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Outline of the Course: Part |

Michele Wigger (3C58) and Mustapha Hamad (3C54)

@ Markov Chains
@ Dynamic Programming for Finite Horizon and Shortest-Paths Problems

@ Dynamic Programming for Infinite Horizon Problems with Discounted and
Average Cost Functions

@ Constrained Markov Decision Processes: Solutions and Suboptimal Policies

@ 2TDsand 1 TP
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Outline of the Course: Part Il

Mireille Sarkiss, Telecom SudParis, 3C56

Markov Decision Processes without known transition probabilities
@ Reinforcement Learning: exploration/exploitation tradeoff

o Epsilon Greedy, Boltzman Algorithm

Deep reinforcement learning
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Lecture 1 — Finite-State Markov Chains
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Definitions and Types of Markov Chains

Definition (First-order Markov Chain)

A stochastic process { Xk }x>0 = {Xo, X1, Xz, ..., } over an alphabet X’ is called
a (first-order) Markov chain if for all k =1,2,...:

ka|xk_1,xk_2,._.,xo(a|b,C,. .. ,Z) = ka‘xk_l(a“)), Va7 b7C, coogd & X.

o Examples: Random walk, memoryless process, ...

@ Statistics of the stochastic process { Xk }«>o is determined by Px, and
{Pxyx,_q }h>1- In fact:

Pxy.xi...xc (@b ¢, ..., 2) = Pxy (@) Pxyx, (bl @) P, x, (€] b) - - - Pxyexie, (21Y)-

Wigger — Sequential Decision Processes, Master MICAS, Part | 5/15



Homogeneous/Time-Invariant Markov Chains

Definition (Homogeneous Markov Chains)

A Markov chain {Xx}«>o0 over an alphabet X is called homogeneous or
time-invariant if the transition probability Px,|x, , does not depend on the
index k. That means, there exists a conditional probability mass function
W(:|-) such that:

Px,x,_,(alb) = W(a|b), Vk=1,2,..., and a,be X.

@ The alphabet X is typically called the state space and W the transition
law of the homogeneous Markov chain.
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State-Transition Diagramme for Homogeneous Markov Chains

@ A node for all possible states a € X and an arrow from state b to state a
labelled by the probability W(a|b) > 0. (If W(a|b) = 0 there is no arrow.)

@ Each outgoing edge from state b represents a probability W(:|b)
= the labels of all outgoing edges from a given node have to sum to 1!

Life in Lockdown:
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Describing a Homogeneous Markov Chain with its Transition Matrix

@ Transition matrix W: each row and each column is associated with a state
— W is square of dimension |X| X |X|

W(ala) W(bla) W(cla) --- W(z|a)
W(alb) W(blb) W(clb) --- W(z|b)
W=
W(alz) W(blz) - - W(z2)
W.

o Each row of W sums to 1 — a (right) stochastic matrix

e For any state b:

Px,(b) = Z Px, (x)W(b|x) = 7o - W. ,
XEX

where 7, = (Px,(a), Px,(b), ..., Px,(2)).

@ Summary for all b € X:
1 = woW.
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The Markov Process in Matrix Notation

o Let wy = (ka(a), ka(b), e ka (Z)) Then:

T = mo-W

T2 = 7l'1-W=7r0~W~W
k

T = mo-W.

— the statistics is determined by g and W

Wigger — Sequential Decision Processes, Master MICAS, Part | 9/15



Transient and Recurrent States

Definition (Recurrent State Class)

Consider a homogeneous Markov process. A class of states S C X is called
recurrent, if the following two conditions hold:

@ For any two states a, b € S there are positive integers k, i, j such that
Pr[Xisi = b| Xk = a] >0 and Pr[X«+j = a| Xk = b] > 0.

(We say that states a and b communicate.)
@ For any states a € S and b € X\S and for all k,i > 0:

Pr[Xk+,- = b|Xk = 3] > 0.

If X is a recurrent class, the Markov process { Xk }«>o is said irreducible.

Definition (Recurrent and Transient States)

A state a € X that belongs to some recurrent class is called recurrent. A state
that does not belong to any recurrent class is called transient. For any

transient state a:
lim Pr[Xk1i = a|lXe =a] =0
11— 00
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Periodicity of States And Aperiodic Chains

Definition (Periods of a states)

The period d(x) of a state x is the smallest positive integer such that
irrespective of the starting distribution Pr[Xpx = x| Xk = x] = 0 if £ is not a
multiple of d(x).

Dt @%\g/fa S

period of states:

Definition (Aperiodic Markov Chains)

A Markov chain {X\} is said aperiodic if d(x) = 1 for all states x € X.
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A Stationary Process

Definition (Stationary Process)

A stochastic process { Xk }«>o is called stationary, if for all integers k,n > 0:

PXk!Xk+1 ,,,,, )(,(Jr"(a,b,...,z)zP)(O,)(1 _____ Xn(a,b,...,z), Va,b,...,zGX.

Theorem

| A\

A Markov process { Xy }k>o with transition matrix W and initial distribution g
is stationary if, and only if,

T = 7o - W.

A

Proof: The “only if" direction is trivial because w1 = 7o - W.
To see the "if’-direction, notice that for any k > 1:

me=mo W =m0 - WW- = g Wl = g o WWF 2 = = 1 W = 7
~— ~——
—mg =g

and thus by Bayes' rule and the Markov property:

kaan+1v-~-7Xk+n(a’ b,...,z)= ka(a)PkaXk(b\a) T PXk+n\Xk+n—1(Z|Y)
= mo(a) - W(bla) - W(c|b)--- W(z|y) = Px,(a)Px,x,(bla) - - - Px,ix,_, (zly)
= Px,,x,...x,(a, b, ..., 2)
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More on Stationary Distributions

Consider a Markov chain { X }«>o with transition matrix W.

@ Any distribution 7 satisfying the fix-point equation
T=m W

is called a stationary distribution of this Markov chain.
@ Any such 7 is an eigenvector of W corresponding to eigenvalue 1.

@ Aperiodic and irreducible Markov chains have a unique stationary
distribution 7*.

e Transient states have 0 probability under 7™,
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Convergence of the Transition Matrix

Theorem

The following limit exists
W* = lim WY,

N— oo

and W™ s a stochastic matrix.
For an irreducibile and aperiodic Markov chain:

W =1"x",

where 7" is the unique stationary distribution.

\

Omitted.
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Convergence to A Stationary Process

If the Markov chain {Xy}«>o is aperiodic and irreducible, then for any initial
distribution 7tg:

lim 7wy — 7",
N— o0

where 7" is the only stationary distribution of the Markov chain.

Proof:

. . N . N T
lim 7wy = lim (wo-W") =m - lim W™ =mo-1 «".
N—oo N— oo N— oo

=1
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Lecture 2 — Markov Decision Processes and Dynamic
Programming over a Finite Horizon
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A Discrete-Time Dynamic System Model

@ State evolution
Xir1 = Fi(Xi, U, W), k=0,1,2,...,

@ Xy is the time-k state over a state space X
@ Uy is the time-k (control) action over a space U

o W) the random disturbance
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Markov Decision Process (MDP) —A Markov Chain with Actions

The discrete-time dynamic system is a Markov decision process if
o the sequence { Wi} is memoryless; and
e a reward R,(x, x’) is associated to each action v and pair of states
x,x' e X

— Generalization of a Markov chain to incorporate actions and where the
transition law depends on these actions:

PXk+1‘Xk,...,Xo,Uk,<.<,U0(a‘b7' Ly Zyuy e, V) - PXk+1\Xk,Uk(a|b’ U),

Va,b,...,ze€ X,u,vel.
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An MDP Example with Graph Representation

0.8 02
n=Do Nothing
i= Apply to industry

Indust
“(Il;S v =+10 g = Apply to grad school
a = Apply to academia
09
Grad School K
© ) —

o Boxes are states; labels on arrows designate actions and transition
probabilities. E.g.:

Pr[ Xkt = “I"| Xk = “U", U = "] = 0.6.
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Finite-Horizon Dynamic Programming Problem Setup
(Slightly more general than introduced for MDPs)

@ Discrete-time dynamic system:
Xit1 = Fi(Xi, U, W), k=0,1,2,...,N—1

where given (Xk, Ux) the noise W is conditionally independent of
(Xoy s Xue, Uny oo, Ut WA, ..., Wi_1)

o N is called the horizon of the control problem

@ Admissible control sets {Ux(a)}acx for action Uk = p(Xk)
— The set of functions uo, ..., un—1 is called a policy

o Additive expected cost

N-1 N—1
E |en(Xn)+ Y g(Xx, Us, Wk):| = Eqw,y [avOXn)+ D ge(Xe, (X ), We)
k=0 k=0

where gn(Xn) denotes a terminal cost
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Decomposition of Expected Cost
@ Expected time i-to-j cost starting from state a € X

Xi=a|, 0<i<j<N

Jisjx(a) =E [ng(Xk,uk(Xk), Wk)

k=i
where g,v()(l\/,ul\/()(/\/)7 WN) = gN(XN).

