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Abstract—The fundamental limit of Semantic Communica-
tions (joint source-channel coding) is established when the
transmission needs to be kept covert from an external war-
den. We derive information-theoretic achievability and matching
converse results and we show that source and channel coding
separation holds for this setup. Furthermore, we show through an
experimental setup that one can train a deep neural network to
achieve covert semantic communication for the classification task.
Our numerical experiments confirm our theoretical findings,
which indicate that for reliable joint source-channel coding the
number of transmitted source symbols can only scale as the
square-root of the number of channel uses.

Index Terms—Semantic Communication, Joint Source-
Channel Coding, Physical Layer Security, Covert Communica-
tion

I. INTRODUCTION

S emantic Communication refers to the emerging commu-
nication paradigm where the transmitter sends only the

semantics of a source but not the entire source itself [1].
Thanks to the significant gains in bandwidth efficiency, this
communication paradigm has attracted great attention in the
community and has the potential to be part of next genera-
tion communication networks. For traditional communication,
Shannon’s separation theorem [2] implies that without loss
in optimality, one can establish semantic communication by
simple concatenation of optimal source (compression) and
channel codes. However, while above optimality only holds
in the asymptotic regime of infinite blocklengths, for fi-
nite blocklengths a joint design of the source and channel
codes can yield improved performances [3]. Indeed, various
practical joint source-channel codes have been proposed in
the literature, where recent advances particularly focus on
implementations using Deep Neural Networks (DNNs) [4]–
[8].

Moreover, privacy and security are becoming crucial for
communication in many applications, see [9]–[11]. In this
spirit, [5], [10] proposed to leverage a DNN-based architecture
to simultaneously minimize the distortion of the reconstruction
at the legitimate receiver, while also restricting information
leakage to potential eavesdroppers. In this work, we propose
a similar DNN-based implementation, which however respects
the more stringent security constraint that potential attackers
should not only be unable to learn about the transmitted
source, but even stay agnostic of the mere fact that com-
munication is going on. We are thus imposing the constraint

that semantic communication be Covert, i.e., undetectable to
external eavesdroppers. Our implementation shows that covert
semantic communication for the classification task can be
achieved through a DNN architecture, and that the number
of extracted features should be in the order of the square-
root of the number of channel uses used for communication.
This reminds the well-known square-root law of covert data
communication, which was established in [12]–[14]. Similar
observations were noted in studies examining covert detection
[15] and others involving both covert and non-covert commu-
nication [16], [17].

In this work, we endorse our numerical experiments with
a rigorous information-theoretic analysis that establishes the
fundamental limits of joint source-channel coding (JSCC)
under a covertness constraint, i.e. the information theoretic
limits of covert semantic communication. Our results pro-
vide necessary and sufficient conditions under which covert
semantic communication is possible. These conditions in
particular imply that separate source-channel coding is optimal
for covert semantic communication, and that the number of
source symbols should scale at most as the square-root of the
number of channel uses, similarly as for covert data commu-
nication. Often this square-root scaling is not a problem in
semantic communication as the extracted number of features
typically occupies a small space. The main contribution of
our information-theoretic results is the converse proof where
we show that a separate source-channel coding architecture is
optimal in the asymptotic regime of infinite blocklengths.

In brief, this paper makes the following contributions:
• We introduce and study the problem of joint source-

channel coding under a covertness constraint.
• We show that source-channel separation is optimal in

this setup by deriving matching information-theoretic
achievability and converse proofs. This establishes nec-
essary and sufficient conditions for the distortions that
are achievable in covert joint source-channel coding.

• Our experimental setup showcases that a Deep Neural
Network can achieve covertness when transmitting se-
mantic information for a classification task. The experi-
mental results confirm our theoretical findings and show
that the classification task can only be achieved if the
number of extracted features is in the order of the square-
root of the number of channel uses.



II. INFORMATION-THEORETIC APPROACH

A. Notation

We follow standard notations in [16], [18], [19]. In partic-
ular, we denote a random variable by X and its realization
by x. We write Xn and xn for the tuples (X1, . . . , Xn) and
(x1, . . . , xn), respectively, for any positive integer n > 0.
For a distribution P on X , we note its product distribution
on Xn by P⊗n(xn) :=

∏n
i=1 P (xi). For two distribu-

tions P and Q on X , D(P∥Q) :=
∑

x∈X P (x) log(P (x)
Q(x) )

denotes the Kullback-Leibler (KL) divergence between P
and Q, whilst the chi-squared test is denoted χ2(P∥Q) :=∑

x∈X
(P (x)−Q(x))2

Q(x) . Finally, the logarithm function is under-
stood in base 2, so the results are in bits.

B. Problem statement
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ĤWarden

g(n)φ(n)

Fig. 1: Covert semantic communication system.

