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Caching in Networks
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A Simple Network

Library: Files W1, Wa,..., Wy of F bits each
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input X: | RF bits

[Rx 1] |[Rx 2| [Rx3| [Rx4] Rx A
1 [ [ 1 1

Cachel| |Cache2| |Cache3| |Cached| [CacheK]

FM bits FM bits FM bits FM bits F'M bits



A Simple Network

Library: Files Wy, Wa, ..., Wy of F bits each

[Tx]

input X:

RF bits

[Rx 1] [Rx2| [Rx3] [Rx4] Rx K
[ [ [ [ [

Vi, Wi
Viz, Wi,
Vis, Wie|

FMbits FM bits FM bits FM bits F'M bits

1) Placement phase: Tx fills caches without knowing which receiver
demands which message: Zx = gk(Ws, ..., W)



A Simple Network

Library:  Files Wy, Wa, ..

., Wy of F bits each

Tx |demands dq,ds, d3, dys, dg

input X:

RF bits

Rx 2] [Rx3] [Rx4] Rx B+
| [ [ [

Vi1 Wiz
Viz, Wia,
Vis, Wie,

2) Delivery phase:

e Receiver k wants file Wy, —

e Tx sends input X = f(W,..

FMbits FM bits FM bits FM bits FM bits

sends demand dj to transmitter

>WN7d1a'~-7dK)

e Rx k produces Wi = ¢k(X, Zk, 01, . .., dk).



A Simple Network

Library: Files Wy, Wa, ..., Wx of F bits each
Tx |demands dq,ds, d3, dys, dg

input X: | RF bits

Wy ~Rx 1] [Rx2 [Rx3] [Rx4] Rx K1k
[ [ [ [ [

Wi, Wa, Vi, Wiad Wi, Wha|
Wi, Wa, v af Wis, Wha,
W5, W,

Wig| Wis, Wi,

FMbits FM bits FM bits FM bits FM bits

Goal:  Wy= W, forallk=1,....K



Fundamental Rate-Memory Tradeoff R*(M)

R*(M) := min{R: such that for (R, M) each Rx k can learn W,,}

Some properties:

e R*(M) is decreasing in M.

e R*(M) is bounded above by min{N, K}. Moreover:
R*(M = 0) = min{N, K}.

e R*(M) is nonnegative. Moreover:
R*(M) =0, VM > N.



Traditional Uncoded Scheme for K Receivers

e Split Wy into (W", W)y of sizes F¥ and F(1 — M) bits
e Ford=1,..., N: cache part W((,” at all rxs

e Deliver part Wf) for each demanded message W;.
e If K > N, in the worst case:

X=(W® wo, ... B wd.

e If K < N, in the worst case:

— (2) (2)
X= (WD, w,

@ we).



Trivial Upper Bound on R*(M)

R*(M) < min{K, N}<1 - M).

N

e N =20 files and K = 2 Users

24

1.5

0.5

R
N

- - Obvious Local Caching Gain

| | | | L e
2 4 6 8 10 12 14 16 18 20

Memory M



Coded caching for K = 3 Receivers, Parameter { = 2

Library: Files Wy, Wa, ..., Wy of F bits each
Tx
Iput X: | W e wi? e w?
Wi * Rx 2—11,  [Rx 3—= W;
Wvl(lZ)’ W1(13 Wv1(12)7 Wvl(23) I/Vl(lii)7 I/VI(ZB
Wi wi? i W) Wi w| FM bits

e Split Wy into three parts (WC(,12), W§13), Wfs)) each of g bits

Achieves Rate-Memory Pair M=2' and R=1].

[1] M. A. Maddah-Ali, U. Niesen, “Fundamental Limits of Caching.” IT-Trans 2014



Coded caching for K = 3 Receivers, Parameter { = 1

Library: Files Wy, Wa, ..., Wy of FR bits each

[Tx]
mput X: wPew P | wPewd wd®ew?
WF‘ R 21, W3

wi W WO

W:F,” WE‘<‘?> WE@) F M bits

e Split Wy into three parts (W, W, W'¥)) each £ bits

Achieves Rate-Memory Pair M=% and R=1.

