi | Y i−1,W1,W2, S1, S2, C1, C2, X
n
1 , X

n
2 , X

n
3 ) +Hb(Pe,1)

)
(290)

(c)

≤ 1

1− Pe,1

(
n∑

i=1

H(Yi | X2i, X3i)−H(Yi | X1i, X2i, X3i) +Hb(Pe,1)

)
(291)
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=
1

1− Pe,1

(
n

n∑

i=1

1

n
I(X1i;Yi | X2i, X3i) +Hb(Pe,1)

)
(292)

≤ 1

1− Pe,1
(nI(X1,T ;YT | X2,T , X3,T ) + 1) (293)

(d)

≤ 1

1− Pe,1
n

(
EPTX3,T

[
αn,T,1

(
D(1)

Y (X3,T ) + o(1)
)]

+
1

n

)
. (294)

Above sequence of (in)equalities are justified as follows:
(a) holds by Fano’s inequality and because Xn

2 = φ
(n)
2 (W2, S2, C2) as well as Xn

3 = φ
(n)
3 (W3);

(b) holds by the chain rule of entropy and because Xn
1 = φ

(n)
1 (W1, S1, C1);

(c) holds respectively because conditioning reduces entropy and because conditioned on X1,i, X2,i, X3,i the output Yi is
independent of all messages, keys, and randomness;
(d) is obtained by applying Lemma 5 for each realization of T and by upper-bounding the binary entropy by 1.

D. Upper Bound on log(M2)

The desired upper bound can be derived using similar steps to those for log(M1).

log(M2) ≤
1

1− Pe,1
n

(
EPTX3

[
αn,T,2

(
D(2)

Y (X3) + o(1)
)]

+
1

n

)
(295)

E. Upper Bound on log(M3)/n:

Using standard steps, one can find the upper bound

1

n
log(M3) ≤

1

1− Pe,1
I(X3,T ;YT |X1,T = 0, X2,T = 0, T ). (296)

F. Upper bound on log(M1)/
√
n 1

M3

∑M3

w3=1 δn,w3
:

By (294) and (284), we obtain the bound

log(M1)√
n 1

M3

∑M3

w3=1 δn,w3

≤
√
2

1− Pe,1

n
(
EPTX3

[
αn,T,1

(
D(1)

Y (X3) + o(1)
)]

+ 1
n

)

√
n
(
n(1 + o(1))EPTX3

[
(αn,T,1 + αn,T,2)

2
χ2
n(ρn,T,1, ρn,T,2, X3)

]) (297)

(a)
=

√
2

1− Pe,1

EPTX3

[
αn,T,1

EPT
[αn,T,1+αn,T,2]

(
D(1)

Y (X3) + o(1)
)]

+ 1
n√

(1 + o(1))EPTX3

[(
αn,T,1+αn,T,2

EPT
[αn,T,1+αn,T,2]

)2
χ2
n(ρn,T,1, ρn,T,2, X3)

] (298)

(b)
=

√
2

1− Pe,1

EPTX3

[
ρn,T,1

(
D(1)

Y (X3) + o(1)
)]

+ 1
n√

(1 + o(1))EPTX3

[
(ρn,T,1 + ρn,T,2)

2
χ2
n(ρn,T,1, ρn,T,2, X3)

] (299)

where (a) follows by normalization by EPT
[αn,T,1 + αn,T,2], and (b) by the definition of ρn,i,ℓ in (268) for all (i, ℓ) ∈

{1, . . . , n} × {1, 2}.
Similarly, one can show that

log(M2)√
n 1

M3

∑M3

w3=1 δn,w3

≤
√
2

1− Pe,1

EPTX3

[
ρn,T,2

(
D(2)

Y (X3) + o(1)
)]

+ 1
n√

(1 + o(1))EPTX3

[
(ρn,T,1 + ρn,T,2)

2
χ2
n(ρn,T,1, ρn,T,2, X3)

] (300)

G. Upper bound on 1
M3

∑M3

w3=1 δn,w3
:

Notice that the new parameters ρn,T,ℓ are well defined because ET [αn,T,1+αn,T,2] characterizes the sum of the fractions of
1-entries in the codebooks {xn1 (W1, S1, C1)} and {xn2 (W2, S2, C2)}, and is thus non-zero because otherwise no communication
is going on. Moreover, by Jensen’s Inequality, ET [(ρn,T,1 + ρn,T,2)

2
] ≥ (ET [ρn,T,1 + ρn,T,2])

2
= 1.

