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6G: From Connected Human and Things to Connected
Intelligence1

Figure: Evolution of cellular network generation, from 1G to the envisioned 6G networks.
Courtesy of Giordani et al.2

Trend towards future AI-native connect-compute systems

☞ Embedding physical, digital, and human worlds into the same ecosys-
tem

☞ Moving from connected things to connected intelligence
☞ Enabling pervasive AI services, e.g., holographic communication, au-

tonomous systems, connected robotics, wireless brain-computer de-
vices, augmented reality, etc.

1W. Tong and P. Zhu, 6G: New Horizon- From connected people and things to connected
intelligence [White paper],Available Online, 2021

2M. Giordani et al., Toward 6G Networks: Use Cases and Technologies IEEE Communications
Magazine, vol. 58, no. 3, pp. 55-61, March 2020.
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From Sensing to Decision and Control
Applications...

Factory Automation Autonomous vehicles Tele-surgery

☞ Too much information gathered from network sensing; transform it into
effective decisions (e.g., autonomous vehicles are envisioned to generate up to
4TB of data per day/each day!)

☞ Network limitations determine how to sense, process, and act on data

Several Issues/Challenges

➤ Communication constraints (e.g., limited bandwidth, quantization, coding,
packet losses, delays)

➤ Co-design of communication and control
➤ Security and privacy
➤ Scalability and Complexity
➤ Stability and robustness
➤ Energy and resource efficiency
➤ Heterogeneity
➤ Real-time requirements.
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Networked Control Systems

Networked Control Systems (NCSs) are spatially distributed systems in
which control loops are closed through a wireless communication network
as follows

Themistoklis Charalambous
UCY, September 12, 2019
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Introduction
I In contrast to the traditional control systems, the feedback loop of a NCS is closed

via a communication network

I NCSs are spatially distributed systems wherein the control loops are closed through
a communication network as shown below1.2. The need for research on wireless networked control systems 5
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Figure 1.2: Block diagrams of networked control systems with a plant P, a sensorS, a controller C, and an actuator A. In the figure, (a) illustrates that a controller is
going to be designed for a given abstraction of network and plant whereas (b) shows
that both a controller and communication protocol is going to be designed for a given
plant.

Throughout this thesis, we propose new analysis and design frameworks to
improve the performance guarantees of wireless networked control systems. Specifi-
cally, Chapter 3 develops a co-design framework in which we jointly optimize the
communication protocol (how wireless nodes forward data packets over multiple
unreliable hops to guarantee a certain level of latency and end-to-end packet delivery
rate) and the control algorithms. Chapter 4 determines the optimal number of
retransmission attempts to minimize the expected control loss of the closed-loop
control system. In addition, it demonstrates whether or not the maximal number
of retransmissions depends on the control architecture (e.g., time- or event-driven).
Chapter 5 investigates how event-triggered communication from the controller to
the actuator allows to reduce the network tra c (and, indirectly, the energy con-
sumption of the network) while maintaining the same control performance. Finally,
Chapter 6 presents a supervisory control structure that only needs a crude idea of
the network state (or rather, on the network-induced end-to-end delays) to trigger
the most appropriate controller from a multi-controller unit.

We would like to point out that this thesis focuses on challenges related to
ensuring good performance of a networked control loop in the presence of information
delays and losses. Networked control systems also pose a range of challenges that are
not covered in this thesis, e.g., network security and resilience to structural changes
(e.g., sensors and/or actuators that are added and removed). See, for example, the
theses [8, 9] and the references therein.
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I The constraints in communication and the interaction between control and
communication render the classical approaches not suitable for the analysis and
design of a NCS, e.g.,
I when a signal is transmitted over a digital network, the signal must be sampled,

encoded in a digital format, transmitted over the network (with possibly additional
network access delay) and finally the data must be decoded at the receiver side, thus
inducing delays in the feedback loop

I there exists a critical transmission rate below which there does not exist any
quantization and control scheme able to stabilize an unstable plant
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Fig. 1. Three general configurations of NCSs. 

Table 1 

References based on different configurations of NCSs. 

Configurations References 

Centralized configuration [25–30,50,52,54,57,67,68,71,73,75–78,81–83,88–90,93] 

Decentralized configuration [1,3,10,43,44,53,62,70] 

Distributed configuration [2,8,9,21–23,45,56,65,69,79,80,95,99] 

are utilized for computing control executions. These control executions are then transmitted to actuators for actuating the sys- 

tem. Even though multiple sensors and actuators may be present, this configuration, in certain situations, can be deemed as an 

NCS with a single feedback loop where all measurement is required to be measured by a dedicated sensor node and then to be 

sent together in a single packet to a remote controller node. A control execution is finally fed back to a dedicated actuator node. 

Since information of the measurement is available at the controller side, the main advantage of this centralized configuration 

is that the control performance may be generally optimal. Analysis and synthesis of NCSs by using this configuration have been 

well studied and considerable results have been available in the literature, see for example, references in Table 1 . The centralized 

configuration, however, has several drawbacks: (i) the controller is susceptible to total failure of the central processing unit; (ii) 

there is a high cost for the central processing unit collecting data from individual sensor node; (iii) there is an increased computa- 

tional burden in the central processing unit; and (iv) due to scalability issue, it has a limited application scope in modern control 

systems where a large number of distributed sensing and processing nodes are deployed such as airplanes and manufacturing 

plants. 

Decentralized configuration . Within this configuration, as shown in Fig. 1 (b), each controller node may depend on only local 

information that the controller possesses to make its local decision. Consequently, even though the entire system may have an 

overall team objective, distributed controller nodes do not share information with neighboring nodes. Analysis and synthesis of 

such NCSs may reduce to analyzing and synthesizing NCSs with multiple feedback loops, see for example, references presented 

in Table 1 . More specifically, each controller locally performs its local computation of a control execution by using measurement 

through local communication link and then each control execution is sent back to an actuator node for actuating the system. Com- 

pared with the centralized configuration, this decentralized configuration alleviates computation burden and design complexity 

because local control executions are computed within local controllers. A major concern of the decentralized configuration lies 

in that sub-optimal control performance may be achieved due to individual controller node not having as much information re- 

garding the state or output of the system as in the centralized configuration. In this sense, a decentralized configuration may be 

more scalable if local control decisions are close to an optimal global control decision. However, the absence of communication 

and cooperation between decentralized controllers may lead to deteriorated system performance and limit the application scope 

of the decentralized configuration in wireless sensor and actuator networks (WSANs) where a large number of nodes coordinate 

their activities through communication networks. 

