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Abstract—This paper studies the capacity of a general mul-
tiple-input multiple-output (MIMO) free-space optical intensity
channel under a per-input-antenna peak-power constraint and a
total average-power constraint over all input antennas. The focus
is on the scenario with more transmit than receive antennas.
In this scenario, different input vectors can yield identical
distributions at the output, when they result in the same image
vector under multiplication by the channel matrix. We first
determine the most energy-efficient input vectors that attain each
of these image vectors. Based on this, we derive an equivalent
capacity expression in terms of the image vector, and establish
new lower and upper bounds on the capacity of this channel.
The bounds match when the signal-to-noise ratio (SNR) tends to
infinity, establishing the high-SNR asymptotic capacity. We also
characterize the low-SNR slope of the capacity of this channel.

Index Terms—Average- and peak-power constraints, channel
capacity, direct detection, Gaussian noise, infrared communi-
cation, multiple-input multiple-output (MIMO) channel, optical
communication.

I. INTRODUCTION

This paper considers an optical wireless communication
system where the transmitter modulates the intensity of optical
signals coming from light emitting diodes (LEDs) or laser
diodes (LDs), and the receiver measures incoming optical
intensities by means of photodetectors [1]–[3]. Such intensity-
modulation-direct-detection (IM-DD) systems are appealing
because of their simplicity and their good performance at
relatively low costs. As a first approximation, the noise in
such systems can be assumed to be Gaussian and independent
of the transmitted signal [4, Ch. 1, p. 3], [5], [6]. Inputs are
nonnegative and typically subject to both peak- and average-
power constraints, where the peak-power constraint is mainly
due to technical limitations of the used components and where
the average-power constraint is imposed by battery limitations
and safety considerations. We should notice that, unlike in
radio-frequency communication, the average-power constraint
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applies directly to the transmitted signal and not to its square,
because the power of the transmitted signal is proportional
to the optical intensity and hence relates directly to the
transmitted signal.

IM-DD systems have been extensively studied in recent
years [5], [7]–[20], with an increasing interest in multiple-
input multiple-output (MIMO) systems where transmitters are
equipped with nT > 1 LEDs or LDs and receivers with
nR > 1 photodetectors. Practical transmission schemes for
such systems with different modulation methods, such as
pulse-position modulation or LED index modulation based on
orthogonal frequency-division multiplexing, were presented in
[21]–[23]. Code constructions were described in [24]–[26].

A previous work [16] presented upper and lower bounds
on the capacity when the channel matrix is of full column-
rank (so necessarily nR ≥ nT) and determined the asymp-
totic capacity at high signal-to-noise ratio (SNR) exactly. For
general MIMO channels with average-power constraints only,
the asymptotic high-SNR capacity was determined in [17],
[18]. The works [17], [18] also study general MIMO channels
with both peak- and average-power constraints, but they only
determine the high-SNR pre-log (degrees of freedom), and
not the exact asymptotic capacity. The work in [19] considers
general MIMO channels but with peak-power constraints only.

The works most related to ours are [14], [15], [20]. For the
MISO case, [14], [15] show that the optimal signaling strategy
is to rely as much as possible on antennas with larger channel
gains. Specifically, if an antenna is used for active signaling
in a channel use, then all antennas with larger channel gains
should transmit at maximum allowed peak power A, and all
antennas with smaller channel gains should be silenced, i.e.,
send 0. It is shown that this antenna-cooperation strategy is
optimal at all SNRs.

In [20], the asymptotic capacity in the low-SNR regime is
considered for general MIMO channels under both a peak- and
an average-power constraint. It is shown that the asymptoti-
cally optimal input distribution in the low-SNR regime puts
the antennas into a certain order and assigns positive mass
points only to input vectors in {0, A}nT in such a way that,
if a given input antenna is set to full power A, then also all
preceding antennas in the specified order are set to A. This
strategy is reminiscent of the optimal signaling strategy for
MISO channels [14], [15]. However, whereas the optimal order
in [20] needs to be determined numerically, in the MISO case
the optimal order naturally follows the channel strengths of the
input antennas. Furthermore, the order in [14], [15] is optimal
at all SNRs, whereas the order in [20] is shown to be optimal
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only in the asymptotic low-SNR limit.
The current paper focuses on MIMO channels with more

transmit than receive antennas, i.e., more LEDs than photode-
tectors:

nT > nR > 1. (1)

Such a system arises for example when the transmitter is
based on an existing illumination system consisting of a large
number of LEDs, whereas the receiver photodetectors are
purchased at additional cost.

Our main contributions are as follows:
1) Minimum-Energy Signaling: The optimal signaling strat-

egy for MISO channels of [14], [15] is generalized to
MIMO channels with nT > nR > 1. For each “image
vector” x̄ — an nR-dimensional vector that can be pro-
duced by multiplying an input vector x by the channel
matrix — Lemma 5 identifies the input vector xmin that
induces x̄ with minimum total energy. The minimum-
energy signaling strategy partitions the image space of
vectors x̄ into at most

(
nT
nR

)
parallelepipeds, each one

spanned by a different subset of nR linearly independent
columns of the channel matrix (see Figures 1–5). In each
parallelepiped, the minimum-energy signaling sets the
nT − nR inputs corresponding to the columns that were
not chosen either to 0 or to A according to a predescribed
rule and uses the nR inputs corresponding to the chosen
columns for signaling within the parallelepiped.

2) Equivalent Capacity Expression: Using Lemma 5, Prop-
osition 8 expresses the capacity of the MIMO channel
in terms of the random image vector X̄. In particular,
the power constraints on the input vector are translated
into a set of constraints on X̄.

3) Maximizing the Trace of the Covariance Matrix: The
low-SNR slope of the capacity of the MIMO channel
is determined by the maximum trace of the covariance
matrix of X̄ [20]. Lemmas 10, 11, and 12 establish
several properties for the optimal input distribution that
maximizes this trace. They restate the result in [20] that
the covariance-trace maximizing input distribution puts
positive mass points only on {0, A}nT in a way that if
an antenna is set to A, then all preceding antennas in a
specified order are also set to A. The lemmas restrict the
search space for finding the optimal antenna ordering
and show that the optimal probability mass function
(PMF) puts nonzero probability to the origin and to at
most nR + 1 other input vectors.

4) Lower Bounds: Lower bounds on the capacity of the
channel of interest are obtained by applying the Entropy
Power Inequality (EPI) [27] and choosing inpwhere
int(·) denotes the interior of a set. ut vectors that max-
imize the differential entropy of X̄ under the imposed
power constraints; see Theorems 15 and 16.

5) Upper Bounds: Three capacity upper bounds are derived
by means of the equivalent capacity expression in Propo-
sition 8 and the duality-based upper-bounding technique
for capacity; see Theorems 17, 18, and 19. Another
upper bound uses simple maximum-entropy arguments
and algebraic manipulations; see Theorem 20.

6) Asymptotic Capacity: Theorem 21 presents the asymp-
totic capacity when the SNR tends to infinity, and
Theorem 22 gives the slope of capacity when the SNR
tends to zero. (This later result was already proven in
[20], but as described above, our results simplify the
computation of the slope.)

The paper is organized as follows. We end the introduc-
tion with a few notational conventions. Section II provides
details of the investigated channel model. Section III identifies
the minimum-energy signaling schemes. Section IV provides
an equivalent expression for the capacity of the channel.
Section V shows properties of maximum-variance signaling
schemes. Section VI presents all new lower and upper bounds
on the channel capacity, and also gives the high- and low-SNR
asymptotics. The paper is concluded in Section VII. Most of
the proofs are in the appendices.

Notation: We distinguish between random and deterministic
quantities. A random variable is denoted by a capital Roman
letter, e.g., Z, while its realization is denoted by the corre-
sponding small Roman letter, e.g., z. Vectors are boldfaced,
e.g., X denotes a random vector and x its realization. All the
matrices in this paper are deterministic, which are denoted in
capital letters, and are typeset in a sans-serif font, e.g., H. Sets
are denoted by capital letters in a calligraphic font, e.g., U or
U (the latter typically denoting a set of sets), except the set of
real numbers that is designated by R. We further use another
special font for random sets, e.g., U. Constants are typeset
either in small Romans, in Greek letters, or in a special font,
e.g., E or A. Entropy is typeset as H(·), differential entropy
as h(·), and mutual information as I(·; ·). The relative entropy
(Kullback–Leibler divergence) between probability vectors p
and q is denoted by D(p‖q). We will use the L1 -norm, which
we indicate by ‖ · ‖1, while ‖ · ‖2 denotes the L2 -norm. The
logarithmic function log(·) denotes the natural logarithm. The
Lebesgue measure of a set A ⊆ Rn is denoted by vol(A),
the closure of A by cl(A), and the interior of A by int(A).
Finally, 1m denotes the all-ones column vector of length m,
for any positive integer m.

II. CHANNEL MODEL

Consider an nR × nT MIMO channel

Y = Hx + Z, (2)

where x = (x1, . . . , xnT)T denotes the nT-dimensional real-
valued channel input vector, where Z denotes the nR-dimen-
sional real-valued noise vector, and where

H = [h1,h2, . . . ,hnT ] (3)

is the deterministic real-valued nR×nT channel matrix (hence
h1, . . . ,hnT are nR-dimensional column vectors).

The channel matrix H models the crosstalk among different
channel inputs in terms of optical intensity, and thus, in
realistic situations, its components are nonnegative. However,
for the purpose of generality, in this work we allow the
entries of H to take negative values, i.e., they can be any real
numbers. The additive noise Z describes random fluctuations
caused by thermal noise and by ambient light arriving at
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the receiver, where we assume that the receiver has already
removed its expectation of the influence of the ambient light.
Since the expected intensity of ambient light is typically much
larger than its fluctuations, and since the thermal noise can be
negative, the additive noise Z can also be negative (even when
H only has nonnegative entries). In this paper, we assume that
the noise vector is independent of the channel input X and
that it has independent standard Gaussian entries,

Z ∼ N (0, I). (4)

The channel inputs correspond to optical intensities sent by
the LEDs, hence they are nonnegative:

xk ∈ R+
0 , k = 1, . . . , nT. (5)

We assume the inputs to be subject to a peak-power (peak-
intensity) and an average-power (average-intensity) constraint:

Pr
[
Xk > A

]
= 0, ∀ k ∈ {1, . . . , nT}, (6a)

E
[
‖X‖1

]
≤ E, (6b)

for some fixed parameters A, E > 0. As mentioned in the in-
troduction, the average-power constraint is on the expectation
of the channel input and not on its square. Also note that A
describes the maximum power of each single LED, while E

describes the allowed total average power of all LEDs together.
We denote the ratio between the allowed average power and
the allowed peak power by α:

α ,
E

A
. (7)

Throughout this paper, we assume that

nT > nR and rank(H) = nR. (8)

The second assumption does not incur any loss of generality.
Indeed, if

nT > nR > rank(H), (9)

then the receiver can perform the singular-value decomposition
(SVD) H = UΣVT, compute UTY, and then discard the entries
in UTY that correspond to zero singular values. Since U is
invertible, this new channel has the same capacity as the
original channel, but the rank of the new channel matrix is
equal to the (reduced) number of receive antennas. For more
details, see Appendix A.