@ Decomposition of finite-horizon expected cost for i < j < N:
N—1

Jisnx(a) = E|:gN(XN) + ) &K e (Xi), W)

Xj = b,X; = a:|
k=i

N-1
= > PrX; = b|X; = 3]E|:gN(XN) + ) &KX i (Xi), W) | Xj = b, Xi = a}
bex k=i
N—-1
= > PrlX; = b|X; = a]EligN(XN + ) &KX i (Xi), W) | Xj = b, X; = a}
beXx k=j
j—1
+ ) PrX;=blX; = a]E[ng(Xk,uk(xk), Wi)|X; = b, X; = a
bex k=i
= > PrX; = b|X; = alJjw,x (b) + Jimj1,7(a)
bex
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Minimizing the Expected Finite-Horizon Cost

@ Minimize expected cost for a € X:  Ji_,n(3) = ming Jo—n,~(3)

@ Decomposition of optimization problem:

min Jo_,n,x(a) = min [ Jo0,40(a) +  min Z Pr[X1 = b|Xo = a]J1n,=(b)
™ j20) K1 BN—1 beEX

> min | J a) + Pr[X1 = b|Xp = a min J (b
2 min | Jo—s0,:0(a) bEZX Ka=bXo=al ~min iy, (b)

where equality holds when optimal policies up 1, ..., s nv—1 don't depend on b.

min A n,x(b) > min | J1 51, (b) + D Pr{Xe = c|X; = b] min D (€)
™ M1 ex He,25e e, N—1

min Jy_1,n,7(x) > min [JN71%N71,HN,1(X)
L BN—2
+ > Pr{Xy =yl Xn_1 =x] min Inonn, (¥)
e My N—1

o Will see: optimal piai, ..., pta,v—1 don't depend on a = Ineq. are equalities

o Find the optimal solution starting backwards!!
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Optimal Dynamic Programming Algorithm

@ For each xy € X initialize Jy_n(xn) = gn(xn)
— trivially the same uy achieves optimal Jy_, y(xn) for all xy € X

@ Foreachi= N —1,...,0 calculcate for each x; € X
Jn(xi)

=min | i (6) + Y PriXia = xial X = xi] S n(xi)

i
' Xi+1€X

= min [Ew, [g1(x (%), W) + Jisoon(Xiaa) X = x]]

— If optimal policies pfq, ..., uy for Ji1_,n(xi+1) don't depend on xi11 € X,
then optimal policies u}, pit1, ..., uy for J7,n(xi) don't depend on x;!

Wigger — Sequential Decision Processes, Master MICAS, Part | 9/16



Optimality Principle for Finite-Horizon Dynamic Programming

Theorem (Optimality Principle)

Let m* = (ug, 41, 15, - - -, Uy_1) be an optimal policy for Jo—sn x:

Jo—sn,=(2) = min Jo—sn,=(a) =: S n(a), Vae X.

Then Vb € X the truncated policy 7w}, := (1], - - ., fiy_1) Minimizes the
sub-problem Ji_sy x:

J,‘*,NJ.—’,*%N(b) E m7rin Ji—>N,7r(b) = i*—>N(b)7 Vbe X.

Proof by Contradiction: Given policy iy = (o, pi1, - - - , pn—1) satisfying
Jisnx(b) < Jisna=(b), VbeEX.
Then for all a € X and policy 7 = (g, 41y -« - s i1y Mhis -« - s IN—1):

Jo—nxr(a) = Z PrXi = b| Xo = alJin,x+(b) + Josi—1,+(a)
bex
> Z Pr[X; = b|Xo = alJimn,»(b) + Josi—1,++(a)
bex
= Josn,#(a)
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Example: Inventory Control
@ state x: stock at the beginning of period k
@ action ug: stock order (and delivery) at the beginning of period k
@ disturbance wi: random demand during period k

@ state evolution:
Xer1 = F(Xie, Uk, W) = Xk + Uk — Wi
@ cost gi(xk, uk, wk) in period k consists of inventory cost/penalty r(xx) and
purchase cost cu:
gr(Xk, Uk, wi) = r(xk) + ¢ - uk
@ Wish to minimize total expected cost over horizon N:

N N—-1
Jo_u\/,ﬂ-:E r(Xk)-i-ZC'UkXo:a, a>0.
k=0 k=0
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Optimal DP Algorithm for the Inventory Control Example
o Initialize Jy_,n(xn) = r(xn)

o First iteration:
Jy—1on(xv—1) = min {r(xnv_1) + cun—1 + E[r(Xn)]}
Uuny—1

= r(xn—1) + min {CUN—1 + Ew,_, [r(xv—1 + un—1 + WN—I)]}
un_1

@ Second iteration:

In—on = min {r(xn—2) + cun—2 + E[Iy_1n(Xn-1)]}

un—2

= r(xn—2) + min {cun—2 + Ewy_,[Iv—1-n(xv—2 + un—2 + Wn_2)]}
uy—2

@ j-th iteration:

In_imsn = r(xn—;) + min {CUN—i +Ewy_; [Inveicion(xv—i + un—i + WN—i)]}

un—j

@ Solution obtained after N iterations: Ji_, y
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Deterministic MDPs and Shortest-Path Problems
o No disturbance — state evolution xx+1 = f(xk, ux) and cost gi(xk, ux)

@ Graph representation:

Terminal Arcs
with Cost Equal
to Terminal Cost

Artificial Terminal

Initial State Node

s

Stage 0 Stage 1 Stage 2 «+. StageN-1 Stage N

o At each stage k =1,2,..., N there is a node for each x, € X

o Arrows indicate transitions for different actions — label arrows with actions

ug and costs gi(xk, Uk)

o Total cost Jo—,n,~ is the sum of the costs on the path indicated by 7

Finding minimum total cost Jo_,n,~ equivalent to finding “shortest path”

— DP algorithm can be run in reverse order

)
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Travelling Salesman Problem and Label Correcting Method

Initialize d; = 0 and
= --=d =00

Label Correcting Algorithm

Step 1: Remove a node i from OPEN and for each child j of i, execute
step 2.

Step 2: If di + aij < min{d;, UPPER}, set d; = d; + ai; and set i to
be the parent of j. In addition, if j # ¢, place j in OPEN if it is not
already in OPEN, while if j = t, set UPPER to the new value d; + az¢
of di.

Step 3: If OPEN is empty, terminate; else go to step 1.

Iter. No. | Node Exiting OPEN | OPEN at the End of Iteration | UPPER
0 ]
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
@ State space depends on stage k 10 10

@ Dijkstra's method always chooses the node in OPEN with smallest d.
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Dynamic Programming in a Hidden Markov Model

e In a Hidden Markov Model (HMM) or Partially Observable Markov
Process (POMP), an observer does not observe the state sequences
Xo, Xi,...,Xn directly but a related sequence Zi, ..., Zy, where

N
Pxo X1, xw. 21, zn = Pxo H Px %1 - Pzeixixie_y-
k=1

o Observe zi, ..., zy and solve

min  —1og Pxy.xy,....xn, 21,2y (X05 X1y - oy XN, 21, - o, ZN)
X05X150e XN

N
= min [ —logPx(x0) = Y 108 Pxyix_, (k[ Xk=1) Pz, ¢ ¢y (2K, xe-1)]

X0y X159 XN =1

— Apply Forward DP algorithm on a Trellis
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The Viterbi Algorithm

o Trellis:

Edges from s to xo are labeled with Px,, edges from xn to t by 0 and
edges from x,_1 to xk by — |Og PXk\Xk,l(Xk|Xk71)PZk\Xk,Xk,1(Zk|xk»kal)

@ Shortest Path from s to t solves minimization problem

@ Apply forward DP algorithm and cut the branches that are suboptimal
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Lecture 3 — Dynamic Programming over an Infinite
Horizon: The Discounted Case
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Review of Lecture 2: Finite Horizon and Decomposition of the Cost
@ Discrete-time dynamic system:

Xir1 = Fi(Xie, e (Xi), Wh), k=0,1,2,...,N—1

{ Wi} is independent and identically distributed (i.i.d.)

