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Traditional Sensing and Communications Separation

Communication ) Sensing

o =l

Conventional approach

@ Individual hardware with own antenna and own RF
chain for each of the two tasks

o Separate bandwidths for the two tasks
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Integrated Sensing and Communication (ISAC)
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e Synergistic hardware, bandwidth, and waveform performing
both tasks: Sensing and Communications
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Motivation for Integrating Sensing and Communication

The most immediate benefits of ISAC:

@ Cellular communication move up in frequencies, even to the THz
regime
— radar and cellular communication occupy similar bandwidths

o Integrating radar and communication will allow to free up precious
bandwidth

@ Savings in hardware costs, resources, and energy consumption
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Important Use Cases
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Current Status of ISAC

e Predicted to be crucial building block of future 6G networks

@ Heavily investigated in the communications and signal processing
societies

e First prototypes available

Information-theoretic angle of attack

Determine the optimal performances of ISAC systems. And the
inherent tradeoffs between sensing and communications
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The Discrete Memoryless Channel (DMC)

M (le"'vX’n) (Yl,...,Yn) M
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o Discrete-time and stationary memoryless channel law:
P[Y:= )/’Xt =x" Y1 = yt_l] = Py x(y|xt)

o Finite input and output alphabets X and Y

o Error probability P{" = P[M # M|
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A Refined Shannon Theorem

What Shannon says:

o There is no family of encodings/decodings {(f(", g(")152, of rate
R>C
such that Pé") —0asn—

e For any rate R < C there does exist a family of
encodings/decodings {f(", g(”))}ﬁ‘):1
s.t. Pén) —0as n— oo
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A Refined Shannon Theorem

A stronger version:

For any distribution Px over X:

o There is no family of encodings/decodings {(f(", g(M)}>2, of rate
R > I(X;Y) and with codebook statistics Px
such that Pg") —0as n— oo

e For any rate R < I(X;Y) there does exist a family of
encodings/decodings {f("), g(M)}°°  with codebook statistics Px
s.t. Pén) —0asn— o
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Information Theoretic Model for ISAC Kobayashi et al.

Y; M

e state sequence S" = (51,...,5,) i.id. ~ Ps

@ Behaviour of the channel depends on the state S”
(for example the acceleration of an object)

e Sensing Performance measured by Average Block-Distortion:

im L > "E[d(Si, 5)] < D.
i=1

n—o0 N 4
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Distortion as a Sensing Performance

M

@ Sensing Performance Measured by Average Block-Distortion:

I|m fZE[d(S,,S )] < D.

e Examples of distortion measures
o Mean-Squared Error d(s,$) = (s — §)?
o Hamming weight d(s,$) = 1{s # §}

o Distortion on a function of the state d(s, §) = d’(f(s), $)
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Information-Theoretic Fundamental Limit

Y; M

Capacity-distortion tradeoff C(D) is largest rate R such that there
exist encoders, decoders and estimators with

Pr(l\?l;él\/l)—)o as n— oo

and

im =S E[d(S, $)] < D
i=1

n—00 N 4
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Capacity-Distortion Tradeoff C(D)

Theorem (Kobayashi et al.)

Capacity-distortion tradeoff
C(D) :=maxI(X;Y)
where mazximum is over Px satisfying

E[d(S,$"(X, 2))] < D.

e Tradeoff between communication and sensing stems from Px

o Generalized feedback not used for coding. Simple point-to-point

codes are sufficient. It suffices to adjust input pmf Px to desired
sensing performance.
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Ex.: Rayleigh Fading Channel

Standard Gaussian state and noises S, N, Ng,

Rayleigh fading channel Y/ = SX + N

Rx observes Y = (Y’,S) and Tx Z = Y’ + Np,

Input power constraint P = 10dB

Quadratic distortion d(s,$) = (s — $)2.

e X ~ N(0, P) achieves capacity

=== Resource Sharing
—C(D)

e X+ VP optimal for sensing

! I ! I !
0.1 0.15 0.2 0.25 0.3 0.35 0.4
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The Finite Blocklength Regime

e Given blocklength n, triple (R, D, ¢) is called achievable if 3
encoder, decoder, and estimator with

Pr (M ” M) <e and iiE[d(S;, $) <D
i=1

e Can reuse the optimal
estimator s*(x, z) from the
capacity-problem!

o Ex.: Z=Y = XS and
S ~B(0.4) and € = 103

[3] H. Nikbakht et al., “Integrated Sensing and Communication in the Finite
Blocklength Regime”, ISIT 2024.
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Information-Theoretic Finite-Blocklength Bounds

