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6G: From Connected Human and Things to Connected
Intelligence!
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Evolution of cellular network generation, from 1G to the envisioned 6G networks.
Courtesy of Giordani et al.

Trend towards future Al-native connect-compute

= Embedding physical, digital, and human worlds into the same ecosys-
tem

== Moving from connected things to connected intelligence

= Enabling pervasive Al services, e.g., holographic communication, au-
tonomous systems, connected robotics, wireless brain-computer de-
vices, augmented reality, etc.

1W. Tong and P. Zhu, 6G: New Horizon- From connected people and things to connected
intelligence [White paper],Available Online, 2021

2M. Giordani et al., Toward 6G Networks: Use Cases and Technologies IEEE Communications
Magazine, vol. 58, no. 3, pp. 55-61, March 2020.


https://www-file.huawei.com/-/media/corp2020/pdf/tech-insights/1/6g-white-paper-en.pdf?la=en

From Sensing to Decision and Control

Applications...
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Factory Automation Autonomous vehicles Tele-surgery

= Too much information gathered from network sensing; transform it into
effective decisions (e.g., autonomous vehicles are envisioned to generate up to
4TB of data per day/each day!)

= Network limitations determine how to sense, process, and act on data

Several Issues/Challenges

» Communication constraints (e.g., limited bandwidth, quantization, coding,
packet losses, delays)

Co-design of communication and control

Security and privacy

Scalability and Complexity

Stability and robustness

Energy and resource efficiency

Heterogeneity

Real-time requirements.
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Networked Control Systems

Networked Control Systems (NCSs) are spatially distributed systems in
which control loops are closed through a wireless communication network
as follows
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Distibuted Controllers

\ Gontralized Gontrollor Kasitsinprpnialioid (¢) A distributed configuration of NCSs

(a) A centralized configuration of NCSs (b) A decentralized configuration of NCSs

O Sensor node A Actuator node D Controller node f " Communication links ‘A Communication Network ¢ ” Controllers’ neighboring area




» RL naturally frames problems as

Why is Reinforcement Learning relevant in NCSs?

Adaptive to Dynamic Environments
(often without the need to know the
dynamical model)

Operate with or without needing a

mathematical model of the network —I
(model-based or model-free

. . reward i
optimization) state| | action

5, i d,

Markov decision models I : Environment |~s—
» RL algorithms offer scalability to E‘_

high-dimensional control
(Distributed multi-agent systems,
deep RL, etc)




Reinforcement Learning in a Nutshell

REINFORCEMENT LEARNING
Approximately Optimal
Sequential Decision Making

Approximation in Value Space Approximation in Policy Space
One-Step and Multistep Lookahead Direct Policy Optimization
On-Line Play is Substantial On-Line Play is Simple
Dynamic Programming Nonlinear Programming
Rollout /Policy Tteration Gradient-Like Optimization
Newton’s Method Random Search
RL deals with exactly the same mathematical problem as DP J|

Courtesy of D. Bertsekas!

= Approximation in value space: We aim at learning the best value
or cost function and indirectly improve the policy

= Approximation in policy space: Aims at directly optimizing to find
the best policy or its approximate value

1D. Bertsekas, Reinforcement learning and optimal control Athena Scientific, 2019.




Case Study: The Zero-delay Lossy Compression Problem

Markov source M, € {0,1}% variable rate single-letter distortion

Y,
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A discrete-time zero-delay lossy source coding system

ww We encode causally, followed by Huffman coding, and again decode causally?-8

Empirical Rates

The empirical rate for each fidelity D, over the whole horizon {0,1,...,n} is
given by

1 n

= inf R,, R, =E[t
Feo 915 Elpy(Xe,YD)I<Dy, Ve n + 1 ; o e =2l

R, (Do, D1,...,Dy)

.

w_
Achievable Bound
» Method 1: Upper bounds on the empirical rates using reinforcement learn-
ing techniques
» Method 2: Consider a sequential version of SFRL and one-shot achievabil-
ity

Ry, (Do,Dy, ..., Dn) > Rig" (Do, D1, ..., Dn)

+1og (Rf", (Do, D1y, Dn) + 1) +6 (1)

1Z. He, C. D. Charalambous, and P. A. Stavrou A new finite-horizon dynamic programmsing
analysis of nonanticipative rate-distortion function for Markov sources, ECC 2025 (to appear).



