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ABSTRACT | Semantic- and task-oriented communication has

emerged as a promising approach to reducing the latency

and bandwidth requirements of the next-generation mobile

networks by transmitting only the most relevant information

needed to complete a specific task at the receiver. This is

particularly advantageous for machine-oriented communica-

tion of high-data-rate content, such as images and videos,

where the goal is rapid and accurate inference, rather than per-

fect signal reconstruction. While semantic- and task-oriented

compression can be implemented in conventional communi-
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cation systems, joint source–channel coding (JSCC) offers an

alternative end-to-end approach by optimizing compression

and channel coding together, or even directly mapping the

source signal to the modulated waveform. Although all digital

communication systems today rely on separation, thanks to its

modularity, JSCC is known to achieve higher performance in

finite blocklength scenarios and to avoid cliff and the leveling-

off effects in time-varying channel scenarios. This article

provides an overview of the information theoretic foundations

of JSCC, surveys practical JSCC designs over the decades, and

discusses the reasons for their limited adoption in practical

systems. We then examine the recent resurgence of JSCC,

driven by the integration of deep learning techniques, par-

ticularly through DeepJSCC, highlighting its many surprising

advantages in various scenarios. Finally, we discuss why it

may be time to reconsider today’s strictly separate architec-

tures and reintroduce JSCC to enable high-fidelity, low-latency

communications in critical applications such as autonomous

driving, drone surveillance, or wearable systems.

KEYWORDS | Coding theory; deep neural networks; DeepJSCC;

joint source–channel coding (JSCC); machine learning (ML);

multi-user information theory; semantic communications.

I. I N T R O D U C T I O N
Shannon [1] defined the fundamental problem of
communication as that of “reproducing at one point either
exactly or approximately a message selected at another
point.” A generic point-to-point communication system,
reproduced in Fig. 1 from [1], consists of an information
source, a transmitter, a communication channel, and
a receiver. The information source, which generates
the messages to be transmitted, and the channel are
typically assumed to be given, while the goal of the system
designer is to come up with the transmitter and receiver
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Fig. 1. Schematic of a general communication system according to

Shannon (reproduced from [1]).

mappings. The former, called the encoding function, maps
the message to a form that is amenable to be transmitted
over the channel, while the latter, called the decoding
function, is a complementary mapping that recovers the
message under a prescribed fidelity measure. The fidelity
measure, also assumed to be given, maps every message
and reconstruction pair to a real number, quantifying the
goodness of the reconstruction.

The problem stated in this form is fairly general: the
information source can be a sequence of discrete symbols
from a prescribed alphabet or a function of time and
other variables. In general, the information source is a
stochastic process, and the communication system should
operate for any source realization as it is not known at
the time of design. The communication channel is also
modeled as a stochastic kernel from the input alphabet
space to the output alphabet space, which depends on
the communication medium under consideration. We may
assume the statistical properties of the information source
and the channel as fixed and known, or they may belong
to a certain set of possible statistics [2], [3], or we can also
assume that the statistics are fixed yet unknown, but we
can sample from these distributions as desired.

The design of a communication system in this full gen-
erality is highly challenging. The transmitter and receiver
must be designed jointly considering both the source and
channel characteristics, that is, their alphabets as well as
statistics. Some of the earliest practical telecommunication
systems, amplitude/frequency modulation (AM/FM), ana-
log TV broadcasting, and the first generation of mobile
wireless networks have all been based on this approach.
On the other hand, a fundamental result in Shannon’s
information theory is the Separation Theorem [1], which
states that for a large class of point-to-point communica-
tion scenarios characterized by large block lengths, optimal
performance can be effectively approached by indepen-
dently formulating the compression and error correction
schemes. Equivalently, the problem of mapping the input
source message to the channel input and recovering the
input signal from the noisy received channel output can be
reformulated into two subproblems of source coding and
channel coding without loss of optimality.

The source coding problem deals with mapping the
message to the minimum number of bits so that it can
be reconstructed within the desired fidelity. Shannon’s
source coding theorem identifies the fundamental limit of
this problem, characterized by the so-called rate–distortion
function, considering an arbitrarily long sequence of source
samples and an additive distortion measure. This function
provides a bound on the minimum number of bits per

source sample that must be transmitted to the receiver to
achieve the desired fidelity. On the other hand, Shannon’s
channel coding theorem identifies the fundamental limit
of communications over a noisy channel, characterized by
the channel capacity. Similar to the source coding theory,
channel coding theory assumes infinitely many uses of the
channel and identifies the maximum number of bits per
channel use that can be conveyed reliably over the channel.

In the point-to-point setting, the Separation Theorem
suggests that if the compression rate corresponding to the
target distortion of the given source distribution is below
the channel capacity of the link, then the desired distortion
can be achieved. Conversely, if this rate is above the capac-
ity, there is no coding scheme that can achieve this distor-
tion level over this channel (more rigorous definitions and
statements will be provided later in this article). Thanks
to the converse theorem, we conclude that the desired dis-
tortion level can either be achieved by designing separate
source and channel codes, or it is impossible to achieve.

In separate source and channel coding (SSCC), the
compression scheme is designed oblivious to the channel
statistics, while the channel code is designed to ignore the
source characteristics. This separate design principle leads
to a natural modular system architecture, allowing a single
network infrastructure that can serve a great variety of
services, e.g., voice, data, and multimedia. Indeed, almost
all contemporary communication systems adhere to such
a structured layered architecture, in which compression-
related functions are primarily dealt with at the application
layer, at the top of the protocol stack, while channel coding
functions are taken care of at the link and physical layers,
at the bottom of the stack.

This modularity in design combined with the theoret-
ical optimality led to a natural separation among the
research communities as well. Researchers in the data com-
pression community have mainly focused on developing
high-performance compression algorithms by exploiting
properties of particular types of source signals, leading
to various standards for text, image, audio, and video
compression, among others. In parallel, communication
researchers have focused on designing advanced coding
and modulation techniques with the goal of turning the
noisy wireless medium into a network of noise-free bit
pipes.

Although a segregated architecture offers indisputable
advantages in facilitating modular system design and
enabling the convergence of diverse services on a shared
data network infrastructure, there are instances where
a joint source–channel coding (JSCC) approach becomes
essential. This need arises both in various multiterminal
settings where the separated approach proves suboptimal,
as well as in standard point-to-point channels. Even in
cases where SSCC is asymptotically optimal, the applica-
tion of independently designed source and channel codes
may result in subpar performance under practical condi-
tions characterized by finite block length, low-complexity
encoding/decoding, or communication over uncertain
channels.
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JSCC has been a topic of continuous research since
Shannon; however, there has been a significant surge in
interest in recent years. This can be attributed to two
main reasons, both are connected to the recent advances
in machine learning (ML) technologies. First, as ML tools
and applications become increasingly widespread, they
are expected to be deployed on mobile edge devices,
requiring distributed implementations of training as well
as inference tasks [4], [5], [6], [7], [8], [9], [10].
These applications typically have much stricter latency
requirements compared to content delivery applications,
for which the current network architectures and communi-
cation schemes have been designed. The gap between the
optimal performance that can be achieved through JSCC
and what can be achieved by conventional SSCC tends
to increase as the blocklengths become shorter. More-
over, for shorter blocklengths, resources used for channel
estimation may become more significant, particularly for
highly mobile environments. The modularity that sepa-
ration provides is extremely valuable for larger network
architectures, such as cellular networks; however, modu-
larity can be sacrificed in point-to-point communication
scenarios, where the performance gains become critical.
For example, for the delivery of drone video footage to a
ground station, the wireless connection of an augmented
reality (AR)/virtual reality (VR) headset to a computing
unit, or the exchange of LIDAR or video data among
autonomous vehicles for collaborative perception, it may
be crucial to go beyond the constraints of a strictly separate
design.

Second, despite many years of efforts, the research on
practical code design for JSCC has not produced codes
that can be applied to a large variety of source–channel
pairs with a performance-complexity tradeoff that is better
than, or on par with the state-of-the-art separate baselines.
This has changed recently with the advances in deep
learning-aided JSCC design, called DeepJSCC [11], [12].
Such codes can be easily designed for different source
modalities and datasets targeting any desired performance
measure [13], [14], [15], [16], [17], providing highly
competitive performance results.

Developments in JSCC design have been further encour-
aged with the recent growing interest in semantic
and goal-oriented communication systems [18], [19],
[20], [21], [22], [23], [24], [25], [26], driven by
AR/VR applications, and the emerging concepts of meta-
verse [27], tactile/haptic communications [28], the Inter-
net of senses [29], and holographic communications [30],
which are foreseen to be the main drivers of 6G and
beyond mobile networks. The motivation for semantic
and goal-oriented communication comes from taming the
growing network data traffic, particularly due to the
emerging artificial intelligence (AI) applications involving
AR/VR, autonomous vehicles, and machine vision. The
efforts on the communication network design side have
mainly focused on increasing the capacity of the net-
work; however, gains from physical and network layer

modifications (e.g., the introduction of a massive num-
ber of antennas or terminals) have become increasingly
costly and incremental as we approach the corresponding
fundamental limits. Hence, a complementary direction is
to reduce the amount of information that must be com-
municated over the network. In a nutshell, the core idea
behind semantic and goal-oriented communication is to
transmit only the relevant information for the underlying
task to the receiver, which can be considered as a form
of compression [18]. Naturally, such an approach can be
carried out purely on the application layer by employing
the appropriate compression algorithm for the desired
goal, reducing the number of bits that need to be con-
veyed. One can argue that this is already done for most
multimedia applications that rely on various compression
algorithms although new types of compression algorithms
need to be designed for specific inference tasks (e.g.,
image retrieval [31] or other inference tasks [32], [33],
[34], [35], [36]) since, in most AI applications, the goal
is not to recover the underlying signal, but to carry out
some intelligence on it. However, when the underlying
communication channel is noisy, and we want to communi-
cate under extreme bandwidth and/or power limitations,
semantic and goal-oriented communications will signifi-
cantly benefit from JSCC approaches to push the limits of
communications for relevant applications [11], [15], [18],
[31]. Moreover, many of the aforementioned applications,
e.g., haptic communications and metaverse, impose strict
delay constraints on communications [37]. While 1-ms
round trip delay target over the communication network
has been promoted widely for 5G networks to enable
such applications [38], [39], these promises have not
been realized although ultralow latency communication
has been delivered by 5G implementations. This is because
coding latency to implement state-of-the-art compression
algorithms for high-data-rate contents such as video or
holograms is significantly higher than 1 ms, appearing as
a major bottleneck. An important promise of the JSCC
approach is to reduce the coding latency by combining
compression and channel coding into a single operation.
Particularly, recent JSCC designs based on neural network
architectures report promising results in terms of the end-
to-end coding latency [11], [40]. As we will show in
the first part of this article through information theoretic
formulation, the gains from JSCC are fundamental, that is,
they do not rely on a particular suboptimal implementation
of separate coding approaches. In the second part, we will
show practical code designs that can provide these theo-
retical gains in practical scenarios with an emphasis on the
recent developments using deep learning techniques.

A. Outline and Organization

This article provides a comprehensive overview of JSCC
in communication systems, starting from information the-
oretic foundations to practical designs, with particular
emphasis on recent progress on deep learning-aided JSCC
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schemes. Section II is dedicated to the information theo-
retic foundations. This part not only fills an important gap
in the literature by providing a comprehensive overview of
fundamental information theoretic performance limits and
coding ideas on JSCC, but also intends to provide a foun-
dation for the development of new neural network-based
codes and protocols that are inspired by these foundations.
We start with the introduction of Shannon’s Separation
Theorem in Section II-A for a point-to-point channel.
Section II-C shows that the availability of channel out-
put feedback, while does not have an impact on the
optimality of separation, can allow a much simpler and
low-delay JSCC scheme. We then introduce a generalized
JSCC scheme when there is correlated side information
at the receiver. This generalized scheme can specialize to
a separation-based approach with explicit source binning,
as well as a simpler encoding scheme with joint decoding.
We show that this joint encoding scheme can be par-
ticularly beneficial when the quality of the channel and
the side information can be both uncertain. Section II-E
is dedicated to multiuser channels. We start by showing
that the Separation Theorem does not hold in multiuser
scenarios. Then, we consider multiple access and broad-
cast channels (BCs) separately and propose various JSCC
schemes. In Section II-F, we discuss two different types
of separation. In Section II-G, we show that JSCC can
also help increase the rate of communication in certain
multiuser scenarios. Considerations up until Section II-H
follow Shannon’s formulation: distortion between two
sequences is the average distortion between pairs of sym-
bols. In Section II-H, we consider distortion measures that
do not necessarily satisfy this property.

Sections III and IV are dedicated to practical designs
for JSCC. The former focuses on classical approaches,
while the latter covers recent developments that rely
on data-driven deep learning tools to design so-called
DeepJSCC solutions. Section IV is organized into var-
ious subsections, each dedicated to a different source
type. In particular, Section IV-A focuses on DeepJSCC for
image transmission, Section IV-D to video transmission,
Section IV-E to text transmission, while Section IV-F covers
other source and channel distributions. Finally, Section V
concludes this article.

II. I N F O R M AT I O N T H E O R E T I C
F O U N D AT I O N S o f J S C C
In this section, we will start with an overview of fun-
damental information theoretic results on JSCC, starting
from Shannon’s Separation Theorem, and covering various
scenarios in which this theorem fails. In such cases, we also
provide alternative coding schemes that can go beyond
the performance achieved by pure separation, which also
provides guidelines for the design of practical codes.

A. Fundamentals

In the fundamental problem of information theory as
studied by Shannon [1], the transmitter wants to transmit

Fig. 2. Illustration of a JSCC problem over a noisy communication

channel.

the output of an information source to a receiver over a
noisy communication channel. In general, the goal of the
receiver is to recover the observed source sequence either
reliably (i.e., with vanishing error probability), or within
some distortion limit under a prescribed distortion mea-
sure. Shannon formulated this problem using a statistical
model for the source signal and the channel transform, and
focused on a block coding framework in the asymptotic
infinite blocklength regime. In particular, the model con-
sidered by Shannon is illustrated in Fig. 2 and described
next in a mathematical form.

Assume that the encoder wants to transmit a sequence
of independent source symbols Sm ∈ Sm sampled from
the source distribution pS(s), over a memoryless noisy
communication channel characterized by the conditional
probability distribution P (Y |X), where X ∈ X and
Y ∈ Y. Let Ŝm ∈ Ŝm denote the reconstruction at
the receiver based on Y n. Similar to the rate–distortion
theory formulation, the goal is to minimize the distortion
between Sm and Ŝm under some given distortion (fidelity)
measure, d : Sm × Ŝm → [0,∞). More formally, let
fm,n : Sm → Xn denote the encoding function, and
gm,n : Yn → Ŝm denote the decoding function. In the
case of average distortion criteria, the goal is to identify
the encoder and decoder function pairs that minimize
E[d(Sm, Ŝm)], where the expectation is over the source
and channel distributions as well as any randomness the
encoding and decoding functions may introduce. One can
also impose an excess distortion criterion, where the goal
is to minimize P[d(Sm, Ŝm) > D], for some maximum
allowable distortion target D > 0.