[1] M. A. Maddah-Ali, U. Niesen, “Fundamental Limits of Caching.” IT-Trans 2014



Bounds for 3 Users (N = 20 files)

34,
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Lower bound on R*(M)

Theorem

* 2 -
R*(M) > max { max,c 5 [E— M‘ﬂ , MaX,e ¢ {E ~MY %m} }

[2] C.-Y. Wang et al. “Improved Converses and Gap-Results for Coded Caching”,
IT-Trans 2018.

[3] Q. Yu, “Characterizing the rate-memory tradeoff in cache networks within a
factor of 2, ISIT 2017.
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Proof of Lower Bound on R*(M)

e Fix/=1,..., min{K, N} and demands (di, ..., d,):
FR > H(X)zI(X;Wdﬁ...,Wd[,Zh...,Zg)Z...

4
H Wy, Wa,) =Y I(We Zi, o Ze Wy, W)
k=1

e Average over all demand vectors (d, ..., d):
1
i, FWaiZ Bl W W)

=K
e By the chain rule, Han’s inequality, and counting arguments:
? kM
<
Zak min{ M, ZN k+1}

12



Coded Caching for K Users (Maddah-Ali &Niesen IT-Trans 2014)

e Parameterte {1,.... K -1}

e Placement: Split each Wy into (¥) parts and save each part at a
different subset of receivers
Let for each size-t subset G denote Wff the part of Wy placed in
caches of all receivers in G.

e Delivery transmission: For each set S = {sy,..., 5111}, send

t+1

Wyor,s := @ Wc(i;i\{sm

£=1
e Delivery reception: Receiver s; has stored in its cache memory

WSS vee 1, =1t

So, with Wxop_s it can recover W‘f\{sf}) and Wy, -
]

?

13



Performance of Coded Caching

e K=6

min{N, K} <

T
~ max{2, N/K} ~ N/2 N

Coded Caching Upper Bound
ForallMe ;- {0,1,....K —1,K}:
R*(M) < min {K(1 . %) (1 + %)_1, N(1 - M)}

14



Optimality and Improvements

e Optimal under uncoded placement
e Coded placement can improve performance
¢ In general within a factor of 2.009 from optimal

Main Problem: Subpacketization Level
Large files required that can be split into () packets

— Use placement delivery arrays (PDASs) to find solution

[4] K. Wan et al. “On the optimality of uncoded cache placement”, ITW 2016.
[5] Q. Yu et al, “The exact rate-memory tradeoff for caching with uncoded
prefetching” IT-Trans 2018.

[6] J. Gomez Vilardebo, “A novel centralized coded caching scheme with coded

prefetching” JSAC on Comm.
15



PDA-Example for coded caching with K =3 and { = 1

Library: Wi, Wa, ..., Wy

wi wi w

packet\Rx Rx1 Rx2 Rx3
w

e PDA represents both placement and delivery

16



PDA-Example for coded caching with K =3 and { = 1

Library: Wi, Wa, ..., Wy

wi wi w

packet\Rx Rx1 Rx2 Rx3
w® *

e PDA represents both placement and delivery
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PDA-Example for coded caching with K =3 and { = 1

Library: Wi, Wa, ..., Wy
Tx

mput X:  WPew, wPew), wPew?

£

w W@ W

1

wi wi w

packet\Rx Rx1 Rx2 Rx3

w) * 1 2
w® 1 * 3
w® 2 3 *

e PDA represents both placement and delivery

16



Definition: (K, F,Z, S) PDA

i **0\1
ZA !« 0 % 2
x 1 22— L)
F5 0 * x 3
1 x 3 x
23 % x|

e Any two non-star symbols in each row/column are distinct;

o If pap=pcag=5%#x*then pag = ppc=*;

e Regular PDAs: each symbol s occurs g times (coding gain)

[7] Q. Yan et al. “On the placement delivery array design for centralized coded

caching schemes,” IT-Trans 2017 17



Connection between PDA and Caching Networks

Theorem
Givena (K, F,Z,S) PDA.

e The corresponding caching scheme has M = %4 and R = £.