It then follows by Assumptions (27), that the right-hand sides of (296), (299) and (300) lie in bounded intervals. Combining
the inequalities in (296), (299) and (300) with trivial positivity considerations, one can conclude that also the left-hand sides
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of these inequalities must lie in bounded intervals. Consequently there exists subsequence of blocklengths so that both the left-
and ride-hand sides of (296), (299) and (300) all converge. We shall restrict to such a subsequence of blocklengths {ni}∞i=1.

Let then β1 and β2 be the two numbers in [0, 1] that satisfy

lim
i→∞

log(Mℓ)√
ni

1
M3

∑M3

w3=1 δni,w3

=
√
2βℓ lim

i→∞

EPTX3

[
ρni,T,ℓD(ℓ)

Y (X3,T )
]

√
EPTX3

[
(ρni,T,1 + ρni,T,2)

2
χ2
n(ρni,T,1, ρni,T,2, X3,T )

] , ℓ ∈ {1, 2}

(301)

where notice that the limit on the right-hand side coincides with the limits on the right-hand sides in (299) or (300), respectively.
Assume for the moment that β1, β2 are strictly larger than 0, and thus we can divide by it. Then, (301) combined with (294)

and (295) implies that for all blocklengths ni:
√√√√ni

1

M3

M3∑

w3=1

δni,w3 ≤ ni

βℓ
√
2

√
EPTX3

[
(ρni,T,1 + ρni,T,2)

2
χ2
n(ρni,T,1, ρni,T,2, X3,T )

]
+ o(1), ℓ ∈ {1, 2}. (302)

H. Lower bound on log(M1M2K1K2):

We start with the lower bound

log(M1K1) = H(W1, S1|C1, C2) (303)
= H(W1, S1 | Xn

3 , C1, C2) (304)
≥ I(W1, S1;Z

n | Xn
3 , C1, C2) (305)

(a)

≥ I(Xn
1 ;Z

n | Xn
3 , C1, C2) (306)

= I(Xn
1 , X

n
2 ;Z

n | Xn
3 , C1, C2)− I(Xn

2 ;Z
n | Xn

1 , X
n
3 , C1, C2) (307)

(b)

≥ I(Xn
1 , X

n
2 ;Z

n | Xn
3 , C1, C2)− I(Xn

2 ;Z
n | Xn

1 , X
n
3 ) (308)

where (a) holds because Xn
1 = xn1 (W1, S1, C1) is a function of W1, S1, and C1 and (b) holds because of the Markov chain

(C1, C2) → (Xn
1 , X

n
2 , X

n
3 ) → Zn and because conditioning reduces entropy.

Likewise,

log(M2K2) ≥ I(Xn
1 , X

n
2 ;Z

n | Xn
3 , C1, C2)− I(Xn

1 ;Z
n | Xn

1 , X
n
3 ), (309)

We next focus on the first mutual-information term that is common to the RHS of (308) and (309). To this end, we define
for each pair (c1, c2) ∈ G1 × G2 the warden’s average output distribution conditioned on the local randomness c1 and c2 and
on a non-covert message w3, the distribution

Q̂n
C,(c1,c2,w3)

(zn) ≜
1

M1M2K1K2

∑

(w1,s1)

∑

(w2,s2)

Γ⊗n
Z|X1X2X3

(zn|xn1 (w1, s1, c1), x
n
2 (w2, s2, c2), x

n
3 (w3)) (310)

and the divergence
δn,(c1,c2,w3) ≜ D

(
Q̂n

C,(c1,c2,w3)
∥ Γ⊗n

Z|X1X2X3
(·|0n, 0n, xn3 (w3))

)
. (311)

With this definition, we can write:

I(Xn
1 , X

n
2 ;Z

n | Xn
3 , C1, C2) (312)

= EXn
1 ,Xn

2 ,Xn
3 ,C1,C2

[
D
(
Γ⊗n
Z|X1X2X3

(· | Xn
1 , X

n
2 , X

n
3 )∥Q̂n

C,(C1,C2,W3)