An (m, n) joint source–channel code of rate r = m/n

consists of an encoder–decoder pair, where the encoder
f (m,n) : Sm → Xn maps each source sequence sm to a
channel input sequence xn(sm), and the decoder g(m,n) :

Yn → Ŝm maps the channel output yn to an estimated
source sequence ŝm.

Definition 1: A rate–distortion pair (r, D) is said to be
achievable if there exists a sequence of (m, n(m)) joint
source–channel codes with rate r such that r · n(m) ≤ m,
∀m, and

lim sup
m→∞

E
[
d
(
Sm, Ŝm

(
Y n(m)

))]
≤ D. (1)

Similar to the definition of channel capacity, we can
define a source–channel capacity for a given distortion
target, which considers both the source and the channel
characteristics.
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Fig. 3. Separation-based architecture for the JSCC problem.

Definition 2: For a given target distortion D, the source–
channel capacity of a channel is defined as the supremum
of rates r among all achievable (r, D) pairs.

Shannon proved his Separation Theorem considering
single-letter additive distortion measures, that is,

d
(
Sm, Ŝm

)
=

1

m

m∑
i=1

d
(
Si, Ŝi

)
(2)

for the distortion measure d(S, Ŝ) ∈ [0,∞). The Separa-
tion Theorem can be stated as follows, after defining the
capacity of a discrete memoryless channel PY |X :

C := sup
pX (x)

I (X; Y ) (3)

and the rate–distortion function of a memoryless source pS

R (D) := inf
P

Ŝ|S
I
(
S; Ŝ

)
(4)

where the infimum is taken only over conditional distribu-
tions satisfying E[d(S, Ŝ)] ≤ D.

Theorem 1 (Shannon’s Separation Theorem, [1]):
Given a memoryless source S with distribution pS and
a memoryless channel pY |X with capacity C, a rate–
distortion pair (r, D) is achievable if rR(D) < C.
Conversely, if a rate–distortion pair (r, D) is achievable,
then rR(D) ≤ C. Then, for a given distortion target D,
the source–channel capacity is given by C/R(D).

The theorem states that we can separate the design of
the communication system into two subproblems without
loss of optimality, the first focusing on compression and
the second focusing on channel coding, each of them
designed independently of the other. This separation-based
architecture is depicted in Fig. 3. However, the opti-
mality of separation holds only in the limit of infinite
blocklength and only in terms of capacity. For example,
still in the asymptotic regime of infinite blocklengths,
the exponential decay rate of the probability of error as
well as the second-order coding rates can be improved
with a joint source–channel code compared to the best
separation-based approach (see [41], [42], [43], and
[44]). The same observation also holds in the regime of
finite blocklengths, where optimal joint source–channel
codes outperform the best separation-based code design.

The suboptimality of separation in the general finite
blocklength regime was observed by Shannon [45] in
his 1959 article, where he considered a binary source
generating independent and equiprobable symbols and

a memoryless binary symmetric channel, and observed
that simple uncoded transmission of symbols achieves
the optimal distortion with rate r = 1 for one particular
value of distortion D determined by the error probability
of the channel. This observation was later extended
by Goblick [46] to Gaussian sources transmitted over
Gaussian channels.

In general, uncoded transmission is optimal [47]
when the source distribution matches the optimal
capacity-achieving input distribution of the channel, and
the channel at hand matches the optimal test channel
achieving the optimal rate–distortion function of the
source. That is, when the source and channel input
alphabets match, X = S and the source distribution pS

and the channel transition law PY |X satisfy the following
two conditions:

I (X; Y ) |X∼pS = C (5)

I
(
S; Ŝ

)
|Ŝ∼PY |X (·|S) = R (D) . (6)

However, these conditions are not satisfied for most
practical source and channel distributions, and even when
they hold, optimality of uncoded transmission fails when
the coding rate is not 1, i.e., in the case of bandwidth com-
pression or expansion. On the other hand, the presence of
such optimality results, that is, the fact that asymptotically
optimal performance, which requires infinite blocklength
source and channel codes in general, can be achieved
by simple zero-delay uncoded transmission implies that
there can be other simple joint coding schemes that
can achieve near optimal performance, and outperform
separation-based schemes in the finite blocklength regime.
Various JSCC schemes that perform well in the finite
blocklength regime have been proposed (see [44], [48],
[49], and [50]).

Interesting phenomena have also been proved for JSCC
setups that are not memoryless, in particular for the special
case where the source has to be reconstructed perfectly.
While the Separation Theorem has been shown to continue
to hold for a large class of sources and channels [51],
[52], [53], Vembu et al. [54] and Han [55] have iden-
tified source–channel pairs where separation does not
hold. In fact, they characterized matching necessary and
sufficient conditions for a source to be transmittable over
a channel for a large class of source distributions and
channel law. Uncoded transmission, and thus JSCC, can
also be advantageous under channel uncertainty, for exam-
ple, over fading channels, where in certain cases (e.g.,
for the transmission of Gaussian sources over a Gaussian
fading channel with receiver channel state information),
it may allow attaining the optimal distortion under any
given channel condition. SSCC scheme can either be in
excess and thus result in huge distortion under bad channel
conditions, or has to rely on more advanced and complex
coding schemes (like the multilayer broadcast approach
of [56], [57], and [58]).
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Fig. 4. Illustration of a JSCC problem with a remote source Sm that

has to be reconstructed at the decoder.

B. JSCC With a Remote Source

A variation of the standard source coding problem that
is particularly relevant to semantic communication is the
setup of remote JSSC depicted in Fig. 4. In this setup,
the encoder does not directly have access to the source
sequence itself but only to a related observation T m. The
remote source could, for example, represent a sequence of
features of the image T m. The main leitmotif of semantic
communication is that the decoder does not wish to recon-
struct the entire image but only the sequence of features.
In the remote JSCC problem, the decoder indeed attempts
to reconstruct the remote (hidden) source sequence Sm

and not the sequence observed at the encoder.
Optimality of source–channel separation for the remote

JSCC has been established independently by Dobrushin
and Tsybakov [59] and by Wolf and Ziv [60]. More
recently, extensions of this problem have been considered
in [61] and [62], in which both the remote and the
observed sources are reconstructed at the receiver. For this
setup, Theorem 1 has to be adapted by employing the
remote rate–distortion function

Rremote (D) = inf
p

Ŝ|T
I (T ; S) (7)

where the infimum is taken over all laws pŜ|T satisfying
the distortion constraint E[d(S, Ŝ)] ≤ D.

Theorem 2 (Separation Theorem With a Remote Source):
Given a remote memoryless source S with distribution
pS , a memoryless observation T related to the source by
the transition law pT |S , and a memoryless channel pY |X

with capacity C, a rate–distortion pair (r, D) is achievable
if rRremote(D) < C. Conversely, if a rate–distortion pair
(r, D) is achievable, then rRremote(D) ≤ C. Thus, for given
distortion target D, the source–channel capacity is given
by C/Rremote(D).

The optimal SSCC scheme can be described as follows.
The encoder attempts to reconstruct the hidden features
Sm from the observed sequence T m with desired accuracy
and then uses a capacity-achieving channel code to send
this information reliably (i.e., with a vanishing proba-
bility of error) to the decoder, which first decodes the
transmitted information and then reproduces the encoder’s
reconstruction Ŝm.

C. JSCC Over Feedback Channels
Optimality of source–channel separation (Theorem 1)

extends also to setups with feedback, i.e., to setups
where the transmitter observes the past channel outputs
Y1, . . . , Yi (or noisy or imperfect versions thereof) before
producing the time-i channel input Xi. Thus, also with

feedback, a rate–distortion pair (r, D) is achievable if, and
only if, rR(D) < C. Notice here that, for memoryless
point-to-point channels, feedback does not increase the
capacity; therefore, the best achievable source–channel
coding rate remains the same with feedback.

JSCC, however, allows to reduce the delay and obtain
simplified schemes. We illustrate this on the well-known
example of sending a Gaussian source over a Gaussian
channel with a bandwidth mismatch factor r, whose
inverse r−1 is a positive integer. The proposed scheme is
based on the idea of Schalkwijk and Kailath [63]. A similar
scheme can be designed for arbitrary discrete sources and
discrete memoryless channels using the “posterior match-
ing” idea [64].

Let Sm be a sequence of independent and identically
distributed (i.i.d.) centered Gaussian samples with vari-
ance σ2. Consider further an additive white Gaussian noise
(AWGN) channel with input–output relation

Yi = Xi + Zi, i = 1, . . . , n (8)

where {Zi} is an i.i.d. sequence of centered Gaussian noise
variables of variance N . We assume perfect channel output
feedback, in which case Xi can depend on the past channel
outputs Y i−1. Channel inputs are subject to an expected
average block-power constraint (1/n)

∑n
i=1 E[X2

i ] ≤ P , for
a given P > 0. For this Gaussian-quadratic setup distortion
D is achievable if, and only if1

max

{
1

2
log

(
σ2

D

)
, 0

}
≤ 1

2
log

(
1 +

P

N

)
(9)

where notice that the left-hand side of the above inequality
is the Gaussian-quadratic rate–distortion function and the
right-hand side is the capacity of the power-constrained
Gaussian channel.

The following low-delay scheme achieves distortion D

whenever (9) is satisfied. The encoder communicates each
source St over r−1 consecutive channel uses. We describe
the transmission of S1 during the first r−1 channel uses.
The other transmissions are similar.

The encoder first sends

X1 =

√
P

σ2
S1 (10)

and subsequently observes the output symbol Y1 = X1 +

Z1 = ((P/σ2))1/2S1+Z1. From this output, it computes the
minimum mean-squared error (mmse) estimate of source
symbol S1

S̃1,1 =

√
Pσ2

P + N
Y1 =

P

P + N
S1 +

√
Pσ2

P + N
Z1 (11)

1Since the right-hand side of (9) is nonnegative, the left-hand side
can be simplified to (1/2) log(σ2/D).
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and the corresponding mmse

ϵ1 = S̃1,1 − S1. (12)

It, then, scales this error so as to meet the input power
constraint and transmits this error over the next channel
input

X2 =

√
P

α1
ϵ1 (13)

for α1 := E[ϵ2
1]. After reception of the feedback output Y2,

the encoder computes the mmse estimate of ϵ1

ϵ̃1 =

√
Pα1

P + N
Y2 =

P

P + N
S2 +

√
Pα1

P + N
Z2 (14)

and uses it to update its estimate on S1

S̃1,2 = S̃1,1 − ϵ̃1. (15)

The new estimation error then becomes

ϵ2 = S̃1,2 − S1 = ϵ̃1 − ϵ1 (16)

and is sent over the channel with the next input X3.
These steps are repeated until r−1 channel inputs are sent.
Specifically, for any ℓ = 2, 3, . . . , r−1, after sending the
latest estimation error

Xℓ =

√
P

αℓ−1
ϵℓ−1, ℓ = 2, 3, . . . , r−1 (17)

at time ℓ, where

αℓ−1 := E
[
ϵ2ℓ−1

]
(18)

the encoder uses the feedback Yℓ = Xℓ +Zℓ to calculate an
estimate

ϵ̃ℓ−1 =

√
Pαℓ−1

P + N
Yℓ−1 (19)

which is then used to update the estimate S̃1,ℓ of S1

S̃1,ℓ = S̃1,ℓ−1 − ϵ̃ℓ−1 = S1 + ϵℓ−1 − ϵ̃ℓ−1. (20)

Subsequently, a scaled version of the estimation error

ϵℓ := S̃1,ℓ − S1 = ϵℓ−1 − ϵ̃ℓ−1 (21)

is sent in the following transmission Xℓ+1.

Fig. 5. JSCC problem in the presence of correlated side information

at the receiver.

After receiving the first r−1 channel outputs
Y1, . . . , Yr−1 , the receiver sets

Ŝ1 = S̃1,r−1 (22)

where it computes S̃1,r−1 as described for the encoder side.
To derive the distortion achieved by (22), notice that the

mmse between S̃1,ℓ and S1 can recursively be calculated as

E

[(
S̃1,ℓ − S1

)2
]

= αℓ =
N

P + N
αℓ−1 (23)

and thus, αℓ = σ2((N/P +N))ℓ. Thus, the proposed coding
scheme matches mmse distortion constraint d whenever

(
N

P + N

)ℓ

≤ D

σ2
(24)

which is equivalent to (9) when specialized to ℓ = r−1

because (N/P + N) < 1 and because of the monotonicity
of the log function.

Compared to an SSCC scheme, the above scheme is
much simpler and has a reduced delay, that is, each sample
can be decoded after 1/r channel uses, instead of waiting
for the transmission of all the channel symbols to decode
all the source symbols at once.

D. JSCC With Side Information: To Bin or Not To
Bin?

Next, we consider the scenario in which the receiver has
access to correlated side information (see Fig. 5), that is,
samples of (Si, Ti) come from a joint distribution p(s, t).
Here, we will focus on lossless transmission of Sm to
highlight the core idea of binning; the extension to lossy
transmission follows similarly. Different from the scenario
in Section II-A, here, the decoder has access to correlated
side information T m, so the decoding function is now
given by g(m,n) : Yn × T m → Sm. From a source coding
perspective, this is known as the Slepian–Wolf coding
problem [65].

This problem was originally studied by Shamai and
Verdú [66], where it is shown that a source–channel code
rate r is achievable if there exists an input distribution
p(x) for which r < (I(X; Y )/H(S|T )); and conversely,
if r is achievable, then there exists an input distribu-
tion p(x) for which r ≤ (I(X; Y )/H(S|T )). Equivalently,
the source–channel capacity of this system is given by
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(C/H(S|T )), where C is the capacity of the underlying
channel. It is not difficult to see that the Separation
Theorem continues to hold in this setting; that is, any
source–channel code rate less than the source–channel
capacity, (C/H(S|T )), can be achieved by first apply-
ing source coding and then transmitting the compressed
source bits over the channel using a capacity-achieving
channel code.