@ Minimize total cost for given initial state a € X

N—1

Jo—sn(a) := min E[ng(Xk,,uk(Xk), Wi) + gn(Xn)

X():a

=don,x(a)

o Optimal Backward DP Algorithm: Initialize Jy_, n(xn) := gn(xn) and
compute for i =N-—-1,...,0

Jn(xi) = ”;‘j,” (E [gi(Xh wi(xi), Wi) +ZPF[X:'+1 = xi11|Xi = Xi]Ji*+HN(Xi+1))

Xj+1€X

= min Euw, g1, (). Wi) + Jraon (o i), W) )|

o For deterministic problems optimal DP algorithm can be run forwards
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Optimality of Memoryless Policies

@ Restriction to memoryless policies u; = pi(x;) is without loss of optimality.
(I.e., there is no need to consider policies of the form

u; = ‘LL,'(XO, cee, Xiy U, L., u,-,l).)
@ Recall
Jon(xi) = n;i'n (E [g;(x,-, pi(xi), Wi) +ZPF[XI'+1 = xi41|X; = Xi]Ji*+14>N(XI'+1))

Xjit1€X

e J7, n(xi) only depends on Px;.11x; and Px,y; — introducing memory would
have no effect at all on the value of Ji, y(xi).

@ Deterministic policies suffice because the minimum has a deterministic
solution
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Infinite-Horizon Dynamic Programming with Discounted Costs

@ Time-invariant discrete-time dynamic system:

Xir1 = F( Xk, Ui, Wh), k=0,1,2,...,

@ Bounded time-invariant cost function g(x, u, w) € [-M, M|

Definition (Optimal Discounted Cost)
Given a discounting factor v > 0, the discounted expected cost for policy
™= (/’L07ﬂla"'7) is:

Jx(a) == Eqwy Z'Ykg(xkvﬂk(xk)7 Wi)| Xo = a

k=0

The optimal infinite-horizon discounted cost is J*(a) := minxJx(a)
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A Closer Look at the Finite-Horizon Discounted Cost Problem

@ The finite-horizon cost for our problem and policy 7. VL < N:

JO—)N,W(a)
-1 N-1
= Ejxo=s {Z 7" 8 (X b (X)), Wie) + > 7" 8 (X pue(Xi), Wie) + 7" gn(X)
k=0 k=L
-1 N
< Bixp=a {Z 7 & (X 1 (X)), Wk)] +'a(X) + Y M —~a(X0)
k=0 k=L
1— N—L+1
< Josin(a) + MA (1 + 77)
1—v
o Let N — oo and take min, on both sides:
J*(a) ;== min lim Jonx(2) < minJor () + M7L2_7’Y
7w N—oo T 1— ¥

Similarly, we obtain

2—1v
J(a&) > Ko (a) = Myt —L
(a) > Soc(a) R g
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Optimal Infinite-Horizon Discounted Cost as a Limit

By a sandwiching argument and L — oc:

The Optimal Infinite-Horizon Discounted Cost can be obtained as:

Ji(a) = lim Joi(a), Vaed,

irrespective of the termination costs {vy"g1(X.)}.

@ Is there a way to efficiently compute this limit?
— Yes, because of time-invariance and since the starting point does not
matter!
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Rephrasing the Finite-Horizon Cost
@ Finite-horizon Optimal DP algorithm:

Jf—)N(a) = mp!n EVV, [’yig(a7 M(a)7 VVI) + J;:—l—>N(f(aa lu’(a)v VV,))],
for starting condition J5_ y(a) := vV gn(a) for all a € X.
@ For i < N define Vy_;(a) := %J,-:N(a) and Wy_; := W;, and k=N — i:

Vo(a) = Jn-n(a)
Vk(a) = mJn EW‘: [g(aa /L(a)v WI:) + ’YVk—l(f(av /L(a)v WIﬁ))L k=1,....,N

@ Recursion independent of N and VN: Vy(a) = Jy_y(a)! (with same gn.)

J*(a) = lim Vn(a),

N— oo

where
Vi =minE[g + yVi—1], k=1,2,...,
n

and starting vector Vp can be arbitrary.
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The Value-lteration Algorithm for Dynamic Programming

@ Finds an approximation to the solution vector J* for an infinite-horizon
DP problem with discounted and bounded costs

o Algorithm:
o Select an arbitrary starting vector V, € RI¥I
o For k=1,2,..., calculate for each a € X:

Vi(a) = min Ewlg(a, p(a), W) + 7 Vi-1(F(a, u(a), W]
o Stop according to some convergence criterion, for example when the value
on each component does not change more than a given value €.

@ How fast does it converge? Error bounds?

o Attention: In the literature V is often also called J
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Exponential Decay on Difference of Iterations

Lemma

Given two bounded initial vectors Viy and V{ such that

max [Vo(a) — Vg (a)| < c.

IfVi,...,Vk and VY, ..., V| are obtained from the DP recursion for Vi, and
Vj§, respectively:

max |Vi(a) — Vi(a)| < o max | Vo(a) — Vo (a)-

Proof: By induction:

(a, u(a), W) + v Vo(f(a, u(a), W))]
( ), W)+ V5(f(a, u(a), W))] + ve = Vi(a) + ¢
Vi(a) = minEwlg(a, u(a), W) + 7 Vi1(F(a, p(a), W))]
(a, (@),

p(a

Vi(a) = minEw[g
I

< minEwl[g(a, u(a
m

< minEwlg
o

Similarly, Vi(a) > V{(a) — vc and Vi(a) > Vi(a) — ~v*c

W) +~yVi_1(f(a, u(a), W] + 7" Tc = Vi(a) + v ¢
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Error Bounds on the Value-Iteration Algorithm

@ By Bellman's equation ahead, Vj = J* implies V{ = --- V/ = J* and thus

max| Vi(a) — J" ()| < o* max| Vo(a) - J*(a)|

@ The error in the value-iteration algorithm vanishes exponentially fast with
each iteration
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The Operator Interpretation

o Operator T (or Trz.4) acts on vector V € RI* componentwise as:

(TV)(a) = minEw(g(a, pu(a), W) +yV(f(a u(a), W))],  Va€ X.

o Optimal DP iteration is described as: Vi1 = TV,.

@ The operator T is contracting since 3p € (0,1):
T =T <pld =S, VIS,

where here || - || denotes the infinity norm (i.e., the maximum component)

o Irrespective of V, as k — oo the operator T*V = T(T(---T (V)))
———

k applications of T
converges to a unique J* that satisfies the fix-point equation

J=Ts
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Bellman's Equation

The cost vector J* is optimal if, and only if, it satisfies

J'(a) = min Ew(g(a, u(a), W) +7J(f(a, u(a), W), VaeX.

There is a unique finite cost-vector J* satisfying above equation.

Proof:  “If’-direction: Set J* as starting vector in iteration.
“Only if"-direction uses the previous bounds. Va € X

J(@) = My T < Vi = minEwle(a.u(a). W) + 3 Vi(F(a. n(a). W)
< minEw[g(a,1(a), W) + 9" (F(a. n(a). W))] + Mo =2

Similarly:
* 12— . * 12—y
J7(a) + My =4 2 min Ewlg(a, u(a), W) +~vJ"(f(a, u(a), W))] — My 1=

Taking L — oo by sandwiching argument proves “only-if’ direction.
Uniqueness follows by convergence of { Vi }«>o irrespective of V.
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About Stationary Policies

@ A policy of the form m = (u, u, p, . ..) is called stationary.

o For any stationary policy i and arbitrary initial vector Vg:
Viou(a) = Ewlg(a, u(a), W) + v Vi1,u(f(a, u(a), W))]

converges for each a € X. Call the convergence point J,(a).

o If Vi ,(a) < Wy u(a) forall a € X, then Vi, is a decreasing sequence

Lemma (Optimality of Stationary Policies)

A stationary policy i~ is optimal if, and only if,

Ewlg(a, 1" (a), W) +vJ"(f(a, 1" (), W))]
= mMin Ewlg(a, u(a), W) + vJ"(f(a, u(a), W))], Vae X.

Proof: Follows essentially from Bellman's equation and the uniqueness of the
solution J*.

Wigger — Sequential Decision Processes, Master MICAS, Part | 14/20



Finding an Improved Stationary Policy

Let v and fi be stationary policies satisfying Va € X':

Ewlg(a, i(a), W) +~J.(a, ia), W)] = min Ew [g(a, u) + 7. (f(a, u, W))].

Then,
Ja(a) < Ju(a), Vae kX,

where inequality is strict for at least one a € X whenever i is not optimal.