Distributed configuration . An NCS within this configuration is known as a distributed networked control system (DNCS), which 

possesses two notable characteristics: (i) information of each subsystem is exchanged among system components (e.g., sensors, 

controllers and actuators) using a shared communication network; and (ii) the plant usually consists of a large number of simple 

interacting units (e.g., subsystems and agents) that can be physically distributed and interconnected to others to coordinate their 
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Why is Reinforcement Learning relevant in NCSs?

➤ Adaptive to Dynamic Environments
(often without the need to know the
dynamical model)

➤ Operate with or without needing a
mathematical model of the network
(model-based or model-free
optimization)

➤ RL naturally frames problems as
Markov decision models

➤ RL algorithms offer scalability to
high-dimensional control
(Distributed multi-agent systems,
deep RL, etc)
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Reinforcement Learning in a NutshellReinforcement Learning - An Overview Figure
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1

RL deals with exactly the same mathematical problem as DP

Bertsekas Reinforcement Learning 3 / 38Figure: Courtesy of D. Bertsekas1

☞ Approximation in value space: We aim at learning the best value
or cost function and indirectly improve the policy

☞ Approximation in policy space: Aims at directly optimizing to find
the best policy or its approximate value

1D. Bertsekas, Reinforcement learning and optimal control Athena Scientific, 2019.
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Case Study: The Zero-delay Lossy Compression Problem

A discrete-time zero-delay lossy source coding system

Markov source single-letter distortion 

Encoder Decodernoiseless channel

variable rate

☞ We encode causally, followed by Huffman coding, and again decode causally7,8

Empirical Rates

The empirical rate for each fidelity Dt over the whole horizon {0, 1, . . . , n} is
given by

R
op
[0,n]

(D0, D1, . . . , Dn) = inf
ft, gt: E[ρt(Xt,Yt)]≤Dt, ∀t

1

n + 1

n∑
t=0

Rt, Rt = E[ℓt]

Achievable Bound

➤ Method 1: Upper bounds on the empirical rates using reinforcement learn-
ing techniques

➤ Method 2: Consider a sequential version of SFRL and one-shot achievabil-
ity

R
op
[0,n]

(D0,D1, . . . , Dn) ≥ R
na
[0,n](D0, D1, . . . , Dn)

+ log
(
R

na
[0,n](D0, D1, . . . , Dn) + 1

)
+ 6 (1)

1Z. He, C. D. Charalambous, and P. A. Stavrou A new finite-horizon dynamic programming
analysis of nonanticipative rate-distortion function for Markov sources, ECC 2025 (to appear).
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Lower Bound

Causal Rate Distortion Function

For each fidelity Dt over the whole horizon {0, 1, . . . , n}, the following lower
bound holds

Rop
[0,n]

(D0, D1, . . . , Dn) ≥ Rna
[0,n] = inf

Pt(yt|xt,yt−1):
E[ρt(Xt,Yt)]≤Dt, ∀t

1

n+ 1
I(Xn → Y n)

where I(Xn → Y n) =
∑n

t=0 I(Xt;Yt|Yt−1)

☞ Problem under certain conditions is convex (assuming the past posteriors at
each instant of time are given)

DescriptionElement

Information state

Disturbance

Feedback control policy

)Cost

Apply DP 

algorithm 

Unconstrained problem 

Lagrange Duality Theorem

Reformulation

Stochastic Optimal Control 

Information-State MDP (POMDP)
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DP Recursions

Stochastic DP Algorithm

(Offline training-Backward in Time)

Terminal stage: Rn(Dn[yn−1, bn]) = min
µn

E {gn(bn, µn)}

Cost-to-go: Rt(Dt[yt−1, bt]) = min
µt

E {(gt(bt, µt) +Rt+1(Dt+1[yt, bt+1]))}

where

bt+1 = ft(bt, µt, wt)

(Online Computation-Forward in Time)

µ∗
t ∈ argmin

µt
E
{
gt(bt, µt) +R∗

t+1(Dt+1[yt, bt+1])
}
, t = 0, 1, . . . , n

☞ The above finite horizon stochastic DP recursions are subject to a continuous
state (e.g., bt ∈ [0, 1], ∀t)

☞ We can use approximation methods1, e.g., directly discretizing the belief-state
☞ In the sequel, I will restrict myself to discrete alphabets

2D. Bertsekas, Reinforcement learning and optimal control Athena Scientific, 2019.
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Approximation in Policy Space

Backward-Forward Dynamic Programming Algorithm

initial conditions

terminal

...

...

... ...

...

...

stage 𝑡 𝑡 = 𝑛 

forward computation follows optimal trajectory and obtains optimal policies and minimum rate

backward computation finds the optimal policies functions and the optimal cost functions

𝑃𝑡
∗(𝑥𝑡−1|𝑦𝑡−1) 

𝑃𝑡
𝑜(𝑥𝑡−1|𝑦𝑡−1) 

𝑃𝑡
𝑜(𝑥𝑡−1|𝑦𝑡−1) 𝑃𝑡−1

𝑜 (𝑥𝑡−2|𝑦𝑡−2) 

𝑃𝑡−1
𝑜 (𝑥𝑡−2|𝑦𝑡−2) 

𝑃𝑡−1
∗ (𝑥𝑡−2|𝑦𝑡−2) 

𝑃𝑛−1
𝑜 (𝑥𝑛−2|𝑦𝑛−2) 

𝑃𝑛−1
𝑜 (𝑥𝑛−2|𝑦𝑛−2) 

𝑃𝑛−1
∗ (𝑥𝑛−2|𝑦𝑛−2) 

𝑃𝑛
∗(𝑥𝑛−1|𝑦𝑛−1) 

𝑃𝑛
𝑜(𝑥𝑛−1|𝑦𝑛−1) 

𝑃𝑛
𝑜(𝑥𝑛−1|𝑦𝑛−1) 

𝑡 = 1 

from 𝑡 = 0 

𝑃1(𝑥0|𝑦0) 

𝑃1(𝑦0)  

𝑃𝑡−2
∗ (𝑦𝑡−2|𝑦𝑡−3, 𝑥𝑡−2) 

𝑃1
∗(𝑦1|𝑦0, 𝑥1) 

𝑃𝑡
∗(𝑦𝑡|𝑦𝑡−1, 𝑥𝑡) 

𝑃𝑡−1
∗ (𝑦𝑡−1|𝑦𝑡−2, 𝑥𝑡−1) 

