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Heterogeneous Traffics in 5G Networks

Enhanced Mobile Broadband (eMBB):
streaming, data communication;
→ requires high rates

Ultra-Reliable Low-Latency Communication (URLLC) :
control applications such as autonomous driving, remote surgery;
→ requires small delays

Massive Machine-Type Communications (MTC):
Internet of Things;
→ sporadic and large number of devices
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Mixed Delays Networks

Coexistence of eMBB (delay-tolerant) and URLLC (delay-sensitive)
on same bandwidth

Key challenge: heterogeneous delays of URRLC and eMBB

Standard proposition to cope with stringent delay constraint:
Smart scheduling of URLLC messages

t

In this talk: Benefits from joint coding of mixed-delay traffics

t
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High Rates Enabled by Cooperation

Cooperation allows for path-diversity and interference mitigation

Cooperation hops induce additional delays
→ Delay-sensitive communications cannot directly profit from
cooperation

4 / 38



Mixed Delay Traffic in Cooperative Networks
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Random Arrivals of Data
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Each Tx might have “slow” or “fast” data to send or both

Arrivals of new “fast” or “slow” data at random times, not
necessarility at beginning of a block (→ negligible for “slow”
messages)

A typical “fast” transmission time is smaller than the duration of
a single block

t0
t

τch
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The “Easiest” Model

t
Tx-coop. channel Rx-coop.

Each Tx k has “fast” data M
(F )
k and “slow” data M

(S)
k to send

Transmission of “fast” data can last an entire block

Large blocklengths → we are interested in capacity, i.e., we require
that probability of error tends to 0 as n→∞

Questions we wish to address with this model

Best interference mitigation when cooperation only for “slow” data?
Penalty for not being able to cooperate on “fast” data?
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Mixed-DelayCapacity Region

(R(F ),R(S)): average achievable “fast” and “slow” rates

1
1

R(F )

R(S)

Maximum “slow” rate Trivial outer bound

Maximum “fast” rate

Timesharing: large R(F ) harms overall performance (sum-rate)
→ Inherent or artefact of time-sharing?
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Mixed-Delay High-SNR Capacity for Hexagonal Model

Figure: Hexagonal network.
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Mixed-Delay DoF Region for Sectorized Hex. Model

Figure: Sectorized Hexagonal Network. 0 0.5 1 1.5 2 2.5 3
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Mixed-Delay Capacity of the Wyner Symmetric Model

+ + + ++ + +

1 2 3 4 5 6 7

Figure: Symmetric Wyner Network.
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The Coding Scheme for the Wyner-Network

K transmitter/receiver pairs
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The Coding Scheme for the Wyner-Network

Coordinated multi-point reception: Dt = 1, Dr = 5.
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The Coding Arrangement for Hexagonal Networks

Figure: Hexagonal network. Figure: Sectorized hexagonal model.
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Receiver Cooperation Only

t
channel Rx-coop.

+ + + ++ + +
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Large cooperation rates
Small cooperation rates

Small S(F ): sum-rate not decreased by insisting on fast decoding

Large S(F ): 1 “fast” bit costs 2 “slow” bits
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A More Complicated Model: Finite Blocklengths

t0

t
Tx-Coop.

nS

nF

“Fast” data has to be decoded after nF channel uses

“Slow” data can be decoded after nS > nF channel uses

All transmissions start at time t = 1

“Slow” data can also be shared with neighbouring Txs

We fix rates R(F ) and R(S) and power P

Performance is measured by the error probabilities εF and εS .

16 / 38



Scheduling: URLLC and eMBB Assignment
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Odd Txs send “fast” data over the first nF channel uses and “slow” data
over the remaining nS − nF channel uses.