Proof:

Ju(a) = Elg(a, u(a), W) + vJu(a)(f(a, u(a), W))]
-
> Elg(a, i(a), W) + vJu(a)(f(a, fia), W))]

Vi,a

>Vop>Wp> ...
Z Jﬁ(a).
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Policy Iteration Algorithm

@ Finds the exact solution vector J* for an infinite-horizon DP problem with

discounted and bounded costs

o Algorithm:

o Select an arbitrary policy po and find J,, by solving the linear system of
equations:

Juo(3) = Elg(a, po(a), W)] + vE[Juo (f(a, no(a), W), a€ X,

o For k =1,2,... solve the minimization problem
,u‘k(a) = argminuGL{EW[g(a7 u, W) + ’YJNkfl(f(a7 u, W)]: ackX.
and find J,,, by solving the linear system of equations:

Ju(2) = Elg(a, pi(a), W) + vE[Jp, (f(a, pk(a), W)}, a € X.

o Stop when p = pig—1 and produce J* = J,, |

@ Advantage: There is only a finite number of stationary policies and thus
the algorithm finds the exact optimal discounted cost J*.
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A Simple Binary Example

Let X = {a, b} and U = {1,2}. Moreover, W; ~ B(1/4) and v = 0.9.

Transition function: f(x,u,w) =aif (u=1,w=1)or (1» =2,w = 0),
and f(x,u,w) = b else

Cost function: Ew[g(a,1, W)] =2, Ew[g(a,2, W)] = 0.5,
Ewlg(b,1, W)l =1, Ewlg(b,2, W)]=3.

Value iteration algorithm with starting point Vo = (0,0)":

Va(a) = min (E[g(a, u(a), W)] + E[YVo(f(a, u(a), W))])
= Err{un Elg(a, u, W)] = min{2,0.5} = 0.5.

Er’?m Elg(a, u, W)] = min{1,3} = 1.

Vi(b)

Va(a) = min {E[g(a, 1, W) + yVi(f(a, 1, W))],El[g(a, 2, W) + yVi(f(a,2, W))]}
min{2 + 0.9 (0.5-3/4 +1-1/4),0.5+0.9-(0.5-1/4+1-3/4)}

= min{2+0.9-5/8,0.5+0.9-7/8} = 0.5+ 0.9-7/8 = 1.2875
Vo(b) = min{14+09-5/8,34+09-7/8} =1+4+0.9-5/8 = 1.5625
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Example Continued

@ Value iteration algorithm continued:

Vs(a) = 1.844 Vs(b) = 2.220
Vi(a) = 2.414 Va(b) = 2.745
Vs(a) = 2.896 Vs(b) = 3.247
Vls(a) = 5.783 Vls(b) =6.128

@ Policy iteration algorithm with initial policy po(a) =1 and po(b) = 2:
o Policy evaluation to determine J,,:
Juo(a) =2+0.9 - (Jug(a) - 3/4 + Juo(b) - 1/4)
Juo(b) =340.9 - (Juo(a) - 1/4 + Jyuo (B) - 3/4)

(2 0.9-3/4 09-1/4 (24001
= Juo = (3) * (0.9 “1/4 09- 3/4) Jio = (25.909)
state transition matrix
P‘L0 from Xy to Xy
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Example Continued Il
@ Policy improvement to determine p;:

pi(a) =1+ ]l{Ew[g(a7 L, W)+ vdu(f(a, 1, W)]
> Ew[g(a,2, W) +7JHo(f(af27 W)]}
=1+ 11{2 +0.9-3/4-24.091+0.9-1/4-25.909
>05+09-1/4-24.091+4+0.9-3/4- 25.909}
=1+ 1{24.909 > 23.409} =2

pi(b) =1+1{1+0.9-3/4-24.091+0.9-1/4-25.909
>3+0.9-1/4-24.091+0.9-3/4-25.909}
=1+1{22.909 > 25.909} =1

@ Policy evaluation to determine J,;:
Ju(a) =054+0.9- (Jy,(a) - 1/4+ Ju, (b) - 3/4)
Jur(b) = 1+0.9- (Juy(a) - 3/4 + Ju (P) - 1/4)

_ (05 0.9-1/4 0.9-3/4 (73276
= I = ( 1 > * <0.9 .3/4 09 1/4) I = (7.6724)
state transition matrix
from Xi to X

HT
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Example Continued 1l

@ Policy improvement to determine pip:

p2(a) = 1+ 1{Ewlg(a, 1, W) + 74, (F(2,1, W)]
> Ewlg(a, 2, W) + vJu, (f(a,2, W)]}
=1+1{240.9-3/4-27.3276 + 0.9 - 1/4 - 7.6724
>05+0.9-1/4-7.3276 +0.9-3/4 - 7.6724}
=1+1{8,6724 >7.3276} =2

pa(b) =1+1{1+0.9-3/4-7.3276+0.9-1/4-7.6724
>3+409-1/4-7.3276 4+ 0.9-3/4 - 7.6724}
=1+1{7.6724 >9.8276} =1

o Notice that policy uo = p1! So, we terminate.

® L1, u2 are optimal policies and J* = J,,;
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Lecture 4— LP Approach to Discounted Infinite-Horizon
Dynamic Programming
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Review of Lecture 3: The Discounted Case

o Time-invariant discrete-time dynamic system:

Xes1 = F(Xe, U, W),  k=0,1,2,...,
@ Bounded time-invariant cost function g(x, u, w) € [-M, M]
@ Optimal discounted infinite-horizon cost:

J*(a) = minEqwy | 7 g (X, u(Xi), W)
k=0

Xo—a:|

@ Bellman’s Equation: Optimal cost function J*(a) satisfies

J*(a) = mMin Ewlg(a, u(a), W) +~vJ*(f(a, u(a), W))], Vae X.
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Review of Lecture 3, continued

@ Value iteration algorithm based on the fact:
lim Vi(a) = J*(a),
k—o0
for any starting vector V, and

Viti(a) = mMin Ewlg(a, n(a), W) + yVi(f(a, u(a), W))], k=0,1,2,...
(1)

— Start with Vo = 0 and apply iteration (1) until satisfied with precision

@ Policy iteration algorithm based on the following fact: If

Ewlg(a, mri(a), W)t (a, pucia(a), W) = minEw [g(a, u) + 7., (F(a, u, W))],

(2)

then J,,. . (a) < Ju, (a), VaeX.

— Start with any policy po, and apply policy iteration in (2)
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Dynamic Programming Operator and Monotonicity

Definition (Dynamic Programming Operator)

Operator T (or Trz ) acts on vector V € R componentwise as:

(TV)(a) := minEwlg(a, u(a), W) + vV (f(a, u(a), W))I, VaeX.

@ Monotonicity of T: If V(a) < (TV(a) for all a € X, then
V(a) < (TV)(a) < (T°V)(a) < - J7(a) (3)

The optimal cost vector J* satisfies (3) by Bellman’s equation: (TJ*) = J*

@ Thus J* is the largest vector satisfying V(a) < (TV)(a) for all a € X.

@ Since T contains a min, V/(a) < (TV)(a) is equivalent to:

V(a) < Ewle(a, u(a), W) +7V(F(a, u(a), W))l,  Va € X, and Vp.
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Linear Programming Approach to find Vector J*
o Let X ={1,...,m} and J(i) = J.

@ Pick positive weights po(1),. .., po(m) summing to 1 and solve
4 max 1-7) il po(i)Ji
subject to: .
Ji <Ewlg(i,u, W)+~ Puil; Vi, u
j=1

where Py := Pr[f(i,u, W) = j]

(Indices i and j were mixed up in the previous version of the slides!
Also, we used policy p instead of action u. We can use a single action u
because for each i the constraint only depends on the single action in state i)

@ Problem: the number of constraints can be huge.
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Basic Optimization Theory: Primal-Dual LP Problems

Primal Problem Dual Problem

m
n .
min E bi\;
max E G X; AlseesAm 4
X15-++9Xn =

j=1 .
. subject to
subject to
m
n .
. aj j\i =G =1,...,n

Zai;jxjgbia ’:17'“am ; w i ’ ’
j=1

@ Solution has at most L non-degenerate components (i.e., components
satisfying the constraints with strict inequalities)
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The Dual Optimization Problem to the LP on the Previous Slide

Dual Problem
R ZZEW g(i,u, W] - pli )

subject to:

Zp(i,U)—ZZ’YF’u,ij-p(j,U)=(1—7)po(i), Vi=1,...,m (4)

where P, jj := Pr[f(i,u, W) = j] and p(i,u) > 0 for all i, u.

@ Solutions of linear programs are at the extreme points (corner points) of
the intersection plane defined by the m constraints (4)
— 3 an optimal solution p*(i, u) with only m components p*(i,u) > 0

o If p(i,u) = 0 Vu for a specific i, then (4) cannot be satisfied for this i
(the two sides (4) have different signs for constraint /)

= For each i =1,..., m there is exactly one p*(i,u) > 0

There exists an optlmal stationary deterministic policy p*(u|i) = %
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The Dual Optimization Problem to the LP on the Previous Slide

min > "> " Ew(g(i,u, W)] - p(i, u)
{eliu)} = 4

subject to:

m

Zp(i,u)—ZZ’yPu,,-j«p(j,u):(1—7)p0(i), Vi=1,...,m (4)

Jj=1 u

where Py jj := Pr[f(i,u, W) = j] and p(i, u) > 0 for all i, u.