𝑃𝑛−2
∗ (𝑦𝑛−2|𝑦𝑛−3, 𝑥𝑛−2) 

𝑃𝑛
∗(𝑦𝑛 |𝑦𝑛−1, 𝑥𝑛) 

𝑃𝑛−1
∗ (𝑦𝑛−1|𝑦𝑛−2, 𝑥𝑛−1) 

P o
t (xt−1|yt−1) obtained for a fixed Yt−1 = yt−1. More-

over, let st ≤ 0 and P
(0)
t (yt|yt−1) > 0 be the initial

output probability distribution, and let P
(k+1)
t (yt|yt−1) =

Pt[P
(k)
t (yt|yt−1)](yt|yt−1, xt) and P

(k+1)
t (yt|yt−1, xt) =

Pt[P
(k)
t (yt|yt−1)](yt|yt−1) be expressed as follows

P
(k+1)
t (yt|yt−1, xt) =

P
(k)
t (yt|yt−1)At[P

o
t+1]∑

yt∈Yt
P

(k)
t (yt|yt−1)At[P o

t+1]
,

(20)

P
(k+1)
t (yt|yt−1) = P

(k)
t (yt|yt−1)

∑

xt∈Xt

PMo
t (xt|yt−1)At[P

o
t+1]∑

yt∈Yt
P

(k)
t (yt|yt−1)At[P o

t+1]
. (21)

Then as k →∞, we obtain for any t that

Dt[yt−1, P
o
t , P

(k)
t (yt|yt−1, xt)]→ Dst [yt−1, P

o
t ]

It[yt−1, P
o
t , P

(k)
t (yt|yt−1, xt)]→ Rt(Dst [yt−1, P

o
t ])

where (Dst [yt−1, P
o
t ], Rt(Dst [yt−1, P

o
t ])) denotes a point

on the cost-to-go curve parametrized by st given
P o
t (xt−1|yt−1) obtained for a fixed Yt−1 = yt−1 and

It[yt−1, P
o
t , P

(k)
t (yt|yt−1, xt)] =

∑

xt∈Xt,yt∈Yt

PMo
t (xt|yt−1)

P
(k)
t (yt|yt−1, xt)

(
log

(
P

(k)
t (yt|yt−1, xt)

P
(k)
t (yt|yt−1)

)

+Rt+1(Dt+1[yt, P
o
t+1])

)
, (22)

Dt[yt−1, P
o
t , P

(k)
t (yt|yt−1, xt)] =

∑

xt∈Xt,yt∈Yt

PMo
t (xt|yt−1)

P
(k)
t (yt|yt−1, xt)ρt(xt, yt). (23)

The implementation of Theorem 5 is illustrated in Algorithm
1. The following theorem supplements Algorithm 1 with a
stopping criterion after a finite number of steps.

Theorem 6: (Stopping criterion of Algorithm 1) For each
t ∈ Nn

0 , the point Dst [yt−1, P
o
t ] given by (19) admits the

following bounds

Rt(Dst [yt−1, P
o
t ]) ≤ stDst [yt−1, P

o
t ]−

∑

xt∈Xt

(
PMo
t (xt|yt−1)

log(
∑

yt∈Yt

Pt(yt|yt−1)At[P
o
t+1])

)

−
∑

yt∈Yt

Pt(yt|yt−1)ct[yt−1](yt) log ct[yt−1](yt), (24)

Rt(Dst [yt−1, P
o
t ]) ≥ stDst [yt−1, P

o
t ]−

∑

xt∈Xt

(
PMo
t (xt|yt−1)

log(
∑

yt∈Yt

Pt(yt|yt−1)At[P
o
t+1])

)
− max

yt∈Yt

log ct[yt−1](yt),

(25)

where ct[yt−1](yt) is expressed as a function of fixed yt−1

ct[yt−1](yt) =
∑

xt∈Xt

PMo
t (xt|yt−1)At[P

o
t+1]∑

yt∈Yt
Pt(yt|yt−1)At[P o

t+1]
.

Algorithm 1 Approximation of the Control Policy Backward
in Time (Offline Training)

Input: {Pt(xt|xt−1) : t ∈ Nn
0}, {st ≤ 0 : t ∈ Nn

0},
given belief state P o

t (xt−1|yt−1) ∈ Bt, ϵ > 0.
1: Initialize {P (0)

t (yt|yt−1) : t ∈ Nn
0}

2: for t = n : 1 do
3: k ← 0
4: while TLt [yt−1, P

o
t ]− TUt [yt−1, P

o
t ] > ϵ do

5: P
(k)
t (yt|yt−1, xt)← (20)

6: P
(k+1)
t (yt|yt−1)← (21)

7: Rt(Dt[yt−1, P
o
t ])← (22)

8: k ← k + 1
9: end while

10: end for
Output:
{P ∗

t [P
o
t ](yt|yt−1, xt) : t ∈ Nn

1}, {P ∗
t [P

o
t ](yt|yt−1) : t ∈

Nn
1}, {Rt(Dst [yt−1, P

o
t ]) : t ∈ Nn

1}.
Theorem 6, generates a stopping criterion for Algorithm 1 at
the k-th iteration by setting the estimation error ϵ per stage,
i.e., TLt

[yt−1, P
o
t ]− TUt

[yt−1, P
o
t ]| where

TUt [yt−1, P
o
t ] =

∑

yt∈Yt

Pt(yt|yt−1)ct[yt−1](yt) log ct[yt−1](yt)

TLt [yt−1, P
o
t ] = max

yt∈Yt

log ct[yt−1](yt).

Comments on Algorithms 1, 2: Algorithm 1 approximates
the control policy {P ∗

t [P
o
t ](yt|yt−1, xt) : t ∈ Nn

1}, the
output distribution {P ∗

t [P
o
t ](yt|yt−1) : t ∈ Nn

1}, and the
cost-to-go function {Rt(Dst [yt−1, P

o
t ]) : t ∈ Nn

1} as
functions of the fixed Yt−1 = yt−1, the quantized belief state
P o
t (xt−1|yt−1) ∈ Bt, and also the one-step lookahead belief

state P o
t+1(xt|yt) ∈ Bt+1. After computing these quantities

backward in time, the online Algorithm 2 operates forward in
time to evaluate the cost-to-go and identify the approximate
minimizers of (6). The initial source and output distributions
P0(x0) and P0(y0) at t = 0 are given, yielding the initial
control policy P0(y0|x0) and the corresponding posterior
P1(x0|y0), which initialize belief state P ∗

1 (x0|y0). At each
t, the best policy P ∗

t (yt|yt−1, xt) is determined by following
the best trajectory P ∗

t+1(xt|yt) such that

P ∗
t+1(xt|yt) = arg min

P o
t+1(xt|yt)∈Bt+1∑

yt−1∈Yt−1

Rt(Dst [yt−1, P
∗
t ])Pt(yt−1), ∀t = Nn−1

2 , (26)

and eventually the minimum in (6) is approximated. Clearly,
the larger the search space of the finite belief state, the better
the approximation. Ideally, a sufficiently large belief state
space can approximate near-optimally the minimum in (6).