The source encoder in the case of separation employs
Slepian–Wolf coding, which exploits binning of the source
outcomes. The source encoder randomly distributes all
possible source output sequences Sm into 2mH(S|T ) bins;
that is, it independently assigns an index uniformly dis-
tributed over [1 : 2mH(S|T )] to each possible source
sequence. This constitutes the compression codebook.
We also generate a channel codebook of the same size,
consisting of length-n channel codewords, each generated
in an i.i.d. fashion from

∏n
t=1 p(xt), where p(x) is the

capacity-achieving input distribution. Then, to transmit
the bin index to the decoder, the corresponding channel
codeword is transmitted over the channel. Since r <

(C/H(S|T )), the transmitted channel codeword will be
decoded correctly with high probability. Having decoded
the channel codeword, the decoder recovers the bin index
and outputs the source sequence in the corresponding bin
that is jointly typical with its side-information sequence,
T m. It is shown in [65] that the decoder can recover the
correct source sequence with high probability since the
number of bins is at least 2mH(S|T ).

Next, we present a coding scheme that generalizes
SSCC [67]. In this generalized coding scheme, we ran-
domly distribute all Sm sequences into M = 2mR bins,
where R is not necessarily equal to H(S|T ). Let B(i) be
the set of sequences allocated to bin i. Then, we generate
M i.i.d. length-n channel codewords with distribution∏n

t=1 p(xt) and enumerate these codewords as xn(w) for
w = 1, . . . , M . This constitutes the only codebook in
the system. Encoding is done similar to the separation-
based scheme. The transmitter finds the index i of the
bin sm belongs to and transmits the corresponding code-
word xn(i).

Note that, in the separation approach described above,
the channel decoder decides a single channel codeword
index, which conveys the bin index that is then used
for source decoding. In the separation approach, for the
channel decoding to be successful, it is better to reduce
the number of possible indices to be transmitted. In the
generalized scheme, we consider a joint source–channel
decoder, following the approach in [68]. The decoder looks
for an index i for which xn(i) and Y n are jointly typical;
and, at the same time, there exists exactly one source
sequence ŝm in bin i that is jointly typical with its side
information, T m.

In the joint decoding scheme, we have an error if there
exists no or more than one such bin index i, or if there
exists more than one jointly typical sequence within bin
i. The probability that there is no bin index satisfying

the joint typicality condition vanishes as n grows. The
probability of having no jointly typical source sequence
within the correct bin also vanishes since Sm and T m are
jointly typical with high probability as m grows. Using the
classical arguments on typical sets [69], the probability of
having another jointly typical source sequence in the same
bin as Sm can be bounded by∣∣∣B (i)

⋂
Am

ϵ (S)
∣∣∣ 2−m(I(S;T )−3ϵ)

≤ 2m(H(S)+ϵ)2−mR2−m(I(S;T )−3ϵ) (25)

where Am
ϵ (S) denotes the set of ϵ-typical m-tuples accord-

ing to PS . We can see that (25) goes to zero if R ≥ H(S|T ).
We also have an error if there exists another bin index j

satisfying the joint typicality conditions. The probability of
this event can be bounded by

2mR2−n(I(X;Y )−3ϵ)
∣∣∣B (i)

⋂
Am

ϵ (S)
∣∣∣ 2−m(I(S;T )−3ϵ)

≤ 2−n(I(X;Y1)−3ϵ)2m(H(S|T )−2ϵ) (26)

which goes to zero if mH(S|T ) < nI(X; Y1). Hence, any
rate r satisfying r < (I(X; Y )/H(S|T )) is achievable.

We have obtained a set of coding schemes each with a
different number of bins, that is, with different R values
satisfying R ≥ H(S|T ). The “joint” decoding operation
considered in the generalized scheme can equivalently be
viewed as a separate source and channel decoding scheme,
in which the channel decoder is a list decoder, which
outputs the list of bin indices i for which xn(i) and Y n

are jointly typical. This list decoding approach includes
SSCC as a special case with R = H(S|T ), in which case,
with high probability, there is a single element in the list,
i.e., there exists only a single bin index whose channel
codeword is typical with the channel output.

Please also note that, in the other extreme, this gener-
alized scheme works without any binning at all. We can
generate an independent channel codeword for each pos-
sible source outcome, i.e., R = log |S|. From a practical
point of view, this can be interpreted as transferring the
complexity of binning from the encoder to the decoder,
which now needs to apply joint decoding or list decoding
instead of separate source and channel decoding steps.
From a theoretical point of view, since the decoder only
outputs typical source sequences, there is no point in
having more than 2m(H(S)+ϵ) bins as, otherwise, we are
creating bins without any typical source sequence in them;
and thus, they will never be output. Therefore, we can set
R ≤ H(S) without loss of generality.

In the case of a point-to-point channel, the only dif-
ference between SSCC with binning and joint decoding
with no-binning is the operation at the encoder and the
decoder. However, binning or no-binning can lead to differ-
ent protocols, or even different performances in the case of
multiuser networks or nonergodic settings as we will see in
Section II-E. Even in the point-to-point scenario considered
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Fig. 6. JSCC problem over the binary multiplier two-way

communication channel.

here, if the channel and the side information are time-
varying, and if the transmitter knows only the distributions
of these time-varying processes, it is shown in [70] that the
no-binning scheme improves the end-to-end performance
compared to separate binning and channel coding, as the
former naturally adapts to the source and channel states
without targeting specific source and channel realizations.

E. Multiuser JSCC

1) Suboptimality of SSCC With Correlated Sources: Shan-
non’s Separation paradigm (Theorem 1) extends to a
certain class of problems where multiple sources are trans-
mitted over a network with multiple transmitters and/or
multiple receivers. In particular, source–channel separation
is optimal for the following:

1) all problems where all source sequences are memory-
less and independent of each other and each source
sequence has to be reconstructed at a single receiver;

2) all problems where the network can be modeled as
a set of noninterfering (orthogonal) point-to-point
links.

The paradigm, however, does not extend to general mul-
titerminal networks with arbitrarily correlated sources.
In general, for these networks, JSCC achieves a better per-
formance. A particular advantage of JSCC in the multiuser
context is that it allows to transfer the correlation between
the sources observed at different terminals to their channel
inputs, which is not possible via SSCC, since the latter
relies on transmitting independently generated channel
codewords.

In the literature, the proof of the suboptimality of
separation is commonly attributed to the work by
Cover et al. [71], which studies the transmission of cor-
related sources over a multiple access channel (MAC).
However, Shannon [72] already made the observation that
JSCC can outperform separation in the context of two-way
communication. Shannon [72] proposed inner and outer
bounds on the set of achievable rate pairs over a general
two-way communication channel, whose capacity remains
an open problem to this day. Shannon [72] particularly
considered the multiplier channel, suggested to him by
David Blackwell, as an example, which is illustrated in
Fig. 6. In this channel, both transmitters have binary
inputs, i.e., X1 = X2 = {0, 1}, while the common channel
output is also binary and given by y = x1 x2. Shannon first

showed numerically that his inner and outer bounds do
not match for the multiplier channel. Then, by considering
correlated source sequences Sm

1 and Sm
2 available at the

two encoders, where pS1S2(s1, s2) satisfies p(0, 0) = 0,
p(0, 1) = p(1, 0) = 0.275, and p(1, 1) = 0.45, Shannon
showed that it is possible to reach the outer bound on
the equal rate point. Note that, with this particular source
distribution, no coding is needed, and by simply sending
the source realizations over the channel, each user can
recover the other user’s source symbol reliably, and thus,
a source–channel code rate of r = 1 source sample
per channel use is achievable. Shannon did not explic-
itly show that SSCC cannot achieve this source–channel
rate performance. Transmitting these sources at the same
source–channel code rate with SSCC would require the
two users to simultaneously transmit at rates H(S1|S2) =

H(S2|S1) = 0.6942 bits per channel use. A tighter outer
bound on the capacity region of the two-way channel
was proposed by Hekstra and Willems [73]. According
to the dependence-balance bound derived in [73], the
symmetric rate values larger than R1 = R2 = 0.64628
bits per channel use are not achievable. Therefore, we can
conclude that the correlated sources S1 and S2 specified
above, which can be easily transmitted over the multiplier
two-way channel without any coding, cannot be reliably
transmitted by any channel code. This result shows that
the Separation Theorem does not generalize to arbitrary
multiuser channels.

2) Correlated Sources Over a Multiple Access Channel
(MAC): As we have mentioned above, a better known
example illustrating the suboptimality of separation in
multiuser scenarios considers the transmission of corre-
lated sources over a MAC (see Fig. 7). Cover et al. [71]
showed the suboptimality of separation through an exam-
ple very similar to the one considered by Shannon for the
two-way channel. They considered a binary-input adder
channel, where the channel output is given by Y = X1 +

X2, X1 = X2 = {0, 1}, and Y = {0, 1, 2}, and a source
distribution pS1S2(s1, s2) characterized by p(0, 0) = 0,
p(0, 1) = p(1, 0) = p(1, 1) = 1/3. Similar to Shannon’s
example, uncoded transmission of the source samples triv-
ially achieves a source–channel rate of r = 1. On the
other hand, unlike the two-way channel example of Shan-
non, the capacity region of this MAC is known, and the
maximum sum rate that can be achieved by independent
channel inputs is 1.5 bits per channel use, while the joint

Fig. 7. Transmission of correlated sources over a MAC.
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entropy of the two sources is H(S1, S2) = log 3 = 1.58 bits
per sample. Hence, the maximum source–channel rate that
can be achieved through separation is given by 1.5/1.58 ∼
0.949 channel uses per sample.

JSCC strategies and achievability results for general
discrete memoryless sources and MACs were reported for
the lossless case [71] as well as for the lossy case [74],
[75]. Information theoretic converses were established in
[76], [77], and [78]. In the finite blocklength regime,
i.e., for fixed and nonasymptotic n, JSCC schemes were
proposed in [79].

For Gaussian sources with squared-error distortions and
Gaussian MACs without bandwidth expansion (r = 1),
Lapidoth and Tinguely [80] presented both JSCC strategies
and corresponding achievability results, as well as a (par-
tially matching and generally very tight) converse result.
We describe the results for the Gaussian setup in [80] in
more detail. Consider the communication setup in Fig. 7,
where two users observe correlated jointly Gaussian source
sequences Sn

1 and Sn
2 , which they wish to communicate to

a common receiver over n uses of a Gaussian MAC with
input–output relation Yt = X1,t + X2,t + Zt. Here, Zt

are the independent samples from a zero-mean Gaussian
distribution with variance N , and the average block-power
constraints of P1 and P2 are imposed on the channel inputs
of the users. We, thus, have m = n and no bandwidth
mismatch in this scenario, i.e., r = 1. Based on the
observed sequence of channel outputs Y n, the receiver has
to produce reconstruction sequences Ŝn

1 and Ŝn
2 that satisfy

the squared-error distortion constraints E[∥Ŝn
k−Sn

k ∥2] ≤
Dk, for k ∈ {1, 2}.

Consider a symmetric setting where the symbols
(S1,t, S2,t) are assumed i.i.d. jointly Gaussian of variances
σ2 and correlation coefficient ρ, and we set the power con-
straints equal, i.e., P1 = P2 = P . It is shown in [80] that,
for large correlation factors ρ satisfying (ρ/1−ρ) ≥ (P/N),
uncoded transmission achieves the minimum possible dis-
tortion values D1 and D2, i.e., the best encodings are to
choose X1,t = ((P/σ2))1/2S1,t and X2,t = ((P/σ2))1/2S2,t

and optimal decoding is to produce the linear mmse
(LMMSE) of S1,t and S2,t based on channel output Yt, for
each t = 1, . . . , n. Separation-based schemes can be shown
to achieve significantly larger distortions, and thus worse
performance.

For correlation coefficients ρ satisfying (ρ/1 − ρ) ≥
(P/N), the hybrid coding scheme in Fig. 8 can achieve
smaller distortions than uncoded transmission. The idea of
hybrid coding is that each encoder first locally quantizes
its observed source sequence and then sends a linear
combination of the original source sequence and the quan-
tized sequence over the channel. The receiver first decodes
the transmitted quantized sequences and then combines
them with its channel outputs to estimate the two source
sequences Sn

1 and Sn
2 . Hybrid coding, thus, includes

uncoded transmission and source–channel separation as
special cases. For the MAC setup under consideration,
hybrid coding is the best scheme proposed so far and in

fact, performs close to the fundamental limit of minimal
distortions for all parameter values ρ, σ2, P, and N .

Hybrid coding or other JSCC schemes have been pro-
posed for a variety of other multiterminal networks
(see [75], [79], [81], [82], [83], and [57] for a few
examples). A canonical setup is the transmission of corre-
lated sources over a BC, for which both achievability [84]
and converse results [85], [86], [87] have been proposed.
Special attention was given for the transmission of cor-
related Gaussian sources over a Gaussian BC, for which
hybrid coding was first proved to generally improve over
both uncoded transmission and SSCC [88], and shortly
thereafter shown to be optimal under a quadratic distor-
tion constraint in all regimes of source correlations and
source and channel noise variances and for all admissible
distortions [89].

Related to the problem of sending correlated sources
over a MAC is the joint CEO-MAC problem in Fig. 9.
Communication again takes place over a MAC, but the
two encoders cannot directly observe the source that is of
interest to the receiver. Instead, each encoder only observes
a (correlated) noisy version of a hidden source Sm, which
the decoder aims to reconstruct by the sequence Ŝm. This
setup was first introduced and studied in the special case
in which the MAC degenerates to two rate-limited but
noiseless links [90], [91], [92], [93]. In this case, the
problem turns into a pure source-coding problem. The
variation with a Gaussian MAC was studied for example
in [94] and [95]. The results in [94] show that in some
cases uncoded transmission of the sources is optimal.
In general, however, JSCC schemes strictly improve over
separation-based architectures that combine an optimal
CEO code with an optimal MAC code. The setup in which
the source of interest cannot be directly observed at the
encoders is of great interest for semantic communication,
as it models the desired feature (or class in a classification
task) that is not directly observed at any of the terminals
but can only be accessed indirectly through the data sam-
ple, e.g., an image.

Related to the joint CEO-MAC problem and to the prob-
lem of sending correlated sources over a MAC is also the
problem of function computation over MACs [96]. In this
problem, the setup is again similar to the one in Fig. 7,
except that the decoder wishes to reconstruct a symbol-
wise function of the two source sequences f⊗m(Sm

1 , Sm
2 ).

As shown in [96], lattice-based JSCC schemes outperform
separation-based schemes in this scenario.

3) BC With Side Information: Let us first consider the
generalization of the problem with side information, stud-
ied in Section II-D, to the BC scenario, as illustrated
in Fig. 10. Here, the encoder transmits the outcome of
a single source sequence Sm to multiple receivers with
side information T n

1 , . . . , T m
K , respectively, over a discrete

memoryless BC PY1,...,YK |X . This scenario is named as
Slepian–Wolf coding over BCs by Tuncel [68].

The generalized coding scheme introduced in
Section II-D can be directly adopted in this scenario [68].
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Fig. 8. Hybrid coding for transmitting a bivariate source over a MAC.