@ Summing both sides of (4) over i =1,..., m shows that for any feasible

p(i, u): . .
DD el =3 p(i) =1,

So any feasible p(i, u) can be a probability distribution over the states and
actions.
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Randomized Policies

@ A stationary randomized policy 1 chooses action Ux = u with probability
w(uli) when Xy =i

@ We start with a random initial state Xo ~ po and calculate the expected
discounted cost of this randomized policy

Ju(po) = I|m Z’y E[ (X, (X)), )]

N';meZZZv g(i, u, w)u(uli)Px, (1) Pw(w),

k=0 w i=1 wu

whre Px, (i) depends on the initial distribution py, and of course the
stationary randomized policy 1 and the state-transition function f(-,-,-).
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State-Action Frequencies (also called Occupation Measures)
@ Given an infinite-horizon policy 7 and initial state-distribution
po(i) = Pr[Xo = i], define the state-action frequency:

Ppo (i u) = (1—~ Zw o k(i u), i=1,...,m,

where Py (i, u) = Pr[Xy = i, Ux = u] under policy  and initial
state-distribution po.

o Define the state-frequency

ppg pro(’ u 1_7)27kP§0,k(i)7 i=1,...
k=0

@ Under policy 7 and initial state-distribution po:

= (1 =)J=(po) =(1 =) > 7Elg(Xk, Ur, Wi)]

k=0

Zv ZE[g(IuWk] (i u)

)Y _Elg(i, u, Wi)] Zka;;,k(i, u)=> Elg(i, u, Wi)lpp, (i, u).
iu k=0

iu
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Stationary Randomized Policy Deduced from State-Action Frequencies

e Given 7, define a stationary randomized policy & = (tpy, lpy>---») aS
won . Pl u) o
1% (U|I) = T 0 pr (I)>07
P Pho (1) P

and i (uli) arbitrary if pp (i) = 0. (From any state-action frequencies
p(i,u) > 0 one can derive a stationary policy.)

@ Under policy it = pp; (proof on next slide):
P (15 1) = ppo (i, u), Vi, u
o Therefore:

(1 —=7)Ju(po) = Z Elg (i, u, Wi)lpp, (i, u)
= Elg(i, u, Wi)lpp, (i, 1) = (1= 7)J (po)

iu

= For any 7 there is an equally-good stationary randomized policy p
= Without loss in performance one can restrict to stationary policies J
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Proof that plp, (i, u) = pj, (i, u)
(1- )_lpgo(')
= > 4P = po(i) +kaP"

k=0

K =k— 1
= +’YZ’Y po.k/+1(7)

po(i) + Z YV PHXur i1 = ]

K'=0
= poli)+7 D" D PrlXe =, Ue = u] - Pr{Xer1 = i1X = j, Ue = u]
k' =0 Jou
= po(i) + fyZ Z fyk Pre[Xw =Jj, U = u] - Puji
j u k’=l

- pro 7J’ (5)
= poli +ﬁzpp0(1)-ZM(UIj)~ wii = po(i pro(J i

Tt
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Proof that plp, (i, u) = pj, (i, u) continued

Vectors pp = (ppo(1), -+, pp(m)) and po := (po(1), .., po(m))
(Attention: changed to row-vectors for simplicity.)

@ P, the matrix with row-j and column-i entry equal to P, ji
@ Then:

P = (1= )Po +7ppPu

@ Therefore:
N -1 > §
Pr :(1_7)P0(|_’YPH) = (1=)po > 7Pl = (1 ZVkP” = P>
k=0

where P, is the vector with i-th entry equal to P , (/).
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Proof that plp, (i, u) = pj, (i, u) continued II

@ At the end of the previous slide we proved that the policies 7 and p have

same state-frequencies:

Pr() = (i), Vi,

@ We now prove that the two policies also have same state-action
frequencies:

P (15 1) = ppo (N p(uli) = ppo (PNpe(uli)

= (1= > ¥*Pru[Xe = ilu(uli)

=(1-7) Z’ykPr#[Xk =i, U = u] = ppy (i, u)
k=0
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State-Action Frequencies are the Variables in the Dual Problem, Slide 7

For any stationary policy p, the state-action frequencies are feasible variables
for the dual problem on slide 7 because pf; (i, u) > 0 and by eq. (5) on slide 11:

> (i) =D ol Uy u)Pusi = (L= Ypo(i), Vi, (6)
u j=1 u
=ppy (1)

Moreover,

(T =) Ju(po) = ZE[g(l u, W)lpp, (i, 1)

and thus minimizing above right-hand side over all p(i, u) satisfying (6) yields
the minimum discounted infinite-horizon cost J*(po). (Recall that for any

p(i, u) > 0 satisfying (6), it is possible to find a corresponding stationary policy
ws.t., p(i, u) are the state-action frequencies of p.)

Dual variables can be interpreted as the state-action frequencies! )
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Adding Constraints

@ Can add a constraints on the cost to the linear programme on slide 6!

@ Determininistic policies might not be optimal anymore, but randomized
policies can have better performances.
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Lecture 5 — Multi-Armed Bandits and Unbounded Costs
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Problems with Retirement Option

Consider an infinite-horizon problem with bounded cost-per-stage
lg(a, u, w)| < M, where at each stage k one can retire at cost v* - M.

Let Jii(a, M) be the optimal cost function for this problem. It satisfies
the modified Bellman equation:

Jier(a, Mss) = min {I\/Ioo, mJn Ew [g(a, u(a), W)—l—ny,Zt(f(a, u(a), W), Mwﬂ }

o If Moo > ﬁM, then never retire

0 If Mo < fﬁl\/l, then retire immediately
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Optimal Policy under a Retirement Option

‘]r*et (a7 ]\/[OO)

J"(a)

o Define
m(a) := max {M": J(a, M) = M'}

Optimal Policy

Assume at stage k we have Xx = a.
o Retire if
m(a) Z M<X>7

e If m(a) < Mw, then play the optimal policy from Bellman's equation
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Multi-Armed Bandits with Known Behaviours/Scheduling Projects

o Consider now L different DP problems X¢, X{, X5, ... with different state
evolution and cost functions fe(a7 u,w) and ge(a, u,w), fore=1,...,L

o At each stage k one can retire at cost V¥ - Moo

o Initial state xo = (x3, %2, ...,x¢)

@ At each stage k, retire or choose a project ¢; € {1,...,L} and an action
u. If you don't retire:
X5 = £ (X W) and Xiar = Xé, Y0e {1, L\{4),
and the stage-k cost is given by

g0, x, (u,6), W) = g% (xer, u, W),

@ Wish to maximize the infinite-horizon discounted cost until retirement (if
the player retires at all)
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Optimal Scheduling Policy for Multi-Armed Bandit Problems

o Calculate the retirement threshold m*(a) for each project £ =1,..., L and
state a € X as explained before

Optimal Policy

Assume that at time k the states of the L projects are xi, ..., x..

@ Retire if
m‘(xe) > Moo, VL€ {1,...,L}.

@ Otherwise choose (ties can be split arbitrary)
£; = argmin, m‘(x)

and play the optimal policy for this project ¢} according to Bellman'’s
equation.
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Unbounded but Positive Costs

Positive (possibly unbounded) costs g(x, u, w) € [0, c0)

@ Discount factor v < 1
@ Bellman’s equation remains valid:
J =TJ".
But the solution might not be unique.

The optimal cost function is given by the smallest fix-point!

@ Value-iteration algorithm still works and provides optimal cost and optimal
stationary policy!

— finite-horizon solutions converge to the infinite-horizon solutions

@ Policy iteration algorithm does not necessarily converge to optimal solution
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The Quadratic Gaussian Case

@ Vector states Xo, X1, X2, ... € R" and actions ug, ui,uz,... € R”

@ i.i.d. Gaussian noise vectors Wy of covariance matrix K,

@ State evolution when noise W) = wy and controls ug, ui, uo, .. .,

X1 = f(Xk, Uk, Wi) = Axy + Buk + wy,

for given matrices A and B.