IV. NUMERICAL EXAMPLES

This section provides numerical simulations to support our
theoretical findings that led to Algorithms 1, 2. We assume
binary alphabet spaces {Xt = Yt = {0, 1} : t ∈ Nn

0}, with
Hamming distortion metric given by

ρt(xt, yt) ≡ ρ(xt, yt) =

{
0, if xt = yt
1, if xt ̸= yt

, ∀t ∈ Nn
0 . (27)

Pros:
✓ We discretize the belief-state
✓ We apply a stage-wise alternating

minimization to obtain the best
(approximate) policy functions

✓ Provable convergence guarantees
for any backward horizon

Cons:
✓ Computationally expensive

(exponential increase in the
computation when increasing your
discretization set)
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Approximation in Policy Space

Backward-Forward Dynamic Programming Algorithm

initial conditions

terminal

...

...

... ...

...

...

stage 𝑡 𝑡 = 𝑛 

forward computation follows optimal trajectory and obtains optimal policies and minimum rate

backward computation finds the optimal policies functions and the optimal cost functions

𝑃𝑡
∗(𝑥𝑡−1|𝑦𝑡−1) 

𝑃𝑡
𝑜(𝑥𝑡−1|𝑦𝑡−1) 

𝑃𝑡
𝑜(𝑥𝑡−1|𝑦𝑡−1) 𝑃𝑡−1

𝑜 (𝑥𝑡−2|𝑦𝑡−2) 

𝑃𝑡−1
𝑜 (𝑥𝑡−2|𝑦𝑡−2) 

𝑃𝑡−1
∗ (𝑥𝑡−2|𝑦𝑡−2) 

𝑃𝑛−1
𝑜 (𝑥𝑛−2|𝑦𝑛−2) 

𝑃𝑛−1
𝑜 (𝑥𝑛−2|𝑦𝑛−2) 

𝑃𝑛−1
∗ (𝑥𝑛−2|𝑦𝑛−2) 

𝑃𝑛
∗(𝑥𝑛−1|𝑦𝑛−1) 

𝑃𝑛
𝑜(𝑥𝑛−1|𝑦𝑛−1) 

𝑃𝑛
𝑜(𝑥𝑛−1|𝑦𝑛−1) 

𝑡 = 1 

from 𝑡 = 0 

𝑃1(𝑥0|𝑦0) 

𝑃1(𝑦0)  

𝑃𝑡−2
∗ (𝑦𝑡−2|𝑦𝑡−3, 𝑥𝑡−2) 

𝑃1
∗(𝑦1|𝑦0, 𝑥1) 

𝑃𝑡
∗(𝑦𝑡|𝑦𝑡−1, 𝑥𝑡) 

𝑃𝑡−1
∗ (𝑦𝑡−1|𝑦𝑡−2, 𝑥𝑡−1) 

𝑃𝑛−2
∗ (𝑦𝑛−2|𝑦𝑛−3, 𝑥𝑛−2) 

𝑃𝑛
∗(𝑦𝑛 |𝑦𝑛−1, 𝑥𝑛) 

𝑃𝑛−1
∗ (𝑦𝑛−1|𝑦𝑛−2, 𝑥𝑛−1) 

Algorithm 2 Forward Computation of the Approximate
Control Policy (Online Computation)

Input: {Bt : t ∈ Nn
1} of given {P o

t (xt−1|yt−1) : t ∈ Nn
1},

outputs of Algorithm 1.
1: Initialize P0(x0), P0(y0), P ∗

1 (x0|y0) = P (x0|y0)
2: for t = 1 : n− 1 do
3: P ∗

t+1(xt|yt)← (26)
4: P ∗

t (yt|yt−1, xt)←
P ∗
t [P

∗
t (xt−1|yt−1), P

∗
t+1(xt|yt)](yt|yt−1, xt)

5: end for
6: P ∗

n(yn|yn−1, xn)← P ∗
n [P

∗
n(xn−1|yn−1)](yn|yt−1, xn)

Output:
{P ∗

t (xt−1|yt−1) : t ∈ Nn
0}, {P ∗

t (yt|yt−1, xt) : t ∈ Nn
0},

Rna
[0,n](D0, D1, . . . , Dn).

We consider a belief state P o
t (xt−1|yt−1) ∈ Bt, that consists

of a matrix comprising two “quantized” binary probability
distributions drawn from the continuous space. We denote
with Nt each quantization level per t, which leads to a
belief state space Bt with size |Bt| = N2

t , representing the
combinations of 2 out of Nt quantized binary distributions.

Example 1: (Time-varying binary symmetric Markov
source) The source distribution Pt(xt|xt−1) at each t ∈ Nn

1

is chosen such that for each t, we have

Pt(xt|xt−1) =

(
1− αt αt

αt 1− αt

)
, αt ∈ (0, 1). (28)

Moreover, we choose the quantization levels {Nt = N : t ∈
Nn

1} and the stagewise Lagrange multipliers {st = s : t ∈
Nn

0}. We demonstrate the results applying Algorithms 1, 2
in Fig. 2 for N = 20, s = −2, and n = 100, whereas Fig.
2b illustrates several time stages selected during backward
computation to verify the convergence of Algorithm 1.

V. CONCLUSION

We derived a non-asymptotic lower bound for a zero-delay
variable-rate lossy source coding system assuming discrete
Markov sources. We derived new structural and convexity
properties of NRDF that helped us cast the problem as an
unconstrained partially observable finite-horizon stochastic
DP and solved it approximately via a novel dynamic AM
scheme to compute the control policy and the cost-to-go
function through an offline training algorithm followed by an
online computation. Our theoretical results are supplemented
with simulation studies.
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[9] M. Ghomi, T. Linder, and S. Yüksel, “Zero-delay lossy coding of
linear vector Markov sources: Optimality of stationary codes and near
optimality of finite memory codes,” IEEE Trans. Inf. Theory, vol. 68,
no. 5, pp. 3474–3488, 2022.

