Learning over Compressed Data

Elsa Dupraz

June 2025

Coding for Learning team

Ismaila Salihou-Adamou

Jiahui Wei

Ahcen Aliouat

Yann Miguet

Motivation

- Every minute:
 - ▶ 500 hours of video uploaded on Youtube
 - 240,000 images uploaded on Facebook
- Huge mass of data for transmission, storage, and processing
- Need for learning over coded data

Motivation

- Every minute:
 - 500 hours of video uploaded on Youtube
 - 240,000 images uploaded on Facebook
- ▶ Huge mass of data for transmission, storage, and processing
- Need for learning over coded data
- Goal-oriented communications/task-aware compression:

(Some) key questions

► Can we apply learning over compressed data, without any decoding?

(Some) key questions

Can we apply learning over compressed data, without any decoding?

Can we design a universal coding scheme?

(Some) key questions

Can we apply learning over compressed data, without any decoding?

Can we design a universal coding scheme?

In this talk

- What is the IT performance of coding schemes for learning?
- Can we use the IT analysis to design efficient practical coding schemes?

Outline

Introduction

Classification

Conclusion

Distributed Hypothesis Testing²

 $\begin{array}{c|c} X & & \\ \hline & & \\ Y & & \\ \hline \end{array}$ Encoder $\begin{array}{c|c} R & & \\ \hline & & \\$

Hypothesis-testing formulation:

$$\mathcal{H}_0: (\mathbf{X}, \mathbf{Y}) \sim P_{\mathbf{XY}},$$

 $\mathcal{H}_1: (\mathbf{X}, \mathbf{Y}) \sim P_{\mathbf{\bar{X}\bar{Y}}}.$

Performance criteria:

(Type-I error)
$$\alpha_n = \mathbb{P} (\text{decide } \mathcal{H}_1 \mid \mathcal{H}_0 \text{ is true}),$$

(Type-II error) $\beta_n = \mathbb{P} (\text{decide } \mathcal{H}_0 \mid \mathcal{H}_1 \text{ is true}).$

 $^{^{1}}$ R. Ahlswede and I. Csiszár, Hypothesis testing with communication constraints," IEEE Transactions on Information Theory, 1986

 $^{^2}$ T. S. Han, Hypothesis Testing with Multiterminal Data Compression, IEEE Transactions on Information Theory, 1987.

Information-theoretic results

Objective: for a given R, derive the **error exponent** θ such that

$$\alpha_n < \alpha, \quad \lim_{n \to \infty} \sup \frac{1}{n} \log \frac{1}{\beta_n} \ge \theta \quad (\beta_n \le \exp(-n\theta))$$

 $^{^3}$ Shimokawa et al. (1994), Katz et al. (2015), Kochman et al. (2023), Adamou et al. (2024), etc.

Information-theoretic results

Objective: for a given R, derive the **error exponent** θ such that

$$\alpha_n < \alpha$$
, $\lim_{n \to \infty} \sup \frac{1}{n} \log \frac{1}{\beta_n} \ge \theta$ $(\beta_n \le \exp(-n\theta))$

► It was shown that ³

$$\theta \leq \sup_{P_{\text{ULY}}} \left\{ \min \left\{ \theta_{\text{test}}, \theta_{\text{bin}} \right\} \right\},$$

 $^{^3}$ Shimokawa et al. (1994), Katz et al. (2015), Kochman et al. (2023), Adamou et al. (2024), etc.

Information-theoretic coding scheme

Encoder:

- **Quantization**: represent the 2^n sequences \mathbf{x}^n by 2^{nr} codewords \mathbf{u}^n
- **Binning**: randomly assign the 2^{nr} codewords to 2^{nR} bins (R < r)

Information-theoretic coding scheme

Encoder:

- **Quantization**: represent the 2^n sequences \mathbf{x}^n by 2^{nr} codewords \mathbf{u}^n
- **Binning**: randomly assign the 2^{nr} codewords to 2^{nR} bins (R < r)

Decoder:

- **Bin extraction**: Pick $\hat{\mathbf{u}}^n$ such that $(\hat{\mathbf{u}}^n, \mathbf{y}^n) \in \mathcal{T}_n^{(2)}$
- **Decision**: Decide \mathcal{H}_0 if $(\hat{\mathbf{u}}^n, \mathbf{y}^n) \in A_n$