Theorem

Given n. Triple (R, D, €) is achievable if 3 Px and K > 0 s.t.:

R 10X;Y) \fQ '°gn(”), (1)

D > E[d(S,8(X,Z2)) 2)

IA

andV /T the 2nd / 3rd cent. mom. of i(X;Y).

with B, 1= iK+ T =
Triple (R, D, €) not achievable if Y6 > 0 and pmfs P satisfying (2):
V__ log(n) logd
R > I(X;Y)—4/—-0Q! _ =
> 106Y) — Y e+ )+ B _losd
where B 1= \/% + -

[3] H. Nikbakht et al., “Integrated Sensing and Communication in the Finite

Blocklength Regime”, ISIT 2024.
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Beyond the Memoryless Assumption

e arbitrary state sequence S" = (S1,...,S,) (for each n)
e No feedback coding X" = f"(M)

o arbitrary channel law Pznyn xnsn (for each n)

o general distortion constraint lim,_,. 1E[d(S", SM<D

Theorem (Capacity-distortion tradeoff)

1
C(D):= sup p— lim ~i(X" Y")

{PX"}n n—oo N

where supremum over all {Pxn} s.t. lim, o0 %E[d(S",g"(X”, Z"N] <D

[4] Chen et al. “On general capacity-distortion formulas of integrated sensing and

communication,” Arxiv 2023.
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ISAC Models with Detection Exponents

ZL
\ 4
X
Enc.{f;} Px?/-lzp(
Gl T M e {0,1}

e Single sensing parameter H € {0,1} constant for all times

@ Sensing performance measured in detection-error exponents

e Symmetric detection exponent:

Esym ;:nimm—%mg(max{lp [7%: 1|H:0] : P['}%:om: 1”)
e Stein’s exponent requires
lim P[ﬁzomzl}

n— o0
Osien =  lim —logP {H —0|H= 1}

IN
[0}



Relation to a Compound Channel

H
Pyix

THE{QH
e Without the sensing it is a compound channel

o Compound capacity without feedback:
Ccompound < n;)ix m?_iln I(X; Y’/H)

Cannot adjust codebook statistics Px to the channel H!
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Relation to a Compound Channel

| Y; i
' i
L X " Y; M

THE{OH

e Without the sensing it is a compound channel

e Compound capacity without feedback:

Ccompound < maxmin /(X. Y’H)
Px H
Cannot adjust codebook statistics Px to the channel H!

e Compound capacity with feedback:

Ccompound,fb < m,}_lln n;?(XI(X' Y|/H) - m?_ltn C('DY|X)

Can learn channel and adapt codebook statistics!
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ISAC Model with Stein Error Exponent

M ) 7 M
Enc.{f:} P;"/{Z\X -

THE{().I}

Theorem (Ahmadipour et al.)

(R, Estein) pairs are achievable iff for some Px:
R < min 1(X; Y|H),

Estein < ZPX x)D(Pzix (- [x)[| Qz|x (+[x)

e Tradeoff between sensing and communication due to common Px!
(input statistics)

[5] M. Ahmadipour, M. Kobayashi, M. W. and G. Caire, “An Information-Theoretic

Approach to Joint Sensing and Communication,” Trans. IT, 2022.
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Adaptive Channel Coding/Sensing
z,

H
Py x

THE{OJ}

e Feedback allows the encoder to “learn” the channel parameter H
and to adapt its coding to the correct channel

e Sensing (detection) problem is still open when A non-binary
— adaptive inputs also improve detection performance

o Chang et al. propose joint sensing and communication schemes

@ Problem seems difficult and is open!

[[7] M.-C. Chang, et al. “Rate and detection-error exponent tradeoff for joint

communication and sensing of fixed channel states,” JSAIT 2023.
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Network ISAC

Feedback @
K\ \ o Data sent to both receivers
M
)

(4]

Feedbac &

o Fundamental limits partly
characterized

1///Z>

@ Both Transmitters sense and send data

e Comm. path between Txs! — Collaborative comm. and sensing
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Summary

o Presented information-theoretic framework for integrated sensing
and communication [Kobayashi,Caire,Kramer’'18] and [Joudeh& Willems’22)]

o Information-theoretic limits have been derived for various sensing
criteria and discrete-memoryless channels/state sequences

e Single Tx: optimal sensing performance depends only on x”
statistics.

e Tradeoff between rates and distortion(s)/exponents .
o Multiple Txs: Fully integrate coding for collaborative sensing and

comm.
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Interesting future research directions

Simplified capacity-expressions/coding schemes for channels with
memory

o Continuous-time channels

Other sensing criteria

e Further investigations on secrecy constraints
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