The first assumption in (8), however, is crucial to the current
setting. The situation with nT ≤ nR and rank(H) = nT was
studied in [16], where it is shown that, when nT < nR, the
channel can be transformed into an equivalent nT×nT channel.
More generally, one can show that any channel with

rank(H) , r ≤ nT ≤ nR (10)

can be transformed into an equivalent channel of dimension
r × nT. The idea is again to use the SVD H = UΣVT to
transform Y into UTY, and to discard the last nR − r entries
in UTY. If r = nT, we end up with a full-rank square nT×nT
channel matrix — a case that is not studied in this paper, but
that it is the most widely studied MIMO setup in the literature
(e.g., [16], [18]). If r < nT, we have transformed the channel

into an equivalent one that satisfies our assumptions (8). For
more details, we again refer to Appendix A.

As we shall see, when nT > nR, it is in general suboptimal
to discard nT−nR transmit antennas; instead, the optimal sig-
naling scheme involves collaboration of all transmit antennas.

In this paper we are interested in deriving capacity bounds
for a channel satisfying (8). The capacity has the standard
formula

CH(A, αA) = max
PX satisfying (6)

I(X;Y). (11)

The next proposition shows that, when α > nT
2 , the channel

essentially reduces to one with only a peak-power constraint.
The other case where α ≤ nT

2 will be the main focus of this
paper.

Proposition 1: If α > nT
2 , then the average-power constraint

(6b) is inactive, i.e.,

CH(A, αA) = CH

(
A,
nT

2
A
)
, α >

nT

2
. (12)

If α ≤ nT
2 , then there exists a capacity-achieving input distri-

bution PX in (11) that satisfies the average-power constraint
(6b) with equality.

Proof: See Appendix B.

We can alternatively write the MIMO channel as

Y = x̄ + Z, (13)

where we set

x̄ , Hx. (14)

We introduce the following notation. For a matrix M =
[m1, . . . ,mk], where {mi} are column vectors, define the set

R(M) ,

{
k∑
i=1

λimi : λ1, . . . , λk ∈ [0, A]

}
. (15)

Note that this set is a zonotope. Since the nT-dimensional
input vector x is constrained to the nT-dimensional hypercube
[0, A]nT , the nR-dimensional image vector x̄ takes value in the
zonotope R(H).

For each x̄ ∈ R(H), let

S(x̄) ,
{
x ∈ [0, A]nT : Hx = x̄

}
(16)

be the set of input vectors inducing x̄. In the following section
we derive the most energy-efficient signaling method to attain
a given x̄. This will allow us to express the capacity in terms
of X̄ = HX instead of X, which will prove useful.

III. MINIMUM-ENERGY SIGNALING

The goal of this section is to identify for every x̄ ∈ R(H)
the minimum-energy choice of input vector x that induces x̄.
Since the energy of an input vector x is ‖x‖1, we are interested
in finding an xmin that satisfies

‖xmin‖1 = min
x∈S(x̄)

‖x‖1. (17)

We start by describing (without proof) the choice of xmin in
two different 2× 3 examples.
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Fig. 1: The zonotopeR(H) for the 2×3 MIMO channel matrix
H = [2.5, 2, 1; 1, 2, 2] given in (18) and its minimum-energy
decomposition into three parallelograms. The peak power is
assumed to be A = 1.

Example 2: Consider the 2× 3 MIMO channel matrix

H =

(
2.5 2 1
1 2 2

)
(18)

composed of the three column vectors h1 = (2.5, 1)T, h2 =
(2, 2)T, and h3 = (1, 2)T. Figure 1 depicts the zonotope
R(H) and partitions it into three parallelograms based on
three different forms of xmin. For any x̄ in the parallelogram
D{1,2} , R

(
H{1,2}

)
, where H{1,2} , [h1, h2], the minimum-

energy input xmin inducing x̄ has 0 as its third component.
Since H{1,2} has full rank, there is only one such input
inducing x̄:

xmin =

(
H−1
{1,2}x̄

0

)
, if x̄ ∈ D{1,2}. (19)

Similarly, for any x̄ in the parallelogram D{2,3} , R
(
H{2,3}

)
,

where H{2,3} , [h2, h3], the minimum-energy input xmin

inducing x̄ has 0 as its first component:

xmin =

(
0

H−1
{2,3}x̄

)
, if x̄ ∈ D{2,3}. (20)

Finally, for any x̄ in the parallelogram Ah2 + D{1,3}, where
D{1,3} , R

(
H{1,3}

)
and H{1,3} , [h1, h3], the minimum-

energy input xmin inducing x̄ has A as its second component:

xmin =

xmin,1

A

xmin,3

, if x̄ ∈ Ah2 +D{1,3}, (21)

where (
xmin,1

xmin,3

)
= H−1

{1,3}(x̄− Ah2). (22)

0 1 2 3 4 5
0

1

2

3

4

h1

h2

h3

Ah2 +D{1,3}

Ah3 +D{1,2}

D{1,3}

R(H)

x̄1

x̄
2

Fig. 2: The zonotopeR(H) for the 2×3 MIMO channel matrix
H = [2.5, 0.8, 1; 1, 0.8, 2] given in (25) and its minimum-
energy decomposition into three parallelograms. The peak
power is A = 1.

These minimum-energy choices of x can be understood in-
tuitively. Recall that we search for a triple x = (x1, x2, x3) ∈
[0, A]3 that induces some given x̄ ∈ R(H):

x1h1 + x2h2 + x3h3 = x̄. (23)

Our aim is to find an x with minimum L1 norm, i.e., x1 +
x2 + x3 shall be small. Now, we observe that in our example
we can write

h2 = 0.5h1 + 0.75h3. (24)

Since here the weights add up to more than one, 0.5+0.75 > 1,
it is energy-efficient to reduce x1 and x3 at the cost of
increasing x2. So, whenever possible, we reduce one of x1

and x3 to zero. This covers D{1,2} and D{2,3}. The third
parallelogram Ah2 + D{1,3} can only be reached if all three
components are nonzero. In this case, it is best to set the
efficient component x2 to its maximal value A and then use
the other two to reach to x̄. �

Example 3: We now consider another 2×3 MIMO channel
with channel matrix

H =

(
2.5 0.8 1
1 0.8 2

)
. (25)

Figure 2 depicts the zonotope R(H) and its partitioning based
on three different forms of xmin.

Note that h1 and h3 are kept the same as in Example 2,
but h2 is reduced in length. It can now be written as

h2 = 0.2h1 + 0.3h3. (26)

Since here the sum of the weights is less than one, 0.2+0.3 <
1, it is energy-efficient to reduce x2 at the cost of increasing
x1 and x3 in (23). Thus, whenever possible we keep x2 = 0
and only use x1 and x3; this is how we cover D{1,3}. The
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other two parallelograms can only be reached with all three
components being positive. In these cases, it is best to set one
of x1 and x3 to its maximal value A and use the other two to
reach to x̄. �

We now generalize Examples 2 and 3 to formally solve the
optimization problem in (17) for an arbitrary nR×nT channel
matrix H. To this end, we need some further definitions.
Denote by U the set of all choices of nR columns of H that
are linearly independent:

U ,
{
U = {i1, . . . , inR} ⊆ {1, . . . , nT} :

hi1 , . . . ,hinR
are linearly independent

}
. (27)

For every one of these index sets U ∈ U , we denote its
complement by

U c , {1, . . . , nT} \ U ; (28)

we define the nR × nR matrix HU containing the columns of
H indicated by U :

HU , [hi : i ∈ U ]; (29)

and we define the nR-dimensional parallelepiped

DU , R(HU ). (30)

Notice that

vol(DU ) = An|det HU |, (31)

which is positive because the columns of HU are linearly
independent.

We shall see (Lemma 5 ahead) that R(H) can be partitioned
into parallelepipeds that are shifted versions of {DU} in such a
way that, within each parallelepiped, xmin has the same form,
in a sense similar to (19)–(22) in Example 2. To specify our
partition, we define the nR-dimensional vectors

γU,j , H−1
U hj , U ∈ U , j ∈ U c, (32)

and the sum of their components

aU,j , 1T
nR
γU,j , U ∈ U , j ∈ U c. (33)

We next choose a set of coefficients {gU,j}U∈U ,j∈U c , which
are either 0 or 1, as follows.
• If

aU,j 6= 1, ∀U ∈ U , ∀ j ∈ U c, (34)

then let

gU,j ,

{
1 if aU,j > 1,

0 otherwise,
U ∈ U , j ∈ U c. (35)

• If (34) is violated, then we have one or several ties, i.e.,
the solution to the minimization problem in (17) is not
unique and there exist several different but equivalent vec-
tors xmin. (To give an example in the spirit of Examples 2
and 3, consider the channel matrix

H =

(
2.5 1.6 1
1 1.6 2

)
, (36)

for which h2 = 0.4h1 + 0.6h3 with 0.4 + 0.6 = 1.)

Algorithm 4:
for j ∈ {1, . . . , nT} do

for U ∈ U such that U ⊆ {j, . . . , nT} do
if j ∈ U c then

gU,j ,

{
1 if aU,j ≥ 1

0 otherwise

else
for k ∈ U c ∩ {j + 1, . . . , nT} do

gU,k ,


1 if aU,k > 1 or

(
aU,k = 1 and the first
component of γU,j is
negative

)
0 otherwise

end for
end if

end for
end for

In order to break such ties, Algorithm 4 simply picks one
out of all possible equivalent optimal choices.

Finally, let

vU , A
∑
j∈U c

gU,jhj , U ∈ U . (37)

We are now ready to describe our partition of R(H).
Lemma 5: For each U ∈ U let DU , {gU,j}j∈U c , and vU be

as given in (30), (35) or Algorithm 4, and (37), respectively.
1) The zonotope R(H) is covered by the parallelepipeds
{vU +DU}U∈U , which overlap only on sets of measure
zero: ⋃

U∈U

(
vU +DU

)
= R(H) (38)

and

vol
((

vU +DU
)
∩
(
vV +DV

))
= 0,

U ,V ∈ U , U 6= V, (39)

where we recall that vol(·) denotes the (nR-dimensional)
Lebesgue measure.

2) Fix some U ∈ U and some x̄ ∈ vU + DU . A vector
that induces x̄ with minimum energy, i.e., xmin in (17),
is given by x = (x1, . . . , xnT)T, where

xi =

{
A · gU,i if i ∈ U c,

βi if i ∈ U ,
(40)

where the vector β = (βi : i ∈ U)T is given by

β , H−1
U (x̄− vU ). (41)

Proof: See Appendix C.

We recall that Figures 1 and 2 show the partition of R(H)
into the union (38) for two examples of 2×3 channel matrices.
Figures 3–6 show four more examples. Among them, Figure 5
illustrates a case where H contains linearly dependent columns,
and Figure 6 shows a case where H has negative entries.
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Fig. 3: Partition of R(H) into the union (38) for the 2 × 4
MIMO channel matrix H = [7, 5, 2, 1; 1, 2, 2.9, 3]. The peak
power is A = 1.
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Fig. 4: Partition of R(H) into the union (38) for the 2 × 4
MIMO channel matrix H = [7, 5, 2, 1; 1, 3, 2.9, 3]. The peak
power is A = 1.

Remark 6: If all nR column vectors in H are linearly
independent, then the minimum-energy signaling partitions the
range of x̄ into

(
nT
nR

)
parallelepipeds. If some column vectors

in H are linearly dependent, the number of parallelepipeds in
the minimum-energy signaling partitioning will be less than(
nT
nR

)
. Indeed, the number of parallelepipeds is equal to the

number of ways of choosing nR linearly independent column
vectors from H.

Figure 5 shows an example of a 2× 3 MIMO channel with
h1 and h2 being linearly dependent (h2 = 2h1). Instead of
the usual

(
3
2

)
= 3 different parallelepipeds, in this example
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Fig. 5: The zonotope R(H) for the 2 × 3 MIMO channel
matrix H = [2.5, 5, 1; 1.2, 2.4, 2] and its minimum-energy
decomposition into two parallelograms. The peak power is
A = 1.