[10] Y. Kaspi and N. Merhav, “Structure theorems for real-time variable rate
coding with and without side information,” IEEE Trans. Inf. Theory,
vol. 58, no. 12, pp. 7135–7153, 2012.
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Pros:
✓ Light-speed computation (simple

computations)
Cons:

✓ Does not allow for online
re-planning
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Approximation in Policy Space

Backward-Forward Dynamic Programming Algorithm

initial conditions

terminal

...

...

... ...

...

...

stage 𝑡 𝑡 = 𝑛 

forward computation follows optimal trajectory and obtains optimal policies and minimum rate

backward computation finds the optimal policies functions and the optimal cost functions

𝑃𝑡
∗(𝑥𝑡−1|𝑦𝑡−1) 

𝑃𝑡
𝑜(𝑥𝑡−1|𝑦𝑡−1) 

𝑃𝑡
𝑜(𝑥𝑡−1|𝑦𝑡−1) 𝑃𝑡−1

𝑜 (𝑥𝑡−2|𝑦𝑡−2) 

𝑃𝑡−1
𝑜 (𝑥𝑡−2|𝑦𝑡−2) 

𝑃𝑡−1
∗ (𝑥𝑡−2|𝑦𝑡−2) 

𝑃𝑛−1
𝑜 (𝑥𝑛−2|𝑦𝑛−2) 

𝑃𝑛−1
𝑜 (𝑥𝑛−2|𝑦𝑛−2) 

𝑃𝑛−1
∗ (𝑥𝑛−2|𝑦𝑛−2) 

𝑃𝑛
∗(𝑥𝑛−1|𝑦𝑛−1) 

𝑃𝑛
𝑜(𝑥𝑛−1|𝑦𝑛−1) 

𝑃𝑛
𝑜(𝑥𝑛−1|𝑦𝑛−1) 

𝑡 = 1 

from 𝑡 = 0 

𝑃1(𝑥0|𝑦0) 

𝑃1(𝑦0)  

𝑃𝑡−2
∗ (𝑦𝑡−2|𝑦𝑡−3, 𝑥𝑡−2) 

𝑃1
∗(𝑦1|𝑦0, 𝑥1) 

𝑃𝑡
∗(𝑦𝑡|𝑦𝑡−1, 𝑥𝑡) 

𝑃𝑡−1
∗ (𝑦𝑡−1|𝑦𝑡−2, 𝑥𝑡−1) 

𝑃𝑛−2
∗ (𝑦𝑛−2|𝑦𝑛−3, 𝑥𝑛−2) 

𝑃𝑛
∗(𝑦𝑛 |𝑦𝑛−1, 𝑥𝑛) 

𝑃𝑛−1
∗ (𝑦𝑛−1|𝑦𝑛−2, 𝑥𝑛−1) 

• binary alphabet .

• Hamming distortion metric .

❖ Settings

 Example 1. Time-varying binary symmetric Markov source

• belief state space with 

quantization level 

• Lagrange multiplier

• time horizon 

Parallel computation 

for backward training
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Approximation in Policy Space: Interpretable, Explainable, and Trustworthy
Model-Based RL

✓ Interpretable
☞ Policies operate over explicit belief states Pt(xt−1 | yt−1)
☞ Feedback Control laws are structured and visualizable
☞ No black-box networks-fully transparent policy structure

✓ Explainable
☞ Learning via Alternating Minimization with mathematical grounding
☞ Each step has semantic meaning (e.g., distortion matching)
☞ Derived from KKT conditions and dynamic programming

✓ Trustworthy
☞ Offline optimization with convergence guarantees
☞ Online execution is deterministic and efficient
☞ Learning and deployment are cleanly decoupled

✓ Goal-Aware (Semantic Layer)
☞ Policies preserve only task-relevant information
☞ Semantic rate-distortion ensures minimal, purposeful encoding
☞ Supports explainable pruning of irrelevant details
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Q-Factor Recursions

Stochastic DP Algorithm via Q-Factors

(Offline training-Backward in Time)

Q∗
t (bt, µt) = E

{
gt(bt, µt) + min

µt+1
Q∗

t+1(bt+1, µt+1)

}
with the terminal condition Q∗

t+1(bt+1, µt+1) = 0 when t = N .

(Online Computation-Forward in Time)

µ∗
t (bt) = argmin

µt
Q∗

t (bt, µt), t = 0, 1, . . . , N

☞ We will tackle the problem assuming approximate DP with truncated rollout9
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Approximation in Value Space via Truncated Rollout

online rollout evaluation to generate rollout trajectory

offline approximation over

...

current stage 

...

next stage 

functional
minimization

instantaneous
evaluation

information state update

base policy 
(trajectory)

base policy 
(trajectory)

base policy 
(trajectory)

rollout information-state trajectory
rollout policy

The online rollout involves:

1) Functional minimization;

2) Instantaneous policy evaluation;

3) Information state update. 

Then as k →∞, we obtain for any t that

Dt[u
t−1, bt, µ

(k)
t ]→ Dst [u

t−1, bt]

Qt(bt, µ
(k)
t )→ Q∗

t (bt, µ
∗
t )

whereas Qt(bt, µ
(k)
t ) and Dt[u

t−1, bt, µ
(k)
t ] are expressed as

Qt(bt, µ
(k)
t ) =

∑

xt∈Xt,ut∈Ut

btwtµ
(k)
t

(
log

(
µ
(k)
t

ν
(k)
t

)

+Q∗
t+1(bt+1, µt+1)

)
(27)

Dt[u
t−1, bt, µ

(k)
t ] =

∑

xt∈Xtut∈Ut

µ
(k)
t btwtρt(xt, ut). (28)

Proof: The proof follows from [15, Theorem 5] with
Q-factor representation.

Therefore, to approximate Qπ̄
Ns

over the rolling horizon
Ns, the results provided by Lemma 4 can be implemented via
backward computation from the terminal stage t = N down
to stage t = N − Ns + 1, as detailed in Algorithm 1. The
following lemma complements Algorithm 1 by providing a
stopping criterion to terminate the procedure after a finite
number of iterations.