The encoder maps each source outcome to a different
channel codeword, each of these codewords is generated
in an i.i.d. fashion from a channel input distribution pX .
After observing the channel outputs Y n

k and the source
side-information sequence T m

k , decoder k employs either
the joint decoding or the list decoding scheme presented
in Section II-D.

It can be shown that the error probability, i.e., the
probability that Ŝm

k ̸= Sm tends to 0 as n tends to infinity
and m = r · n, whenever

r ·H (S|Tk) < I (X; Yk) , k = 1, . . . , K. (27)

Following the standard converse steps in the single-
user Slepian–Wolf coding problem, it can be shown
that (27) (with nonstrict inequality) has to hold for some
probability mass function (pmf) PX . This leads to the
following theorem, which is a slightly modified expression
of [68, Th. 6].

Theorem 3: The source–channel coding capacity for the
Slepian–Wolf coding problem over the BC is given by

sup
p(x)

min
k=1,...,K

I (X; Yk)

H (S|Sk)
. (28)

Above theorem shows that each user can compensate
bad side information with good channel conditions and
vice versa. For the reconstruction capability of a decoder,
only the global quality of the side information and the
channel matter, but not the individual qualities. In this
problem, if we were to apply an SSCC approach, we would
need to deliver H(S|Sk) bits per source sample to decoder
k. Hence, we need an achievable tuple (R1, . . . , RK) within
the capacity region of the underlying BC, which maximizes

Fig. 9. Joint CEO-MAC problem.

Rk/H(S|Sk) over k. Tuncel [68] showed through an exam-
ple that this rate can be strictly below the source–channel
capacity.

In the described code construction, the encoder behaves
like in SSCC. It is, however, important that the decoder
jointly reconstructs the channel and source codewords.
The proposed scheme is, thus, still a JSCC scheme, even
if encoding is performed separately. An alternative coding
scheme which applies SSCC that can still achieve the
optimal source–channel capacity is also possible. In this
alternative coding scheme, source samples are compressed
separately for each user such that each user receives
enough information to decode the source sequence when
combined with its own side-information sequence. Then,
the source sequence is divided into blocks, and the bin
indices for these blocks are transmitted to each receiver at
a different channel block, and the users employ backward
decoding. We will illustrate this coding scheme considering
a network with two users.

We fix p(x) such that (27) holds. Then, we consider a
sequence of (m, n) pairs such that m/n is less than (28),
and its limit is r, i.e., limm,n→∞m/n = r. For each
(m, n) pair, a total of Bm source samples will be trans-
mitted over (B + 1)n channel uses. This corresponds to a
source–channel code rate of Bm/(B+1)n, which becomes
arbitrarily close to m/n as B →∞.

Source Code Generation: Corresponding to each decoder
i, i = 1, 2, we consider Mi = 2mRi bins, called the Ti

bins. All possible source outcomes sm ∈ Sm are partitioned
randomly and uniformly into these bins, independently of

Fig. 10. Slepian–Wolf coding over a BC.
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Fig. 11. Channel codeword assignment for separation-based

encoding and backward decoding scheme for Slepian–Wolf coding

over BC with K = 2 users. B source blocks are transmitted in (B + 1)

channel blocks.

each other, i.e., the distribution into M1 bins is indepen-
dent of the distribution into M2 bins. The ith bin index of
the source sequence represents the information that will be
provided to user i. This bin assignment, which corresponds
to source compression, is made available to all the users.

Channel Code Generation: For the channel codebook,
generate at random M1M2 channel codewords i.i.d. with
probability p(xn(i, j)) = Πn

t=1p(xt), and index them as
xn(ji, j) with (i, j) ∈ [1 : M1]× [1 : M2].

Encoding: Consider a source sequence sBm of length
Bm. Partition this sequence into B portions, sm

b ,
b = 1, . . . , B. Similarly, partition the side-information
sequences into B length-m blocks tBm

i = [tm
i,1, . . . , t

m
i,B ] for

i = 1, 2. The bin index of the jth block of the source output
sequence sm

j with respect to Ti bins is denoted by wj,i. The
estimate of wj,i at user k, k = 1, 2, k ̸= j, is denoted by
ŵk

j,i. See Fig. 11 for an illustration of the encoding scheme.
In block 1, transmitter observes sm

1 and finds the cor-
responding T1 bin index w1,1 ∈ [1 : M1]. It transmits
the channel codeword xn(w1,1, 1). In block 2, it trans-
mits the channel codeword xn(w2,1, w1,2) corresponding
to the T1 bin index of the second source block and the
T2 bin index of the first source block. In the following
blocks b = 2, . . . , B, it transmits the channel codewords
xn(wb,1, wb−1,2) where wb,i ∈ [1 : Mi] for i = 1, 2. In block
B + 1, it transmits xn(1, wB,2).

The first user estimates the source block sm
b−1 at the end

of block b−1, denoted by ŝm
1,b−1, and finds the correspond-

ing bin index ŵ1
b−1,2 ∈ [1 : M2]. When the condition in (27)

holds, it is possible to show that the user will recover each
source block successfully with vanishing error probability
as m, n →∞.

On the other hand, user 2 will wait until the end of
the last block to start decoding and will decode the source
blocks backward. At the end of channel block B +1, user 2
decodes the first source block sm

1 , denoted by ŝm
2,B , and

finds the corresponding bin index ŵ2
B,1 ∈ [1 : M1]. Having

estimated this bin index, it can then decode the next source
block B−1, and so on so forth. Similarly, each source block
will be decoded by the second user with high probability
if (27) holds.

The idea of Slepian–Wolf coding over BCs is extended
to lossy broadcasting scenario in [97]. This coding princi-
ple is also very useful in cache-aided networks, where it
was termed joint cache-channel coding [98], [99], [100].
In cache-aided networks, users store contents at cache
memories close to end users, which then serves as side
information during the actual communication phase. The
situation is, thus, similar to the one described above, but

we face a data communication problem where different
decoders wish to learn different parts of the data.

F. Types of Source–Channel Separation

The above results and coding schemes beg further
discussion on source and channel separation in multiuser
networks. In [101], two types of separations are proposed:
the first type of separation is a direct generalization of
Shannon’s Separation Theorem to multiuser networks,
and answers the question “Can we determine the
source–channel capacity by simply comparing the
source coding rate region with the capacity region of
the underlying sources and channels?” This is trivially
the case in point-to-point channels. This also holds
for a MAC when there is no multiuser interference,
that is, the users have orthogonal channels to the
receiver [102]. In such a case, the source–channel
capacity for a given target distortion tuple (D1, . . . , DK)

and input cost constraint tuple (P1, . . . , PK) is given
by sup(Rs

1 ,...,Rs
K

)∈Rcomp,(Rc
1 ,...,Rc

K
)∈Rchan

mink=1,...,K Rc
k/Rs

k,
where Rcomp denotes the source coding rate region for the
considered sources for target distortion tuple (D1, . . . , DK)

and Rchan denotes the capacity region of the underlying
channel with cost constraints (P1, . . . , PK).

Note that the two regions are characterized completely
independently of each other; that is, the optimal source
coding rate region is ignorant of the channels, and the
channel capacity region is ignorant of the source statistics.
Moreover, the coding schemes that achieve the operating
points in these two rate regions are also oblivious to each
other, apart from exchanging bits. On the other hand,
the coding scheme achieving the optimal source–channel
capacity in Theorem 3 points to a different type of separa-
tion. The source–channel capacity can still be determined
by comparing two rate regions that are statistically inde-
pendent of each other; however, the coding schemes to
achieve these rate regions are not oblivious to each other,
and moreover, the channel coding rate region does not
correspond to the capacity region of the underlying chan-
nel. In [68], these two types of separations are called
“informational separation” and “operational separation,”
respectively.

G. JSCC for Channel Coding

So far, we have focused on JSCC for transmitting source
signals to be recovered at the decoder under a prescribed
distortion measure. However, JSCC in general can also
be instrumental in increasing the achievable coding rates
in multiterminal networks. Treating received signals as
sources to be forwarded to other terminals to help their
decoding of the underlying message was first considered
in [103] in the context of a relay channel (illustrated
in Fig. 12). Here, the goal of the encoder is to convey
message W ∈ {1, . . . , 2nR} to the decoder. The relay
terminal can overhear the transmission and would like to
help the decoder by conveying extra information about the
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Fig. 12. Relay channel.

transmitted message. One option is for the relay to first
decode W and forward it to the decoder in collaboration
with the encoder. However, if the relay’s channel is not
strictly better than that of the decoder, requiring correct
decoding at the relay can become a bottleneck instead.
An alternative scheme is to treat the signal received at the
relay, Y n

1 , as a source signal, which is to be forwarded
to the decoder with as high fidelity as possible. Cover
and El Gamal [103] treated this problem as a source
and channel coding problem. Since it is a point-to-point
channel, separation is known to be optimal in this case,
and thus, the relay can first compress Y n

1 and forward
it to the decoder using channel coding. Note, however,
that, the decoder’s received signal, Y n

2 , is correlated with
that of the relay and, thus, can act as correlated side
information, as in Wyner–Ziv coding. Let Ŷ n

1 denote the
compressed version of relay’s received signal. To forward
it to the decoder, the following condition should hold:
I(Y1; Ŷ1|X1, Y2) ≤ I(X1; Y2). Then, the decoder can com-
bine the compressed version of relay’s signal with its own
received signal to decode the message transmitted by the
encoder. The achievable rate with this compressed-and-
forward scheme is then given by I(X0; Ŷ1, Y2|X1), where
the joint distribution of the random variables is given by
p(x0)p(x1)p(ŷ1|x1, y1)p(y1, y2|x0, x1).

In the case of multiuser relay channels, the relay will
need to broadcast its received signal to multiple receivers
for an extension of the compress-and-forward scheme.
Note, however, that there is no Separation Theorem in
this case since the goal is to send a lossy version of the
relay’s signal to multiple receivers each with a different
correlated side information (similar to [97]). The simplest
scenario requiring the broadcast of a relay signal to mul-
tiple users would be the separated two-way relay channel
model. In this model, two users try to communicate with
each other with the help of a relay terminal. It is called
separated since there are no direct links between the users,
and thus, they rely on the relay terminal for communica-
tions. The relay receives the superposition of the signals
transmitted by each user. In general, it may not be feasible
for the relay to decode the users’ messages, and instead,
it can broadcast its received signal to both users. Since
each user already knows its own transmitted signal, it may
be easier for them to cancel their own interference and
decode the other user’s message. In this case, user’s own
signals act as correlated side information when the relay’s
received signal is broadcast to the users. Two achievable

rate regions are proposed in [104] relying on JSCC of
relay’s signal using Wyner–Ziv coding over the BC from
the relay to the users. A single compressed version of
the relay’s signal is transmitted to both users in the first
scheme, while a refinement layer is sent to one of the
users in the second scheme. Further gains are possible
by introducing a hybrid relaying scheme, which exploits
amplify-and-forward relaying together with the proposed
digital broadcasting approaches, similar to [105]. While
these schemes generally lead to achievable rates or rate
regions and are not capacity-achieving, they are shown
to achieve the optimal diversity-multiplexing tradeoff
for MIMO relay and two-way relay channels in [106]
and [107], respectively.

Hybrid coding (which we used to send correlated
sources over a MAC) can also improve the performance of
data communication problems. Consider, for example, the
diamond relay network in Fig. 13, where the goal is to send
a message from the encoder to the decoder with the help
of two relays. The best known coding scheme (in terms
of achievable rates) uses hybrid coding at the relays, i.e.,
the relays quantize their channel outputs Y n

1 or Y n
2 into

source codewords Un
1 or Un

2 , and then sends a symbolwise
function of these source codewords and the observed chan-
nel outputs. Similar to the MAC with correlated sources,
hybrid coding allows to transfer part of the correlation
between the outputs Y n

1 and Y n
2 to the inputs Xn

1 and Xn
2 ,

which for certain MACs allows for a better communication
performance than using independent inputs.

JSCC plays a prominent role also in interactive data
communication scenarios when terminals wish to com-
municate messages and not source sequences. In fact,
interactive data communication schemes often (see [72],
[108], [109], [110], [111], and [112]) build on strategies
where information is transmitted in a given block and
refined in subsequent blocks. From a receiver’s point of
view, during the refinement blocks, the data bits are no
longer independent bit sequences because they are cor-
related with the symbols observed during the previous
blocks. In this sense, the communication problem turns
into a JSCC problem with side information, and JSCC
generally outperforms separation-based schemes.

The refinement idea is, for example, exploited in [110]
on a two-user BC with rate-limited feedback, i.e.,
on a single-transmitter two-receiver channel where both
receivers can send back feedback information over
rate-limited communication links. A simple but very effi-
cient scheme [110] for this setup is that, after each
communication block, the receiver with the worse channel

Fig. 13. Data communication over the diamond relay channel.
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Fig. 14. Data communication over the two-user MAC with feedback.

condition quantizes its observed output signal and sends
back the quantization information over the rate-limited
link. In the next block, this information is sent from the
single transmitter to the receiver with the better channel as
part of the cloud center, i.e., as part of the information that
has to be decoded by both receivers. The weaker receiver
will not be bothered by this additional transmission in
the cloud center since it already knows the quantization
information (it generated itself) and can simply ignore
its presence. The stronger receiver has sufficiently good
channel conditions to be able to decode the quantization
information and reconstruct a quantized version of the sig-
nal observed at the weaker receiver in the previous block.
This second output signal allows the stronger receiver to
decode the previous block with a single-input multioutput
(SIMO) decoding based on two outputs. On an abstract
level, the described scheme establishes a communication
path (over the feedback and forward links) from the
weaker receiver to the stronger receiver, which allows to
exchange information about the output signals essentially
without using resources on the forward link.

The described scheme is a JSCC scheme because it
does not treat the quantization information as an isolated
sequence of bits, but, instead, takes into account that it is
information obtained from the previous block’s output at
the weak receiver, and thus known to it. Without taking
into account this knowledge, the proposed scheme does
not yield any benefit compared to a simple nonfeedback
scheme. However, after accounting for this side informa-
tion, the scheme improves over the optimal no-feedback
scheme on a large class of channels as long as the the
feedback rate is nonzero [110]. Incidentally, JSCC schemes
that improve capacity with feedback for Gaussian BCs
with noisy feedback are proposed in [113], which leads to
a complete characterization when capacity improvements
are possible and when not.

Another canonical instance of interactive communica-
tion is the MAC with feedback problem in Fig. 14, where
two encoders communicate to a single decoder sequen-
tially, in the sense that the time-t channel inputs X1,t

and X2,t are functions of the respective messages M1 or
M2, as well as the past channel outputs Y t−1. For this
setup, a block-Markov coding scheme is proposed in [108],

where in each block, JSCC is used to send refinement infor-
mation about the previously transmitted codewords. This
refinement information is calculated based on the observed
feedback outputs and can be highly correlated across the
two transmitters. Sending such correlated side information
in the next block allows to correlate the channel inputs
from the two transmit terminals (without resorting to
trivial inputs) and to achieve higher communication rates.