To send “fast” data interference-free, even Txs send “slow” data only
over the last nS − nF channel uses.
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Joint Coding Scheme: Encoding at the Txs in K\KU
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Txs 2, 4: Power allocation: βS ∈ [0, 1]

||X (S,1)
k ||2 = nFβSP, ||X (S,2)

k ||2 = (nS − nF )(1− βS)P

Txs 2 and 4 also describe their input signal X (S,1)
k to their right neigbours
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Joint Coding Scheme: Encoding at the Txs in KU
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Power allocation: βF , βS,1, βS,2 ∈ [0, 1] such that βF + βS,1 + βS,2 = 1

||X (S,1)
k ||2 = nFβS,1P, X (F )

k , ||X (S,2)
k ||2 = (nS − nF )βS,2P

Dirty paper coding to encode “fast” data:
X (F )

k := V k − αk,1X
(S,1)
k − αk,2X

(S,1)
k−1
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Decoding “Fast” messages

Decoding “fast” messages M
(F )
k with k ∈ {1, 3, 5}
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After nF channel uses: Y k,1 = hk,k(X (F )
k + X (S,1)

k ) + hk−1,kX
(S,1)
k−1 + Z k,1

Rx k estimates M
(F )
k as an index m for which v k(m, i) maximizes

i(v k ; y k,1) := ln
f (y k,1|v k)

f (y k,1)
, among all codewords v k = v k(m′, j).
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Decoding “Slow” Data
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The first nF channel uses:
Y k,1 = hk,k(X (F )

k + X (S,1)
k ) + hk−1,kX

(S,1)
k−1 + Z k,1

The last nS − nF channel uses: Y k,2 = hk,kX
(S,2)
k + hk−1,kX

(S,2)
k−1 + Z k,2,

Rx k estimates M
(S)
k as an index m for which its codewords maximize

i2(x (S,1)
k , x (S,2)

k ; y k,1, y k,2) := ln
f (y k,1|x

(S,1)
k )f (y k,2|x

(S,2)
k )

f (y k,1)f (y k,2)
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Decoding “Slow” Data
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Lemma

Consider the vector Y = a1X 1 + a2X 2 + a3X 3 + Z where ||X i ||2 = nPi for
i ∈ {1, 2, 3}, Z ∼ N (0, σ2

z∗ In), and ais with i ∈ {1, 2, 3} are constants. Let
fY (Y ) be the pdf of Y and

Q̃Y (y) ∼ N (y ; 0, σ2
z∗ In),

QY (y) ∼ N (y ; 0, (a2
1P1 + a2

2P2 + a3P3 + σ2
z∗)In).

One can prove that

fY (Y )

Q̃Y (y)
≥ 2

3(n−2)
2 (a1a2a3)(n−2)e

− n
2

(
a2

1P1

σ2
z1

+
a2

2P2

σ2
z2

+
a2

3P3

σ2
z3

)
,

fY (Y )

QY (y)
≤ eκe

ecΓ a2
2P2√

2πa2
1
P1 ,

where κ :=
(
ln( 1

2 ) + cΓ + ln(
√

π
8 )− 2 ln(a3)

)
with cΓ ≤ 2, and

σ2
z1

+ σ2
z2

+ σ2
z3

= σ2
z∗ .
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Simulation Results

10−5 10−4 10−3 10−210−7
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εF

ε S

Scheduling

Joint Coding

Figure: εS vs εF for P = 10, nS = 100 and nF from 90 to 10 with steps of 10.

The values of the parameters βS , βF , βS,1, βS,2, αk,1 and αk,2 are
optimized to minimize εS for a given εF .
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Random Arrival Models

Transmitters can be inactive (no data arrived)

Active transmitters can have “slow” or “fast” data to transmit

Back to large blocklengths and capacity

“Fast” transmissions can last an entire block but cannot profit
from cooperation

Cooperation only at Rx-side ( for decoding of “slow” data)

t
τch Rx-coop.
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Model 1: Active Txs Have “Slow” or “Fast” data

For ρ ∈ [0, 1] and ρf ∈ [0, 1]:

Tx k is active with probability ρ.

Active Txs send with prob. ρf “fast” data at rate R(F );

otherwise it sends “slow” data at user-dependent rate R
(S)
k .