Lemma 5: (Stopping criterion of Algorithm 1) For each
t ∈ NN

0 , the point Dst [u
t−1, bt] given by (24) admits the

following bounds

Q∗
t (bt, µt) ≤ −

∑

xt∈Xt

(
btwt log(

∑

ut∈Ut

νtAt[bt](xt, yt, st))

)

−
∑

ut∈Ut

νtct[u
t−1](ut) log ct[u

t−1](ut) + stDst [u
t−1, bt],

(29)

Q∗
t (bt, µt) ≥ −

∑

xt∈Xt

(
btwt log(

∑

ut∈Ut

νtAt[bt](xt, yt, st))

)

− max
ut∈Ut

log ct[u
t−1](ut)stDst [u

t−1, bt], (30)

where ct[u
t−1](ut) is expressed as a function of fixed ut−1

ct[u
t−1](ut) =

∑

xt∈Xt

btwtAt[bt](xt, yt, st)∑
ut∈Ut

νtAt[bt](xt, yt, st)
.

Proof: The proof follows from [15, Theorem 6] with
Q-factor representation.

Lemma 5 generates a stopping criterion for Algorithm 1
at the k-th iteration by setting the estimation error ϵ per time
stage, i.e., TUt

[ut−1, bt]− TLt
[ut−1, bt] where

TUt
[ut−1, bt] =

∑

ut∈Ut

νtct[u
t−1](ut) log ct[u

t−1](ut)

TLt [u
t−1, bt] = max

ut∈Ut

log ct[u
t−1](ut).

Comments on Algorithms 1: Algorithm 1 approxi-
mates the control policy {µ∗

t (bt) : t ∈ NN
N−Ns+1, bt ∈

B̄t}, the corresponding output distribution {ν∗t [bt] : t ∈
NN

N−Ns+1, bt ∈ B̄t}, and the associated cost-to-go functions
Q∗

t for t ∈ NN
N−Ns+1. These quantities are functions of the

fixed U t−1 = ut−1, the base information-state space B̄t,
and also the one-step lookahead (time stage t + 1) base

Algorithm 1 Offline Base Control Policy Approximation

Input: given {wt : t ∈ NN
N−Ns+1},

given base information state bt ∈ B̄t, Lagrange multipli-
ers {st ≤ 0 : t ∈ NN

Ns
}, error tolerance ϵ > 0

1: Initialize {ν(0)t : t ∈ NN
N−Ns+1}

2: for t = N : N −Ns + 1 do
3: k ← 0
4: while TUt

[ut−1, bt]− TLt
[ut−1, bt] > ϵ do

5: µ
(k)
t ← (25)

6: ν
(k+1)
t ← (26)

7: Qt(bt, µ
(k)
t )← (27)

8: k ← k + 1
9: end while

10: end for
11: Qπ̄

Ns
(bt, µt)← Q∗

Ns
[gt, Q

∗
Ns+1](bt, µ

∗
t )

Output: {µ∗
t (bt) : t ∈ NN

N−Ns+1, bt ∈ B̄t},
{ν∗t [bt] : t ∈ NN

N−Ns+1, bt ∈ B̄t},
{Qπ̄

Ns
(bt, µt) : bt ∈ B̄t, µt ∈ µ∗

t (bt)}.

information-state space B̄t+1. Once these base functions are
approximated backward over the rolling horizon Ns, we can
obtain Qπ̄

Ns
(bt, µt) and subsequently carry out online one-

step truncated-rollout lookahead minimization, starting from
the initial information state b̃1 = P (x0|u0) and the initial
output distribution P (u0). The online rollout approximation
is summarized in Algorithm 2.

Comments on Algorithms 2: In the online truncated-
rollout approximation, for each t with an associated infor-
mation state bt, the rollout control policy µ̃t is determined
by minimizing the approximate Q-factor Q̃π̄

t (bt, µt) averaged
over Pt(u

t−1).

µ̃t = arg min
µt∈π̄

∑

ut−1∈Ut−1

Q̃π̄
t (bt, µt)Pt(u

t−1). (31)

Specifically, Q̃π̄
t (bt, µt) is obtained by one-step truncated-

rollout lookahead minimizing approximate Q-factor (20),
expressed as

Q̃π̄
t (bt, µt) = min

µt

Q̃t[gt, Q
π̄
Ns

](bt, µt). (32)

In this context, the rollout involves first a functional min-
imization followed by an instantaneous policy evaluation.
Specifically, the minimization in (32) corresponds to steps
3–9 of Algorithm 1, with Qt and Qt+1 replaced by Q̃t

and Qπ̄
Ns

respectively. Hence, convergence is guaranteed
by Lemma 4 and its associated stopping criterion. After
determining the rollout policy µ̃t, the subsequent information
state b̃t+1 is updated via recursion in (3). Consequently, our
rollout-based offline-online approach yields an approximate
solution to (8), generating an information-state trajectory
{b̃t, t ∈ NN

1 }. The resulting rollout policy sequence, π̂ =
{µ0, µ̃1, . . . , µ̃N}, achieves the minimum defined by (31)
for each t ∈ NN

1 . We now show that the performance of
our proposed rollout policy is at least no worse than that of
the base policy.

Theorem 6: For any t ∈ NN
1 , denote the by J̃ π̂

t (bt) and
J̃ π̄
t (bt) the cost-to-go averaged over Pt(u

t−1) corresponding

Pros:
✓ No need for full discretization of

the belief-state
✓ Stable and repeatable method
✓ Memory efficient
✓ Provable convergence guarantees

for any rolling horizon
Cons:

✓ Approximation due to truncation of
the horizon

✓ Dependent on the discretization
✓ Pretraining is required
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Approximation in Value Space via Truncated Rollout

online rollout evaluation to generate rollout trajectory

offline approximation over

...

current stage 

...

next stage 

functional
minimization

instantaneous
evaluation

information state update

base policy 
(trajectory)

base policy 
(trajectory)

base policy 
(trajectory)

rollout information-state trajectory
rollout policy

The online rollout involves:

1) Functional minimization;

2) Instantaneous policy evaluation;

3) Information state update. 

to the rollout policy and base policy, respectively, starting at
information state bt, which are expressed as

J̃ π̂
t (bt) =

∑

ut−1∈Ut−1

Q̃π̂
t [gt, Q

π̄
Ns

](bt, µ̃t)Pt(u
t−1), (33)

J̃ π̄
t (bt) =

∑

ut−1∈Ut−1

Q̃π̄
t [gt, Q

π̄
Ns

](bt, µt)Pt(u
t−1). (34)

Then J̃ π̂
t (bt) ≤ J̃ π̄

t (bt) for all bt.
Proof: We prove this by induction backward in time.

