Locally Private Compression

Aslan Tchamkerten
Telecom Paris

Venkat Chandar DE Shaw Sidharth Jaggi U Bristol June 19th

Shashank Vatedka IIT Hyderabad

Locally private compression

Compress a DMS X^n such that

- X_i can be retrieved from a small subset of compressed bits
- · which reveal no information about the other bits $X_{[n]\setminus i}$

Two extremes:

- · No compression: perfect local decodability and privacy
- · Virtually all existing compressors are not locally private.

Compression with local decodability and privacy

A rate-R privately locally decodable compression scheme consists of

· A randomized encoder

$$\left\{p_{C^{nR}|x^n} \,:\, x^n \in \mathcal{X}^n\right\}$$

n local decoders

$$\left\{ \left(\; \mathcal{I}_j \; , \; \widehat{X}_j = f_j(C_{\mathcal{I}_j}) \; \right) \; : \; j \in [n] \right\}$$

Compression with local decodability and privacy

A rate-R privately locally decodable compression scheme consists of

· A randomized encoder

$$\left\{ p_{C^{nR}|x^n} \,:\, x^n \in \mathcal{X}^n \right\}$$

· n local decoders

3

Compression with local decodability and privacy

A rate-R privately locally decodable compression scheme consists of

· A randomized encoder

$$\left\{ p_{C^{nR}|x^n} \,:\, x^n \in \mathcal{X}^n \right\}$$

n local decoders

$$\left\{ \left(\ \mathcal{I}_j \ , \ \widehat{X}_j = f_j(C_{\mathcal{I}_j}) \ \right) \ : \ j \in [n] \right\}$$

Wanted: For $X^n \sim \text{i.i.d. } p_X$,

- Reliability: $\Pr[\widehat{X}_j \neq X_j] \to 0$ as $n \to \infty$
- Privacy: $C_{\mathcal{I}_j}$ should be independent of $X_{[n]\backslash j}$ for any $j\in[n]$

Related literature

- Locally decodable source coding without privacy constraints: (Makhdoumi et al. 2013, Mazumdar et al. 2015, Tatwawadi et al. 2018)
- · Locally private compression:
 - · (Chandar et al. 2023): not rate-optimal
 - (Chandar et al. 2024): rate-optimal, but complex scheme only for Bernoulli sources

Main result

Theorem

Let X^n be i.i.d. P. For any

$$R > H(P)$$
,

there exists a simple scheme with the following properties:

- \cdot compression at rate R,
- perfect local privacy,
- error probability decays as 1/poly(n),
- encoding and local decoding run in $O(n \times \operatorname{poly}(\log n))$ time.

5

$$\cdot \ \, \text{Permute:} \,\, \tilde{X}_{\sigma(j)} = X_j \text{, for} \,\, j \in [n].$$

- · Permute: $\tilde{X}_{\sigma(j)}=X_j$, for $j\in [n]$. · Compress \tilde{X}^n to get \tilde{C}^{nR}

- $\cdot \ \ \text{Permute:} \ \tilde{X}_{\sigma(j)} = X_j \text{, for } j \in [n].$
- Compress \tilde{X}^n to get \tilde{C}^{nR}
- Store: $(\tilde{C}^{nR}, \sigma(1), \ldots, \sigma(n))$

Encoder picks a uniformly random permutation σ on [n].

- · Permute: $\tilde{X}_{\sigma(j)} = X_j$, for $j \in [n]$.
- Compress \tilde{X}^n to get \tilde{C}^{nR}
- Store: $(\tilde{C}^{nR}, \sigma(1), \dots, \sigma(n))$

To recover X_j :

- Decompress \tilde{C}^{nR} and read $\sigma(j)$ 'th location

Encoder picks a uniformly random permutation σ on [n].

- · Permute: $\tilde{X}_{\sigma(j)} = X_j$, for $j \in [n]$.
- Compress \tilde{X}^n to get \tilde{C}^{nR}
- Store: $(\tilde{C}^{nR}, \sigma(1), \dots, \sigma(n))$

To recover X_i :

- Decompress \tilde{C}^{nR} and read $\sigma(j)$ 'th location

Problems:

- No compression: storing σ requires $O(n \log n)$ bits!
- No privacy: decoder gets information about type of X^n

Fixing problems

• Problem: Storing σ requires $O(n\log n)$ bits Solution: Break X^n into blocks of size $b=o\left(\frac{n}{\log n}\right)$, and use same σ for each block

1

Fixing problems

• Problem: Storing σ requires $O(n\log n)$ bits Solution: Break X^n into blocks of size $b=o\left(\frac{n}{\log n}\right)$, and use same σ for each block