)]
(313)

= EXn
1 ,Xn

2 ,Xn
3 ,C1,C2

[∑

zn

Γ⊗n
Z|X1X2X3

(zn | Xn
1 , X

n
2 , X

n
3 ) log

(
Γ⊗n
Z|X1X2X3

(zn | Xn
1 , X

n
2 , X

n
3 )

Γ⊗n
Z|X1X2X3

(zn | 0n, 0n, Xn
3 )

)

−
∑

zn

Γ⊗n
Z|X1X2X3

(zn | Xn
1 , X

n
2 , X

n
3 ) log

(
Q̂n

C,(C1,C2,W3)
(zn)

Γ⊗n
Z|X1X2X3

(zn | 0n, 0n, Xn
3 )

)]
(314)

(a)
= EXn

1 ,Xn
2 ,Xn

3

[∑

zn

Γ⊗n
Z|X1X2X3

(zn | Xn
1 , X

n
2 , X

n
3 ) log

(
Γ⊗n
Z|X1X2X3

(zn | Xn
1 , X

n
2 , X

n
3 )

Γ⊗n
Z|X1X2X3

(zn | 0n, 0n, Xn
3 )

)]

−EC1,C2,W3

[
δn,(C1,C2,W3)

]
(315)
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(b)

≥
n∑

i=1

EX1,i,X2,i,X3,i

[∑

zi

ΓZ|X1X2X3
(zi | X1,i, X2,i, X3,i) log

(
ΓZ|X1X2X3

(zi | X1i, X2i, X3i)

ΓZ|X1X2X3
(zi | 0, 0, X3i)

)]
− EW3

[δn,W3
] (316)

(c)
=

n∑

i=1

EX3i

[(
αn,i,1D(1)

Z (X3i) + αn,i,2D(2)
Z (X3,i)

)
(1 + o(1))

]
− EW3 [δn,W3 ] (317)

(d)
= nEPTX3T

[(
αn,T,1D(1)

Z (X3,T ) + αn,T,2D(2)
Z (X3,T )

)
(1 + o(1))

]
− EW3

[δn,W3
] , (318)

where (a) holds by the definition of δn,(c1,c2,w3) and by replacing the average over Xn
3 by the average over W3; (b) holds by

by convexity of the divergence; (c) by writing out the expectations over the independent random variables X1,i and X2,i and
by noting that for X1,i = X2,i = 0 the term in the expectation evaluates to 0; (d) holds because T is uniform over {1, . . . , n}.

For the second mutual-information term on the RHS of (308), we have:

I(Xn
1 ;Z

n | Xn
2 , X

n
3 ) = H(Zn | Xn

2 , X
n
3 )−H(Zn | Xn

1 , X
n
2 , X

n
3 ) (319)

=

n∑

i=1

H(Zi | Zi−1, Xn
2 , X

n
3 )−H(Zi | Zi−1, Xn

1 , X
n
2 , X

n
3 ) (320)

(a)
=

n∑

i=1

H(Zi | Xn
2 , X

n
3 )−H(Zi | X1,i, X2,i, X3,i) (321)

(b)

≤
n∑

i=1

H(Zi | X2i, X3i)−H(Zi | X1i, X2i, X3i) (322)

= n

n∑

i=1

1

n
I(X1i;Zi | X2i, X3i) (323)

= nI(X1,T ;ZT | X2,T , X3,T , T ) (324)
(c)

≤ nEPTX3,T

[
αn,T,1D(1)

Z (X3,T )(1 + o(1))
]
, (325)

where (a) holds by the memoryless nature of the channel; (b) because conditioning reduces entropy; and (c) by applying
Lemma 5 to output ZT instead of YT .