Interested in average expected “slow” rate R̄(S).
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Random Arrivals in the Hexagonal Model
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Random arrivals can change network structure
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Coding Scheme for Hexagonal Model

Partition K = {1, . . . ,K} into 3 subsets K1,K2 and K3

Divide the total transmission time into 3 equally-sized phases.

K1

K2

K3
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Coding Scheme in the First Phase

Schedule all users in K1

Schedule all “slow” users not interfering “fast” transmissions

Jointly decode “slow”messages → DoF 1.
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Penalty of transmitting “fast”messages on sum DoF increases with ρ
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Variations on the Coding Scheme

If all active Txs had “slow” messages to send → can add
additional “slow” Txs
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Variations on the Coding Scheme

If Txs and Rxs could cooperate on “slow” data → no need to
cancel Txs around “fast” Txs
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Statistical DoF Regions: Hexagonal Network

0 0.1 0.2
0

0.1

0.2

0.3

0.4

S(F )

S
(S

)
ρ = 0.8, ρf = 0.6
ρ = 0.6, ρf = 0.6

Time-sharing
Time-sharing

ρ(1− ρf )

slope = −1.15

slope = −0.98

Max. Sum-DoF at
S(F ) = 0 or S

(F )
max = ρρf

3

ρ� 1: Silence few
“slow” Txs

The following pairs (S(F ),S(S)) are achievable

S(F ) ≤ ρρf
3
, 2ρ(1− ρf )(3− 3ρρf + ρ2ρ2

f )︸ ︷︷ ︸
≈6ρ(1−ρf ) if ρf�1

S(F ) + S(S) ≤ ρ(1− ρf ).
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Cellular Network Models with Less Connectivity

Wyner’s symmetric network

All pairs achievable satisfying

S(F ) ≤ ρρf
2
, ρ(1− ρf )(2− ρρf )︸ ︷︷ ︸

≈2ρ(1−ρf ) if ρf�1

S(F ) + S(S) ≤ ρ(1− ρf ).

Wyner’s soft-handoff network

All pairs achievable satisfying

S(F ) ≤ ρρf
2
, ρ(1− ρf )︸ ︷︷ ︸S(F ) + S(S) ≤ ρ(1− ρf ). Exact

+ + + + + + + + + + +
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Converse of Wyner’s Soft-Handoff Model

Fix K and realizations of the sets Tslow and Tfast. For each k ∈ Tslow:

R
(F )
k + R

(S)
k + R

(F )
k+1

≤ 1

2
log(1 + (1 + |hk,k+1|2)P) +

1

2
log(1 + |hk,k+1|2)

+ max{− log |hk,k+1|, 0}+
εn
n
,

Sum up for all values of k ∈ Tslow:∑
k∈Tslow

(
R

(S)
k + R

(F )
k+1

)
≤ |Tslow| · ∆̃.

Taking expectation and dividing by K , we obtain:

E[R̄(S)] + R(F )(ρρf · ρ(1− ρf )) ≤ ρ(1− ρf ) · ∆̃.
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Model 2: An Active Tx Always Has a “Slow” Message

With prob. ρf an active Tx sends “fast” data and always “slow”
data → can schedule more “slow” Txs
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Sum-MG is decreased with increasing “fast” MG.

The penalty increases with ρ and the number of interfering links.

33 / 38



With Tx- and Rx-Cooperation

No need to silence all Txs around “fast” Tx

→ Penalty for transmitting “fast” messages becomes vanishing
(slope ≈ −1)
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slope = −M
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D→∞ or ρ = 1: matching inner and outer bounds
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Conclusions

Jointly designing mixed-delay systems can yield significant
performance benefits in networks with cooperation

Benefits are much larger when txs and rxs can cooperate

For certain configurations, there is no loss in overall performance
due to stringent delay constraints

Similar observations extend to random arrivals and finite
blocklengths (the latter needs more validation)
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