−4 −2 0 2 4 6 8 10 12 14 16
−2

−1

0

1

2

3

4

5

6

7

h1

h2
h3

h4

D{1,2}

D{2,3}

D{3,4}

v{2,4}+D{2,4}

v{1,3}+D{1,3}

D{1,4}

R(H)

x̄1

x̄
2

Fig. 6: Partition of R(H) into the union (38) for the 2 × 4
MIMO channel matrix H = [−2, 7, 5, 2;−1.2, 1, 2, 2.9]. The
peak power is A = 1.

there are only two.
Note that Lemma 5 holds true irrespectively of the number

of parallelepipeds. N

IV. EQUIVALENT CAPACITY EXPRESSION

We are now going to state an alternative expression for the
capacity CH(A, αA) in terms of X̄ instead of X. To that goal
we define for each index set U ∈ U

sU ,
∑
j∈U c

gU,j , U ∈ U , (42)
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which indicates the number of components of the input vector
that are set to A in order to induce vU in (37).

Remark 7: It follows directly from Lemma 5 that, for every
U ∈ U ,

0 ≤ sU ≤ nT − nR. (43)
N

We define a random variable U over U to indicate which
parallelepiped X̄ belongs to, i.e.,(

U = U
)

=⇒
(
X̄ ∈ (vU +DU )

)
. (44)

The choice of U that satisfies (44) is not unique because
of the ambiguity at the boundary points of the different
parallelepipeds: when x̄ takes a value on the boundary be-
tween multiple parallelepipeds, U could be randomly chosen
among these parallelepipeds or deterministically set to one of
them. However, the difference between these choices has no
influence on our results, since the set of all boundary points
has zero nR-dimensional Lebesgue measure. For clarity, we
shall restrict U to being a deterministic function of X̄.

Proposition 8: The capacity CH(A, αA) as in (11) can be
written as

CH(A, αA) = max
PX̄

I(X̄;Y) (45)

where the maximization is over all distributions PX̄ overR(H)
subject to the power constraint:

EU

[
AsU +

∥∥H−1
U
(
E[X̄ |U]− vU

)∥∥
1

]
≤ αA, (46)

where the random variable U is a function of X̄ that satisfies
(44).

Proof: Notice that X̄ is a function of X and that we have
a Markov chain X (−− X̄ (−− Y. Therefore, I(X̄;Y) =
I(X;Y). Moreover, by Lemma 5, the range of X̄ in R(H)
can be decomposed into the shifted parallelepipeds {vU +
DU}U∈U . Again by Lemma 5, for any image point x̄ in vU +
DU , the minimum energy required to induce x̄ is

AsU +
∥∥H−1
U (x̄− vU )

∥∥
1
. (47)

Without loss in optimality, we restrict ourselves to input vec-
tors x that achieve some x̄ with minimum energy. Then, using
pU to denote Pr[U = U ] and by the law of total expectation,
the average power can be rewritten as

E
[
‖X‖1

]
=
∑
U∈U

pU E
[
‖X‖1

∣∣U = U
]

(48)

=
∑
U∈U

pU E
[
AsU +

∥∥H−1
U (X̄− vU )

∥∥
1

∣∣∣U = U
]

(49)

=
∑
U∈U

pU

(
AsU + E

[∥∥H−1
U (X̄− vU )

∥∥
1

∣∣∣U = U
])

(50)

=
∑
U∈U

pU

(
AsU +

∥∥H−1
U
(
E[X̄ |U = U ]− vU

)∥∥
1

)
(51)

= EU

[
AsU +

∥∥H−1
U
(
E[X̄ |U]− vU

)∥∥
1

]
, (52)

where (51) follows from the fact that all components of
H−1
U (X̄− vU ) are nonnegative.

Remark 9: The term inside the expectation on the left-hand
side (LHS) of (46) can be seen as a cost function for X̄, where
the cost is linear within each of the parallelepipeds {DU +
vU}U∈U (but not linear on the entire R(H)). At very high
SNR, the receiver can obtain an almost perfect guess of U. As
a result, our channel can be seen as a set of almost parallel
channels in the sense of [27, Exercise 7.28]. Each one of the
parallel channels is an amplitude-constrained nR×nR MIMO
channel, with a linear power constraint. This observation will
help us obtain upper and lower bounds on capacity that are
tight in the high-SNR limit. Specifically, for an upper bound,
we reveal U to the receiver and then apply previous results on
full-rank nR×nR MIMO channels [16]. For a lower bound, we
choose the inputs in such a way that, on each parallelepiped
DU +vU , the vector X̄ has the high-SNR-optimal distribution
for the corresponding nR × nR channel. N

V. MAXIMUM-VARIANCE SIGNALING

The proofs to the lemmas in this section are given in
Appendix D.

As we shall see (Theorem 22 ahead and [20], [28]), at low
SNR the asymptotic capacity is characterized by the maximum
trace of the covariance matrix of X̄, which we denote

KX̄X̄ , E
[
(X̄− E[X̄])(X̄− E[X̄])T

]
. (53)

In this section we discuss properties of an optimal input
distribution for X that maximizes this trace. Thus, we are
interested in the following maximization problem:

max
PX satisfying (6)

tr
(
KX̄X̄

)
(54)

where the maximization is over all input distributions PX

satisfying the peak- and average-power constraints given in
(6).

The following three lemmas show that the optimal input
to the optimization problem in (54) has certain structures:
Lemma 10 shows that it is discrete with all entries of mass
points taking values in {0, A}; Lemma 11 shows that the
possible values of the optimal X form a “path” in [0, A]nT

starting from the origin; and Lemma 12 shows that, under
mild assumptions, this optimal X takes at most nR +2 values.

Lemma 10: An optimal input to the maximization problem
in (54) uses for each component of X only the values 0 and
A:

Pr
[
Xi ∈ {0, A}

]
= 1, i = 1, . . . , nT. (55)

Lemma 11: An optimal input to the optimization problem
in (54) is a PMF P ∗X over a set {x∗1,x∗2, . . .} satisfying

x∗k,` ≤ x∗k′,` for all k < k′, ` = 1, . . . , nT. (56)

Furthermore, the first point is x∗1 = 0, and

P ∗X(0) > 0. (57)

Notice that Lemma 10 and the first part of Lemma 11 have
already been proven in [20]. A proof is given in the appendix
for completeness.
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Define T to be the power set of {1, . . . , nT} without
the empty set, and define for every V ∈ T and every
i ∈ {1, . . . , nR}

rV,i ,
nT∑
k=1

hi,k 1{k ∈ V}, ∀V ∈ T , ∀ i ∈ {1, . . . , nR}, (58)

with 1{·} denoting the indicator function. (Here V describes
a certain choice of input antennas that will be set to A, while
the remaining antennas will be set to 0.) Number all possible
V ∈ T from V1 to VT (where T = 2nT − 1) and define the
matrix

R ,


2rV1,1 · · · 2rV1,nR |V1| ‖rV1

‖22
2rV2,1 · · · 2rV2,nR |V2| ‖rV2

‖22
...

. . .
...

...
...

2rVT,1 · · · 2rVT,nR |VT| ‖rVT‖22

 (59)

where

rV ,
(
rV,1, rV,2, . . . , rV,nR

)T
, ∀V ∈ T . (60)

Lemma 12: If every (nR + 2)× (nR + 2) submatrix RnR+2

of matrix R is of full rank

rank(RnR+2) = nR + 2, (61)

then the optimal input to the optimization problem in (54) is
a PMF P ∗X over a set {0,x∗1, . . . ,x∗nR+1} with nR + 2 points.

Remark 13: Lemmas 5 and 10 together imply that the
optimal X̄ in (54) takes value only in the set FCP of corner
points of the parallelepipeds {vU +DU}:

FCP ,
⋃
U∈U

{
vU +

∑
i∈U

λihi : λi ∈ {0, A}, ∀ i ∈ U

}
. (62)

Lemmas 11 and 12 further imply that the possible values
of this optimal X̄ form a path in FCP, starting from 0, and
containing no more than nR + 2 points. N

Table I shows seven examples of distributions that maximize
the trace of the covariance matrix, which fall into five different
cases in terms of mass-point placement: there are only two
mass points, one at (0, 0, 0, 0) and the other at (A, A, A, A),
(A, A, A, 0), or (A, A, 0, 0); or there are three mass points, the
first at at (0, 0, 0, 0), the second at (A, A, A, 0), and the third at
either (A, A, 0, 0) or (A, A, A, A). As expected, the distributions
follow the properties claimed in Lemmas 10, 11, and 12.

VI. CAPACITY RESULTS

Define

VH ,
∑
U∈U

|det HU |. (63)

Let q be a probability vector on U with entries

qU ,
|det HU |

VH
, U ∈ U . (64)

Further, define

αth ,
nR

2
+
∑
U∈U

sU · qU , (65)

where {sU} are defined in (42). Notice that αth determines the
threshold value for α above which X̄ can be made uniform
over R(H). In fact, combining the minimum-energy signaling
in (40) with a uniform distribution for X̄ over R(H), the
expected input power is

E[‖X‖1] =
∑
U∈U

Pr[U = U ] · E[‖X‖1 |U = U ] (66)

=
∑
U∈U

qU

(
AsU +

nRA

2

)
(67)

= αthA, (68)

where the random variable U indicates the parallelepiped
containing X̄; see (44). Equality (67) holds because, when
X̄ is uniform over R(H), Pr[U = U ] = qU , and because,
conditional on U = U , using the minimum-energy signaling
scheme, the input vector X is uniform over vU +DU .

Remark 14: Note that

αth ≤
nT

2
, (69)

as can be argued as follows. Let X be an input that achieves
a uniform X̄ with minimum energy. According to (68) it
consumes an input power αthA. Define X′ as

X ′i , A−Xi, i = 1, . . . , nT. (70)

It must consume input power (nT − αth)A. Note that X′ also
induces a uniform X̄ because the zonotope R(H) is point-
symmetric. Since X consumes minimum energy, we know

E[‖X‖1] ≤ E[‖X′‖1], (71)

i.e.,

αthA ≤ (nT − αth)A, (72)

which implies (69). N

A. Lower Bounds

The proofs to the theorems in this section can be found in
Appendix E.