In an analogous way, one can show that

I(Xn
2 ;Z

n | Xn
1 , X

n
3 ) ≤ nEPTX3,T

[
αn,T,2D(2)

Z (X3,T )(1 + o(1))
]
. (326)

Combining (318), (325) and (326) with (308) we can conclude that

log(MℓKℓ) ≥ n

(
EPTX3

[
αn,T,ℓD(ℓ)

Z (X3)(1 + o(1))
]
− EW3 [δn,W3 ]

n

)
, ℓ ∈ {1, 2}. (327)

I. Lower bound on log(M2K2)√
n 1

M3

∑M3
w3=1 δn,w3

, log(M2K2)√
n 1

M3

∑M3
w3=1 δn,w3

and Discussion

By combining (302) with (327), for n ∈ {ni} we obtain the bound for ℓ ∈ {1, 2}:

log(MℓKℓ)√
n 1

M3

∑M3

w3=1 δn,w3

≥ βℓ




EPTX3

[
ρn,T,ℓD(ℓ)

Z (X3T )
]

√
EPTX3

[
(ρn,T,1 + ρn,T,2)

2
χ2
n(ρn,T,1, ρn,T,2, X3)

] −
EW3

[δn,W3
]

nEPT
[αn,T,1+αn,T,2]√

EPTX3

[
(ρn,T,1 + ρn,T,2)

2
χ2
n(ρn,T,1, ρn,T,2, X3)

]


 .

(328)

Notice that the second term on the right-hand side of (328) vanishes whenever log(M1) → ∞ or log(M2) → ∞. In fact,
we have

lim
n→∞

EW3 [δn,W3 ] = 0, (329)

lim infn→∞n · ET [αn,T,1 + αn,T,2] > 0, (330)

lim infn→∞EPTX3

[
(ρn,T,1 + ρn,T,2)

2
χ2
n(ρn,T,1, ρn,T,2, X3)

]
> 0. (331)
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Limit (329) holds because δn,w3
→ 0 for any w3 ∈ M3;

Limit (330) holds because when the left-hand side tends to 0 then the number of 1-symbols in all the codewords tends to zero,
in which case no messages can be transmitted reliably;
Limit (331) holds because by definition (31) and assumptions (27) the random variable in the expectation is 0 only when
ρn,T,1 = ρn,T,2 = 0, which cannot happen with probability 1 over T as this would contradict (269).

J. Limits and Cardinality Bound

Notice that so far we have assumed that β1, β2 > 0. For βℓ ≥ 0, we simply note that:

lim inf
n→∞

log(MℓKℓ)√
n 1

M3

∑M3

w3=1 δn,w3

≥ 0. (332)

In view of this, and collecting all results in the previous subsections, we can conclude that there exists an increasing
subsequences of blocklengths {ni} so that for any ℓ ∈ {1, 2} and some βℓ ∈ [0, 1]:

lim
ni→∞

log(Mℓ)√
ni

1
M3

∑M3

w3=1 δni,w3

= lim
ni→∞

√
2βℓ

EPTX3

[
ρni,T,ℓD(ℓ)

Y (X3)
]

√
EPTX3

[
(ρni,1,T + ρni,2,T )

2
χ2
ni
(ρni,T,1, ρni,T,2, X3)

] , (333a)

lim sup
ni→∞

1

ni
logM3 ≤ lim

ni→∞
I(X3,T ;YT |X1,T = 0, X2,T = 0, T ), (333b)

lim inf
ni→∞

log(MℓKℓ)√
ni

1
M3

∑M3

w3=1 δni,w3

≥ lim
ni→∞

√
2βℓ

EPTX3

[
ρni,T,ℓD(ℓ)

Z (X3)
]

√
EPTX3

[
(ρni,1,T + ρni,2,T )

2
χ2
ni
(ρni,T,1, ρni,T,2, X3)

] . (333c)

Applying the Fenchel-Eggleston-Carathéodory theorem to vectors of the form

v =




ρni,t,1EPX3|T=t

[
D(1)

Y (X3)
]

ρni,t,2EPX3|T=t

[
D(2)

Y (X3)
]

I(X3;Y | X1 = 0, X2 = 0, T = t)

(ρni,t,1 + ρni,t,2)
2 EPX3|T=t

[
χ2
ni
(ρni,T,1, ρni,T,2, X3)

]

EPX3|T=t

[
ρni,t,1D

(1)
Z (X3)

]

EPX3|T=t

[
ρni,t,2D

(2)
Z (X3)

]




, (334)

we conclude that for any blocklength ni there exists a modified distribution P̃T over an alphabet of size |T |= 6 so that the
bounds (333) hold also if PT is replaced by this new pmf P̃T . In the rest of the proof, we can thus restrict to these modified
distributions P̃T over |T |= 6.