[8] M. Cheng et al. , “Coded caching schemes with low rate and subpacketizations”,

Arxiv.
18



Connection between PDA and Caching Networks

Theorem
Givena (K, F,Z,S) PDA.
e The corresponding caching scheme has M = %4 and R = £.

e The rate R = £ cannot be smaller than

(@ .
KM (1+KH)™

[8] M. Cheng et al. , “Coded caching schemes with low rate and subpacketizations”,

Arxiv.
18



Connection between PDA and Caching Networks

Theorem
Givena (K, F,Z,S) PDA.

e The corresponding caching scheme has M = %4 and R = £.

e The rate R = £ cannot be smaller than

(@ .
KM (1+KH)™

(b)
e If equality holds in (a), then F > (

)

=

[8] M. Cheng et al. , “Coded caching schemes with low rate and subpacketizations”,
Arxiv.
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Connection between PDA and Caching Networks

Theorem
Givena (K, F,Z,S) PDA.

e The corresponding caching scheme has M = %4 and R = £.

e The rate R = £ cannot be smaller than

(a) —1
E>K(1-F) (1 +KY)
. . ®
e If equality holds in (&), then F > (%)

e Maddah-Ali and Niesen’s coded caching achieves equality in (a)
and (b)

[8] M. Cheng et al. , “Coded caching schemes with low rate and subpacketizations”,
Arxiv. 8



Constructions of PDA for low subpacketization schemes

Theorem

Forany q,m € N*, g > 2, there exists a
(g(m+1),9™,q™ ", q™" — q™) PDA withrate R =q — 1.
Theorem

Given q,m € Nt, q > 2, there exists a
(@(m+1),(g—1)q™,(q—1)?q™"",q™) PDA with rate R = 1/(q — 1).

[7] Q. Yan et al. “On the placement delivery array design for centralized coded
caching schemes,” IT-Trans 2017

19
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General Performance Comparison, K = g(m+ 1)

Performance Maddah-Ali-Niesen scheme New scheme
K K
g q +1 T
M _ 1
N " g
R (g —1) q—1
K(1=1) K_q
__a . _q_
F \/2mK(g—1) qe (‘74) as
q—1 —1
g KT +1 K 3
M _ g—1
N ™ gq
1
R GR(g—T) =
o __a . 5. q K(1—1) B K_4
F T 0 (i5) | @
. . RMN . FMN
Both constructions:  lim =1, lim —— =
K— o0 RNew K—oo FNew

21



Combination Networks

Server N files of F’ bits

h Relays

(’Tl) Users

Caches MF' bits

Individual links from server to relays

Each user connected to a different subset of r relays

Relays simply forward incoming information (shared link model)

Rate-memory tradeoff R*(M) 0



First Thoughts

Can use schemes from single-link model and route packets
through network — same packet can occupy multiple resources!

Design packets that can be routed over a single relay

R*(N)=0and R*(0) = Kif K < N

Traditional uncoded caching R*(M) < X (1 - M) if K < N

23



Designing a Scheme using PDAs

Server N files of F'bits

packet\Rx {1,2} {1,3} {1.,4} {2,3} {2,4} {8,4}

L4 1 2 3 * * *
Lo 0 * * 2 3 *
Ls * 0 * 1 * 3
Ly * * 0 * 1 2

24



Designing a Scheme using PDAs

Server N files of F'bits

packet\Rx {1,2} {1,3} {1.,4} {2,3} {2,4} {8,4}

L4 1 2 3 * * *
Lo 0 * * 2 3 *
Ls * 0 * 1 * 3
Ly * * 0 * 1 2
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Designing a Scheme using PDAs