Lower Bound

tion Function

Rate D

For each fidelity D¢ over the whole horizon {0, 1, ...,n}, the following lower
bound holds

1

inf
Pi(ytlze,ye—1): n+1
E[pt(X¢,Yt)]<Dt, Vt

ROP I(X" —=Y"™)

{0 (D0, D1, Dn) > Rifiy =

where I(X™ — Y™) =371 [ I(X4; Yi|Ye—1)

= Problem under certain conditions is convex (assuming the past posteriors at
each instant of time are given)

Unconstraing lem - Apply DP
: : ; alggr)i/thm

ange Duality Theorem

Element Description
Information state b, Pe(x¢-11ye-1)
Disturbance w, Pe(x¢|xe-1)
Feedback control policy u, Peyelye-1,xe)
Py —1, X
Cost g, (b, 1e) log (%) = 5¢(pe(xXt, ¥e ) — De[ye-1,be] )

Information-State MDP (POMDP)



DP Recursions

Stochastic DP Algorithm

(Offline training-Backward in Time)
Terminal stage: Ry, (Dnl[yn—1,bn]) = minE {gn (bn, pn)}
—_—— bn

Cost-to-go: Ri¢(Dtlyt—1,bt]) = %ian {(gt(bt, put) + Ret1(Detalye, beta]))}

where
be+1 = fe(be, pe, we)
(Online Computation-Forward in Time)

ui € argﬂﬁitnE{gt(buut) + Riy 1 (Digalys, b))}, t=0,1,...,n

=

=

The above finite horizon stochastic DP recursions are subject to a continuous
state (e.g., by € [0,1], Vt)
We can use approximation methods!, e.g., directly discretizing the belief-state

= In the sequel, I will restrict myself to discrete alphabets

2D. Bertsekas, Reinforcement learning and optimal control Athena Scientific, 2019.



Approximation in Policy Space

backward computation finds the optimal policies functions and the optimal cost functions

—
PP (Ve P PO e lye-)

Pi2On-2l¥n-3,%n-2)

Pr—1 (tn—2Yn PP (n—11Yn-1)

CRRTAMN
1O e B; -1, %)
i

initial conditions
from t =0

Pla(Ve-2lye-s Xe—2)

) T <TG I
— —

P (Yelye1,%e) terminal
— . —>
PEy (Xe—21ye—2 P/ (Xe-1]Ye-1) . PP (Xpz |V Y (s 1Y)
— CEA—
t=1 stage t t=n
k
Algorithm 1 Approximation of the Control Policy Backward Pros:

in Time (Offline Training)

Input: {P;(z¢|2i—1): t € N}, {s; <0: t e N},

v We discretize the belief-state

given belief state P?(z,_1|y,_1) € By, € > 0. v We apply a stage-wise alternating
1: Initialize {P* (y|ye_1) : t € Ny} minimization to obtain the best
= f"rkt =(;1 :1do (approximate) policy functions
3 —
4 whil(ek)TL, [Ye—1, P?] = T, [ys—1, P?] > € do v Provable convergence guarantees
s B (lyer @) < (20) for any backward horizon
(k-+1)
6: P (Yelye—1) « @21
7 Ri(Di[ye—1, PY])  (22) Cons:
8 k< k+1 . .
o end while v Computa.tlor.lally expensive
10: end for (exponential increase in the
Output: computation when increasing your
{P [P (Welye—r, ) - t € N} LR [PY](elye—1) 1t €

v (Do [y 1. PF]) - £ € NJT. discretization set)




Approximation in Policy Space

Backward-Forward

c Programming Algorithm

backward computation finds the optimal policies functions and the optimal cost functions

—>
PP (e lYe—2 P P (e lye-) >

Pri—1(¥n—2|Yn— BY (n-11Yn-1)
initial conditions

) P2 Oneabis D Pt Ot DO o
rom t =0 Py (Ve—2|YVe-3,Xe—2) OV lYn—1,%n
t=2Ut=21Ve-3, X2,
R .. — Of
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-1 (n—2|Yn—7
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- —
—>P (Xe2lye-2 Pé (e 1ye-1) . < G By (n-1[Yn-1)
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Algorithm 2 Forward Computation of the Approximate
Control Policy (Online Computation)

Input: {B;: ¢ e N} of given {P?(x¢—1|ye—1) : t € N}, Pros:

outputs of Algorithm 1. . . .

1: nitialize Po(x0), Po(yo), Pi (zolyo) = P(zolyo) v Light-speed computation (simple
2fort=1:n—1do computations)

3 Pf(@lye) < (26)

4 Pr(ylye—r, @) <

Cons:
Py P (xe-1lye-1), Pt*+l(xtlyt)](l/t‘l/t—lyl‘t)

5 end for v Does nqt allow for online
& P (ynlyn—1,7n) < PrlPy (@n—1lyn-1)]¥n|ye—1. 2n) re-planning
Output:

(P (we—1lye—1) : t € NG b {P/ (yelye—1,20) -t € NG},
Ry (Do, Dy...., Dy).