Theorem 15: If α ≥ αth, then

CH(A, αA) ≥ 1

2
log

(
1 +

A2nRV2
H

(2πe)nR

)
. (73)

Theorem 16: If α < αth, then

CH(A, αA) ≥ 1

2
log

(
1 +

A2nRV2
H

(2πe)nR
e2ν

)
(74)

with

ν , sup
λ∈(max{0,nR

2 +α−αth},min{nR
2 ,α}){

nR

(
1− log

µ

1− e−µ
− µ e−µ

1− e−µ

)
− inf

p
D(p‖q)

}
, (75)

where µ is the unique solution to the following equation:

1

µ
− e−µ

1− e−µ
=

λ

nR
, (76)
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TABLE I: Maximum variance distributions for different channel coefficients

channel gains α max
PX

tr
(
KX̄X̄

)
PX : max

PX

tr
(
KX̄X̄

)
H =

(
1.3 0.6 1 0.1
2.1 4.5 0.7 0.5

)
1.5 16.3687A2 PX(0, 0, 0, 0) = 0.625,

PX(A, A, A, A) = 0.375

H =

(
1.3 0.6 1 0.1
2.1 4.5 0.7 0.5

)
0.9 12.957A2 PX(0, 0, 0, 0) = 0.7,

PX(A, A, A, 0) = 0.3

H =

(
1.3 0.6 1 0.1
2.1 4.5 0.7 0.5

)
0.6 9.9575A2 PX(0, 0, 0, 0) = 0.7438,

PX(A, A, 0, 0) = 0.1687,

PX(A, A, A, 0) = 0.0875

H =

(
1.3 0.6 1 0.1
2.1 4.5 0.7 0.5

)
0.3 6.0142A2 PX(0, 0, 0, 0) = 0.85,

PX(A, A, 0, 0) = 0.15

H =

0.9 3.2 1 2.1
0.5 3.5 1.7 2.5
0.7 1.1 1.1 1.3

 0.9 23.8405A2 PX(0, 0, 0, 0) = 0.7755,

PX(A, A, A, A) = 0.2245

H =

0.9 3.2 1 2.1
0.5 3.5 1.7 2.5
0.7 1.1 1.1 1.3

 0.75 20.8950A2 PX(0, 0, 0, 0) = 0.7772,

PX(A, A, A, 0) = 0.1413,

PX(A, A, A, A) = 0.0815

H =

0.9 3.2 1 2.1
0.5 3.5 1.7 2.5
0.7 1.1 1.1 1.3

 0.6 17.7968A2 PX(0, 0, 0, 0) = 0.8,

PX(A, A, A, 0) = 0.2

and where the infimum is over all probability vectors p on U
such that ∑

U∈U

pUsU = α− λ (77)

with {sU} defined in (42).
The two lower bounds in Theorems 15 and 16 are derived by

applying the EPI, and by maximizing the differential entropy
h(X̄) under the constraint (46). When α ≥ αth, choosing X̄ to
be uniformly distributed on R(H) satisfies (46), hence we can
achieve h(X̄) = log VH. When α < αth, the uniform distribu-
tion is no longer an admissible distribution for X̄. In this case,
we first select a PMF over the events {X̄ ∈ (vU +DU )}U∈U ,
and, given X̄ ∈ vU +DU , we choose the inputs {Xi : i ∈ U}
according to a truncated exponential distribution rotated by the
matrix HU . Interestingly, it is optimal to choose the truncated
exponential distributions for all sets U ∈ U to have the same
parameter µ. This parameter is determined by the power λ

nR
A

allocated to the nR signaling inputs {Xi : i ∈ U}.

B. Upper Bounds

The proofs to the theorems in this section can be found in
Appendix F.

The first upper bound is based on an analysis of the
channel with peak-power constraint only, i.e., the average-
power constraint (6b) is ignored.

Theorem 17: For an arbitrary α,

CH(A, αA) ≤ sup
p

{
log VH − D(p‖q)

+
∑
U∈U

pU

nR∑
`=1

log

(
σU,` +

A√
2πe

)}
, (78)

where σU,` denotes the square root of the `th diagonal entry
of the matrix H−1

U H−T
U , and where the supremum is over all

probability vectors p on U .
The following two upper bounds in Theorems 18 and 19

hold only when α < αth.
Theorem 18: If α < αth, then

CH(A, αA)

≤ sup
p

inf
µ>0

{
log VH − D(p‖q)

+
∑
U∈U

pU

nR∑
`=1

log

(
σU,` +

A√
2πe

1− e−µ

µ

)

+
µ

A
√

2π

∑
U∈U

pU

nR∑
`=1

σU,`

(
1− e

− A2

2σ2
U,`

)

+ µ

(
α−

∑
U∈U

pUsU

)}
, (79)
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where the supremum is over all probability vectors p on U
such that ∑

U∈U

pUsU ≤ α. (80)

Theorem 19: If α < αth, then

CH(A, αA)

≤ sup
p

inf
δ,µ>0

{
log VH − D(p‖q)

+
∑
U∈U

pU

nR∑
`=1

log

(
A · e

µδ
A − e−µ(1+ δ

A
)

√
2πeµ

(
1− 2Q

(
δ

σU,`

)))

+
∑
U∈U

pU

nR∑
`=1

Q
(

δ

σU,`

)

+
∑
U∈U

pU

nR∑
`=1

δ√
2πσU,`

e
− δ2

2σ2
U,`

+
µ

A
√

2π

∑
U∈U

pU

nR∑
`=1

σU,`

(
e
− δ2

2σ2
U,` − e

− (A+δ)2

2σ2
U,`

)

+ µ

(
α−

∑
U∈U

pUsU

)}
, (81)

where Q(·) denotes the Q-function associated with the stan-
dard normal distribution, and the supremum is over all prob-
ability vectors p on U satisfying (80).

The three upper bounds in Theorems 17, 18 and 19 are
derived using the fact that capacity cannot be larger than
over a channel where the receiver observes both Y and
U. The mutual information corresponding to this channel
I(X̄;Y,U) decomposes as H(U)+ I(X̄;Y|U), where the term
H(U) indicates the rate that can be achieved by coding over
the choice of the parallelepiped to which X̄ belongs, and
I(X̄;Y|U) indicates the average rate that can be achieved by
coding over a single parallelepiped. By the results in Lemma 5,
we can treat the channel matrix as an invertible matrix
when knowing U, which greatly simplifies the bounding on
I(X̄;Y|U). The upper bounds are then obtained by optimizing
over the probabilities assigned to the different parallelepipeds.
As we will see later, the upper bounds are asymptotically
tight at high SNR. The reason is that the additional term
I(X̄;Y,U)−I(X̄;Y) = I(X̄;U|Y) vanishes as the SNR grows
large. To derive the asymptotic high-SNR capacity, we also use
previous results in [16], which derived the high-SNR capacity
of this channel when the channel matrix is invertible.

Our next upper bound in Theorem 20 is determined by
the maximum trace of the covariance matrix of X̄ under
constraints (6).

Theorem 20: For an arbitrary α,

CH(A, αA) ≤ nR

2
log

(
1 +

1

nR
max
PX

tr
(
KX̄X̄

))
, (82)

where the maximization is over all input distributions PX

satisfying the power constraints (6).
Note that Section V provides results that considerably simplify
the maximization in (82). In particular, there exists a maximiz-

α

ν
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Fig. 7: The parameter ν in (75) as a function of α, for a 2×3
MIMO channel with channel matrix H = [1, 1.5, 3; 2, 2, 1] with
corresponding αth = 1.4762. Recall that ν is the asymptotic
capacity gap to the case with no active average-power con-
straint.

ing PX that is a PMF over 0 and at most nR + 1 other points
on FCP, where FCP is defined in (62).

C. Asymptotic Capacity Expressions

The proofs to the theorems in this section can be found in
Appendix G.

Theorem 21 (High-SNR Asymptotics): If α ≥ αth, then

lim
A→∞

{
CH(A, αA)− nR log A

}
=

1

2
log

(
V2
H

(2πe)nR

)
. (83)

If α < αth, then

lim
A→∞

{
CH(A, αA)− nR log A

}
=

1

2
log

(
V2
H

(2πe)nR

)
+ ν, (84)

where ν < 0 is defined in (75)–(77).
Recall that αth is a threshold that determines whether X̄

can be uniformly distributed over R(H) or not. When α < αth,
compared with the asymptotic capacity without active average-
power constraint, the average-power constraint imposes a
penalty on the channel capacity. This penalty is characterized
by ν in (84). As shown in Figure 7, ν is a increasing function
of α. When α < αth, ν is always negative, and increases to 0
when α ≥ αth.

Theorem 22 (Low-SNR Asymptotics): For an arbitrary α,

lim
A↓0

CH(A, αA)

A2
=

1

2
max
PX

tr
(
KX̄X̄

)
, (85)

where the maximization is over all input distributions PX

satisfying the constraints

Pr
[
Xk ∈ [0, 1]

]
= 1, ∀ k ∈ {1, . . . , nT}, (86a)

E
[
‖X‖1

]
≤ α. (86b)
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Fig. 8: Low-SNR slope as a function of α, for a 2× 3 MIMO
channel with channel matrix H = [1, 1.5, 3; 2, 2, 1].

Again, see the results in Section V about maximizing the
trace of the covariance matrix KX̄X̄.

Example 23: Figure 8 plots the asymptotic slope, i.e., the
right-hand side (RHS) of (85), as a function of α for a 2× 3
MIMO channel. As we can see, the asymptotic slope is strictly
increasing for all values of α < nT

2 . �

D. Numerical Results

In the following we present some numerical examples of
our lower and upper bounds.

Example 24: Figures 9 and 10 depict the derived lower
and upper bounds for a 2 × 3 MIMO channel (same channel
as in Example 23) for α = 0.9 and α = 0.3 (both values
are less than αth = 1.4762), respectively. Both upper bounds
(79) and (81) match with lower bound (74) asymptotically
as A tends to infinity. Moreover, upper bound (78) gives
a good approximation on capacity when the average-power
constraint is weak (i.e., when α is close to αth). Indeed, (78) is
asymptotically tight at high SNR when α ≥ αth. We also plot
three numerical lower bounds obtained by optimizing I(X̄;Y)
over all feasible choices of X̄ that have positive probability
on two, three, or four distinct mass points. (One of the mass
points is always at 0.) In the low-SNR regime, upper bound
(82) matches well with the two-point numerical lower bound.
Actually (82) shares the same slope with capacity when the
SNR tends to zero, which can be seen by comparing (82) with
Theorem 22. �

Example 25: Figures 11 and 12 show similar trends in a
2×4 MIMO channel. Note that although in the 2×3 channel
of Figures 9 and 10 the upper bound (79) is always tighter
than (81), this does not hold in general, as can be seen in
Figure 12. �

VII. CONCLUDING REMARKS

In this paper, we first express capacity as a maximization
problem over distributions for the vector X̄ = HX. The
main challenge there is to transform the total average-power
constraint on X to a constraint on X̄, as the mapping from x
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Fig. 9: Bounds on capacity of 2 × 3 MIMO channel with
channel matrix H = [1, 1.5, 3; 2, 2, 1], and average-to-peak
power ratio α = 0.9. Note that the threshold of the channel is
αth = 1.4762.
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Fig. 10: Bounds on capacity of the same 2×3 MIMO channel
as discussed in Figure 9, and average-to-peak power ratio α =
0.3.
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Fig. 11: Bounds on capacity of 2 × 4 MIMO channel with
channel matrix H = [1.5, 1, 0.75, 0.5; 0.5, 0.75, 1, 1.5], and
average-to-peak power ratio α = 1.2. Note that the threshold
of the channel is αth = 1.947.
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Fig. 12: Bounds on capacity of the same 2×4 MIMO channel
as discussed in Figure 11, and average-to-peak power ratio
α = 0.6.

to x̄ is many-to-one. This problem is solved by identifying,
for each x̄, the input vector xmin that induces this x̄ with
minimum energy. Specifically, we show that the set R(H)
of all possible x̄ can be decomposed into a number of
parallelepipeds such that, for all x̄ within one parallelepiped,
the minimum-energy input vectors xmin have a similar form.

At high SNR, the above minimum-energy signaling result
allows the transmitter to decompose the channel into several
“almost parallel” channels, each of which being an nR × nR
MIMO channel in itself. This is because, at high SNR, the
output Y allows the receiver to obtain a good estimate of
which of the parallelepipeds X̄ lies in. We can then apply
previous results on the capacity of the MIMO channel with
full-column rank. The remaining steps in deriving our results
on the high-SNR asymptotic capacity can be understood, on a
high level, as optimizing probabilities and energy constraints
assigned to each of the parallel channels.

In the low-SNR regime, the capacity slope is shown to be
proportional to the trace of the covariance matrix of X̄ under
the given power constraints. We prove several properties of
the input distribution that maximizes this trace. For example,
each entry in X should be either zero or the maximum value A,
and the total number of values of X with nonzero probabilities
need not exceed nR + 2.