N files of F'bits

Server

{1,2} {1,3} {1,4} {2,3} {2,4} {3,4}

packet\Rx {1,2} {1,3} {1.,4} {2,3} {2,4} {8,4}
3

L4 1 2 * * *
Lo 0 * * 2 3 *
Ls * 0 * 1 * 3
Ly * * 0 * 1 2

24



Designing a Scheme using PDAs

N files of F'bits

Server

{1,2} {1,3} {1,4} {2,3} {2,4} {3,4}
packet\Rx  {1,2} {1,3} {1,4} {2,3} {2,4} {3,4}

L4 1 2 3 * * *
Lo 0 * * 2 3 *
L3 * 0 * 1 * 3
Ly * * 0 * 1 2
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Designing a Scheme using PDAs

N files of F'bits

Server

{1,2} {1,3} {1,4} {2,3} {2,4} {3,4}
packet\Rx  {1,2} {1,3} {1,4} {2,3} {2,4} {3,4}

L4 1 2 3 * * *
Lo 0 * * 2 3 *
L3 * 0 * 1 * 3
Ly * * 0 * 1 2

24



Combinational-PDA «—— Combination Network

Definition

A PDA is called combinational PDA (C-PDA), if its columns can be
labeled by relay subsets of cardinality r, in a way that for any integer
s, the labels of all columns containing s have nonempty intersection.

Theorem

Given a (K, F,Z,S) C-PDA. For any (h, r) combination network with
K = ("), it holds that

N-Z S
* - )< =
(=) < S

>

25



C-PDA Schemes Optimal for Large Cache Memories

Theorem
For (h, r)-combination network:
1 M K—-h+r—-1
* =—(1-= Me | N—— NJ.
R =1 (1-5). Me |NEIET

Achieved with subpacketization level F = (") when M = NK=tEr=1,

e Example PDA from before achieves this performance

26



Resolvable Combination Networks r|h

Server

[ 7 H 7 H T
Super Users i : é : é

Network is resolvable if r|h. Then users can be partitioned s.t.:

e Any subset of users connects to all relays

o Different users of a subset connect to different relays

27



How to Exploit Resolvability

e Letrelay i serve the single user in each subset connected to it
e Let each relay act as a server in a single-shared link

e Design a PDA for each relay

Example: h=4r=2

(.21 3.4 [{1,3] (24 [{1.4) {23
* * 1 4 2 5
1 7 * * 3 6
2 8 3 6 * %
* * 7 10 11 8
4 10 * * 12 9
5 11 9 12 * *

28



How to Exploit Resolvability

e Letrelay i serve the single user in each subset connected to it
e Let each relay act as a server in a single-shared link

e Design a PDA for each relay

Example: h=4r=2

(.21 3.4 [{1,3] (24 [{1.4) {23
* * 1 4 2 5
*x 1 2 1 7 * * 3 6
1 x 3| = 2 8 3 6 * *
2 3 x * * 7 10 11 8
4 10 * * 12 9
5 11 9 12 * *

28



Transforming PDAs into C-PDAs for Resolvable Networks

e Replicate a ((") £, F,Z, S) PDA a number of

7 - rtimes
e Distribute the columns of the replica PDAs so that the columns
of each symbol s have non-empty intersection

Theorem

Givena ((" 1,

E
resolvable (h, r)-co

2 S) PDA. There exists a (K, F,Z,S) C-PDA, for a
combination network (i.e., where r|h) with

K= D, F=rF, Z=rz,

and S=hS.

) achieved with subpacketization level F = rF

29



Transforming PDAs into C-PDAs for Resolvable Networks

e Replicate a ()£, F,Z,S) PDA a number of 2. r times

e Distribute the columns of the replica PDAs so that the columns
of each symbol s have non-empty intersection.