@ Deterministic cost function

k=0,1,2,...

nykg(xk, e, W) = nyk (xZka + u-krRuk) .
k=0

k=0

Let R and Q be positive semi-definite.
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Value-lteration Algorithm on the Quadratic Gaussian Case
o Value-lteration update rule for k =1,2,...
Vi) = min Ew [g(x, a(x), W) + 7 Vi1 (F(x, ). W))

= min [xTQx +u'Ru+ 'yE[Vk,l(Ax + Bu + W)}

u

@ Start with Vo(x) = 0, for all vectors x

o Notice that because R is positive semi-definite, u" Ru > 0 with equality for
u=20. Thus:
Vi(x) = minx'Qx + u'Ru = x" Qx.
u

@ For k =2:

V2(x) = min [XTQX +u"Ru + 7Ew [(x"AT + uBT + WT)Q(W + Bu + Ax)]]
=x' Qx + ny[WTQW} + muin [uTRu + ’y(xTAT + uBT)Q(Bu + Ax)]}
=x" (Q+ATQA) x +7E[W QW]

R
positive semidefinite + min |:UT (R + ’VBTQB) u+ 2’7XTATQBU:|
u ———

positive semidefinite
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Minimizing Quadratic Forms
o Consider the quadratic form in u:
1
f(u) = EuTMu +c'u,

where c is an arbitrary vector and M is a positive semidefinite matrix.
(This latter assumption is need to ensure convexity of the function f.)

o The gradient of f with respect to u is:

Vf(u) = Mx +c.

@ The function f is minimized for
u'=-Mc
and the minimum value of f is

fnin == minf(u) = —=c'M'c.
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Quadratic Gaussian Example continued

o We obtain for k = 2:
Va(x) = x" (Q +7ATQA)x + 1E[W QW] — v°x"ATQB(R +7B'QB) 'B'QAx
VE[WTQW] + x" (Q + 7ATQA — ?ATQB(R + WBTQB)*IBTQA) x

=:M>
@ The optimal control is linear:

u* = —v(R+~B"QB) 'B"QAXx

@ V; has a similar form to V1 but with Ms (which is positive semi-definite,
see slide 12) instead of Q, and there is an additional summand ~tr(KwQ)

@ Can obtain V3 following the same reasoning, but exchanging Q with M
and adding v - YE[W' QW] to the cost
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Semi-positivity of matrix Ma
o By standard manipulations on matrices:
r:=~ATQA — ’ATQB(R++B'QB) 'B'QA

= 7A" (@ - QB(R+7B'QB) 'B'Q) A

= 4AT (QB(BTQB)_lBTQ —AQB(R + fyBTQB)_lBTQ> A

= ~7ATQB ((BTQB)—1 —y(R+ WBTQB)‘I) BTQA

= WATQB((BTQB)’I(R ++B"QB)(R++BTQB)
—(B"QB) 1(B"QB)~(R + VBTQB)*) B'QA

— ~ATQB(B"QB) ! ((R +4BTQB) — W(BTQB)) (R+~B"QB)'B"QA

= vATQB(B'QB) 'R(R+~B"QB) 'B"QA

o [ > 0 is positive semidefinite because: - Q, R are positive semidefinite and
for any positive semidefinite matrices M, N and arbitrary matrix S:
M+N>0, M-N >0, M™* =0, STMS = 0 are also positive semidefinite.

@ By the same reasons, also M, =T + Q is positive semidefinite
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Quadratic Gaussian Example continued Il
o We obtain for k = 3:

V3(x) = muin [xTQx +u'Ru+ YEw [(xTAT +uBT + WT)MQ(W + Bu+ Ax)]}
+7°E[W’ QW]
= x"(Q +7ATM2A)x +~+°E[WT QW] +~E[W' M, W]
+min [uT(R + 4B M:B)u + ZVXTATMQBU]
=E[WTQW] + +E[W™ M, W]
iy (Q +7ATM2A — 42ATMLB(R + WBTMgB)_lBTMzA) x

=:M3
@ The optimal control is linear:

u* = —(R+~vB"M,B) 'B"MyAx

@ Can obtain V, following the same reasoning, but exchanging M, with M3
and adding v - (Y’E[W' QW] +~E[W'M,W]) to the cost. ETC.
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Quadratic Gaussian Example continued 1l

@ Continuing along the same lines, we observe:

k—1
Vi(x) = Zyk’éE[WTMZW] + X Mix,
(=1

where My = Q and for k = 2,3, ...
M = Q +vATMy_1A — 4*ATM,_1B(R +yB"M,_1B) 'B"M,_;A
=Q+A™M 1A —ATM; 1B(R+B™™M,_1B) B M, A,
where A := VYA and B .= VB

@ It can again be shown that My > 0 is positive semidefinite.

@ The sequence My is known to converge to M* the solution of the
Algebraic Riccatti Equation (important in control theory)

M=Q+AT™MA — ATMB(R + BTMB)'BTMA

whenever the pair (A, B) is controllable and (A, C) is observable, where
Q=C'C.
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Controllability and Observability

Definition (Controllability)

A pair (A, B), where A is an n X n matrix and B a n X m matrix, is said
controllable if the n X nm matrix

[B,AB,A’B,... A" 'B]

has full rank

Definition (Observability)

A pair (A, C) is said observable if the pair (AT, C") is controllable.

Wigger — Sequential Decision Processes, Master MICAS, Part | 15/16



The Solution of the Quadratic Gaussian Example

@ Since My converges, also the weighted sum of the noise-terms converges.
Using the geometric sum formula:

k—1

Jim qu fE[w MZW] E[WTM*W]

where M™ is the solution to the Algebraic Riccatti equation

M=Q+ATMA — ATMB(R + B"MB) 'BTMA (1)

Optimal Infinite cost J*(x)

For any state vector x:
J(x) = I—E[WTM*W] +x"M*x.
-7

where M is the solution to (1)
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Lecture 6— Constrained Discounted Problems and
Average-Cost Problems
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Outlook Today

o Time-invariant discrete-time dynamic system:
Xigr = (X, Uk, Wh), k=0,1,2,...,

disturbance { W4} i.i.d.

Bounded time-invariant cost function g(x, u, w) € [-M, M]

Optimal discounted infinite-horizon cost:

N—1
J(po) = mwin NIi_}moO Ex,{wi} |:Z’ng(xk7 i (Xe), Wk):|

k=0
@ Today we add cost constraints: A policy 7 is admissible only if

EXo.(wiy | D7 de(Xi, (X)), Wi) | <Dy £=1,...,L.

k=0
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Outlook Today

@ Time-invariant discrete-time dynamic system:
Xir1 = F( Xk, Ui, W), k=0,1,2 ...,

disturbance { W} i.i.d.

@ Bounded time-invariant cost function g(x, u, w) € [-M, M|

@ Optimal average infinite-horizon cost:

N—1
T . . 1
J (o) := m;“A)me Exo,{w,} ;0 Ng(xkyﬂk(xk), W)
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Review of Lecture 4: LP Programming Approach

Primal Problem
max  (1-7) ;po(l)Ji

1o dm

subject to:

m

Ji <Ewlg(i,u, W)] +7- > PuiJ; Vi, u

j=t

where P, := Pr[f(i,u, W) = j]
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Review of Lecture 4: LP Programming Approach

Dual Problem
{r (: U)} ZZEW g(, o W)] p(l U)

subject to:

Zp(i,U)—ZZ’yPu,;j~p(j,U):(1—7)po(i), i=1,...,m

where P, := Pr[f(i,u, W) = j] and p(i,u) > 0 for all i, u.

@ State-action frequencies/occupation measures p(i, u) form a pmf and
pi,u)
22y p(isu)

determine a randomized stationary policy u(u|i) =

e 3 an optimal p*(i,u) > 0 with only m components, one for each state i
— Deterministic stationary policies are optimal!
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Constrained Discounted Infinite-Horizon Problems

o Time-invariant discrete-time dynamic system:

Xigr = F( Xk, Uk, Wh), k=0,1,2,...,

@ Bounded time-invariant cost function g(x, u, w) € [-M, M] and
constraint-cost functions d¢(x, u, w), for £ =1,..., L, as well as maximum

constraints Dy, ..., D,

o Optimal discounted infinite-horizon cost:

N
WP k
J*(a) = min NIme Exo,{w,} |:go v g (X, prc(X), Wk):|
where minimum is over all policies m = (u1, 2, . . .) satisfying

N
JmExo, (wi} {ZWkdf(st pr(Xic), W)

k=0

< Dy, L=1,...,L
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Can express constraints using State-Action Frequencies

Forall /=1,...,L:

(1= 2)Eso. 3 | 327X e (X0), W)

k=0
=(1=)D>_ D E[de(i, u, W)]Pr[X = i, (i) = u]
k=0 iu
=> E[de(i,u, W) (1 =)D ¥*PrXe = i, (i) = u]
iu k=0
= Z E[de(i, u, W)]p(i, u)
< (i =7)De.
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Dual Linear Programming Problem with Constraints

Dual Linear Programming Problem
J*(po) = min ZZEW g(i,u, W)] - p(i, u)

p(i,u)>0

subject to:

Zp(i,u)—ZZ’yPu,ij'p(j,u):(1—’7)Po(i), i=1,...,m,

and
> Elde(i, u, W)lp(i,u) < (1 =)D, £=1,...,L

iu

@ Optimal policy is generally stationary with < L randomized actions
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Dual Problem with Constraints — Lagrange Multipliers

Dual Problem

J* =  min E i,u, W) - p(i,u
(o) = min ;Z wg( )] - p(i, v)
subject to:
Zp(i,u)—ZnyPuﬂ-p(j,u):(1—7)po(i), i=1,...,m,
u Jj=1 u

and

> Eldi(i,u, W)]p(i,u) < (1—4)Ds, £=1,...,L )
o Add additional constraints using Lagrange Multipliers A1, ..., A/!
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Dual Problem with Constraints — Lagrange Multipliers

Dual Problem
J(p) = min sup ZZEW g(i,u, W)-f—z)\gd[ i,u, W)] - p(i, u)

p(i,u)>0 X, . )\L>0

i=1 wu

= Z AeDy
=1

subject to:

Doplisu) = 30> APugpliu) = (L=7po(i),  i=1m,

@ Add additional constraints using Lagrange Multipliers A1, ..., Az!
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Dual Problem with Constraints — Lagrange Multipliers

Dual Problem
J*(po) = sup min ZZEW g(i,u, W) +Z)\/d; i,u, W)] - p(i, u)

ALy x >0 P, u)>0

— Z XDy
£=1

subject to:

Doplisu) = 30D APuiplyu) = (L=po(i),  i=1,m,

@ Add additional constraints using Lagrange Multipliers A1, ..., A/!

@ Strong duality holds by standard arguments
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Dual Problem with Constraints — Lagrange Multipliers

Dual Problem

m L
J*(po) =  sup min ZZEW[g(i, u, W)JrZ)\gdg(i, u, W)] - p(i, u)
Aty A 20 )20 S0 & =
L
- Z \eDy new cost function g(i,u, W)
£=1
subject to:
m
Zp(i,U)—ZZ’yPu,/j-p(j,U)=(1—7)po(i), i=1,...,m,
u Jj=1 u
v
@ Add additional constraints using Lagrange Multipliers A1, ..., A/!

@ Strong duality holds by standard arguments

@ For each A1,..., Ar: solve for the new cost function &
— minimum achieved by a deterministic stationary policy (proof as before)
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Optimal Average Cost Problems

@ Optimal average infinite horizon cost:
J* (o) := min J" (o)

where for a given policy 7:

N— oo

N—-1
J_W(PO) = lim EXO {W,} |:Zg Xk, Uk, Wk):|
k=0

@ We can again restrict to Markov policies because objective function only
depends on {Px,,u, }k>0 as in the discounted case
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Unichain Assumption

@ For a stationary policy u, the induced Markov chain has transition matrix

Pou(if) = PriXier = j1 X = il = D u(ul)Pr{f (i, u, W) = j].

@ Recall: If a Markov chain is irreducible (i.e., X is a recurrent class) and
aperiodic, its state-distribution tends to the unique stationary distribution,
irrespective of the Xp-distribution.

o If the Markov chain is periodic, the distribution can "toggle” between
different distributions

@ The same holds also when there is an additional set of transient states.
(At some point the Markov chain will end in the recurrent class and
converge (or toggle).)

Definition (Unichain)

A Dynamic Programming Problem is called Unichain if the state space can be
decomposed into SUT = X, with SNT = 0, so that for all stationary policies
w,the set S forms a recurrent class and 7T is a set of transient states.
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Expressing the Cost-Function in State-Action Frequencies

@ For a given policy 7

N—1
J"(p) == N'Lm Ex0 (W} Zg Xie, e (Xic), W)
pry

= N@”; E[g(i, u, W)] - % kZ:O Pr[Xk = i, uk(i) = u]
NEoZE[g(i’ u, W)] 'V;\Tl(i’ u)

@ N-horizon state-action frequency

N—1
_ 1 . .
vy(iyu) == N E Pr[ Xk = i, p(i) = u]
k=0

@ N-horizon state-action frequency (occupation measure) v (i, u) describes
the probability of observing the state-action pair (i, u) at a random time T
which is uniform over {0,1,..., N — 1}
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Convergence of v (i, u)

@ Depending on the policy 7, the sequences {vj(/, u)}n>1 might diverge to
various accumulation points! — therefore use limsup!

@ Let v™ be an accumulation point of {vf (i, u)}n>1. Then (see next slide):

Zyw(i7 U) = ZVW(.L U)PUJ"
u Jyu

@ Under the unichain assumption and stationary policy i, the sequences
{v§(i, u)}n>1 converge to the (infinite-horizon) state-action frequencies

vi (i, u) := NILmOo vh(iyu) = &M (i) - p(uli),

irrespective of po, and where £* = (£#(1),...,£"(m)) is the stationary
distribution of the Markov chain P,,.
Proof: Apply Césaro’s mean theorem and the limit Pr[X, = i] — &"(i)
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Proof that Zu vT(i,u) = Zj,u v (Jj, U)Pu,ji

Consider any initial distribution p(0) and increasing sequence {N,};>0 such that
v, (i, u) converges to v™ (i, u) as | — oo for all u, i.
For any / > O:

S viliv) - ﬁlpm)

N—1 N—1
1 . . 1 )
E N E PriXc =i, k(i) = v] = N E Pr[ Xk = 1]
k=1 k=1

v =
N—1

_ %, Z Z PriXi—1 =J, U1 = u]Puji

k=1 j,u

Nj—2
1 .
=N DD PHXw =, U = u]Pyi

k'=0 j,u

N -1
. 1 .
=5 2o 2 PrlXe =4, Ue = ulPuji —  PrXu—1 = J, Uy = ulPui

k'=0 j,u

Taking limits /| — oo and thus N; — oo on both sides, yields the desired
expressions because the sums and the limit can be exchanged
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Can restrict to Stationary Policies

@ Given any policy m and accumulation point v™ (i, u).
@ Choose a stationary policy p with

v (i, u)
pluli) = Z vh(i,v)

o 7 and p have same state-action frequencies:

) = utali) - (32 0406.) = pee ). 2 5 i)
=v (i,u) N——r

=1, see next slide

@ = Cost function of y at least as good as for 7:

J > ZE[g(i, u, W) -v™(i,u) = ZE[g(i, u, W) - vl (iyu) = J*

iu iu

Can restrict to (randomized) stationary policies )
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Proof that > v#(i,v) = &"(i)

@ We have
V(i) =D vt (hu) =Y v G u)Pagi = Y v (0) Y u(uli)Pusi
u Jou J u
= > V" ()Pui
j

@ Therefore v™ equals the unique stationary distribution £ of the MC P,
induced by action policy .
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Linear Programme Solution based on State-Action Frequencies

@ Since we can restrict to stationary distributions:

“Dual Problem” for Average Costs
= E W . j
J Url’nu|n>0 ZZ wg(i,u, W)] - v(i,u)

subject to:

Zy(;, V):ZZV(J', u)Pyji i=1,...,m, (1)
Zu(i, u) =1

iu

@ m constraints are linearly dependent because both sides of (1) sum to 1.
— Optimal v*(i, u) > 0 for at most m pairs (i, u) (m lin. indep. constr.)

Deterministic stationary policy p*(uli) = % is optimal J
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Value-lteration Algorithm to Find Optimal Average Cost

o Modified update operator Tayg: V 5 min,, [Ew[g(i, u(i), W)] + P.V]
@ A modified Bellman's equation holds

o For any initial vector V:

1

NTQ‘I/gV —J* as N — co.

o Value-iteration algorithm: Pick an arbitrary initial vector Jo and iterate
until convergence:
k

J = ——Tawdk, k=0,1,...,
k+1 PR gJdk
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Policy- Iteration Algorithm to Find Optimal Average Cost
o Modified operators Tavg and Tavg,: V= [Ew[g(i, u(i), W)] + PLV]

o Policy-iteration algorithm: use above operators and slightly modified
policy evaluation step.
o Start with arbitrary initial policy po and iterate for k = 0,1,... until
Hk+1 = [k
@ Policy evaluation: Find average and differential costs J, € R and h, € R™

satisfying for i = 1,...,m:

Jic+ (i) = Elg(i, (i), W) + D Py b )-
j=1

(Jk + hie (i) = Tavg,p, hi)

@ Policy improvement: Find new policy pix41 satisfying for i =1,..., m:
m
k1 (1) + D Py i) = minuey [EW[g(f, u W)+ Pu,ijhk(,i)]~
j=1 j=1
(T3V37Nk+1hk = Tavghk)

18/24
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Average Infinite-Cost Case with L Cost-Constraints

o Optimal average infinite horizon cost:
J* (o) := min J" (o)

where minimum is only over policies 7 satisfying

N—1

— 1

N|me NEXO,{Wk} Z de( X, ik (Xi), Wi) | < De, £=1,..., L
k=0

o Similar to before we can prove that we can restrict to stationary policies
where the limsups are proper limits.