Quantize-binning scheme in practice

Quantize-binning scheme in practice

Quantize-binning scheme in practice

Proposed coding scheme⁴

Encoder: $(G_q: n \times k \text{ and } H_b: \ell \times k)$

Quantization: Calculate \mathbf{u}_q^k as:

$$\mathbf{u}_q^k = \arg\min_{\mathbf{u}^k} d(G_q \mathbf{u}^k, \mathbf{x}^n)$$
 with $\mathbf{x}_q^n = G_q \mathbf{u}^k$

Binning: we compute

$$\mathbf{z}^{\ell} = H_b \mathbf{u}_q^k$$

⁴Elsa Dupraz, Ismaila Salihou Adamou, Reza Asvadi, Tadashi Matsumoto, Practical Short-Length Coding Schemes for Binary Distributed Hypothesis Testing, ISIT 2024

Proposed coding scheme⁴

Encoder: $(G_q: n \times k \text{ and } H_b: \ell \times k)$

Quantization: Calculate \mathbf{u}_q^k as:

$$\mathbf{u}_q^k = \arg\min_{\mathbf{u}^k} d(G_q \mathbf{u}^k, \mathbf{x}^n)$$
 with $\mathbf{x}_q^n = G_q \mathbf{u}^k$

▶ Binning: we compute

$$\mathbf{z}^{\ell} = H_b \mathbf{u}_q^k$$

Decoder:

Bin extraction: Identify the vector \mathbf{u}_{q}^{k} such that

$$\hat{\mathbf{u}}_q^k = \arg\min_{\mathbf{u}_q^k} d(G_q \mathbf{u}_q^k, \mathbf{y}^n) \text{ s.t. } H_b \mathbf{u}^k = \mathbf{z}^\ell$$

Decision: Apply a NP test as $d(\mathbf{x}_q^n, \mathbf{y}^n) < \lambda$ to decide \mathcal{H}_0

⁴ Elsa Dupraz, Ismaila Salihou Adamou, Reza Asvadi, Tadashi Matsumoto, Practical Short-Length Coding Schemes for Binary Distributed Hypothesis Testing, ISIT 2024

Numerical results

- We need to consider short codes
- ▶ Practical quantizers with BCH(31,16) and BCH(63,36) codes

Learning over LDPC-coded data⁵

► Classification over compressed images, without any prior decoding

Accuracy of the GRU model on LDPC-coded data:

Dataset	Model	No coding		Coding on Orig. (Setup1)			Coding on JPEG (Setup2)				
		None	None MSB	Huff [28]	Arith [28]	LDPC	JPEG [28]	DCT -tr. 27	J-L 8bp	J-L MSB	J-L MSB+1bp
MNIST	GRU12(proposed) GRU32(proposed)	0.9439 0.9799	0.8842 0.9154	0.6790 0.7563	0.5086 0.5370	0.8192 0.8556	-	-	0.9060 0.9237	0.6548 0.6843	0.8791 0.8849
	UVGG11 [28] URESNET18 [28]	0.9891 0.9875	-	0.8323 0.7450	0.6313 0.5949	-	-	-	-	-	-
	FullyConn [27]	0.9200	-	-	-	-	-	0.9000	-	-	-
YCIFAR -10	GRU12 GRU32	0.3127 0.3596	0.3249 0.3560	0.2374 0.2400	-	0.4070 0.4171	-	-	0.4234 0.4316	0.1350 0.1403	0.3537 0.3544
	UVGG11 [28] URESNET18 [28]	0.5657 0.3836	-	0.3606 0.2591	0.2976 0.2432	-	0.3245	-	-	-	-
	FullyConn [27]	0.3800	-	-	-	-	-	0.3000	-	-	-

 $^{^{5}}$ A. Aliouat, E. Dupraz, Learning on JPEG-LDPC Compressed Images: Classifying with Syndromes, EUSIPCO 2024

Outline

Introduction

Classification

Conclusion

Conclusion

- Various tasks can be addressed with quantize-binning schemes constructed using linear block codes (regression, classification, clustering)
- There is a need for more systematic information-theoretic analyses of these tasks
- Issues of learning without decoding and universal codes are still widely open

Conclusion

- Various tasks can be addressed with quantize-binning schemes constructed using linear block codes (regression, classification, clustering)
- There is a need for more systematic information-theoretic analyses of these tasks
- Issues of learning without decoding and universal codes are still widely open

Thank you!