• Problem: \tilde{X}^n reveals type of X^n Solution: Pad $\ll b$ extra symbols to each block to "freeze" type

7

Making each block constant composition

We partition X^n into blocks of size b each: $X^b(1), \dots, X^b(n/b)$

· W.h.p., blocks are typical. The empirical frequency:

$$\eta_{X^b(i)}(x) \le bP(x)(1+\epsilon), \quad \forall x \in \mathcal{X}$$

- Probability that even one block is not typical $\leq b \times 2^{-\Theta(b)} = 1/\text{poly}(n \log n)$
- · Pad $pprox \epsilon b$ symbols to give $ar{X}^b(i)$ such that

$$\eta_{\bar{X}^b(i)}(x) = \lceil bP(x)(1+\epsilon) \rceil, \quad \forall x \in \mathcal{X}$$

Question: Why are we guaranteed fixed-length pad that gives constant composition?

Fixed-length pad to get constant composition

Observation: If $\eta(x) > bP(x)$ for some x, then $\exists x'$ such that $\eta(x) < bP(x)$, since $\sum_{x \in \mathcal{X}} \eta(x) = b$.

Fixed-length pad to get constant composition

•••••

Observation: If $\eta(x) > bP(x)$ for some x, then $\exists x'$ such that $\eta(x) < bP(x)$, since $\sum_{x \in \mathcal{X}} \eta(x) = b$.

For typical chunk, number of symbols to pad:

$$\begin{split} &= \sum_{x \in \mathcal{X}} \left(\underbrace{\lceil (1+\epsilon)bP(x) \rceil - \eta(x)}_{\geq 0} \right) \\ &= \underbrace{\sum_{x \in \mathcal{X}} \lceil (1+\epsilon)bP(x) \rceil}_{\text{independent of } X^b} - \underbrace{\sum_{x \in \mathcal{X}} \eta(x)}_{=b} \\ &\approx (1+\epsilon)b-b \\ &= \epsilon b \end{split}$$

$$X^n = X^b(1) \ X^b(2) \ \cdots \ X^b(n/b)$$
 Pad for constant composition
$$\bar{X}^{n'} = \bar{X}^{b'}(1) \ \bar{X}^{b'}(2) \ \cdots \ \bar{X}^{b'}(n/b)$$
 Permute
$$\bar{X}^{n'} = \bar{X}^{b'}(1) \ \bar{X}^{b'}(2) \ \cdots \ \bar{X}^{b'}(n/b)$$
 Encode using type enumeration
$$C^{nR} = C^{b'R}(1) \ C^{b'R}(2) \ \cdots \ C^{b'R}(n/b) \ \sigma(1), \sigma(2), \cdots, \sigma(j), \cdots, \sigma(b)$$

Analysis of PPC scheme

• Probability of error: Error occurs only if chunk is atypical.

$$P_e = 2^{-\Theta(b)} = \frac{1}{\mathrm{poly}(n)}, \qquad \text{if } b = \Omega(\log n)$$

• Rate: As long as $b = O(n/\log n)$,

$$nR = \frac{n}{b} \times \left[\underbrace{bH(P) + o(b)}_{\text{type enumeration}} + \underbrace{\epsilon b}_{\text{pad}}\right] + \underbrace{O(b \log b)}_{\text{permutation}} = n(H(P) + \epsilon + o(1))$$

- Privacy: Decoder only gets \hat{X}_j and type of $\tilde{X}^b(i)$ (independent of X^n given X_j)
- \cdot Computational complexity: Blocks are processed independently, type enumeration (which is most complex) can be performed in $O(b^3 \log b)$ time¹

¹T. Cover, "Enumerative Source Encoding," IEEE Trans. Inf. Theory, 1973

Extensions

• Recovery of contiguous substrings: Easy extension of scheme to recover $X_{j_1:j_2}$, for arbitrary j_1,j_2 such that $j_2-j_1\leq j_{\max}\ll n$ is known. Need to use multiple random permutations depending on j_{\max}

Extensions

- Recovery of contiguous substrings: Easy extension of scheme to recover $X_{j_1:j_2}$, for arbitrary j_1,j_2 such that $j_2-j_1 \leq j_{\max} \ll n$ is known. Need to use multiple random permutations depending on j_{\max}
- · Joint source-channel coding: Given DMS $X^n \sim P$ and DMC $W_{V|U}$. Recover any X_j w.h.p. from subset of symbols of V^m , while ensuring these symbols do not reveal $X_{[n]\backslash i}$

Open problems

- Sources with memory
- · Recovery of X_{j_1}, X_{j_2} for arbitrary $j_1 \neq j_2$
- · Minimum number of bits to be probed for locally private decoding?