Approximation in Policy Space

Backward-Forward Dynamic Programming Algorithm

backward computation finds the optimal policies functions and the optimal cost functions

Pr—1(Xn—2|Yn—

PicaOn-1lyn 72

—>
PP (2 |Ye—2 )P PP (e [Ve-)) —
Pazn-2lyn-3 Xn-2)

PP (n—11Yn-1)

initial conditions
from t =0

O On V-1, %n)

Pla(Ve-2lye-s Xe—2)

Py (xoy0) o ) 'y (e—2|YVe-2 P lye-) > ... —PP (Xn_a|Vud ‘
Pinlyo,x . >
Pi(%0) P (e-alye-2 Xe1 PrOelYeon X0
—
P (Ke2|¥e2 PP (n-2lYn-2 B (Xn—11Yn-1)
t=1 stage t t=n

“ Settings
« binary alphabet {X; = Y, = {0,1}: t € Nj}.
* Hamming distortion metric p.(x¢, y¢) = p(xe, y¢) = {

Parallel computation

for backward training

0, ifx; =y,
1, ifx; =y
“ Example 1. Time-varying binary symmetric Markov source
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*  belief state space B; with

0 menmp——y—ry I A" = quantization level |B,| = N = 20
nwluw v «  Lagrange multiplier s, = s = =2
) S «  time horizonn = 100

Time
(a) Stagewise rate & distortion (b) Stagewise convergence



Approximation in Policy Space: Interpretable, Explainable, and Trustworthy
Model-Based RL

v Interpretable
= Policies operate over explicit belief states Py (z¢—1 | yt—1)
= Feedback Control laws are structured and visualizable
= No black-box networks-fully transparent policy structure

v Explainable
= Learning via Alternating Minimization with mathematical grounding
5 Each step has semantic meaning (e.g., distortion matching)
= Derived from KKT conditions and dynamic programming

v Trustworthy
= Offline optimization with convergence guarantees
= Online execution is deterministic and efficient
= Learning and deployment are cleanly decoupled

v Goal-Aware (Semantic Layer)
= Policies preserve only task-relevant information
= Semantic rate-distortion ensures minimal, purposeful encoding
= Supports explainable pruning of irrelevant details



Q-Factor Recursions

Stochastic DP Algorithm via Q-Factors

(Offline training-Backward in Time)

Qi (bt, ) = E {gt(bm pe) + gtllﬁ Qty1(beyr, ut+1)}

with the terminal condition Qf+1 (bt+1, pt+1) = 0 when t = N.

(Online Computation-Forward in Time)

#; (be) = argmin Q5 (be, pe), £=0,1,..., N

ww We will tackle the problem assuming approximate DP with truncated rollout®



Approximation in Value Space via Truncated Rollout

offline approximation over N
functional
MinMizalion - — - — = === =~ == - -

be+1 {base policy besng

current stage ¢

(trajectory)
The online rollout involves: instantaneous by m_y B,
. evaluation (trajectory)

1) Functional minimization;

biy !base policy b

2) Instantaneous policy evaluation;

3) Information state update. information state update
Be = felbe, e, we)

rollout information.- L (Bt NG}
rollout policy & = {jtg, Ay, -, Ay}

_ _ ,

Pros:

Algorithm 1 Offline Base Control Policy Approximation

- v No need for full discretization of
Input: given {w, :t € NN_y 11},

given base information state b, € B;, Lagrange multipli- the belief-state

ers {s; <0:te NN»} error tolerance € > 0
: Initialize {1 ¢ € NY_y, ..} v Stable and repeatable method

1
z: fork t:[f\" ‘N —N,+1do v Memory efficient
. - -1
4 while Ty, [(uz;)l-r bu] = Tp,Ju' ™" bi] > € do v Provable convergence guarantees
5. ) (25 . .
o ML o) for any rolling horizon
o Qube ™)« @1 Cons:
8: ke—k+1
s end while v Approximation due to truncation of
10:

nd for .
1 QR i) Qi f, Ol ) the horizon

Output: {47 (b;) 1t € NN_y 41,0 € B}, 3 1 1
Wil st e MY b e B, v Dependent on the discretization

(@R, (b, ) B0 € B € i (80)- v Pretraining is required




Approximation in Value Space via Truncated Rollout

offline approximation over Ny
functional

MiniMizalon - — - — ——— - — ———————————

bes1 {base policy beyng

(trajectory)