@ Can express the average cost and the constraints with the state-action
frequencies V4, (i, u) of the stationary policies u
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Linear Programme for Optimal Average Cost with Constraints

“Dual Problem” for Average Costs and Constraints

v(i,u)>0

= min ZZEw[g’(I u, W)] - v(i,u)

subject to:

Z v(i,u) =1,

iu

iZEW[de(i, u, W) -v(i,u) < Dy, £=1,...,L

i=1 u

Zy(i,v):zm:ZPu,;j-y(j,u), i=1,...
v j=1 u

e Optimal p*(i,u) > 0 for at most m + L pairs (i, u)
(since there are m+ L lin. ind. constraints)

Maybe randomized actions in optimal policy p* = %
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Optimal Policy has L Randomization Points

@ Randomized stationary policies with L randomization points optimal

o Consider L =1 and optimal v* with m + 1 positive entries:
v (1, wm), v (2, w), v (3,u3),...,v (M um) >0
and for some j € {1,...,m} and u} # u;:
v*(j,uj) > 0.

All other entries v (i, u) = 0.
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Initial Randomization Suffices

@ Idea: Randomize only at the beginning!

o Create the m-ary state-action frequencies

vi(j,u) + v ul) i=ju=uy;

n(i,u)=<0 i=ju=u
w* (i, u), otherwise.
0 i =j,u=uj
I/2(I',Ll): Z/*(j,Uj)+l/*(j,uj{) i:.j7u:uj{
w (i, u), otherwise.

@ Construct the deterministic stationary policies

vi(i, u) (i, u)

pua(uli) = S (i) pz(uli) = S a(iy V)
@ At the beginning play each deterministic policy p; with prob. q;, I = 1,2,

v'(j,u) _ v, u)

qi = . p q2 1= . p
v(j, u) +v*(j, uj) v(j, uj) +v=(j, u))
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Initial Randomization Suffices, continued
@ The expected cost of this mixed strategy is:

@' + @2 0" = g1y Elg(i, u, WAl (i, u) + a2 > Elg(i, u, W)Jwke (i, u)

=aq Z Elg(i, u, W]t (i,u) + q2 Z Elg(i, u, W)]va(i, u)

= Z Elg(i,u, W)] (g1 - va(i, u) + g2 - v2(i, u))
= Z Elg(i, u, W)]v*(i,u) = J*
@ The mixed strateg;/ also satisfies the constraints for each £ =1,..., L:
¢ Z Elde(i, u, W)]wa(i, u) + g Z Elde(i, u, W)]wa(i, u)
| - ZE[dZ(’h u, W)l (qu - vi(i, u) + q2 - va(i, u))
= z,:E[dg(i, u, W)|v* (i, u) < Dil

iu

Optimal strategy: Randomly play one of L deterministic policies )
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Average Infinite-Cost Case with Constraints and Lagrange Multipliers

“Dual Problem” for Average Costs and Constraints with Lagrange Multipliers

J = sup min ZZEW g(i,u, W) +Z>\gdg(l u, W) - v(i, u)

ALy, AL >0 v(i,u)>0

- Z \eDy
=1

subject to:
Z (i,v) = ZZPU,J v(j, u) i=1,...,m,
Z v(i,u)=1.
iu
@ For each A1,..., A, a deterministic policy p is optimal.
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Lecture 7 — Algorithmic Dynamic Programming
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Algorithmic Paradigms

o Greedy Algorithm

o Construct solution incrementally

o Greedily choose the “right” subproblem by optimizing a local criterion

@ Divide and Conquer

o Divide a problem into non-overlapping subproblems

e Solve each subproblem (in any order)

Combine solutions of subproblems to obtain solution to initial problem

o Top-down approach

@.

-
-

O
e
\

;/
O O O

/‘\
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Dynamic Programming (Bellman) Principle

@ Breaking the problem into overlaping subproblems
o Calculate and store optimal solutions to subproblems
@ Combine solutions to subproblems to solve the initial problem

@ Solutions can be cached (stored) and reused

Top-down: Memoization Bottom-up: Tabulation

Adv ok
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Example: Binomial Coefficient Ck = (Z) = k!(”i I

Recursive formula:

oSG+ () 0<k<n
" 1 otherwise

Divide and Conquer Approach:

Function C(n, k)
1. if (k =0) or (k = n) return 1;

2. else return P
C(n—1,k—1)+ C(n—1,k); GO
(

@ Time complexity:

o Exponential number of recursive calls: O((Z)) ~2(})
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Example: Binomial Coefficient, continued

Pascal-triangle approach: Dynamic Programming with memoization based on
2-dimensional table

Function C-mem(n, k) 01 2 3 o n-ln
0o 1
1. for (i=0;i<ni++) 11
2. for(j=0;j <min(i,k);j++) 2 jr2 1
3 1

3. if i=0)or(j=1),

T[I]L[]:l, ,;_1 n‘—l (‘n;) (n;l) 1

4. else PR E I €5 N € TR
TUU) = THi-1G -1+ T[i- 1]
5. return T[n][k]; o Top -Down Approach

@ Auxiliary space O(nk) and time-complexity O(nk).
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Example: Binomial Coefficient (3)

@ Dynamic programming solution: Tabulation

Create table with 1 dimension to compute small numbers

o Compute next row of pascal triangle using previous row
Function C-dyn(n, k)
1. T[] =1;
2. for (i=0;i<ni++)
3. for (j=min(i,k);j>0;j——)do T[j]=T[]+ T[ —1];
4. return T[k];

o Time complexity:

o Table of k elements = Auxiliary space O(k)
o Time complexity: O(nk)

Optimized-space bottom-up DP approach
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How to design Dynamic Programming Solution

@ Define subproblems

Identify recursive relation between subproblems

@ Avoid similar computation

@ Resolve original problem by combining solutions of subproblems
@ Tabulation approach:

o Recognize and solve the base cases

o Deduce dynamic programming algorithm in a bottom-up way

@ Memoization approach:

o Deduce dynamic programming algorithm in a top-down way
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Lecture 7 — Some Shortest Paths Algorithms

Wigger — Sequential Decision Processes, Master MICAS, Part |



Deterministic MDPs and Shortest-Path Problems
@ No disturbance — state evolution xx+1 = f(xk, ux) and cost gi(xk, ux)

o Graph representation:

Terminal Arcs
with Cost Equal
to Terminal Cost

Artificial Terminal
Initial State Node
s

Stage N

Stage 0 Stage 1 Stage 2 +«- StageN-1

o At each stage k = 1,2,..., N there is a node for each x, € X

o Arrows indicate transitions for different actions — label arrows with actions

uk and costs gk (xk, uk)

o Total cost Jo_,n, is the sum of the costs on the path indicated by 7

Finding minimum total cost Jo—,n,~ equivalent to finding “shortest path”
— DP algorithm can be run in reverse order
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Travelling Salesman Problem and Label Correcting Method

@ State space depends on stage k

Initialize ds = 0 and
d2:...:dt:upper:oo

Label Correcting Algorithm

Step 1: Remove a node i from OPEN and for each child j of i, execute
step 2.

Step 2: If d; + ai; < min{d;, UPPERY}, set d; = d; + ai; and set i to
be the parent of j. In addition, if j # ¢, place j in OPEN if it is not

already in OPEN, while if j = , set UPPER to the new value d; + at
of dr.

Step 3: If OPEN is empty, terminate; else go to step 1.

Iter. No. | Node Exiting OPEN | OPEN at the End of Iteration | UPPER
0 -
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
10 10

@ Dijkstra's method always chooses the node in OPEN with smallest d;.

o Bellman-Ford algorithm chooses the node in OPEN as first-in first-out.
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The Branch-and-Bound Algorithm

@ Wish to minimize cost function f(-) over all elements of X

Find functions f and f over subsets ) C X such that :

£(Y) < minf(x) < f(y), vyca.

o Construct a tree with subsets of X’
— including all singletons!

X={1,2345)

o If Y, CY = )Y is a parent of ;

{5}

@ Label branch from ) to )i by
£(V:) — £(Y) = path length from
X to Y equals £(Y)

Branch-and-Bound Algorithm
Step 1: Remove a node Y from OPEN. For each child Y; of Y, do the
following: If i‘,j < UPPER, then place Y; in OPEN. If in addition

7‘,_1 < UPPER, then set UPPER = 7)’17 and if Yj consists of a single
solution, mark that solution as being the best solution found so far.

Step 2: (Termination Test) If OPEN is nonempty, go to step 1.
Otherwise, terminate; the best solution found so far is optimal.
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