Theorem

Given a (( )£, F.Z,8) PDA. There exists a (K, F,Z,S) C-PDA, for a
resolvable (h, r)-combination network (i.e., where r|h) with

K:<h>, F=rF, Z=rZ, and S=hS.
R

= %) achieved with subpacketization level F = rF.
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Using the Proposed PDAs with Low Subpacketization Level

Theorem
For resolvable networks (rlh), M € {} -N:qeN*,q>2},

" 1 N
R(M)SRLSub1é7'(M*1)~

. . . A N (mwf1

is achievable with Fisyer = r (M) '~

Theorem

For resolvable networks (r|h), M € {% N:qeN',q>2},

" 1 N
R(M)SHLSub2é7'(M_1)-

with Flsupe 2 12 - (ﬁ)ﬁ’(‘*%ﬂ*‘_

30



Comparison with Known Schemes

e L. Tang and A. Ramamoorthy: Coded caching adapted to
resolvable networks.

. R . R

lim - —1 or lim - =1,
K—oo ALsubi K—oo FLsub2

. F .
lim R - or lim Fra = 00.
K—oo FLsUDT K—oo FLsub2

[10] L. Tang and A. Ramamoorthy “Coded caching for networks with resolvability
property,” ISIT 2016.
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Noisy Broadcast Channel and Heterogeneous Cache Sizes

nRk
-—>
data 1
data 2
| — database: :
encoder ./ data v
o =
degraded :
N broadcast network
o ‘ A
H n ' |
Yy Yy K
8—» user user 8 uger 8
< < <
nM; nMsy nMg

e Under all possible demands, files need to be sent reliably

e Largest data-rate R in function of cache rates My, ..., Mk?

32



Example: An Erasure Broadcast Network

nR
>
data 1
data 2
| — database: :
§ \encodg' 4 data v
TX
€1 o 62/."’ --------- K
A 1Y) Vi
v v v
@—v user user 8 user 8
—> > —>
nMy nMs nMpg

e Binary input X

X with probability 1 — e

Y =
e Output Yy { 7 with probability ex

e 1>¢>e>e3>...2¢e >0

33



Single Weak Receiver Degrades Performance

3.5

Data rate R
n g w

o
T

—— Coded caching (e1 = e2 = ...ex = 0.2)
05} —+—Coded caching (1 = 0.8, 2 = ...ex = 0.2)
—— Upper Bound with equal caches (¢1 = 0.8, e2 = ...ex = 0.2)

Il Il Il Il Il Il Il Il Il Il Il Il
0 02 04 06 08 1 12 14 16 18 2 22 24 26 28 3
Cache size M/N
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Performance when Cache Memory can be Freely Assigned

Data rate R
nN 8 w

3}
T

—— Coded caching (e1 = e2 = ...ex = 0.2)
—— Coded caching (e1 = 0.8, e = ...ex = 0.2)

—— Upper Bound with equal caches (¢; = 0.8, e2 = ...ex = 0.2)
—— Our New Coding Scheme (e; = 0.8, 2 = ...ex = 0.2)

Il Il Il Il Il Il Il Il Il Il Il Il
0 02 04 06 08 1 12 14 16 18 2 22 24 26 28 3
Average cache size Mo/ N/K

e Careful cache assignment + new coding allows to mitigate loss!

35



Cache Assignment

data 1
data 2
— database: :

encoder dataD

Gaussian broadcast network

i i i
user user 4—8 user < )

> «—> «—>

M, My Mg

e Power constraint P and noise variances ¢ > 05 > ... > 0%

e Cache memories: My + ... + Mk < Myoa

R ( MTotaI ) ?

36



All Cache to Weakest User & Superpos. Piggyback Coding

e Placement: Cache {W((,”}Q,’:1 at Rx 1, where Wy = (cho), Wé”)

o Delivery: Send WS, Wy, W, ..., Wy, using following code

C (W(U —

. : : W(l) — (W(gl) . ”/(51'))
e Receiver 1 knows W(") and restricts decoding to single row!