We recall that, although for IM-DD optical channels the
channel matrix H typically only has nonnegative entries, our
results are valid for all real-valued H.
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APPENDIX A
REDUCTION OF THE CASES nT > nR > rank(H) AND

rank(H) ≤ nT ≤ nR

We first show that a channel with nT > nR > rank(H)
can be reduced to one where the rank of the channel matrix
equals the number of receive antennas, to which our results
apply. Denote

r , rank(H). (87)

We apply the SVD

H = UΣVT, (88)

where U ∈ RnR×nR and V ∈ RnT×nT are unitary matrices, and
Σ ∈ RnR×nT is a rectangular matrix whose first r diagonal
entries are positive real values, and whose all other entries are
zero.

The receiver can compute the new output

Ỹ , UTY = ΣVTX + UTZ, (89)

where the new noise vector Z̃ , UTZ again has independent
zero-mean Gaussian components because UT is unitary. More-
over, the new channel matrix H̃ , ΣVT is of the form

H̃ =

(
Ĥ
0

)
(90)
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with Ĥ being an r× nT matrix of rank r. Combined with the
independence of the new noise components, this implies that
the outputs Ỹr+1, Ỹr+2, . . . , ỸnR are independent of the first r
outputs Ỹ1, . . . , Ỹr and the input vector X, and hence can be
discarded. The receiver is thus left with outputs Ỹ1, . . . , Ỹr,
in which case the number of receive antennas and the rank of
the new channel matrix Ĥ both equal r. Finally, since we did
not change the transmitter side, the inequality nT > r remains
to hold.

The situation where rank(H) ≤ nT ≤ nR is handled in the
same way, with the only difference that H̃ in (90) now is tall
instead of wide. If r = nT, Ĥ is a full-rank square nT × nT
matrix, resulting in a channel model that is not considered in
this work, but that has been studied extensively in the literature
(e.g., [16], [18]). If r < nT, we have again obtained a model,
to which our results apply.

Be aware that even if H only has positive entries, Ĥ in (90)
may contain negative values.

Note that it is even possible to allow a channel model with
dependent noise: Let K be some positive definite matrix and
assume that Z ∼ N (0,K). Since K is positive definite, it can
be written as K = STS for some invertible nR × nR matrix S.
Thus,

I(X; HX + Z) = I(X; S−THX + S−TZ) (91)
= I(X; H′X + Z′), (92)

where we define H′ , S−TH and Z′ , S−TZ. Note that
rank(H′) = rank(H) and that Z′ ∼ N (0, InR). Therefore, we
may apply the same approach as in (88)–(90) to reduce these
cases to an equivalent model that is either square full-rank or
matches the assumptions (8) considered in this work.

APPENDIX B
PROOF OF PROPOSITION 1

Fix a capacity-achieving input X? and let

α∗ ,
E
[
‖X?‖1

]
A

. (93)

Define a , (A, A, . . . , A)T and

X′ , a−X?. (94)

We have

E
[
‖X′‖1

]
= A(nT − α∗), (95)

and

I(X?;Y) = I(X?; Ha−Y) (96)
= I(X?; Ha− HX? − Z) (97)
= I
(
a−X?; H(a−X?)− Z

)
(98)

= I
(
a−X?; H(a−X?) + Z

)
(99)

= I(X′; HX′ + Z) (100)
= I(X′;Y′) (101)

where Y′ , HX′ + Z, and where (99) follows because Z is
symmetric around 0 and independent of X?.

Define another random vector X̃ as follows:

X̃ ,

{
X? with probability p,
X′ with probability 1− p.

(102)

Notice that, since I(X;Y) is concave in PX for a fixed channel
law, we have

I(X̃; Ỹ) ≥ p I(X?;Y) + (1− p) I(X′;Y′). (103)

Therefore, by (101),

I(X̃; Ỹ) ≥ I(X?;Y) (104)

for all p ∈ [0, 1]. Combined with the assumption that X?

achieves capacity, (104) implies that X̃ must also achieve
capacity.

We are now ready to prove the two claims in the proposition.
We first prove that for α > nT

2 the average-power constraint
is inactive. To this end, we choose p = 1

2 , which yields

E
[
‖X̃‖1

]
=
nT

2
A. (105)

Since X̃ achieves capacity (see above), we conclude that
capacity is unchanged if one strengthens the average-power
constraint from αA to nT

2 A.
We now prove that, if α ≤ nT

2 , then there exists a
capacity-achieving input distribution for which the average-
power constraint is met with equality. Assume that α∗ < α
(otherwise X? is itself such an input), then choose

p =
nT − α∗ − α
nT − 2α∗

. (106)

With this choice,

E
[
‖X̃‖1

]
= pE

[
‖X?‖1

]
+ (1− p) E

[
‖X′‖1

]
(107)

=
(
pα∗ + (1− p)(nT − α∗)

)
A (108)

= αA. (109)

Hence X̃ (which achieves capacity) meets the average-power
constraint with equality.

APPENDIX C
PROOF OF LEMMA 5

First consider the case where Condition (34) is satisfied.
Define for each U ∈ U the set

BU ,
{
x = (x1, . . . , xnT) : xi ∈ (0, A), ∀ i ∈ U , and

xj = A · gU,j , ∀ j ∈ U c}, (110)

where we notice that the interval (0, A) is open. We first
observe that the optimization problem

min
x′∈S(x̄)

‖x′‖1 (111)

has a solution for every x̄ ∈ R(H). This is because the
minimization is over a compact set and the objective function
is convex and continuous. Furthermore, we have the following
lemma.

Lemma 26: Under Condition (34), for all x̄ ∈ R(H) except
a subset of Lebesgue measure zero, the solutions to (111) lie
in the union

⋃
U∈U BU .
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Proof: Assume x? = (x?1, . . . , x
?
nT

) is a solution to (111).
It must satisfy the Karush–Kuhn–Tucker (KKT) conditions:

1nT − µ? + ν? + HTλ? = 0nR , (112a)
Hx? − x̄ = 0nR , (112b)
−x? ≤ 0nT , (112c)

x? − A · 1nT ≤ 0nT , (112d)
µ?i x

?
i = 0, i ∈ {1, . . . , nT}, (112e)

ν?i (x?i − A) = 0, i ∈ {1, . . . , nT}, (112f)

for some Lagrange multipliers µ? = (µ?1, . . . , µ
?
nT

), ν? =
(ν?1 , . . . , ν

?
nT

), and λ? = (λ?1, . . . , λ
?
nR

) satisfying

µ? ≥ 0nT , (113)
ν? ≥ 0nT . (114)

All vector inequalities above are componentwise. Let V be the
set of indices corresponding to the components of x? in (0, A):

V ,
{
i ∈ {1, . . . , nT} : x?i ∈ (0, A)

}
, (115)

and define HV , [hi : i ∈ V]. Notice that the set of all image
vectors that correspond to rank(HV) < nR has Lebesgue
measure zero. Thus, for the purpose of this proof, we can
ignore those image vectors and assume

rank(HV) = nR. (116)

Clearly, there must exist some U ∈ U such that U ⊆ V . We
next show that V = U and therefore V ∈ U . We show this
by contradiction. Assume there exists an index i ∈ V \ U . By
(112e) and (112f),

µ?j = ν?j = 0, ∀j ∈ V, (117)

and thus by (112a),

[HU ,hi]
Tλ? = −1nR+1. (118)

Since U ∈ U , we know that HU is invertible, hence

λ? = −H−T
U 1nR . (119)

Plugging this back into (118) yields

hT
iH
−T
U 1nR = 1, (120)

which contradicts Condition (34). We hence conclude that V =
U ∈ U .

It remains to show that x?j = A · gU,j for all j ∈ U c. Fix
j ∈ U c. It follows from (112e) and (112f) that either µj = 0
and x?j = A, or νj = 0 and x?j = 0. To determine between
these two cases, consider the j-th line of (112a):

1− µ?j + ν?j + hjλ
? = 0. (121)

Note that λ? is given by (119), so

hT
jλ

? = −hT
jH
−T
U 1nR = −aU,j , (122)

hence (121) becomes

−µ?j + ν?j = aU,j − 1. (123)

Since both µ?j and ν?j are nonnegative and only one of them
can be positive, we conclude that, when aU,j > 1, we must

have µ?j = 0 and x?j = A, and when aU,j < 1, we must have
ν?j = 0 and x?j = 0.

We now proceed to prove Lemma 5 for the case where
Condition (34) is satisfied. Notice that the L1 -norm is con-
tinuous, and the correspondence from x̄ to S(x̄) is compact
valued and both lower and upper hemicontinuous. Berge’s
Maximum Theorem [29] then implies that the correspondence
from x̄ to the solutions to (111) is nonempty, compact
valued, and upper hemicontinuous. As a consequence, the
solutions to (111) for all x̄ ∈ R(H) are contained in the
closure cl

(⋃
U∈U BU

)
. Because U is finite, we further have

cl
(⋃
U∈U BU

)
=
⋃
U∈U cl(BU ). Thus

R(H) =

{
Hx : x ∈

⋃
U∈U

cl(BU )

}
. (124)

On the other hand, for each U ∈ U , we have

vU +DU =
{

Hx : x ∈ cl(BU )
}
. (125)

Combining (124) and (125) we obtain (38).
Furthermore, because

vol(vU +DU ) = AnR |det HU |, ∀U ∈ U , (126)

and [30], [31]

vol
(
R(H)

)
= AnR

∑
U∈U

|det HU |, (127)

we have ∑
U∈U

vol(vU +DU ) = vol
(
R(H)

)
. (128)

Combined with (38), this proves (39) and completes the first
part of the lemma.

We next prove the second part of the lemma. By (39), for
any U ,V ∈ U , U 6= V ,

int(vU +DU ) ∩ int(vV +DV) = ∅. (129)

Since disjoint open sets are also separated, and since
cl(int(vV +DV)) = vV +DV , we further obtain

int(vU +DU ) ∩ (vV +DV) = ∅. (130)

Combined with Lemma 26 and (125), this implies that, for
any x̄ ∈ int(vU +DU ), a solution to (111) must lie in cl(BU )
and not in cl(BV) for any V 6= U . Then it is immediate that
the solution is unique and given by (40). It remains only to
extend (40) to the boundaries of {vU + DU}U∈U . This is
accomplished by recalling that the correspondence from x̄ to
the solutions to (111) is upper hemicontinuous. (One can easily
verify that, for some x̄ ∈ (vU +DU )∩ (vV +DV), computing
(40) for U and V yields the same result.) This concludes the
proof of the second part of Lemma 5.

Finally, we argue that Lemma 5 holds also when (34) is
violated. Note that if aU,j = 1 for some U and j, then the
solution to (111) is not necessarily unique anymore. To solve
this problem, note that Algorithm 4 can be interpreted as
generating a small perturbation of the matrix H. We fix some
small values ε1 > · · · > εnT > 0 and check through all aU,j ,
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j ∈ {1, . . . , nT}. When we encounter a first tie aU,j = 1,
we multiply the corresponding vector hj by a factor (1 + ε1)
and thereby break the tie (ε1 is chosen to be small enough
so that it does not affect any other choices). If a second tie
shows up, we use the next perturbation factor (1 + ε2) (which
is smaller than (1 + ε1), so we do not inadvertently revert
our first perturbation); and so on. Lemma 5 is then proven
by letting all of ε1, . . . , εnT go to zero and invoking Berge’s
Maximum Theorem. We omit the details.