An elegant coding scheme for the two-user MAC with
feedback in the Gaussian case was proposed in [114].
Each of the two transmitters first maps its message Mk,
k ∈ {1, 2} to one of the 2nRk equally-spaced points on a
grid over the interval [−1/2, 1/2), i.e.,

Θk =
Mk

2nRk
− 1

2
(29)

and then sends this message point during the first channel
use by transmitting Xk,1 = (12Pk)1/2Θk, where the scaling
is performed to satisfy the input power constraint Pk.
In subsequent channel uses, Tx k ∈ {1, 2} calculates
the LMMSE Θ̂k,t of Θk based on past feedback outputs
Y1, . . . , Yt−1 and sends a scaled version of the LMMSE error
ϵk,t, as in the single-user scheme explained in Section II-C.
Following again the idea in Section II-C, the two transmit-
ters then send a scaled version of their estimation errors
so as to satisfy the power constraint, while one of the two
transmitters also modulates its inputs with a ±1 sequence
to ensure that at each time instance the inputs of the two
transmitters are positively correlated and thus profit from
each other. The receiver calculates the LMMSE estimates
Θ̂1,n and Θ̂2,n of both message points and declares the
messages M1 and M2 associated with the grid points that
are closest to these estimates.

The described scheme is not only particularly simple to
implement but achieves the sum capacity of the two-user
Gaussian MAC with output feedback. It has been extended
to MACs with more than two users [115], for which it was
shown to achieve capacity [115], [116], to interference
and BCs [83], [117], [118], [119], and to MACs and BCs
with noisy feedback [113], [120], [121].

H. Beyond Average Distortion

The classical JSCC problem considers an average dis-
tortion measure [see (2)], where each summand depends
only on the pair of source and reconstruction symbols at a
given time i, which is key to the proof of Shannon’s Sep-
aration Theorem. Depending on the application, however,
more general performance criteria have to be applied.

Consider, for example, the distributed hypothesis testing
problem in Fig. 15 without bandwidth mismatch, i.e.,
m = n, where a sensor (transmitter) observes source
sequence Sn and communicates to a decision center over a
noisy communication channel. Based on the outputs of the
channel and its own observation T n, the receiver has to
guess the joint distribution that underlies the distributed
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Fig. 15. Distributed hypothesis testing scenario.

observations Sn and T n. A binary hypothesis is assumed
where under the null hypothesis

H = 0: (Sn, T n) i.i.d. ∼ PST (30)

and under the alternative hypothesis

H = 1: (Sn, T n) i.i.d. ∼ QST (31)

for two given pmfs PST and QST .
Mathematically speaking, the sensor maps the observed

source sequence sn to channel inputs xn(sn), and the
decision center maps the pair of channel outputs yn and
observed side information tn to a decision Ĥ(yn, tn).

An exponent θ is said achievable, if for sufficiently
large blocklengths n, there exist encoding and decoding
functions such that the decision center’s probabilities of
error

αn := Pr
[
Ĥ = 1|H = 0

]
(32)

βn := Pr
[
Ĥ = 0|H = 1

]
(33)

satisfy

lim
n→∞

αn = 0 (34)

and

− lim
n→∞

1

n
log2 βn ≥ θ. (35)

The goal is to maximize the achievable type-II error expo-
nent θ.

For certain families of source distributions PST and
QST , for example, for testing against independence, where
QST = PSPT , a separation-based scheme [122] achieves
the optimal error exponent θ. In particular, for testing
against independence, the optimal exponent is θ⋆ =

max I(U ; T ), where the maximization is over all auxil-
iary random variables U such that the tuple (U, S, T ) ∼
PU|SPST satisfies I(U ; T ) ≤ C, with C denoting the
capacity of the communication channel as before.

In general, however, an improved performance can be
attained by a JSCC scheme. The best JSCC schemes known
to date are the schemes in [123] and [124], which combine
either hybrid coding or joint decoding à la Tuncel [68] with

unequal error protection (UEP) [125]. A slightly simplified
version of the coding scheme in [123] based on hybrid
coding is sketched in Fig. 16 and described in the follow-
ing. The full scheme in [123] is obtained by additionally
introducing coded time-sharing and dependence between
various code components.

We pick a conditional pmf PU|S and a function f map-
ping (U, S) to the channel input X. The joint pmf is given
by PUSTXY = PU|SPST PX|USPY |X , where PY |X indicates
the channel law and PX|US indicates the input distribution
obtained when applying the chosen function f to (U, S).
We assume that I(U ; S) > R > I(U ; S) − I(U ; T ) =

I(U ; S|T ) with respect to the joint pmf PUST . We then
generate a random codebook {un(ℓ) : ℓ = 1, . . . , 2nR′},
by picking all entries i.i.d. according to the marginal PU .

Sensor: Given that it observes the source sequence Sn =

sn, the remote sensor looks for an index ℓ so that the
codeword un(ℓ) is jointly typical with the observed source
sequence sn according to the joint pmf PUS . It then applies
the function f componentwise to the chosen codeword
un(ℓ) and the source sequence sn, i.e., xn = fn(un(ℓ), sn),
and sends the result over the channel. If no typical code-
word can be found, then the sensor sends a special input
sequence xn

0 over the channel. In other words, if the typ-
icality test succeeds, the hybrid encoding steps from [75]
are used, and otherwise, the UEP mechanism from [125]
is employed.

The idea is to choose the sequence xn
0 to be

well-distinguishable at the receiver from any of the code-
words un(ℓ), thus implementing a UEP code. This is
crucial for the present hypothesis testing scenario because
it allows to specially protect the message indicating that
none of the codewords has empirical statistics close to PUS ,
which is the statistics that we can expect under H = 0 for
at least one of the codewords if we choose the codebook of
the indicated size. The absence of such a codeword, thus,
hints to the hypothesisH = 1 and the sensor applies a UEP
code to enforce high reliability on the transmission of this
information, because in our asymmetric setup, we have
more stringent requirement on missing hypothesis H = 1
(we require exponentially decreasing βn) than on missing
hypothesis H = 0 (αn can decay arbitrarily slowly.

Decision Center: Assume that T n = tn and Y n = yn.
The receiver first looks for an index ℓ′ ∈ {1, . . . , ⌊2nR⌋}
such that the following two conditions are simultaneously
satisfied:

(
un

(
ℓ′
)
, yn, tn

)
∈ T n

µ (PUY T ) (36)

and

Htp(un(ℓ′),tn) (U |T ) = min
ℓ̃

Htp(un(ℓ̃),yn) (U |T ) (37)

where here T n
µ (PUY T ) denotes the set of triples (un, yn, tn)

with empirical statistics equal to PUY T within a small
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Fig. 16. Distributed detection scheme based on JSCC (hybrid coding) and UEP.

positive µ > 0 margin, and Htp(un,yn)(U |T ) denotes the
conditional entropy of random variables U given T whose
joint pmf is given by the empirical statistics (the type)
of the pair (un, yn). If the tests in (36) and (37) are
simultaneously successful for the same index ℓ′, then the
decision center declares Ĥ = 0, and otherwise, Ĥ = 1.

The empirical conditional entropy test in (37) is
inspired by the distributed hypothesis testing scheme over
a noiseless communication channel in [126]. Recently,
an improved test for the noiseless setup has been pro-
posed [127], and it can be expected that using their
scheme in this setup with a noisy communication channel
will also lead to an improved performance.

The study of distributed hypothesis testing over noise-
less links has received significant attention in the literature,
with several remarkable results [124], [128], [129], [130],
[131], [132], [133], [134], [135]. More complicated
setups over noisy networks have been considered for exam-
ple in [136], [137], and [138].

III. P R A C T I C A L C O D E D E S I G N F O R
J S C C : C L A S S I C A L A P P R O A C H E S
The design of practical JSCC schemes has been a long-
standing challenge in information and coding theory. The
efforts can be grouped into three general categories.
In the first group are joint code designs for idealistic i.i.d.
or Markov source distributions. These approaches aim at
extending some of the known code designs to exploit the
redundancy in the source distribution. In the second group
are joint designs for practical sources, such as images
or videos, which typically consider two separate codes
for compression and channel coding, whose parameters
are optimized jointly. The last group is closer to a fully
joint design, inspired by the optimality of uncoded/linear
transmission for Gaussian sources over Gaussian chan-
nels, and employs linear encoding schemes with some
hand-designed nonlinearities for the transmission of prac-
tical image or video sources. Next, we present overviews of
codes under these three categories.

A. Practical JSCC Code Design
There have been many practical coding designs for JSCC

based on the classical coding schemes, such as Turbo,
low-density parity-check (LDPC), and polar codes. In his

1948 article, Shannon [1] already wrote that “. . . any
redundancy in the source will usually help if it is utilized
at the receiving point. In particular, if the source already
has redundancy and no attempt is made to eliminate it
in matching to the channel, this redundancy will help
combat noise.” He also provided a simple example in [45]
showing that the uncoded transmission of a nonuniform
binary source over a binary erasure channel can meet
the optimal Shannon lower bound achieved by SSCC with
infinite blocklength. Various designs have been proposed
for general source and channel distributions to benefit
from the source redundancy. Optimality of linear codes
for lossless coding was observed in [139]. It was also
shown in [140] that linear codes cannot achieve optimal
performance when lossy transmission is considered. Most
follow-up studies on explicit code construction focused on
lossless transmission. Hagenauer [141] proposed a modi-
fied version of the Viterbi algorithm that can benefit from
the a priori or a posteriori information about the source
bits. A joint trellis representation of the decoder is pro-
posed in [142] for i.i.d. and Markov sources that can allow
Viterbi-like joint decoding of variable-length source codes
with convolutional and trellis channel codes. Another trel-
lis representation is suggested in [143] for variable-length
Huffman coding combined with a convolutional code, and
the Turbo principle is applied at the decoder to iterate
between the source and channel decoders. The idea to
exploit the residual redundancy of the compression scheme
is also considered in [144] and [145]. The former com-
bines differential pulse code modulation (DPCM) with
a nonbinary convolutional channel code and employs a
Viterbi decoder. In the latter, Lempel–Ziv coding is shown
to correct a few errors over the channel by exploiting the
redundant bits that remain after compression. Residual
redundancy in Huffman coding is exploited in [146] when
transmitting a Markov source over a noisy channel, with
both a Viterbi and a Turbo channel decoder. A first-order
binary Markov source is considered in [147] with a Turbo
channel code, and both constituent decoders are modified
to optimize the performance. JSCC of more general hidden
Markov source models is studied in [148] and [149] with
Turbo decoders, where a universal Turbo decoder is used
in the latter, which means that the source statistics need
not be known in advance.
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JSCC of a first-order Markov source using an LDPC
code is considered in [150]. A convergence analysis and
a general method for the optimization of irregular LDPC
codes for joint source–channel receivers are presented
in [151]. A lossless JSCC scheme based on two concate-
nated LDPC codes is proposed in [152]. An LDPC-based
source encoder is concatenated with an LDPC channel
encoder at the transmitter side, while a single joint belief
propagation (BP) decoder is employed at the receiver.
The asymptotic performance of the proposed scheme is
theoretically analyzed using extrinsic information transfer
(EXIT) charts. To reduce the implementation complexity
of the JSCC system and to improve its performance in
the waterfall region, double protograph LDPC (DP-LDPC)
codes are proposed in [153]. In general, the optimal chan-
nel code designed for the underlying channel is not optimal
in the JSCC context due to the joint decoding operation.
A joint protograph extrinsic information transfer (JPEXIT)
analysis is proposed in [154] to calculate the decoding
threshold of the joint protograph matrix, and the channel
code in the DP-LDPC system is redesigned to improve the
overall performance in the waterfall region. Further vari-
ants of DP-LDPC codes have been introduced to improve
the performance [155], [156], [157]. A graph-theoretic
construction method is proposed in [158] to transform the
parity-check matrices of the source and channel codes into
an interset constraint problem. Spatially coupled LDPC
(SC-LDPC) codes are proposed in [159] to implement
JSCC by concatenating two SC-LDPC coding modules for
source and channel coding, respectively, at the transmitter
with a joint BP-based decoder. A joint source and chan-
nel anytime coding scheme with partial joint extending
window decoding is proposed in [160] based on spatially
coupled repeat-accumulate (SC-RA) codes. It is shown
that the proposed approach provides low latency and
high-reliability transmission with respect to [159] at the
cost of higher decoding complexity.

A double polar code (D-Polar)-based scheme is proposed
to implement JSCC in [161], where the source compres-
sion is implemented by a polar encoder before the channel
error correction is performed by a systematic polar code.
At the receiver side, a turbo-like BP channel and source
decoders are introduced to perform channel and source
decoding, respectively. A joint BP decoding approach is
instead applied in [162], together with a biased extrinsic
information transfer (B-EXIT) convergence analysis.

Rateless codes, such as Raptor codes, have also been
applied to implement JSCC [163]. In particular, the rate-
less property of Raptor encoders can be utilized during
the explicit entropy coding stage to reduce the channel
postdecoding residual errors.

For lossy JSCC of memoryless sources, Kurtenbach and
Wintz [164] studied the problem of optimum quantizer
design when the quantizer’s output is transmitted over a
noisy channel. This is further studied in [165] considering
jointly the code assignment problem. Farvardin [166] and
Farvardin and Vaishampayan [167] later extended their

study to vector quantizers. Farvardin [166] employed sim-
ulated annealing for the codeword assignment problem
and showed that when some statistical information about
the channel is available, it is possible to improve the
performance of the vector quantizer through a joint design
of the codebook and the binary codeword assignment.

Dunham and Gray [168] proved that for stationary
and ergodic sources, there exist optimal joint source and
channel trellis encoding systems over discrete memoryless
channels, which consist of concatenating a source tree
coding system with a channel tree coding system, and
perform arbitrarily close to the distortion rate function
evaluated at the capacity of the underlying channel. While
this is an existence result, Ayanoglu and Gray [169]
applied the generalized Lloyd algorithm to design joint
source and channel trellis codes. The experimental results
on independent and autoregressive Gaussian sources over
binary symmetric channels under absolute and squared
error distortion measures indicate that the joint system can
outperform a separately optimized tandem system. A JSCC
scheme using combined trellis-coded quantization (TCQ)
and trellis-coded modulation (TCM) is proposed in [170]
for communication over an AWGN channel. TCQ of mem-
oryless sources is developed in [171] for transmission over
a binary symmetric channel. It is shown to achieve the
same performance as the one proposed in [169], but with
a much lower complexity. A joint design of TCQ/TCM is
also proposed and is shown to outperform the cascade of
separately designed TCQ and TCM systems, particularly at
low signal-to-noise ratios (SNRs). Further improvements
in moderate to high SNR regimes are obtained in [172],
[173], and [174] by introducing more advanced schemes
at the expense of increased computational complexity.