Clearly it holds for t = N since J̃ π̂
N = J̃ π̄

N according to (13).
Assuming it holds for time stage t+ 1, we have for all bt

J̃ π̂
t (bt)

(a)
=

∑

ut−1∈Ut−1

Q̃π̂
t [gt(bt, µ̃t), Q

π̄
Ns

(b̃t+1)](bt, µ̃t)Pt(u
t−1)

(b)

≤
∑

ut−1∈Ut−1

Q̃π̄
t [gt(bt, µ̃t), Q

π̄
Ns

(b̃t+1)](bt, µ̃t)Pt(u
t−1)

(c)
= min

µt∈π̄∑

ut−1∈Ut−1

Q̃π̄
t [gt(bt, µt), Q

π̄
Ns

(bt+1)](bt, µt)Pt(u
t−1)

(d)

≤
∑

ut−1∈Ut−1

Q̃π̄
t [gt(bt, µt), Q

π̄
Ns

(bt+1)](bt, µt)Pt(u
t−1)

= J̃ π̄
t (bt),

where
(a)
= is the DP equation for rollout policy (33),

(b)

≤
holds because of the inductive assumption,

(c)
= holds by the

definition of the online rollout minimization according to

(31), and
(d)

≤ holds by the DP equation for the base policy
(34). This completes the proof.

Theorem 6 shows the cost improvement property, ensuring
that the rollout policy does not degrade the performance of
the base policy. Furthermore, repeated rollout computation
can be applied after one round of the rollout computation
with new discretized information-state space B̃t based on
observations from the information-state trajectory obtained
in the previous rollout iteration. Consequently, the new base
policy π̃ can be computed using Algorithm 1 and subse-
quently enhanced through Algorithm 2. Repeated rollout can
progressively yield a better approximation to the optimal
solution of the problem (8).

IV. NUMERICAL EXAMPLES

This section provides numerical simulations to support our
theoretical findings that led to Algorithms 1, 2. We consider
one example, assuming binary alphabets, i.e., {Xt = Ut =
{0, 1} : t ∈ NN

0 }, with Hamming distance function given by

ρt(xt, ut) ≡ ρ(xt, ut) =

{
0, if xt = ut

1, if xt ̸= ut
, ∀t. (35)

Due to the computation complexity and for further ap-
proximation, we consider finite previous control memory
(memory-1 ut−1 ≈ ut−1) applied for information state bt =
Pt(xt−1|ut−1), control policy µt = Pt(ut|ut−1, xt), output

Algorithm 2 Online Rollout Evaluation

Input: {B̄t : t ∈ NN
N−Ns+1} of given {bt : t ∈ NN

N−Ns+1},
{µ∗

t (bt) : t ∈ NN
N−Ns+1, bt ∈ B̄t},

{ν∗t [bt] : t ∈ NN
N−Ns+1, bt ∈ B̄t},

{Qπ̄
Ns

: bt ∈ B̄t}.
1: Initialize µ0 = P0(u0|x0), P1(u

0), b̃1 = P (x0|u0)
2: for t = 1 : N do
3: Q̃π̄

t (b̃t, µt)← step 3-9 in Algorithm 1
4: µ̃t ← (31)
5: b̃t+1 ← (3)
6: end for
Output: π̂ = {µ0, µ̃1, . . . , µ̃N}, {b̃t, t ∈ NN

1 },
{ν̃t : t ∈ NN

0 }, C π̃(XN , UN ).

distribution νt = Pt(ut|ut−1), and the marginal Pt(ut−1).
Under this assumption, we consider the base information-
state space B̄t, which consists of a matrix comprising two
“quantized” binary probability distributions drawn from the
original continuous state space. We denote with nt each
quantization level per t, which leads to a belief state space
B̄t with size |B̄t| = n

|Ut−1|
t = n2

t , representing combinations
of 2 out of nt quantized binary distributions.

Example 1: (Time-invariant binary controlled symmetric
Markov chain) The source distribution wt at each t ∈ NN

1

is chosen such that for each t, we have

wt =

(
1− α0 α0 1− α1 α1

α0 1− α0 α1 1− α1

)
, (36)

where the first two columns are under the condition of
ut−1 = 0 and the rest columns for ut−1 = 1, and α0, α1 ∈
(0, 1). Moreover, we choose the quantization levels {nt = n :
t ∈ NN

1 } and the stage-wise Lagrangian {st = s : t ∈ NN
0 }.

We first illustrate the computational complexity of our pro-
posed scheme compared with the approach in [15]. As shown
in Table II, the proposed rollout-based method significantly
reduces offline computation time by operating over a much
shorter rolling horizon (Ns << N ). In contrast, the offline
training of [15] requires computing the optimal policy and
corresponding cost-to-go functionals over the entire horizon,
with the discretization information-state space at each stage,
leading to significantly higher time consumption. Although
the online rollout lookahead minimization of our proposed
approach is a bit time-consuming, it offers a clear cost
improvement over the prior approach in [15] under the same
information-state space discretization level (See Fig. 2, 3a).
We also demonstrate the cost performance of repeated rollout
in Fig. 3a where the updated information-state space B̃t
with |B̃t| = n2

t , is constructed based on the observed value
range in Fig. 3b. Using this refined B̃t for a new round of
offline base policy approximation, we observe a further cost
improvement after the online rollout evaluation.

In Fig. 3b-3d, we demonstrate some results applying
the proposed rollout with Algorithms 1, 2 by multi-core
processing for n = 20, α0 = 0.4, α1 = 0.8, s = −2, N =
100, NS = 5. We observe that the transients of the rollout
information state, the rollout control policy, and the output
distribution, respectively, reach a stationary value apart from

Pros:
✓ Policy improvement via one step

lookahead minimization
✓ Allows for online re-planning (real

time adaptivity)
✓ Scalable and stable method

Cons:
✓ Computationally expensive
✓ Relies on the quality of the base

policy
✓ No long-term guarantees
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Approximation in Value Space via Truncated Rollout

online rollout evaluation to generate rollout trajectory

offline approximation over

...

current stage 

...

next stage 

functional
minimization

instantaneous
evaluation

information state update

base policy 
(trajectory)

base policy 
(trajectory)

base policy 
(trajectory)

rollout information-state trajectory
rollout policy

The online rollout involves:

1) Functional minimization;

2) Instantaneous policy evaluation;

3) Information state update. 