I
|
|
I
|

5 5 i

b4y (base policy biyn, |
|
|
I
|
I
I

current stage ¢

The online rollout involves: instantaneous

evaluation (trajectory)

1) Functional minimization;
2) Instantaneous policy evaluation;

3) Information state update. .nfc,ma_m state update
= felbefi wo)

rollout information-state trajectory {5, ¢ € N}}
rollout policy & = {jig, Ay, -, Ay

Pros:

v Policy improvement via one step

Algorithm 2 Online Rollout Evaluation S .
lookahead minimization

Input: {B;:t¢€ NN N.t1) of given {b; : t € NN Not1)s
{ui(b) st e NN N+ 0o € B}, v Allows for online re-planning (real
{wilbe] :t € NY_n 11be € Bi} time adaptivity)

T b €B
{QF, : b € B} v Scalable and stable method

1: Tnitialize 1o = Py (ugl|zo), Py(u®), by = P(xo|uo)

2: fort=1:N do Cons:

3 QF (be, i) + step 3-9 in Algorithm 1 . .

& e Gl v Computationally expensive
500 b1+ (3)

v Relies on the quality of the base
policy

6: end for -
Output: # = {po, jur, ..., fin}, {br,t € NN},
{7 : t e N}, CF(XN,UN). v No long-term guarantees




Approximation in Value Space via Truncated Rollout

offline approximation over N,

besa {base policy Bean,

(trajectory)

\
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bi4, {base policy bisn, 1
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functi |
centstage nciend
1

i
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The online rollout involves: instantaneous
A B A evaluation

1) Functional minimization;

2) Instantaneous policy evaluation;

3) Information state update. information state update|
e be = fulbe, e, o)

(trajectory)

bty {base policy b

(trajectory)

rollout information.-st
rollout policy 7 =

jectory {b,: t € N}
in}

“ Settings
+  binary alphabet {X; =Y, = {0,1}: t € N}}
«  Hamming distortion metric p,(x¢, y¢) = p(xe, y¢) = {

Parallel computation

0, ifx, = y, (Offline & Online)
1, ifx; # y,;

Example 2. Time-invariant binary symmetric Markov source

G 7 G srogoinates /| o +  information-state space B, with
| e Ol Prcted kit ;
: B tstcimpionn L =
£ om0 goe guantization level |B;| = n = 20
S onasao H
Eunonn B +  Lagrange multiplier s, = s = —2
Euan 5 | rovonamon e oo « time horizon N = 100, Ny =5

- I

%

Sbiscetzatontevel e e %
(a) Time consumption (b) Stagewise cost v good scala




Q-factor Truncated Rollout: Interpretable, Explainable, and Trustworthy
Model-Based RL

v Interpretable
iz Explicit Q-factor functions over belief states and actions
= Policies derived by structured, transparent minimization
= Full visibility into how decisions depend on expected future cost

v Explainable
= Modular architecture: offline base policy + online rollout
= Fach policy improvement step is locally justified and auditable
= Stage-by-stage reasoning: traceable Q-updates and decision logic

v Trustworthy
= Offline computation is stable, convergent, and verifiable
1= Online rollout guarantees improvement over base policy
= Deterministic, certified decision-making at deployment

v Goal-Aware (Semantic Information Structure)
= Policies shaped by directed information and task-driven costs
= Prunes irrelevant information via semantic compression
= Enables transparent understanding of what matters for control



Possible collaboration opportunities: How can we jointly design and identify the
fundamental limits of communication, sensing, and control?

Stochastic Linear Fully X €R”
—
Observable Plant (Py) |
S‘n -

w 7»‘ Encoder
Transmitter
channel E
(Dy) (Et)

Fundamental Questions...

= Consider Finite State Channels with feedback + sensing?
= Joint source-channel-control-sensing design?
= Low coding delays scenarios?

3M. Kobayashi et al., Joint state sensing and communication over memoryless MAC, IEEE ISIT,
2019

4M. Ahmadipour et al., An information-theoretic approach to joint sensing and communication,
IEEE Tras. Info. Theory, 2023

5y. Xiong et al., On the fundamental tradeoff of integrated sensing and communications under
Gaussian channels, IEEE Tras. Info. Theory, 2023



Thank you!

For more information:

Photios A. Stavrou (fotios.stavroueurecon.fr)

QUESTIONS

Acknowledgement: Part of this work has received funding from .
the European Commission (EC) under the EU’s Horizon 2020 pro- G@ﬂg
gram (Grant Agreement No 101139232).


(fotios.stavrou@eurecom.fr)