— Piggybacking W) provides virtual cache access for Rxs 2 — K

37



All Cache to Weakest User & Superpos. Piggyback Coding

e Placement: Cache { W\'"1N . at Rx 1, where Wy = (W”, W)

o Delivery: Send WS, Wy, W, ..., Wy, using following code

Cl(W(l>)—>

° : W(l) — (VV{SI) . 7w(1))

oo [olo oo oo oo ol l> die
— w0 — " |

e Achieves R* = \C/o_/ + A‘;‘a' . Mg < M)
no-cache —

perfect caching gain

37



Generalized Coded Caching for K =3 and t = 2

o Split Wy = ( Wi, W), Wi )
of rates Jlog (1+ £) > }log (1 +<TP§) > 1log (1 +<7P12)
3

e Placement: Store {Wé”)} in cache memories of Rxs 7 and j

e Delivery:

e Rx 1 requires W(za); Rx 2 requires W“a); Rx 3 requires wi?
q d a, a3

2

e Send Gaussian codeword x”(W(;%% ij:a), Wf,:z))

e Decoding at Rx 1 based on restricted codebook
2nF?(23)

Cy (W, Wy o= {x" (w, Wi, Wi }

w=1

38



Generalized Coded Caching Performance for K receivers

Theorem
Foranyt=1,...,K— 1, the following memory-rate pair is achievable

)
M s'otal _ tR(t)
D

K
25;1 ergir),c 1 log (1 + g%)

Rt — .
21(511) erg;m),c % log (1 + U%)

where g“’, e Q(Q denote all size-t subsets of {1,...,K}
! ()

39



Bounds on the Rate-Memory Tradeoff

3.5
3
25
@
o 2
-
©
R
S
= 15
a
1
05 ot —— Upper bound
-1 —e— Cache assignment and new coding
. ’ - -~ Upper bound on uniform cache assignment
0 I I I I I I I I I
0 1 2 3 4 5 6 7 8 9 10

Total cache budget Mrota/D

Gaussian broadcast network o2 = 4,05 = 2,05 = 1,02 = 0.5
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Exact Results: From Global to Local Caching Gain

e Small total cache budget:

e all cache memory to weakest receiver
e superposition piggyback coding

Ri= Go+ MO8 < MO
no-cache —

perfect caching gain

e Large total cache budget:

e the more cache memory the weaker the receiver
° generalized coded caching

1
Z 2 IOQ < ) K MTOtalN ’ MTotaI > M(L)
—_—

only local caching gain

K point-to-point links

41



A Setup with Fixed Cache Assignment

Wy
Wa
liDatabase:
Encoder
- i WV
ew”, —ew/’ €w eq\gg
P / N\, »
« H R 1
@J - L@
Ky K,

e K, weak receivers with erasure probability ¢,
e K strong receivers with erasure probability €5 < €,

e Cache memories of size nM bits only at weak receivers

42



Benefits of Joint-Cache Channel Coding

W J
O 4t )
= P -
5] -
© .-
S &
ég 35 o
o —e— Nested piggyback coding
3| I,' -+- Coded caching with BC code
i -+ - Amiri&Gunduz-2017

Upper bound

25 | | | | |

0 05 1 15 2 25 3 35 4 45 5
Cache size M/N 102

e 4 weak, and 16 strong users, ¢, = 0.8 and ¢ = 0.2
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Some Related Works and Further Discussions

e Additional libraries with higher resolution information
(Cacciapuoti, Caleffi, Ji, Llorca, Tulino-2016)

e Fading broadcast channels (Zhang&Elia-2016)

e Broadcast channels with feedback
(Ghorbel,Kobayashi,Yang-2016, Zhang&Elia-2016)

e Massive MIMO broadcast channels
(Yang, Ngo, Kobayashi-2016)
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e PDAs useful to find good caching schemes with low
subpacketization

e Can construction combinational PDAs from standard PDAs
— good coding schemes for combination networks with low
subpacketization levels

e PDA scheme optimal for combination networks with large cache
sizes

e Delivery over noisy networks requires joint cache-channel coding

e Adapt cache allocation to channel strengths — additional coding
opportunities

45
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