• binary alphabet 

• Hamming distortion metric 

❖ Settings
Parallel computation 

(Offline & Online)

 Example 2. Time-invariant binary symmetric Markov source

• information-state space with 

quantization level 

• Lagrange multiplier

• time horizon , 

✓ stable RL approach

✓ good scalability
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Q-factor Truncated Rollout: Interpretable, Explainable, and Trustworthy
Model-Based RL

✓ Interpretable
☞ Explicit Q-factor functions over belief states and actions
☞ Policies derived by structured, transparent minimization
☞ Full visibility into how decisions depend on expected future cost

✓ Explainable
☞ Modular architecture: offline base policy + online rollout
☞ Each policy improvement step is locally justified and auditable
☞ Stage-by-stage reasoning: traceable Q-updates and decision logic

✓ Trustworthy
☞ Offline computation is stable, convergent, and verifiable
☞ Online rollout guarantees improvement over base policy
☞ Deterministic, certified decision-making at deployment

✓ Goal-Aware (Semantic Information Structure)
☞ Policies shaped by directed information and task-driven costs
☞ Prunes irrelevant information via semantic compression
☞ Enables transparent understanding of what matters for control
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Possible collaboration opportunities: How can we jointly design and identify the
fundamental limits of communication, sensing, and control?

Stochastic Linear Fully 

Observable Plant (Pt)

Encoder 

(Et)
Decoder

(Dt)

Controller 

(Ut)

pyt

ut
r

Noisy 
channel

pxt

atbt

Encoder ReceiverW Ŵ

Xi Yi

Si

Ŝn Estimator

Zi�1

Transmitter PS

PY Z|XS

Fig. 1. State-dependent channel with generalized feedback

1) a message set W = [1 : 2nR];
2) an encoder that sends a symbol xi = φi(w, z

i−1) for
each message w ∈ W and each delayed feedback output
zi−1 ∈ Zi−1;

3) a decoder that assigns a message estimate ŵ =
g(yn, sn) ∈ W;

4) a state estimator that assigns an estimation sequence ŝn ∈
Ŝn to each feedback output sequence zn ∈ Zn and the
channel input sequence xn ∈ Xn. The set Ŝ denotes the
reconstruction alphabet.

The state estimate is measured by the expected distortion

E[d(Sn, Ŝn)] = 1

n

n∑

i=1

E[d(Si, Ŝi)]

where d : S × Ŝ 7→ [0,∞) is a distortion function.
A rate distortion pair (R,D) is said to be achievable if
there exist (2nR, n) codes with limn→∞ P (Ŵ 6= W ) = 0
and lim supn→∞E[d(Sn, Ŝn)] ≤ D. The capacity-distortion
tradeoff C(D) is defined as the supremum of R such that
(R,D) is achievable.

From the well-known result on a memoryless channel with
i.i.d. random states where the state is available only at the
decoder [6, Sec. 7.4], the capacity for the case of unconstrained
distortion is

C(D =∞) = max
PX

I(X;Y, S) = max
PX

I(X;Y |S), (2)

where the maximum is over the input distribution PX . This
capacity is achieved by ignoring the feedback.

III. CAPACITY-DISTORTION TRADEOFF

This section characterizes the capacity-distortion tradeoff
C(D). We provide some useful lemmas and then the converse
and achievability proofs.

Theorem 1. The capacity-distortion tradeoff of the state-
dependent memoryless channel with the i.i.d. states is given
by

C(D) = max I(X;Y |S) (3)

where the maximum is over all PX satisfying E[d(S, Ŝ)] ≤
D and the joint distribution of SXY ZŜ is given by
PX(x)PS(s)PY Z|XS(yz|xs)PŜ|XZ(ŝ|xz).

To prove Theorem 1, we first provide useful properties of
C(D) and the state estimator.

Lemma 1. C(D) is a nondecreasing concave function of D
for D ≥ Dmin

∆
= minE[d(S, Ŝ)] where the minimum is over

all PX and PŜ|XS .

Lemma 2. We can choose without loss of generality a deter-
ministic estimator given by

ŝ = ŝ(x, z) = arg min
s′∈S

∑

s∈S
PS|XZ(s|x, z)d(s, s′) (4)

for all x, z.

Proof.

E[d(S, Ŝ)] = E
[
E[d(S, Ŝ)|X,Z]

]

(a)
=
∑

x,z

PXZ(xz)
∑

ŝ∈S
PŜ|XZ(ŝ|xz)

∑

s

PS|XZ(s|xz)d(s, ŝ)

≥
∑

x,z

PXZ(xz)min
ŝ∈S

∑

s

PS|XZ(s|xz)d(s, ŝ)

(b)
=
∑

x,z

PXZ(xz)
∑

s

PS|XZ(s|xz)d(s, ŝ(x, z))

= E[d(S, ŝ(X,Z))] (5)

where (a) follows from the Markov chain Ŝ −XZ − S, and
(b) follows by choosing (4).

A. Converse

From Fano’s inequality we have

nR ≤ I(W ;Y n, Sn) + nεn

= I(W ;Y n|Sn) + nεn

=
n∑

i=1

H(Yi|Y i−1Sn)−H(Yi|W,Y i−1Sn) + nεn

(a)

≤
n∑

i=1

H(Yi|Si)−H(Yi|Xi, Y
i−1,W, Sn) + nεn

(b)
=

n∑

i=1

H(Yi|Si)−H(Yi|Xi, Si) + nεn

=
n∑

i=1

I(Xi;Yi|Si) + nεn (6)

where (a) follows by removing the conditioning on
{Sl}l 6=i, Y i−1 in the first term and adding the condi-
tioning on Xi in the second term; (b) follows because
(W,Y i−1, {Sl}l 6=i) − (Si, Xi) − Yi forms a Markov chain.
We also have

R ≤ 1

n

n∑

i=1

I(Xi;Yi|Si) + εn

(a)

≤ 1

n

n∑

i=1

C
(
E[d(Si, Ŝi)]

)
+ εn

(b)

≤ C

(
1

n

n∑

i=1

E[d(Si, Ŝi)]
)

+ εn

(c)

≤ C(D) (7)
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Fundamental Questions...

☞ Consider Finite State Channels with feedback + sensing?
☞ Joint source-channel-control-sensing design?
☞ Low coding delays scenarios?

3M. Kobayashi et al., Joint state sensing and communication over memoryless MAC, IEEE ISIT,
2019

4M. Ahmadipour et al., An information-theoretic approach to joint sensing and communication,
IEEE Tras. Info. Theory, 2023

5Y. Xiong et al., On the fundamental tradeoff of integrated sensing and communications under
Gaussian channels, IEEE Tras. Info. Theory, 2023

19th of June, 2025 15 / 16



Thank you!

QUESTIONS

For more information:

Photios A. Stavrou (fotios.stavrou@eurecom.fr)
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