APPENDIX D
PROOF OF MAXIMUM-VARIANCE SIGNALING RESULTS

A. Proof of Lemma 10
The ith diagonal element of KX̄X̄ can be decomposed as

follows:(
KX̄X̄

)
i,i

= E
[(
X̄i − E[X̄i]

)2]
(131)

= E

( nT∑
k=1

hi,k
(
Xk − E[Xk]

))2
 (132)

=

nT∑
k=1

h2
i,k E

[(
Xk − E[Xk]

)2]
+

nT∑
k=1

nT∑
`=1
` 6=k

hi,khi,`
(
E[XkX`]− E[Xk] E[X`]

)
.

(133)

Thus, the objective function in (54) is
nR∑
i=1

nT∑
k=1

h2
i,k E

[(
Xk − E[Xk]

)2]
+

nR∑
i=1

nT∑
k=1

nT∑
`=1
` 6=k

hi,khi,`
(
E[XkX`]− E[Xk] E[X`]

)
. (134)

If we fix a joint distribution on (X1, . . . , XnT−1) and choose
with probability 1 a conditional mean E[XnT |X1, . . . , XnT−1],
then the consumed total average input power is fixed and every
summand on the RHS of (134) is determined except for

E
[(
XnT − E[XnT ]

)2]
. (135)

This value is maximized — for any choice of joint
distribution on (X1, . . . , XnT−1) and conditional mean
E[XnT |X1, . . . , XnT−1] — if XnT takes value only in the set
{0, A}. We conclude that, to maximize the expression in (54)
subject to a constraint on the average input power, it is optimal
to restrict XnT to taking value only in {0, A}.

Repeating this argument for XnT−1, XnT−2, etc., we con-
clude that every Xk, k = 1, . . . , nT, should take value only in
{0, A}.

B. Proof of Lemma 11
Some steps in our proof are inspired by [20]. We start by

rewriting the objective function in (54) as:

tr
(
KX̄X̄

)
=

nR∑
i=1

E
[(
X̄i − E[X̄i]

)2]
(136)

=

nR∑
i=1

E

( nT∑
k=1

hi,k
(
Xk − E[Xk]

))2
 (137)

=

nR∑
i=1

nT∑
k=1

nT∑
k′=1

hi,k hi,k′ E
[(
Xk − E[Xk]

)(
Xk′ − E[Xk′ ]

)]
(138)

=

nT∑
k=1

nT∑
k′=1

nR∑
i=1

hi,k hi,k′︸ ︷︷ ︸
,κk,k′

· Cov[Xk, Xk′ ] (139)

=

nT∑
k=1

nT∑
k′=1

κk,k′ Cov[Xk, Xk′ ]. (140)

Thus, we need to maximize Cov[Xk, Xk′ ]. Assume that we
have fixed the average power Ek, k = 1, . . . , nT, assigned to
each input antenna, and further assume that we reorder the
antennas such that

E1 ≥ · · · ≥ EnT . (141)

Note that since each antenna only uses a binary input Xk ∈
{0, A}, the assignment E[Xk] = Ek determines the probabili-
ties:

Pr[Xk = A] =
Ek

A
(142)

and the variances:

Cov[Xk, Xk] = Var[Xk] = E
[
X2
k

]
− E2

k = EkA− E2
k. (143)

For the covariances with k < k′ we obtain

Cov[Xk, Xk′ ]

= E[XkXk′ ]− EkEk′ (144)
= A2 Pr[Xk = Xk′ = A]− EkEk′ (145)
= A2 Pr[Xk′ = A] Pr[Xk = A |Xk′ = A]︸ ︷︷ ︸

≤1

− EkEk′ (146)

≤ AEk′ − EkEk′ (147)
=
(
A− Ek

)
Ek′ . (148)

The upper bound holds with equality if

Pr[Xk = A |Xk′ = A] = 1. (149)

This choice is allowed, because for k < k′ the ordering (141)
is compatible with Condition (149). This proves that the mass
points can be ordered in such a way that (56) holds.

We next prove by contradiction that the first mass point
must be 0. By Lemma 10, if x∗1 6= 0, then x∗1 must contain at
least one entry that equals A. By (56), that entry must be A for
all mass points used by the optimal input. Clearly, changing
its value from A to 0 for all mass points will not affect the
trace of (53), but will reduce the total input power. Hence we
conclude that an input with x∗1 6= 0 (or with zero probability
on 0) must be suboptimal.
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C. Proof of Lemma 12

We investigate the KKT conditions of the optimization
problem (54). Using the definition of T and rV,i we rewrite
the objective function of (54) as

tr
(
KX̄X̄

)
=

nR∑
i=1

(
E
[
X̄2
i

]
−
(
E[X̄i]

)2)
(150)

= A2
nR∑
i=1

∑
V∈T

pV r
2
V,i −

(∑
V∈T

pV rV,i

)2
. (151)

Taking into account the constraints (6), the Lagrangian is
obtained as:

L(p, µ0, µ1,µ)

= A2
nR∑
i=1

∑
V∈T

pV r
2
V,i −

(∑
V∈T

pV rV,i

)2


− µ0

(∑
V∈T

pV − 1

)
− µ1

(∑
V∈T

pV |V| − α

)
−
∑
V∈T

µV(0− pV). (152)

The KKT conditions for the optimal {p∗K}K∈U are as follows:

A2
nR∑
i=1

(
r2
K,i − 2rK,i

∑
V∈T

p∗V rV,i

)
−µ0 − µ1|K|+ µK = 0, K ∈ T , (153a)

µ0

(∑
V∈T

p∗V − 1

)
= 0, (153b)

µ1

(∑
V∈T

p∗V |V| − α

)
= 0, (153c)

µKp
∗
K = 0, K ∈ T , (153d)
µ0 ≥ 0, (153e)
µ1 ≥ 0, (153f)
µK ≥ 0, K ∈ T , (153g)∑

V∈T

p∗V ≤ 1, (153h)∑
V∈T

p∗V |V| ≤ α, (153i)

p∗K ≥ 0, K ∈ T . (153j)

We define the vector m = (m1, . . . ,mnR)T with components

mi ,
∑
V∈T

p∗VrV,i, i = 1, . . . , nR, (154)

and rewrite (153a) as

A2‖rK‖22 − 2A2rT
Km− µ0 − µ1|K|+ µK = 0, K ∈ T .

(155)

Since by Lemma 11 P ∗X(0) > 0, it must hold that (153h)
holds with strict inequality and it thus follows from (153b)
that µ0 = 0.

Next, assume by contradiction that there exist nR+2 choices
K1, . . . ,KnR+2 ∈ T with positive probability p∗K` > 0. Then,

by (153d), µK` = 0 for all ` ∈ {1, . . . , nR + 2}. From (155)
we thus have

2rT
K`m + µ̃1|K`| = ‖rK`‖22, ` ∈ {1, . . . , nR + 2}, (156)

with µ̃1 , µ1/A
2, which can be written in matrix form:

2rK1,1 · · · 2rK1,nR |K1|
2rK2,1 · · · 2rK2,nR |K2|
...

. . .
...

...
2rKnR+2,1 · · · 2rKnR+2,nR |KnR+2|



m1

m2

...
mnR

µ̃1



=


‖rK1‖22
‖rK2‖22

...
‖rKnR+2‖22

. (157)

This is an over-determined system of linear equations in nR+1
variables m1, . . . ,mnR , µ̃1, which has a solution if, and only
if, (158) on the top of the next page is satisfied. However,
since the matrix on the LHS of (158) has only nR +1 columns,
its rank can be at most nR +1. The matrix on the RHS, on the
other hand, has by assumption (see (61)) rank nR + 2. This is
a contradiction. We have proven that there exist at most nR +1
values pK with positive values. Together with 0, there are at
most nR + 2 mass points in total.

APPENDIX E
DERIVATION OF THE LOWER BOUNDS

For any choice of the random vector X̄ over R(H), the
following holds:

CH(A, αA) ≥ I(X̄; X̄ + Z) (159)
= h(X̄ + Z)− h(Z) (160)

≥ 1

2
log
(
e2 h(X̄) + e2 h(Z)

)
− h(Z) (161)

=
1

2
log

(
1 +

e2 h(X̄)

(2πe)nR

)
, (162)

where (161) follows from the EPI [27].

A. Proof of Theorem 15

We choose X̄ to be uniformly distributed over R(H). To
verify that this uniform distribution satisfies the average-power
constraint (46), we define

pU , Pr[U = U ] (163)

and derive

EU
[
AsU +

∥∥H−1
U
(
E
[
X̄
∣∣U]− vU

)∥∥
1

]
= A

∑
U∈U

pU sU +
∑
U∈U

pU
∥∥H−1
U
(
E[X̄ |U = U ]− vU

)∥∥
1

(164)

= A
∑
U∈U

qU sU +
∑
U∈U

qU ·
nRA

2
(165)

= αthA (166)
≤ αA. (167)
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rank


2rK1,1 · · · 2rK1,nR |K1|
2rK2,1 · · · 2rK2,nR |K2|
...

. . .
...

...
2rKnR+2,1 · · · 2rKnR+2,nR |KnR+2|

 = rank


2rK1,1 · · · 2rK1,nR |K1| ‖rK1

‖22
2rK2,1 · · · 2rK2,nR |K2| ‖rK2‖22
...

. . .
...

...
...

2rKnR+2,1 · · · 2rKnR+2,nR |KnR+2| ‖rKnR+2
‖22

. (158)

Here, (165) follows because when X̄ is uniformly distributed
in R(H), we have

H−1
U
(
E[X̄ |U = U ]− vU

)
=

A

2
· 1nR (168)

and

pU = qU , U ∈ U . (169)

Further, (166) holds because of (65), and the last inequality
(167) holds by the assumption in the theorem.

The uniform distribution of X̄ results in

h(X̄) = log(AnR · VH), (170)

which, by (162), leads to (73).

B. Proof of Theorem 16

We choose

λ ∈
(

max
{

0,
nR

2
+ α− αth

}
,min

{nR

2
, α
})
, (171)

a probability vector p satisfying (77), and µ as the unique
solution to (76).

Note that such choices are always possible as can be argued
as follows. From (171) one directly sees that 0 < λ < nR

2 .
Thus, 0 < λ

nR
< 1

2 , which corresponds exactly to the range
where (76) has a unique solution. From (171) it also follows
that nR

2 + α− αth < λ < α and thus

0 < α− λ < αth −
nR

2
≤ nT

2
− nR

2
, (172)

where the last inequality follows from (69). So the RHS of (77)
takes value within the interval

(
0, nT−nR

2

)
. By Remark 7, the

LHS of (77) can take value in the interval [0, nT−nR], which
covers the range of the RHS. The existence of p satisfying
(77) now follows from the continuity of the LHS of (77) in
p.

For each U we now pick the probability density function
fX̄|U=U to be the nR-dimensional product truncated exponen-
tial distribution rotated by the matrix HU :

fX̄|U=U (x̄)

=
1

AnR |det HU |
·
(

µ

1− e−µ

)nR

e−
µ
A ‖H−1

U (x̄−vU )‖
1 . (173)

Note that this corresponds to the entropy-maximizing distribu-
tion under a total average-power constraint. The average-power
constraint (46) is satisfied because

EU
[
AsU +

∥∥H−1
U
(
E
[
X̄
∣∣U]− vU

)∥∥
1

]
=
∑
U∈U

pU

(
AsU +

∥∥H−1
U
(
E[X̄ |U = U ]− vU

)∥∥
1

)
(174)

=
∑
U∈U

pU

(
AsU + nRA

(
1

µ
− e−µ

1− e−µ

))
(175)

=
∑
U∈U

pU
(
AsU + Aλ

)
(176)

= A
∑
U∈U

pUsU + Aλ (177)

= A(α− λ) + Aλ (178)
= αA. (179)

Here, (175) follows from the expected value of the truncated
exponential distribution; (176) is due to (76); and (178) follows
from (77).