B. JSCC Code Designs for Realistic Sources

In this second class, we can consider JSCC designs
that combine compression algorithms for particular source
types, e.g., audio, image, or video, with channel codes,
where the parameters of the two are jointly optimized
to maximize the end-to-end performance. Modestino and
Daut [175] combined 2-D DPCM for image coding with a
convolutional code. This was later extended to a 2-D dis-
crete cosine transform (DCT) in [175]. Instead, Comstock
and Gibson [176] combined 2D-DCT with Hamming codes.
Around the same time, there was also significant interest
in JSCC for speech signals. Goodman and Sundberg [177]
studied the combined effects of quantization and trans-
mission errors on the performance of embedded DPCM.
Later, they applied these ideas to embedded DPCM speech
encoding and punctured convolutional codes in [178].
Moore and Gibson [179] combined DPCM speech encoding
with self-orthogonal convolutional codes.

In [180], a JSCC approach is proposed for Turbo codes
to further improve the error control performance of image
and video transmission. In this approach, three feedback
schemes are introduced to improve the Turbo decod-
ing performance, including error-free source information
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feedback, error-detected source information feedback, and
channel soft values (CSVs) feedback for source signal
postprocessing. These feedback schemes are implemented
by modifying the extrinsic information passed between
the constituent maximum a posteriori probability (MAP)
decoders in the Turbo decoder. The experimental results
show that around 0.6 dB of channel, SNR reduction can be
achieved by the proposed JSCC schemes without introduc-
ing any extra computational cost.

Wu et al. [181] consider the transmission of encoded
images over noisy channels. To provide unequal protec-
tion to different bit streams of the image to combat
channel noise, the authors consider two rate compatible
channel codecs, rate compatible punctured convolutional
codes (RCPC) and rate compatible punctured turbo codes
(RCPT), to construct a JSCC system. In order to derive the
optimal rate distribution, they formulate the optimization
problem of minimizing the end-to-end distortion, which is
then solved by a dynamic programming-based approach.
The experimental results show that the proposed JSCC
schemes perform better than the baseline without rate
allocation.

Pu et al. [182] consider the rate allocation problem for
the transmission of scalable images over parallel channels.
A JSCC system consisting of an image source codec and
an RCPT channel codec is proposed. Different from the
aforementioned formulation of the optimization problem,
distortion-based rate allocation problem for parallel chan-
nels is generally difficult to solve since the search space
can be expanded largely and the additional constraints
for different subchannel arise. To tackle this problem, the
authors consider a rate-based optimization problem that
maximizes the expected length of correctly received data.
The rate-optimal solution provides a good approximation
to the distortion-optimal solution. The simulation results
of the comparison of mean-squared error (mse) and peak
signal-to-noise ratio (PSNR) for the transmission of images
over parallel Gaussian channels show that the proposed
JSCC schemes outperform the traditional approaches.

Different from the above solutions, Zhang et al. [183]
propose a JSCC scheme with power-minimized rate allo-
cation for video transmission over wireless channel. The
optimization problem is formulated as the minimization
of the summation of processing power for the source and
channel encoders and the transmission power with the
constraints of total rate and end-to-end distortion. The sim-
ulation results show that the proposed joint power-control
and rate allocation scheme achieves higher power savings
compared to the conventional JSCC scheme.

C. Joint Designs

While the aforementioned designs are considered under
the JSCC context, they inherently rely on separate source
and channel codes that are either jointly decoded or
optimized jointly. On the other hand, there have also
been many efforts in the literature to provide genuinely

joint designs. The linear coding scheme of Hellman [139],
mentioned previously, can be considered as an example of
a joint design although it is obtained by a direct combi-
nation of two linear codes for source and channel coding,
respectively.

In the case of ideal Gaussian sources and channels, the
optimality of uncoded transmission has been well-known,
as highlighted in Section II-A. However, this optimality
breaks down when there is a mismatch between the
source and channel bandwidths, and mapping a multidi-
mensional source directly to a multidimensional channel
has been a challenging open problem for many decades.
A common approach is based on the use of space-filling
curves for bandwidth compression, originally proposed
by Shannon [184] and also studied in depth by Kotel-
nikov [185]. More recent works include [186], [187], and
[188]. Hybrid digital and analog schemes that combine
vector quantization with analog mappings were considered
in [189] and [190] for robustness. The optimal mapping is
identified in [191] when both the encoder and decoder are
constrained to be linear.

Inspired by the theoretical optimality of uncoded trans-
mission for certain source and channel statistics, practical
JSCC schemes for image and video transmission were pro-
posed in [192] and [193], respectively. This idea was later
popularized as SoftCast in [194] when uncoded transmis-
sion is directly applied after JPEG compression. SoftCast
applies a DCT on the input image and transmits the DCT
coefficients directly over the channel using a dense con-
stellation. Compression is obtained by discarding blocks of
DCT coefficients whose energy is below a certain threshold.
On the other hand, the index of the discarded blocks
is sent as meta-data to the receiver for reconstruction—
in that sense, SoftCast is a hybrid scheme combining
uncoded/analog transmission with digital communication.
Since the encoder mapping is linear for the transmitted
coefficients, and the coefficients are corrupted by additive
noise directly, the resultant PSNR of the reconstruction at
the receiver is linearly related to the channel signal-to-
noise ratio (CSNR). This resolves the cliff effect problem
encountered in SSCC benchmarks.

Many variations and improved versions of SoftCast
have been introduced in [188] and [195]. A theoretical
analysis of SoftCast is presented in [196], which high-
lights the importance of a decorrelation transform and the
energy modeling of the underlying signals. Wavelet trans-
form is employed in [195] and Karhunen–Loeve transform
(KLT) is applied in [197] as the decorrelation transform
instead of 2D-DCT. ECast [198] focuses on joint subcarrier
matching and power allocation for optimal end-to-end per-
formance of transmission. In [199] and [200], compressed
sensing (CS) has been used for wireless video transmission,
where l1 approximation is considered for recovery. While
this allows the receiver to employ convex optimization
tools, it is still complex for video streaming applications
with strict delay constraints. Iterative algorithms have been
proposed to approximate the solution faster, which achieve
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reconstruction through iterative thresholding, at the cost
of increased error [201]. This algorithm applies CS on
the pixels directly and requires no meta-data as long as
the measurement matrix is agreed a priori between the
transmitter and receiver. In [202], after applying 2D-DCT
on image blocks and thresholding, a novel grouping of
the coefficients is applied, where coefficients of the same
frequency component are grouped into vectors. Each vec-
tor is then multiplied with a pseudorandom measurement
matrix, whose size depends on the sparsity level of the
corresponding vector. Finally, a scaling factor is applied
to the results of this multiplication, which corresponds
to power allocation across different frequency compo-
nents. The receiver employs a combination of approximate
message passing (AMP) and mmse estimation. AMP is
a low-complexity iterative thresholding algorithm, which
does not need to know the exact positions of the nonzero
elements in the sparse vector.

IV. M L - B A S E D J S C C C O D E D E S I G N :
D E E P L E A R N I N G E R A
As outlined above, there have been ongoing efforts on the
design of practical joint source–channel codes over the
decades since Shannon, they have not found applications
in practical systems, and almost all existing communica-
tion systems rely on separate digital codes. While this is
partially due to the modularity of separation that makes it
attractive from an engineering design point of view, it is
also because the existing JSCC designs either did not reach
the same level of performance achieved by state-of-the-art
separate codes or relied on unwieldy and complex designs
that made their implementation in practice infeasible.

On the other hand, there has been significant progress
in practical joint source–channel code design over the
past several years, thanks to the developments in deep
learning technology. In general, a joint source–channel
code is a pair of mappings as in Section II-A: the first
is the encoder mapping from the source signal space to
the channel input space under the channel input cost
constraint, while the second is the decoding mapping from
the channel output space to the source reconstruction
space. Separate source and channel codes, or most JSCC
code designs that rely on the adoption and combination
of existing hand-crafted source and channel codes, impose
certain limitations on the transformations that can be used.
In particular, they require mapping of the source signal
into a sequence of bits. Such structured codes are more
amenable to optimization; however, they are combinatorial
problems in essence. This combinatorial nature makes the
employment of deep learning techniques in the design of
source and channel codes challenging. In the case of source
coding, typically, a quantization step must be employed,
which is not differentiable, and has to be approximated
through various methods (e.g., straight through estimator,
stochastic quantization, etc.) [203]. The channel coding
problem is also highly challenging as the number of classes
grows exponentially with the code length, and the target

Fig. 17. DeepJSCC schemes rely on an autoencoder pair trained

jointly on a dataset of input signals and a channel model.

error probability levels are extremely low compared to
typical ML tasks, which increases the training time and
sample complexity. On the other hand, one can argue that
deep learning is a better match for the design of joint
source–channel codes, which in essence do not impose
any combinatorial constraints, and simply require mapping
similar source signals to nearby points in the channel input
space in order to limit the reconstruction distortion in the
presence of channel noise. In the remainder of this section,
we will provide an overview of the recent developments in
deep learning-aided design of joint source–channel codes,
and sketch some of the challenges in their adoption in
practical communication systems.

A. DeepJSCC for Wireless Image Transmission

Deep learning enabled JSCC was first proposed in [11]
and applied to wireless image transmission. The scheme,
called DeepJSCC, uses a trainable autoencoder architec-
ture, with a nontrainable channel between the encoder and
decoder, to learn a mapping directly from the image pixels
to a set of channel input symbols, and vice versa at the
decoder (see Fig. 17). That is, in DeepJSCC, the encoder
and decoder mappings are parameterized by neural net-
works Θe and Θd, and can be denoted by fm,n

Θe
and gm,n

Θd
,

respectively. Here, m = 3×h×w denotes the input dimen-
sion of the encoder neural network, where 3 represents
the R, G, and B components of the colored input image,
and h and w denote its height and width, respectively. The
corresponding source–channel rate is given by r = m/n

as before. In the DeepJSCC literature, the performance
is typically quantified in terms of the bandwidth ratio,
which is the inverse of the source–channel rate, denoted
by ρ = n/m.

The two networks are then trained jointly in an end-to-
end fashion. The goal is to solve the following optimization
problem as before:

min
Θe,Θd

E
[
d
(
Sm, Ŝm

)]
. (38)

However, unlike in information theoretic formulation,
for practical image communication problem, we do not
have a statistical model of the source Sm, or an addi-
tive single-letter distortion measure. Therefore, instead of
vying for a closed-form expression, we optimize the neural
network parameters using stochastic gradient descent over
a dataset of images D

min
Θe,Θd

1

|D|
∑

Sm∈D

[
d
(
Sm, Ŝm

)]
. (39)
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We note that this formulation is general and can be
applied to any channel and distortion measure. Here, the
channel can be treated as another layer in between the
encoder and decoder neural networks, yet an untrainable
one. For the standard additive Gaussian noise channel,
the gradient trivially backpropagates through the channel
layer. In general, it may be difficult to obtain an explicit
gradient for the channel model, or we may not even
have a channel model, but simply have access to channel
input–output pairs. In that case, we can first train a gener-
ative model of the channel [204], [205], [206], which can
then be used for training the DeepJSCC encoder/decoder
pair.

We would like to highlight that the DeepJSCC
approach can be considered as a generalization of
the linear/uncoded transmission schemes introduced in
Section III-C, which were limited to hand-designed trans-
formations of the input image. Instead, the solution
identified through the training operation can be a highly
nonlinear mapping from the input source sample to the
channel, and in general, its complexity will be dictated by
the adopted neural network architecture. Moreover, classi-
cal image compression solutions are designed for general
natural images and cannot adapt to the statistics of partic-
ular types of images. Instead, DeepJSCC encoder/decoder
pair can be trained for a certain source modality or a
particular dataset (e.g., face images). On the other hand,
for the solution to generalize to arbitrary natural images,
we would need a richer training dataset.

This end-to-end training approach also allows adopting
any arbitrary differentiable loss function between the input
and its reconstruction, not only the mse loss, i.e., PSNR.
For example, Bourtsoulatze et al. [11] used PSNR as well
as the more perceptually aligned structural similarity index
measure (SSIM) and showed that DeepJSCC is superior to
SSCC under both measures, while the gain under the SSIM
loss is even more profound. More recent articles in the
literature consider more involved perceptual metrics, such
as the learned perceptual image patch similarity (LPIPS)
[207], or the Fréchet inception distance (FID) score [208],
which are widely used to quantify the perceptual realism
of images [209].

In Fig. 18, we present the PSNR performance achieved
by DeepJSCC after being trained on a portion of the
CIFAR-10 dataset over an AWGN channel in (8). Here,
each input is a colored image from the dataset of size
32 × 32 pixels and is mapped to a channel input code-
word of length n = 256 symbols. This corresponds to
a bandwidth ratio of ρ = 256/(3 × 32 × 32) = 1/12.
Each of the curves denoted by “DeepJSCC” corresponds
to an encoder/decoder fully convolutional neural net-
work pair proposed in [40] trained on a different CSNR,
SNRtrain, denoted by Θe(SNRtrain) and Θd(SNRtrain),
and tested over a range of channel conditions, SNRtest ∈
[0, 20] dB. Thanks to the fully convolutional architecture,
the trained encoder/decoder pair can be used for transmit-
ting images of arbitrary size. The architecture only fixes
the source–channel code rate, so that if the input image

Fig. 18. Comparison of DeepJSCC performance with that of SSCC

on the CIFAR-10 dataset transmitted over an AWGN channel with

different SNR values [12].

size is doubled, the transmitted codeword length will also
be doubled.

The performance achieved by a separation-based coding
scheme is also included in Fig. 18 as the black lines, which
employ better portable graphics (BPG) image compression
codec [210] together with polar codes for channel coding
at different rates and constellation sizes. Here, we have
searched over a range of different code rate and constel-
lation size pairs, and included only the best-performing
pairs. As expected, the separation-based scheme has a
threshold structure. The code achieves the best perfor-
mance at a certain SNRtest value, and its performance
drops sharply below this threshold, known as the cliff effect.
Also, the performance remains constant even if the channel
quality improves, which is known as the leveling-off effect.
In contrast to the threshold behavior of the separation
scheme, we observe that the DeepJSCC scheme trained for
a certain target SNRtest value exhibits a graceful degrada-
tion behavior; that is, its performance gracefully degrades
as the test SNR drops below the training SNR, and it
slowly improves when the SNR increases. This behavior of
DeepJSCC is more in line with those of analog modulation
schemes, e.g., AM/FM. However, to clarify the distinc-
tion, DeepJSCC is still a discrete-time coding scheme,
in the sense that, the input signal is converted into dis-
crete samples of potentially continuous real values, which
are then mapped to a modulated input waveform [e.g.,
orthogonal frequency division multiplexing (OFDM)] with
discrete-time continuous-amplitude parameters. The main
difference compared to conventional modulation schemes
is the lack of a discrete constellation set [e.g., BPSK or
M -quadratic-amplitude modulation (QAM)], limiting the
possible input signals to a finite set of constellation points.