K. The Limiting Distribution

To conclude the proof, we notice that by the Bolzano-Weierstrass theorem there exists an increasing subsequence {nik} of
{ni} so that {PX3|T (·|t)} and {PT (·)} converge on this subsequence. If also ρnik

,t,1 and ρnik
,t,2 converge for each value of

t ∈ T ≜ {1, . . . , 6}, then by the continuity of the expressions, we obtain a converse result by considering the convergence
points of {PX3|T (·|t)}, {PT (·)}, and {(ρ1,t, ρ2,t)}t∈T . In fact, we can conclude that

lim
k→∞

log(Mℓ)√
nik

1
M3

∑M3

w3=1 δnik
,w3

=
√
2βℓ

EPTX3

[
ρℓ,TD(ℓ)

Y (X3)
]

√
EPTX3

[
(ρ1,T + ρ2,T )

2
χ2(ρ1,T , ρ2,T , X3)

] , ℓ ∈ {1, 2} (335)

lim sup
k→∞

1

nik
logM3 ≤ I(X3;Y |X1 = 0, X2 = 0, T ), (336)

lim inf
k→∞

log(MℓKℓ)√
nik

1
M3

∑M3

w3=1 δnik
,w3

≥
√
2βℓ

EPTX3

[
ρℓ,TD(ℓ)

Z (X3)
]

√
EPTX3

[
(ρ1,T + ρ2,T )

2
χ2(ρ1,T , ρ2,T , X3)

] , ℓ ∈ {1, 2}. (337)

for some pmf PX3T over X3 × T and some set of positive pairs {(ρ1,t, ρ2,t)}t∈T .
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If instead for some t ∈ T the sequence ρnik
,t,ℓ diverges to ∞ we proceed as follows. We first notice that for each of these

t-values the probability PT (t) → 0 as n→ ∞, because otherwise the expectation (269) is violated, and one of the following
three cases applies:
1.) PT (t)ρnik

,t,ℓ → 0 and PT (t)ρ
2
nik

,t,ℓ → 0;
2.) PT (t)ρnik

,t,ℓ → 0 and limnik
→∞ PT (t)ρ

2
nik

,t,ℓ = c for some c ∈ (0,∞);
3.) PT (t)ρnik

,t,ℓ ∈ [0, 1] and PT (t)ρ
2
nik

,t,ℓ → ∞.
All t-values satisfying case 1.) can simply be ignored since they do not change the bounds. Whenever there exists a t-value
in case 3.), then bounds (333a) and (333c) are 0 for both ℓ ∈ {1, 2} and the result is trivial. In case 2.) we can modify the
probabilities PT (t) and the parameters ρnik

,t,ℓ to values in a bounded interval [a, b] for b > a > 0, while still approximating
the bounds (333) arbitrarily closely. We then fall back to the case where all sequences ρnik

,t,ℓ converge, which we discussed
above.

L. Recovering the Bound on the Secret-Key Size

Above converse result remains valid if we add the additional constraint that results when taking the difference between (337)
and (335):

lim inf
k→∞

log(Kℓ)√
nik

1
M3

∑M3

w3=1 δnik
,w3

≥
√
2βℓ

EPTX3

[
ρℓ,T

(
D(ℓ)

Z (X3)− D(ℓ)
Y (X3)

)]

√
EPTX3

[
(ρ1,T + ρ2,T )

2
χ2(ρ1,T , ρ2,T , X3)

] , ℓ ∈ {1, 2}. (338)

Relaxing the sum-constraint (337) completely and further relaxing the equality in (335) into an ≤-inequality establishes finally
the desired converse proof to Theorem 2.