Furthermore,

h(X̄) = I(X̄;U) + h(X̄|U) (180)
= H(U) + h(X̄|U) (181)

= H(p) +
∑
U∈U

pU h(X̄|U = U) (182)

= H(p) +
∑
U∈U

pU log|det HU |+ nR log A

− nR log
µ

1− e−µ
+ nR

(
1− µ e−µ

1− e−µ

)
(183)

= −
∑
U∈U

pU log pU +
∑
U∈U

pU log
|det HU |

VH
+ log VH

+ nR log A + nR

(
1− log

µ

1− e−µ
− µ e−µ

1− e−µ

)
(184)

= −D(p‖q) + log VH + nR log A

+ nR

(
1− log

µ

1− e−µ
− µ e−µ

1− e−µ

)
. (185)

Here, (181) holds because H(U|X̄) = 0; (183) follows from
the differential entropy of a truncated exponential distribution;
and in (185) we use the definition of q in (64). Then, (74)
follows by plugging (185) into (162).

APPENDIX F
DERIVATION OF UPPER BOUNDS

Let X̄? be a maximizer in (45) and let U? be defined by
X̄? as in (44). Then,

CH(A, αA) = I
(
X̄?; X̄? + Z

)
(186)

≤ I
(
X̄?; X̄? + Z,U?

)
(187)

≤ H(U?) + I
(
X̄?; X̄? + Z

∣∣U?). (188)

For each set U ∈ U , we have

I
(
X̄?; X̄? + Z

∣∣U? = U
)

= I
(
X̄? − vU ; (X̄? − vU ) + Z

∣∣U? = U
)

(189)
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= I
(
H−1
U (X̄? − vU ); H−1

U (X̄? − vU ) + H−1
U Z

∣∣U? = U
)

(190)
= I(XU ;XU + ZU |U? = U) (191)

where we have defined

ZU , H−1
U Z, (192)

XU , H−1
U (X̄? − vU ). (193)

It should be noted that

ZU ∼ N
(
0,H−1

U H−T
U
)
. (194)

Moreover, XU is subject to the following peak- and average-
power constraints:

Pr
[
XU,` > A

]
= 0, ∀ ` ∈ {1, . . . , nR}, (195a)

E
[
‖XU‖1

]
= EU , (195b)

where {EU : U ∈ U } satisfies∑
U∈U

pU (sUA + EU ) ≤ αA. (196)

To further bound the RHS of (191), we use the duality-based
upper-bounding technique using a product output distribution

RU (yU ) =

nR∏
`=1

RU,`(yU,`). (197)

Denoting by WU (·|XU ) the transition law of the nR × nR
MIMO channel with input XU and output YU , XU + ZU ,
and by WU,`(·|XU,`) the marginal transition law of its `th
component, we have:

I(XU ;XU + ZU |U? = U)

≤ EXU |U?=U
[
D
(
WU (·|XU )

∥∥RU (·)
)]

(198)
= − h

(
XU + ZU

∣∣XU ,U? = U
)

−EXU |U?=U

[
nR∑
`=1

EWU (YU |XU )

[
logRU,`(YU,`)

]]
(199)

= −nR

2
log 2πe+ log|det HU |

−
nR∑
`=1

EXU,`|U?=U

[
EWU,`(YU,`|XU,`)

[
logRU,`(YU,`)

]]
,

(200)

where the last equality holds because

h(XU + ZU |XU ,U? = U)

= h(ZU ) (201)

=
1

2
log
(
(2πe)nR det H−1

U H−T
U
)
. (202)

We finally combine (188) with (191) and (200) to obtain

CH(A, αA) ≤ H(p∗)−
nR∑
`=1

∑
U∈U

p∗U EXU,`|U?=U

[
EWU,`(YU,`|XU,`)

[
logRU,`(YU,`)

]]
+
∑
U∈U

p∗U log|det HU | −
nR

2
log 2πe, (203)

where p∗ denotes the probability vector of U?. The bounds in
Section VI-B are then found by picking appropriate choices for
the distribution on the output alphabet RU,`(·). We elaborate
on this in the following.

A. Proof of Theorem 17

Inspired by [11] and [12], we choose

RU,`(y) =


β√

2πσU,`
· e
− y2

2σ2
U,` if y ∈ (−∞, 0),

(1− β) · 1
A

if y ∈ [0, A],

β√
2πσU,`

· e
− (y−A)2

2σ2
U,` if y ∈ (A,∞),

(204)

where β ∈ (0, 1) will be specified later. Recall that σU,` is the
square root of the `th diagonal entry of the matrix H−1

U H−T
U ,

i.e.,

σU,` =
√

Var[ZU,`]. (205)

We notice that

−
∫ 0

−∞
WU,`(y|x) logRU,`(y) dy

= −
∫ 0

−∞

1√
2πσU,`

e
− (y−x)2

2σ2
U,`

(
log

β√
2πσU,`

− y2

2σ2
U,`

)
dy

(206)

= − log

(
β√

2πσU,`

)
Q
(

x

σU,`

)
+

1

2
Q
(

x

σU,`

)
+

1

2

(
x

σU,`

)2

Q
(

x

σU,`

)
− x

2σU,`
φ

(
x

σU,`

)
(207)

≤ −

(
log

β√
2πσU,`

− 1

2

)
Q
(

x

σU,`

)
(208)

= − log
β√

2πeσU,`
· Q
(

x

σU,`

)
, (209)

where

φ(x) ,
1√
2π

e−
x2

2 , (210)

and where (208) holds because of [32, Prop. A.8]

ξQ(ξ) ≤ φ(ξ), ξ ≥ 0. (211)

Similarly,

−
∫ ∞
A

WU,`(y|x) logRU,`(y) dy

≤ − log
β√

2πeσU,`
· Q
(
A− x
σU,`

)
. (212)

Moreover, we have

−
∫ A

0

WU,`(y|x) logRU,`(y) dy

= −
∫ A

0

1√
2πσU,`

e
− (y−x)2

2σ2
U,` log

(1− β)

A
dy (213)

= log

(
A

1− β

)
·
(

1−Q
(

x

σU,`

)
−Q

(
A− x
σU,`

))
. (214)
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We choose

β =

√
2πeσU,`

A +
√

2πeσU,`
(215)

and obtain from (209), (212), and (214)

−EWU,`(YU,`|XU,`)[logRU,`(YU,`)] ≤ log
(
A +
√

2πeσU,`
)
.

(216)

Substituting (216) into (203) then yields

CH(A, αA) ≤ sup
p

{
H(p)− nR

2
log 2πe+

∑
U∈U

pU log|det HU |

+
∑
U∈U

pU

nR∑
`=1

log
(
A +
√

2πeσU,`

)}
(217)

= sup
p

{
H(p) +

∑
U∈U

pU log
|det HU |

VH
+ log VH

+
∑
U∈U

pU

nR∑
`=1

log

(
σU,` +

A√
2πe

)}
(218)

= sup
p

{
log VH − D(p‖q)

+
∑
U∈U

pU

nR∑
`=1

log

(
σU,` +

A√
2πe

)}
. (219)

B. Proof of Theorem 18

We choose

RU,`(y) =


β√

2πσU,`
e
− y2

2σ2
U,` if y ∈ (−∞, 0),

1−β
A
· µ

1−e−µ e
−µy

A if y ∈ [0, A],

β√
2πσU,`

e
− (y−A)2

2σ2
U,` if y ∈ (A,∞),

(220)

where β ∈ (0, 1) and µ > 0 will be specified later.
We notice that the inequalities in (209) and (212) still hold,

while

−
∫ A

0

WU,`(y|x) logRU,`(y) dy

= −
∫ A

0

1√
2πσU,`

e
− (y−x)2

2σ2
U,`

(
log

1− β
A

µ

1− e−µ
− µ

A
y

)
dy

(221)

= − log

(
1− β
A

µ

1− e−µ

)(
1−Q

(
x

σU,`

)
−Q

(
A− x
σU,`

))
+
µσU,`
A

(
φ

(
x

σU,`

)
− φ

(
A− x
σU,`

))
+
µ

A
x

(
1−Q

(
x

σU,`

)
−Q

(
A− x
σU,`

))
(222)

≤ − log

(
1− β
A

µ

1− e−µ

)(
1−Q

(
x

σU,`

)
−Q

(
A− x
σU,`

))
+
µσU,`
A

(
φ(0)− φ

(
A

σU,`

))
+
µ

A
x

(
1− 2Q

(
A

2σU,`

))
(223)

≤ − log

(
1− β
A

µ

1− e−µ

)(
1−Q

(
x

σU,`

)
−Q

(
A− x
σU,`

))
+
µσU,`
A

(
φ(0)− φ

(
A

σU,`

))
+
µ

A
x. (224)

Here (223) follows from the fact that, for ξ ∈ [0, A], 1 −
Q(ξ)−Q(A− ξ) achieves the maximum value at ξ = A

2 , and
that φ(ξ) is monotonically decreasing; and (224) holds because
1− 2Q(ξ) ≤ 1 and because x ≥ 0.

Combining (209), (212), and (224), and choosing

β =
µ
√

2πeσU,`

A(1− e−µ) + µ
√

2πeσU,`
(225)

now yield

−EWU,`(YU,`|xU,`)[logRU,`(YU,`)]

≤ log

(√
2πeσU,` + A · 1− e−µ

µ

)
+
µσU,`

A
√

2π

(
1− e

− A2

2σ2
U,`

)
+
µ

A
xU,`. (226)

Substituting (226) into (203), we have

CH(A, αA) ≤ H(p∗) +
∑
U∈U

p∗U log|det HU | −
nR

2
log 2πe

+
∑
U∈U

p∗U

nR∑
`=1

log

(√
2πeσU,` + A · 1− e−µ

µ

)

+
µ

A
√

2π

∑
U∈U

p∗U

nR∑
`=1

σU,`

(
1− e

− A2

2σ2
U,`

)

+
µ

A

∑
U∈U

p∗U

nR∑
`=1

E[XU,` |U? = U ] (227)

= H(p∗) +
∑
U∈U

p∗U log
|det HU |

VH
+ log VH

+
∑
U∈U

p∗U

nR∑
`=1

log

(
σU,` +

A√
2πe
· 1− e−µ

µ

)

+
µ

A
√

2π

∑
U∈U

p∗U

nR∑
`=1

σU,`

(
1− e

− A2

2σ2
U,`

)
+
µ

A

∑
U∈U

p∗U
∥∥H−1
U
(
E[X? |U? = U ]− vU

)∥∥
1

(228)
≤ log VH − D(p∗‖q)

+
∑
U∈U

p∗U

nR∑
`=1

log

(
σU,` +

A√
2πe
· 1− e−µ

µ

)

+
µ

A
√

2π

∑
U∈U

p∗U

nR∑
`=1

σU,`

(
1− e

− A2

2σ2
U,`

)

+ µ

(
α−

∑
U∈U

p∗UsU

)
, (229)

where (228) follows from (193), and (229) from (46). Theo-
rem 18 is proven by taking the supremum over the probability
vector p and the infimum over µ > 0.
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C. Proof of Theorem 19

We choose

RU,`(y) =



1√
2πσU,`

e
− y2

2σ2
U,` if y ∈ (−∞,−δ),

µ
A
·

1−2Q
(

δ
σU,`

)
e
µδ
A −e−µ(1+ δ

A
)
e−

µy
A if y ∈ [−δ, A + δ],

1√
2πσU,`

e
− (y−A)2

2σ2
U,` if y ∈ (A + δ,∞),

(230)

where δ, µ > 0 are free parameters. Following the steps in the
proof of [10, App. B.B] and bounding 1−Q(ξ1)−Q(ξ2) ≤ 1,
we obtain:

−EXU,`|U?=U
[
EWU,`(YU,`|XU,`)

[
logRU,`(YU,`)

]]
≤ log

A · e
µδ
A − e−µ(1+ δ

A
)

µ
(

1− 2Q
(

δ
σU,`

))
+

δ√
2πσU,`

e
− δ2

2σ2
U,`

+Q
(

δ

σU,`

)
+
µσU,`

A
√

2π

(
e
− δ2

2σ2
U,` − e

− (A+δ)2

2σ2
U,`

)
+
µ

A
E[XU,` |U? = U ]. (231)

Plugging (231) into (203) and using a derivation analogous to
(227)–(229) then results in the given bound.