Despite the graceful degradation, we can see from
Fig. 18 that the best performance is achieved when the
training and test SNRs match. Achieving the convex hull
of the performance achieved by all possible such curves
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would require training and storing a separate pair of neural
networks for each SNR value, or at least for small ranges
of SNR values. This is unlikely to be feasible in practical
systems, particularly those that need to operate over a
wide range of SNR values, due to memory constraints.
Moreover, it can quickly become intractable when we go
beyond a simple single-input single-output (SISO) system
considered here.

One alternative approach is to train a single encoder/
decoder pair to be used over a large range of channel
conditions. We see in Fig. 18 that DeepJSCC trained over
the whole range of channel SNRs from 0 to 20 dB can
achieve competitive performance, not significantly below
those achieved by encoder–decoder pairs trained at the
target SNR values. We note that this scheme is equivalent
to communicating without any channel state information
(CSI) at either end of communication, while the channel
is time-varying. This is equivalent to a block-fading model,
where the channel noise variance remains constant during
the transmission of each image, but changes independently
from one transmission to the next, taking SNR values
uniformly distributed between 0 and 20 dB. This shows
that DeepJSCC is capable of learning some form of implicit
pilot transmission at the encoder and channel estimation
at the decoder, in order to adapt to the varying channel
condition. This can be a significant advantage in mobile
scenarios when accurate channel estimation can be costly,
or even infeasible.

When the system employs channel estimation and chan-
nel state feedback, CSI will be available at both the
transmitter and the receiver. In that case, rather than using
this information to choose the encoder/decoder parame-
ters from among a set of pretrained networks, one can feed
this information to the encoder/decoder architectures, and
let the networks pick up the appropriate parameter val-
ues according to the channel state. For this, an attention
feature (AF) module is introduced in [211], which allows
adapting the network operations to the CSI, so that in the
case of poor channel conditions, only the most important
features of the input image are transmitted, but with
more protection against noise. The network with the AF
model is trained with random channel states so that it
learns to adapt its parameters to the CSI. The performance
achieved by this SNR-adaptive DeepJSCC architecture is
the top curve in Fig. 18, clearly demonstrating that a single
network is capable of learning to transmit the input images
at any given channel state.

This idea is further extended to OFDM systems in [212]
through a double attention mechanism. Note that, when
there are many parallel channels available for transmis-
sion, each with a different quality, the encoder/decoder
networks need to learn not only how much error protection
to employ over each channel, but also to which channel
each input feature must be mapped. Note that, in the case
of classical SSCC over parallel channels, we identify the
number of bits that can be transmitted reliably over each
channel, and the compressed bits are mapped to different

channels according to these numbers; that is, more bits
are transmitted over the better channel. In the case of the
DeepJSCC architecture proposed in [212], this is learned
through the proposed double attention mechanism.

Another limitation of the DeepJSCC architectures
in [11], [211], and [212] is that a separate network needs
to be trained for each source–channel rate. A bandwidth-
agile architecture is proposed in [213], where the image is
transmitted in such a way that it can be reconstructed from
only a limited portion of the transmitted codeword. This
can be considered as a “successive refinement” approach,
where the receiver’s reconstruction quality increases
as it receives more symbols over the channel. A more
flexible scheme is considered in [214], where the available
bandwidth is dictated by the higher layers (e.g., the
medium access control layer) and is given to the encoder
and decoder as part of the CSI. The results in [214] show
that a single pair of encoder/decoder networks, built upon
the Swin transformer architecture [215], can adapt to
arbitrary channel SNR and source–channel rate values
with only a marginal loss in the performance compared
to networks trained for specific channel conditions. This
significantly increases the practicality of DeepJSCC,
showing that we only need a single network to be
deployed on devices for communication over a large
variety of channel conditions.

The idea of JSCC in the finite blocklength regimes relies
on mapping the source symbols directly to channel sym-
bols. This not only improves the performance by expanding
the set of possible transforms compared to separation-
based schemes, which impose a digital bottleneck but
also provides the graceful degradation with noise. When
the channel output is a noisy observation of the input
signal, the input can be estimated directly from the chan-
nel output, and the estimation error directly depending
on the channel noise. In the case of separation, on the
other hand, the receiver first needs to detect the channel
codeword, which typically has a threshold behavior in the
case of coding over long blocklengths. However, relying
on the estimation of the source signal at the receiver
means that the amount of noise in the reconstructed
sequence will be random and depend on the channel
realization. This becomes a limitation of DeepJSCC when
applied over multihop networks, as it results in noise
accumulation. Zhang et al. [216] proposed a recursive
training method for DeepJSCC, where a separate Deep-
JSCC encoder/decoder pair is trained specifically for each
hop of the network so that the encoder/decoder pair can
adjust to the statistics of the noise images recovered at the
relay nodes. This approach improves the performance with
respect to using the same encoder/decoder pair through-
out the network at the expense of significant increase
in complexity; however, it cannot prevent performance
degradation as the number of hops increases. An alter-
native hybrid scheme is proposed in [217] and [218],
considering the transmission over a network, where only
the first hop is wireless and, thus, time-varying, while
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the remaining hops are through the core network with
limited but fixed capacity. Here, DeepJSCC is used only
for the first wireless link, while the received noisy channel
output is quantized and forwarded digitally through the
core network. This scheme mitigates the problem of noise
accumulation over multiple hops, while still providing
graceful degradation with the quality of the wireless first
hop.

Subsequent works have focused on extending the Deep-
JSCC architecture in various directions, including to
channels with feedback [24], [219], [220], to MIMO
channels [221], [222], as well as to multiuser net-
works [216], [223], [224]. The scheme proposed in [219],
called DeepJSCC-f, is inspired by the Schalkwijk–Kailath
scheme presented in Section II-C. Each image is transmit-
ted over multiple blocks: after each block, the transmitter
first recovers the image reconstructed by the decoder
using the feedback signal. This reconstruction is then
fed into the encoder together with the original image
to generate the next channel block. This is shown to
outperform the benchmark obtained by BPG compression
followed by a capacity-achieving channel code. However,
it comes at the cost of increased complexity as a dif-
ferent encoder–decoder pair is trained for each block.
More recently, a transformer-based architecture is pro-
posed in [220], where a single encoder–decoder network
pair is trained to refine the receiver’s reconstruction at each
block. This scheme enjoys both improved performance and
reduced complexity compared to [219], emphasizing the
importance of combining both information theoretic ideas
with careful architecture choice when trying to identify the
best solutions in practice.

It is shown in [225] that DeepJSCC scheme can also
benefit from correlated side information at the receiver
side, the scenario whose theoretical limits we have pre-
sented in Section II-D. In this scenario, the optimality of
separation breaks down in the finite blocklength regime,
and the scheme presented in [225] outperforms the one
that combines the state-of-the-art neural network-based
lossy compression scheme that takes the side information
into account [226] combined with a capacity-achieving
channel code.

DeepJSCC approaches can also benefit from generative
models. A generative model is a type of ML model whose
goal is to learn the underlying patterns or statistical rela-
tions in data in order to generate new unseen samples
that are statistically similar to those in the training dataset.
Mathematically, the goal of a generative model is to learn
a joint distribution of the data features. In the context of
JSCC, the availability of a generative model for the under-
lying source data can be considered as a prior knowledge
of the source distribution. In a variational autoencoder
(VAE), a sample from the latent distribution is mapped to
a sample from the data distribution. Therefore, the goal
of the transmitter is to convey the right sample from the
latent space to the decoder. This idea was used in [227]
and [228] for JSCC over discrete channels, which are

not differentiable, so not convenient for the end-to-end
training approach of DeepJSCC. A generative adversarial
network (GAN) is used in [229], where the transmitter
conveys the Gaussian sample that is then fed into the
generator network at the receiver. This approach can also
be motivated by the information theoretic optimality of
uncoded transmission of Gaussian samples. Therefore, one
can expect that if a powerful generative model is available
at the decoder, the transmitter can be simplified as opposed
to the standard DeepJSCC approach.

Generative models can also be used to extend the perfor-
mance of DeepJSCC to more specific datasets [229], [230],
[231]. Consider a transmitter/receiver pair equipped with
DeepJSCC encoder/decoder networks trained for a generic
image dataset (e.g., ImageNet). Assume that they are then
used to transmit a specific type of image, e.g., face images.
A generative model of the transmitted images, if avail-
able at the receiver, can be used to improve the quality
of the image reconstructed by the DeepJSCC decoder,
producing much more visually pleasing results, especially
in extremely low bandwidth and noisy channels. In this
context, the generative model can be considered as a
side information available at the receiver. In particular,
diffusion-based generative models have been used in the
context of JSCC in [230], [231], and [232].

B. Variable-Length DeepJSCC

Constrained by the computational capabilities of a
single encoder and decoder, particularly in the case
of convolutional networks, the performance of Deep-
JSCC architecture diminishes as source dimensionality
increases, sometimes even underperforming classic sepa-
rated schemes. One way to improve the performance is
to consider a variable-length coding scheme [233], [234],
that is, to dynamically adjust the channel codeword dimen-
sion based on the input image. An alternative nonlinear
transform coding (NTC)-based variable-length DeepJSCC
scheme is proposed in [235], called NTSCC. NTSCC first
extracts a semantic latent representation V ∈ V of the
source signal and then introduces a conditional entropy
model pV |Z in the latent space, i.e.,

pV |Z (V |Z) =
∏

i

(
N

(
vi|µi, σ

2
i

)
∗ U

(
−1

2
,
1

2

))
(40)

where a hyperprior Z is learned to serve as side
information for approximating the Gaussian distribution
parameters µi and σi for each latent element vi, and
“∗” is a convolutional operation with a standard uniform
distribution. The learned entropy model − log pvi|Z(vi|Z)

indicates the summation of entropy of each vi. Thus, the
information density distribution of V is captured.

To achieve adaptive rate allocation for DeepJSCC, the
hyperprior Z is regarded as a prior for the DeepJSCC
codewords. Specifically, the bandwidth cost, such as the
number of OFDM subcarriers, ki for transmitting vi, can
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be determined as

ki = Q
(
−η log pvi|Z (vi|Z)

)
(41)

where Q represents the scalar quantization, and µ is a scal-
ing factor. Consequently, with the help of the transformer
architecture and a rate attention mechanism, NTSCC
closely adapts to the source distribution and facilitates
source content-aware transmission. Besides, NTSCC mit-
igates the disparity between the marginal distribution of
latent representations for a specific source sample and the
marginal distribution intended for the ensemble of source
data for which the transmission model was designed.
We note here that the ki values must be reliably conveyed
to the receiver for the receiver to be able to recover the
latent representation. In that sense, NTSCC is a hybrid
scheme; however, the amount of meta-data that needs to
be digitally transmitted is relatively small, and thus, it can
be transmitted reliably without sacrificing much of the
available channel bandwidth.

Similar to the rate–distortion modeling in [236], the
optimization problem of NTSCC is formulated within
the context of variational modeling, wherein the varia-
tional density qY,Z|S is used to approximate the posterior
distribution pY,Z|S . This approximation is achieved by
minimizing their Kullback–Leibler (KL) divergence over
the data distribution pS . Accordingly, the optimization of
NTSCC system can be formally converted to the minimiza-
tion of the expected channel bandwidth cost, as well as the
expected distortion of the reconstructed data versus the
original, which leads to the optimization of the following
rate-distortion tradeoff:

LBD = ES∼pS

(
λ
(
−η log pV |Z (V |Z)

)
+ d

(
S, Ŝ

))
(42)

where the weight factor λ > 0 dictates the tradeoff
between the channel bandwidth cost and the distortion.
The scaling factor η > 0 correlates the estimated entropy
to the channel bandwidth cost and is associated with the
source–channel codec capability.

Results in [235] demonstrate that the NTSCC method
yields significantly improved coding gain and rate-
distortion performance on well-established perceptual
metrics, including PSNR, MS-SSIM, and LPIPS. Fur-
thermore, achieving the same end-to-end transmission
performance, the proposed NTSCC method can lead to a
great reduction in bandwidth cost when compared to both
emerging analog transmission schemes that employ the
standard DeepJSCC and classical separation-based digital
transmission schemes.

The improved NTSCC architecture in [237] introduces
a contextual entropy model to capture spatial correlations
among semantic latent features more effectively, enabling
more precise rate allocation and contextual JSCC. It also
incorporates an online latent feature editing method to

allow for more flexible coding rate control aligned with
specific semantic guidance. The experimental verification
demonstrates that the improved NTSCC system achieves
approximately a 16.35% reduction in channel bandwidth
compared to the state-of-the-art separation-based baseline
combining BPG or versatile video coding (VVC) image
compression with 5G LDPC error correction codes.

Adaptive semantic communication (ASC) system [238]
emphasizes the practical application of the model based
on NTSCC. Specifically, when confronted with disparities
between the distribution of test data or channel responses
and the conditions encountered during training, the model
may exhibit suboptimal performance. The ASC system
leverages the overfitting characteristics of deep learning
modules and adapts semantic codecs or representations to
individual data or channel state instances. The entire ASC
system design is formulated as an optimization problem
with the objective of minimizing the loss function, which
constitutes a three-way tradeoff between data rate, model
rate, and distortion terms. While achieving equivalent
end-to-end transmission performance based on objective
metrics like PSNR, the ASC system can yield up to a 41%
reduction in bandwidth costs compared to the state-of-the-
art engineered transmission scheme (VVC combined with
5G LDPC coded transmission).