APPENDIX E
PROOF OF LEMMA 2

Fix two pmfs PTX3 and QTX3 as well as the tuples (ρ1,t, ρ2,t) and (ρ′1,t, ρ
′
2,t) in R+2

0 for all t ∈ T . Define the tuples

ρt ≜ (ρ1,t, ρ2,t), (339)

ρ′t ≜ (ρ′1,t, ρ
′
2,t), (340)

µ ≜ (ρ1, . . . ,ρ6,ρ
′
1, . . . ,ρ

′
6), (341)

for all t ∈ T .
Let (r1, r2, r3, k), (r′1, r

′
2, r

′
3, k

′), and (r̃1, r̃2, r̃3, k̃) be the tuples of messages and key rates given by the right-hand sides of
(59)–(61) when evaluated for PTX3

and (ρ1, . . . ,ρ6), for QTX3
and (ρ′1, . . . ,ρ

′
6), and for RTX3

and µ. We shall show that

λ




r1
r2
r3
k


+ (1− λ)




r′1
r′2
r′3
k′


 =




r̃1
r̃2
r̃3
k̃


 , ∀λ ∈ [0, 1]. (342)

The desired equality for the r̃3-component is directly obtained by the linearity of conditional mutual information and because
it does not depend on the ρ-, ρ′-, and µ-tuples. To see the equality for the other three components, fix λ ∈ [0, 1], and set
ν > 0 so that

ν2 ≜
EPTX3

[
(ρ1,T + ρ2,T )

2
χ2(ρT , X3)

]

EQTX3

[(
ρ′1,T + ρ′2,T

)2
χ2(ρ′T , X3)

] . (343)

For all ℓ ∈ {1, 2}, upon forming the new pmf RTX3 by choosing

RT (t) =

{
λ · PT (t) t ∈ {1, . . . , 6}
(1− λ) ·QT (t− 6) t ∈ {7, . . . , 12} (344)

and

RX3|T (x3|t) =
{
PX3|T (x3|t) t ∈ {1, . . . , 6}
QX3|T (x3|t− 6) t ∈ {7, . . . , 12}, (345)

and by defining the following tuples and constants

ρ̃t ≜

{
ρt, t ∈ {1, . . . , 6}
ρ′t−6, t ∈ {7, . . . , 12} (346)
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αℓ,t ≜

{
ρℓ,t, t ∈ {1, . . . , 6}
ν · ρ′ℓ,t−6, t ∈ {7, . . . , 12} (347)

βt ≜

{
ρ1,t + ρ2,t, t ∈ {1, . . . , 6}
ν ·
(
ρ′1,t−6 + ρ′2,t−6

)
, t ∈ {7, . . . , 12} (348)

One can notice that for any function f :X3 → R we have

λ
EPX3T

[ρℓ,T f(X3)]√
EPX3T

[
(ρ1,T + ρ2,T )

2
χ2(ρT , X3)

] + (1− λ)
EQX3T

[
ρ′ℓ,T f(X3)

]

√
EQX3T

[(
ρ′1,T + ρ′2,T

)2
χ2(ρ′T , X3)

]

= λ
EPX3T

[ρℓ,T f(X3)]√
EPX3T

[
(ρ1,T + ρ2,T )

2
χ2(ρT , X3)

] + (1− λ)
EQX3T

[
νρ′ℓ,T f(X3)

]

√
EQX3T

[
ν2
(
ρ′1,T + ρ′2,T

)2
χ2(ρ′T , X3)

] (349)

(a)
=

λEPX3T
[ρℓ,T f(X3)] + (1− λ) EQX3T

[
νρ′ℓ,T f(X3)

]

√
λEPX3T

[
(ρ1,T + ρ2,T )

2
χ2(ρT , X3)

]
+ (1− λ)EQX3T

[
ν2
(
ρ′1,T + ρ′2,T

)2
χ2(ρ′T , X3)

] (350)

=
ERX3T

[αℓ,T f(X3)]√
ERX3T

[β2
Tχ

2(ρ̃T , X3)]
(351)

EQX3T

[
ν2
(
ρ′1,T + ρ′2,T

)2
χ2(ρ′T , X3)

]

(b)
= EPX3T

[
(ρ1,T + ρ2,T )

2
χ2(ρT , X3)

]
(352)

= λEPX3T

[
(ρ1,T + ρ2,T )

2
χ2(ρT , X3)

]
+ (1− λ)EQX3T

[
ν2
(
ρ′1,T + ρ′2,T

)2
χ2(ρ′T , X3)

]
, (353)

where in (b) we used the definition of ν. This concludes the proof of the Lemma.
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