D. Proof of Theorem 20

Using that

h(Y) ≤ 1

2
log
(
(2πe)nR det KYY

)
, (232)

where

KYY = KX̄X̄ + I, (233)

we have

CH(A, αA) = max
PX

{
h(Y)− h(Z)

}
(234)

≤ max
PX

{
1

2
log
(
(2πe)nR det(KX̄X̄ + I)

)
− 1

2
log(2πe)nR

}
(235)

= max
PX

1

2
log det(I + KX̄X̄) (236)

≤ max
PX

1

2
log

nR∏
i=1

(
I + KX̄X̄

)
i,i

(237)

= max
PX

nR

2

nR∑
i=1

1

nR
log
(

1 +
(
KX̄X̄

)
i,i

)
(238)

≤ max
PX

nR

2
log

(
1 +

nR∑
i=1

1

nR

(
KX̄X̄

)
i,i

)
(239)

= max
PX

nR

2
log

(
1 +

1

nR
tr
(
KX̄X̄

))
(240)

=
nR

2
log

(
1 +

1

nR
max
PX

tr
(
KX̄X̄

))
. (241)

Here, (237) follows from Hadamard’s inequality, and (239)
follows from Jensen’s inequality.

APPENDIX G
DERIVATION OF ASYMPTOTIC RESULTS

A. Proof of Theorem 21

It follows directly from Theorem 15 that the RHS of (83) is
a lower bound to its LHS. To prove the other direction, using
that D(p‖q) ≥ 0, we have from Theorem 17 that

CH(A, αA) ≤ log VH + nR log

(
σmax +

A√
2πe

)
(242)

where

σmax , max
U∈U

`∈{1,...,nR}

σU,`. (243)

This proves that the RHS of (83) is also an upper bound to
its LHS, and hence completes the proof of (83).

Next, we prove (84). Again, that its RHS is a lower bound
to its LHS follows immediately from Theorem 16. To prove
the other direction, we define for any p:

λ(p) , α−
∑
U∈U

pUsU ≤ α. (244)

We then fix A ≥ 1 and choose µ depending on λ(p) to be

µ =


µ∗(p) if A−(1−ζ) < λ(p)

nR
< 1

2 ,

A1−ζ if λ(p)
nR
≤ A−(1−ζ),

1
A

if λ(p)
nR
≥ 1

2 ,

(245)

where 0 < ζ < 1 is a free parameter and µ∗(p) is the unique
solution to

1

µ∗
− e−µ

∗

1− e−µ∗
=
λ(p)

nR
. (246)

Note that in the first case of (245),

A−(1−ζ) <
λ(p)

nR
=

1

µ∗(p)
− e−µ

∗(p)

1− e−µ∗(p)
<

1

µ∗(p)
, (247)

i.e.,

µ∗(p) < A1−ζ , (248)

and thus the choice (245) makes sure that in all three cases,
irrespective of p:

µ ≤ A1−ζ , for A ≥ 1. (249)

Then, for A ≥ 1, the upper bound (79) can be loosened as
follows:

CH(A, αA) ≤ 1

2
log

(
A2nRV2

H

(2πe)nR

)
+ f(A) + sup

p
g(A,p, µ) (250)

where

f(A) ,
nRσmax

Aζ
√

2π

(
1− e

− A2

2σ2
min

)
, (251)

g(A,p, µ) , nR log

(√
2πeσmax

A
+

1− e−µ

µ

)
+ µλ(p)− D(p‖q) (252)

with σmax defined in (243) and with

σmin , min
U∈U

`∈{1,...,nR}

σU,`. (253)
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Note that

lim
A→∞

f(A) = 0. (254)

Next, we upper-bound g(A,p, µ) individually for each of the
three different cases in (245) to obtain a bound of the form

g(A,p, µ) ≤


g1(A) if A−(1−ζ) < λ(p)

nR
< 1

2 ,

g2(A) if λ(p)
nR
≤ A−(1−ζ),

g3(A) if λ(p)
nR
≥ 1

2 ,

(255)

for three functions g1, g2, and g3 that only depend on A but
not on p or µ. Thus, we shall then obtain the bound

g(A,p, µ) ≤ max{g1(A), g2(A), g3(A)}, A ≥ 1. (256)

The functions g1, g2, and g3 are introduced in the following.
For the first case where λ(p)

nR
∈
(
A−(1−ζ), 1

2

)
, we have

g(A,p, µ)

= nR log

(√
2πeσmax

A
+

1− e−µ∗(p)

µ∗(p)

)
+ µ∗(p)λ(p)

−D(p‖q) (257)

= nR log

(
1 +

µ∗(p)

1− e−µ∗(p)
·
√

2πeσmax

A

)

+ nR

(
1− log

(
µ∗(p)

1− e−µ∗(p)

)
− µ∗(p) e−µ

∗(p)

1− e−µ∗(p)

)
−D(p‖q) (258)

≤ sup
p :

λ(p)
nR
∈(Aζ−1, 12 )

{
−D(p‖q)

+ nR log

(
1 +

µ∗(p)

1− e−µ∗(p)
·
√

2πeσmax

A

)

+ nR

(
1− log

(
µ∗(p)

1− e−µ∗(p)

)
− µ∗(p) e−µ

∗(p)

1− e−µ∗(p)

)}
(259)

, g1(A). (260)

Here, in (258) we have used (246).
For the second case where λ(p)

nR
≤ A−(1−ζ), we use this

inequality in combination with (245) to bound

µλ(p) ≤ A1−ζ · nRA
−(1−ζ) = nR. (261)

Because D(p‖q) ≥ 0, we thus obtain

g(A,p, µ) ≤ nR log

(√
2πeσmax

A
+

1− e−µ

µ

)
+ nR (262)

= nR log

(√
2πeσmax

A
+

1− e−A1−ζ

A1−ζ

)
+ nR (263)

, g2(A). (264)

For the third case where λ(p)
nR
≥ 1

2 , we have

g(A,p, µ) = nR log

(√
2πeσmax

A
+

1− e− 1
A

1
A

)
+
λ(p)

A

−D(p‖q) (265)

≤ nR log

(√
2πeσmax

A
+

1− e− 1
A

1
A

)
+
α

A

− inf
p :

λ(p)
nR

> 1
2

D(p‖q) (266)

, g3(A). (267)

Here, we used (244) to bound λ(p) ≤ α.
We have now established (256) for the three functions

defined in (260), (264), and (267), respectively. We now
analyze the maximum in (256) when A → ∞. Since g2(A)
tends to −∞ as A→∞, and since g1(A) and g3(A) are both
bounded from below for A ≥ 1, we know that, for large enough
A, g2(A) is strictly smaller than max{g1(A), g3(A)}.

We next look at g3(A) when A→∞. Note that

lim
A→∞

1− e− 1
A

1
A

= 1, (268)

therefore

lim
A→∞

g3(A) = − inf
p :

λ(p)
nR

> 1
2

D(p‖q) (269)

= − inf
p : α−

∑
U∈U pUsU≥

nR
2

D(p‖q) (270)

= − inf
p : α−

∑
U∈U pUsU=

nR
2

D(p‖q), (271)

where the last equality holds because given α < αth, an
optimal p will meet the constraint with equality.

It remains to investigate the behavior of g1(A) when A→∞.
To this end, we define

g̃1(A,p)

, −D(p‖q) + nR log

(
1 +

µ∗(p)

1− e−µ∗(p)
·
√

2πeσmax

A

)

+ nR

(
1− log

(
µ∗(p)

1− e−µ∗(p)

)
− µ∗(p) e−µ

∗(p)

1− e−µ∗(p)

)
, (272)

and note that, for any fixed p,

∆(A,p) , g̃1(A,p)− lim
A→∞

g̃1(A,p) (273)

= log

(
1 +

µ∗(p)

1− e−µ∗(p)
·
√

2πeσmax

A

)
. (274)

Since, when A→∞,

|∆(A,p)| ≤ log

(
1 +

∣∣∣∣∣ 1

1− e−A1−ζ ·
√

2πeσmax

Aζ

∣∣∣∣∣
)

(275)

→ log(1) = 0, (276)

we see that g̃1(A,p) converges uniformly over p as A → ∞,
and therefore we are allowed to interchange limit and supre-
mum:

lim
A→∞

g1(A)

= lim
A→∞

sup
p :

λ(p)
nR
∈(Aζ−1, 12 )

g̃1(A,p) (277)

= sup
p :

λ(p)
nR
∈(0, 12 )

lim
A→∞

g̃1(A,p) (278)
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= sup
p :

λ(p)
nR
∈(0, 12 )

{
nR

(
1− log

µ∗(p)

1− e−µ∗(p)

− µ∗(p) e−µ
∗(p)

1− e−µ∗(p)

)
− D(p‖q)

}
(279)

= sup
p : λ(p)∈(max{0,nR

2 +α−αth},min{nR
2 ,α})

{

nR

(
1− log

µ∗(p)

1− e−µ∗(p)
− µ∗(p) e−µ

∗(p)

1− e−µ∗(p)

)
−D(p‖q)

}
(280)

= ν. (281)

Here, in (280) we are allowed to restrict the supremum1 to
λ(p) ∈ (nR

2 + α− αth, α) because of (244) and because

λ(q) , α−
∑
U∈U

sUqU = α− αth +
nR

2
(282)

and for any p such that λ(p) ≤ λ(q) the objective function in
(279) is smaller than for p = q. In fact, −D(p‖q) is clearly
maximized for p = q and

µ∗(p) 7→ nR

(
1− log

µ∗(p)

1− e−µ∗(p)
− µ∗(p) e−µ

∗(p)

1− e−µ∗(p)

)
(283)

is decreasing in µ∗(p), which is a decreasing function of λ(p);
see (246). Finally, (281) follows from the definition of ν in
(75).

It is straightforward to see that ν is larger than the RHS of
(271). Therefore,

lim
A→∞

max{g1(A), g2(A), g3(A)} = ν. (284)

Combining (250) with (254), (256), and (284) proves the
theorem.

B. Proof of Theorem 22

From [28, Corollary 2], it is known that the capacity is
lower-bounded as

CH(A, αA) ≥ 1

2
max
PX̄

tr
(
KX̄X̄

)
+ o

(
max
PX̄

tr
(
KX̄X̄

))
. (285)

For an upper bound, we use that

log(1 + ξ) ≤ ξ, ξ > 0, (286)

and obtain from Theorem 20 that

CH(A, αA) ≤ 1

2
max
PX̄

tr
(
KX̄X̄

)
. (287)

The theorem is proven by normalizing X̄ by A, which results
in a factor A2, and by then letting A go to zero.

1Notice that because of the supremum and continuity, we can restrict to
the open interval instead of the closed interval.
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