C. DeepJSCC Over Multiuser Channels

One of the simplest multiuser network models is the
relay channel shown in Fig. 12. DeepJSCC over the
relay channel has been studied in [223], [239], and
[240]. A process-and-forward scheme is proposed in [223]
and [240], which relies on DeepJSCC encoding/decoding
at the source and destination terminals, as well as a
deep learning-based processing at the relay. In the case
of a half-duplex relay channel, one of the challenges is
to decide on the time duration relay listens before start-
ing its transmission. In the case of a decode-and-forward
scheme [103], where the relay decodes the message of
the source terminal before forwarding it, the relay lis-
ten and forward time durations can be adaptive to the
source–channel link quality, where the relay listens until
it accumulates enough information to guarantee correct
decoding of the message. However, this is not possible
in the case of DeepJSCC since the relay will always have
a noisy estimate of the source signal. This is optimized
through a search algorithm in [240]; however, an adaptive
mechanism that estimates the quality of relay’s estimate
can be trained to make this decision adaptively. In the
case of a full-duplex relay, on the other hand, the relay
can transmit the whole time duration; however, it needs
to receive a certain amount of information before starting
to forward it. A block coding scheme is proposed in [218],
inspired by the relaying schemes proposed in [103]. In this
scheme, the source transmits the information in blocks,
and the relay decides on its transmitted signal at each
block based on what it has received up to that point.
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In general, this would require training a separate relay
encoder for each block, which learns what to forward
in that particular block. We note that the relay’s goal
is not only to forward as much relevant information as
possible to the destination, but also to do this in a coherent
manner with the source signal, as the two are received
at the destination simultaneously. While decreasing the
number of blocks is beneficial in terms of utilizing the relay
(since the relay waits initially until it receives the first
block), this would also increase the number of blocks,
and thus, the complexity. In [218], a novel transformer-
based relaying scheme is used throughout all the blocks.
This function is trained in a sequence-to-sequence manner,
where the previously received signals and transmitted
relay codewords are accumulated at each block to increase
the amount of relevant information forwarded by the relay.
It is also shown that the relay transmits correlated signals
with the source, showing that the scheme learns to act as
distributed transmit antennas.

In general, the extension of DeepJSCC to BCs is rather
trivial. Indeed, transmission over a fading channel without
a CSI available at the transmitter, as studied in [11], can
also be considered as communicating over a BC as we can
treat each fading channel state as a virtual user with a
different channel quality. DeepJSCC over a degraded BC
is studied in [241].

DeepJSCC over a MAC is studied in [242]. In the case
of a MAC, the challenge is twofold: on the one hand,
we would like to reduce the interference among the trans-
mitters. On the other hand, the receiver after recovering
the noisy signals should be able to attribute each signal to
its correct transmitter. A trivial way to deal with this prob-
lem is to train multiple transmitter networks together with
the DeepJSCC decoder. However, such a scheme would not
scale, as each node will need to have access to all of these
encoding functions as it may act as a different encoder
at each individual scenario. Instead, Yilmaz et al. [242]
propose a scheme in which all the transmitters utilize the
exact same DeepJSCC encoder; however, they addition-
ally employ a low-dimensional embedding, which would
identify them as a separate transmitter, and allow the
receiver to distinguish among different transmitters. This
can be considered as a learned code-division multiple
access (CDMA) scheme.

D. DL-Aided JSCC for Video Transmission

Video, which accounts for more than 80% of all Internet
traffic, is a type of source that is known to be particu-
larly hard to transmit reliably, due to the high-data-rate
requirement to achieve high video quality and frame rate.
Similar to the image case in Section IV-A, we can design
an autoencoder architecture that maps video frames to
channel symbols, and vice versa, to learn a JSCC for
video transmission. One key difference between images
and videos is the temporal correlation between frames
in video. In a standard video sequence, motion differ-
ences between successive frames are typically very small,

and video sequences can be represented very efficient by
identifying intermittent key frames, which are treated as
independent images, and storing only the motion and
residual information for the remaining frames, thereby
exploiting temporal redundancy. Motion information typ-
ically refers to translation vectors, which can be used to
translate a given frame to subsequent frames. Since motion
vectors cannot capture the occlusion and disocclusion of
objects, residual information, which captures the differ-
ence between the translated frame and the ground truth
frame, is also stored.

Existing works on bringing DeepJSCC to video transmis-
sion have largely exploited the aforementioned temporal
redundancy among frames to achieve efficient band-
width utilization. Tung and Gündüz [243] train separate
autoencoders to transmit the key frames and temporal
information (i.e., motion vectors and residual informa-
tion) and utilize a reinforcement learning-driven policy for
allocating channel bandwidth to each frame. By dynam-
ically allocating channel resources, they show that their
scheme, called DeepWiVe, can outperform state-of-the-
art video compression codecs H.264 and H.265 when
transmitting video over AWGN and Rayleigh fading
channels.

Wang et al. [244], rather than using reinforcement
learning, learn an entropy model of the temporal infor-
mation and use variable channel uses to dynamically
adjust channel resource usage depending on the infor-
mation content of the frames. The idea is that frames
with higher entropy require more channel uses and by
using variable channel uses, the average channel use
can be lower, similar to variable length coding. They
show that their scheme can perform better than H.265
even when assuming capacity-achieving channel coding is
used.

E. DL-Aided JSCC for Text Transmission

As the notion of semantics is traditionally related to
natural language, or text in general, semantic commu-
nication of text can offer interesting insights into the
benefits of DeepJSCC. One of the first articles to apply
DeepJSCC to text transmission is [15], where the authors
proposed DeepSC for text transmission. DeepSC leverages
the transformer architecture, which has been so successful
at natural language processing (NLP) tasks, to extract
semantic features that are useful for JSCC. To measure the
distortion, the authors propose to use a pretrained large
language model, BERT [245], and compute the cosine
similarity between two sentences in the embedding space
of BERT. The idea is that, having been trained on a large
corpus of text data, BERT has an internal representation of
natural language that is consistent with semantic meaning.
Therefore, the cosine similarity between the embeddings of
two sentences represents the semantic similarity between
them.

Similar to what was observed in DeepJSCC for image
and video transmission, it is also observed that the
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performance of DeepSC, as measured by the bilingual
evaluation understudy (BLEU) score [246], gracefully
degrades as the channel noise increases, unlike the
cliff-edge drop off that SSCC exhibits. Moreover, DeepSC
performs much better than SSCC under fading channel
conditions. Perhaps more interestingly, DeepSC is more
likely to produce coherent sentences that may not be
exactly the same as the source, but is semantically similar,
showing that not only is the loss function effective at
capturing source semantics, it is also a good illustration
of how semantic communication is related to JSCC.

Further works have addressed other issues with text
transmission. For example, in [247], the spectral efficiency
problem is addressed by first defining a semantic spectral
efficiency metric, which measures on average how much
semantic information is transmitted per unit of bandwidth
(usually measured in hertz). The authors define semantic
information using the semantic loss used to train DeepSC
and maximize the average spectral efficiency over all users.
Peng et al. [14] address potential adversarial attacks on the
DeepSC transceiver by improving the underlying attention
mechanism in the transformer layers. In essence, they train
an additional layer at the output of the attention layer to
detect which input tokens are potentially corrupted. This
information is then passed to the subsequent attention
layers to inform it of which tokens to ignore.

F. Other Sources and Channels

Naturally, JSCC can be applied to many other source
signals, and the application of neural networks for
the design of competitive DeepJSCC schemes allowed
researchers to design end-to-end communication systems
for a wide variety of source and channel distributions and
applications.

One of the promising applications of DeepJSCC is
for CSI feedback in massive MIMO systems, where
the base station (BS) requires accurate and timely CSI
for beamforming and interference management. In a
frequency-division duplex (FDD) massive MIMO system,
user equipments (UEs) estimate their downlink CSI based
on the pilots transmitted by the BS. This CSI estimates
then need to be transmitted to the BS over the uplink
channel. It is, hence, crucial to design an efficient feedback
scheme that provides more accurate CSI to the BS while
introducing a limited feedback overhead. There has been
significant progress in recent years in the design of efficient
CSI compression techniques using neural networks [248],
[249], [250]. However, since these rely on digital com-
pression techniques, they need an accurate estimation of
the uplink channel state. An alternative analog CSI feed-
back scheme is proposed in [251], which directly maps
the estimated channel coefficients to channel input using
DeepJSCC. It is shown in [251] that the joint design can
significantly improve the achieved downlink communica-
tion rate compared to separation. This approach was later
extended in [252] by incorporating SNR adaptivity.

Another source that can benefit from the JSCC approach
is point cloud, which refers to a set of points that collec-
tively depict a physical object or a scene [253]. A point
cloud conveys not only the geometry of the object, through
the coordinates of the points in the space, but also various
attributes associated with each point, such as color, inten-
sity, and curvature. It has found extensive applications
across different fields in recent years, including robotics,
autonomous driving, VR/AR, and metaverse. While there
have been significant research efforts for the design of
more efficient compression algorithms for point clouds,
recent works show that JSCC can provide gains also for
this challenging source modality [254], [255], [256].

With the increasing success and popularity of deep
learning models for a wide variety of tasks, it is expected
that another type of information source that may consti-
tute a significant portion of future wireless data traffic
is model weights. While each day new results appear
showing that neural networks achieve the state-of-the-art
performance in yet another task, it is not reasonable to
assume that a mobile device will be capable of storing
all possible neural networks locally to be deployed at the
time of need. Instead, it is more likely that the model
parameters for a desired task will be downloaded on
demand from a server when they are needed. This requires
transmitting those parameters as quickly and efficiently
as possible over wireless channels. Jankowski et al. [16],
[257] proposed a joint training and transmission strategy,
where the model parameters are mapped directly to the
channel inputs, such that a noisy version of the model
will be recovered at the receiver depending on the channel
conditions.

In addition to different source modalities men-
tioned above (speech transmission is considered in [13]
and [17]), researchers have also studied the design
of DeepJSCC solutions for different channels, includ-
ing image transmission over underwater acoustic chan-
nels [258], or image storage in memristive devices [259],
[260] or even in DNA sequences [261].

V. F U R T H E R D I S C U S S I O N A N D
C O N C L U S I O N
In this article, we have presented a comprehensive
overview of the foundations of JSCC. While separation
provides modularity for the design of complex communi-
cation networks, it is known to be suboptimal in practical
scenarios when the blocklengths are finite. Yet, after
decades of research, the state-of-the-art SSCC schemes
present a benchmark that is hard to beat, particularly
when the blocklength is relatively large. On the other
hand, in the case of nonergodic communication scenar-
ios, or when the blocklength is extremely limited due
to resource and latency constraints, JSCC becomes an
attractive alternative. Moreover, in the case of many mul-
tiuser communication scenarios, we do not even have the
theoretical optimality of separation, and the optimal JSCC
scheme is not known for even very simple multiple access
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and BC models. After a brief review of classical approaches
to the practical design of JSCC schemes, we have mainly
focused on recent developments in JSCC design bene-
fiting from deep learning techniques for various source
and channel combinations. It has been recently shown
that DeepJSCC approaches can outperform the state-of-
the-art separate designs, making them a very attractive
alternative, particularly for mobile communication scenar-
ios where channel state changes rapidly over time, and
its accurate estimation would require significant channel
resources. In light of these significant developments in
DeepJSCC design over the past several years, we believe
that it is time to start questioning the strict layered
architecture of contemporary communication systems and
explore alternative joint approaches.

Despite the fact that almost all current communi-
cation systems rely on the SSCC principle, there are
many potential immediate applications of JSCC in stan-
dalone point-to-point communication systems. An existing
successful example is an implementation of JSCC for
MIMO systems by Amimon, based on UEP. This technol-
ogy was adopted in professional wireless cameras that
were used by many Hollywood production companies
and won an Academy Award for Technical Achievement
from the Academy of Motion Picture Arts and Sciences
in 2021.

Another potential application of JSCC is the transmis-
sion of video signals from a drone to a ground station.
Current technology relies on Wi-Fi and results in the
loss of video signal beyond few kilometers, particularly
in busy urban areas. Adoption of JSCC techniques, e.g.,
DeepJSCC, for such a point-to-point link can enable con-
stant connectivity, where the quality of received video
gracefully degrades depending on the channel condi-
tion, but is never completely lost. Moreover, it can also
work without channel estimation, which is difficult and
costly to obtain in highly mobile scenarios. Another
application is AR/VR headsets, which require the trans-
mission of high-rate multimedia content. Most current
headsets rely on wired connections or very high-quality
stable wireless links, which considerably limits their
functionality.

On the other hand, despite their superiority from a
purely performance point of view, there are still many prac-
tical and fundamental challenges that need to be addressed
for the potential adoption of JSCC schemes in 6G or
future communication standards. First of all, a full-fledged
implementation of JSCC requires significant changes in the
network architecture as it relies on the joint optimization
of the physical layer coding and modulation together with
source compression, which is normally handled at the
application layer. This creates a fundamental problem in
practical applications in mobile networks beyond architec-
tural changes, as normally the content to be transmitted
belongs to the user, and is not accessible by the network
provider. Hence, JSCC needs to be implemented without
having access to the underlying content at the encoder.

Alternatively, the content providers can apply JSCC directly
and convey the coded information to the lower layers,
which informs the transmitter what to transmit without
seeing the content. This can be done by using DeepJSCC-Q
as proposed in [243], which implements DeepJSCC on
a finite constellation. However, to achieve the potential
benefits of DeepJSCC requires using a large constellation
(to sufficiently approximate continuous-amplitude trans-
mission), and this would require a large bandwidth to
convey such a code over the core network until it reaches
the wireless link.

Another challenge in implementing JSCC in legacy
network architectures is the adoption of feedback, in par-
ticular how to benefit from automatic repeat request
(ARQ) tools that are widely used in current network
protocols. In the current framework, since the goal is to
recover a channel codebook reliably, a cyclic redundancy
check (CRC) is added to the data packet to verify cor-
rect decoding, and if the transmission fails, the receiver
sends a negative acknowledgment (NACK) signal request-
ing retransmission. This is repeated until the data packet is
correctly decoded, or the maximum number of retransmis-
sions is reached. On the other hand, in the case of JSCC,
typically a noisy version of the source data is recovered at
the receiver, whose quality depends on the channel quality.
Therefore, it is not possible to make a binary decision at
the receiver. One alternative could be to make a decision
whether a desired quality level is reached or not, but it
is also difficult to make such a decision solely based on
the reconstructed signal at the receiver, without having
access to the original source signal. This may require
rethinking the whole feedback system in future communi-
cation networks going beyond the current single-bit ARQ
framework [220].

Adoption of DeepJSCC in standards would also require
it to be back-compatible and allow its implementation on
legacy terminals. Many existing devices use chipsets that
already implement current codes and modulation schemes
on their hardware, which may be difficult to circumvent,
or require JSCC solutions around these existing codes.
Another critical challenge is the security. JSCC schemes
mostly rely on the correlation between the transmitted
signal and the underlying source signal. While this results
in graceful degradation in reconstruction quality at the
legitimate receiver as the channel quality drops, it also
means that a signal received by a potential eavesdropper in
the vicinity will leak information about the source signal.
Digital transmission allows applying encryption techniques
where the transmitted bits can be completely independent
of the source bits, e.g., through a one-time pad, whereas
it is not clear how to achieve such an encryption on the
continuous amplitude source signal. While some initial
solutions to the security problem in DeepJSCC have been
proposed [262], [263], [264], [265], [266], more signif-
icant research is needed before they meet the necessary
security guarantees for implementation in mobile networks
or other systems communicating sensitive content.
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