Consider the JSCC problem in Figure 1. The transmitter
wishes to communicate a sequence Uk ∈ Uk that is drawn
i.i.d. according to a given distribution PU (for a given k ≥ 0
and an arbitrary finite set U) to a legitimate receiver in the
presence of a warden, while tolerating a defined level of
distortion D ≥ 0 at the legitimate receiver. The transmitter
and the legitimate receiver also share a secret-key S, which
is uniformly distributed over a finite set S of sufficient large
size.1 Communication must remain covert, i.e., an external
warden should not be able to detect the presence of commu-
nication.

Technically speaking we have two hypotheses: under H = 1
the communication takes place as described above, while
under H = 0 the transmitter remains silent (sends the ”off-
symbol”). The transmitter and the legitimate receiver both
know H, which however has to remain undetectable to the
warden. The receiver and the warden observe channel outputs
produced by a Discrete and Memoryless Channel (DMC) with
a known transition law ΓY Z|X and given finite input and
output alphabets X ,Y,Z . That means, if the Xn = xn then
the for any i the i-th output symbols Yi and Zi observed at
the legitimate receiver and the warden are generated from the
i-th input xi according to the conditional laws ΓY |X(·|xi) and

1It has been proved in [13, Section IV-c] that generally a secret-key size
log|S| that scales as

√
n suffices to achieve covertness. When the channel

the legitimate receiver is better than the channel to the warden, no secret-key
is required at all. In a similar way, and using the convexity of the Kullback-
Leibler divergence, one can show that the same also holds for the setup in
this paper. Details are omitted due to lack of space.

ΓZ|X(·|xi).2 For simplicity, we assume a binary input alphabet
X = {0, 1} and consider that 0 is the ”off-symbol”. We can
now describe the communication model and the constraints in
full mathematical details.

Under H = 0: the transmitter sends the all-zero sequence

Xn = 0n. (1)

Under H = 1: the transmitter applies some encoding func-
tion φ(n):Uk × S → Xn to its sequence Uk and sends the
resulting codeword

Xn = φ(n)(Uk, S) (2)

over the channel. For readability, we will also write xn(uk, s)
instead of φ(n)(uk, s).

The legitimate receiver decodes the desired sequence Uk

based on its observed output sequence Y n and the secret key
S. Thus, under H = 0 it does nothing whereas under H = 1
it uses a decoding function g(n):Yn × S → Ûk to produce
the guess

Ûk = g(n)(Y n, S), (3)

over a given reconstruction alphabet Ûk, which can differ from
Uk. Allowing for a general reconstruction alphabet Û enables
the consideration of more general reconstruction tasks, such
as not reconstructing the entire source symbols but only a
feature thereof. (In this case Û would be the feature space.)

Decoding performance under H = 1 of a pair of encoding
and decoding functions (φ(n), g(n)) is measured by a bounded
per-letter distortion measure d(·, ·).We require the average per-
block distortion to be less or equal to a given positive threshold
D,

E

[
1

k

k∑

i=1

d(Ui, Ûi)

]
≤ D, (4)

where expectation is over the random source sequence Uk

and the randomness in the channel. It is assumed that the
distortion measure d(·, ·) is such that for any u ∈ U , there
exists a reconstruction symbol û ∈ Û that has zero distortion,
i.e. d(u, û) = 0.
Communication is subject to a covertness constraint at the
warden, which observes the channel outputs Zn. Under H =
1, the warden’s output distribution is thus

Q̂n(zn) ≜
1

|S|
∑

s∈S

∑

uk

P⊗k
U (uk)Γ⊗n

Z|X(zn|xn(uk, s)), (5)

whereas under H = 0 it is

Γ⊗n
Z|X(zn|0n). (6)

Our covertness metric is the KL-divergence between these two
output distributions D

(
Q̂n ∥ Γ⊗n

Z|X(·|0n)
)

. The choice of this
measure is justified by the fact that any test satisfies [20]
α + β ≥ 1 − D

(
Q̂n ∥ Γ⊗n

Z|X(·|0n)
)

, for α and β denoting

2Notice the generality of this channel model that even allows the modeling
of fast fading channels.



the probabilities of miss-detection and false alarm, respec-
tively. Therefore, ensuring a negligible D

(
Q̂n ∥ Γ⊗n

Z|X(·|0n)
)

is sufficient to achieve covertness.
Our problem is thus multi-objective in the sense that

we not only wish to satisfy the distortion constraint (4),
but also a vanishing detectability capability at the warden
D
(
Q̂n ∥ Γ⊗n

Z|X(·|0n)
)

. These constraints are reflected in the
following definition

Definition 1. Let k = f(n) for a given function f(·) on ap-
propriate domains and {δn}n≥1 be a sequence tending to 0 as
the blocklength n → ∞. A source-channel pair (PU ,ΓY Z|X)
is (D, δn)-admissible under a covertness constraint if there
exists a sequence of encoding and reconstruction functions
{φ(n), g(n)}n satisfying the two conditions

lim sup
k→∞

E

[
1

k

k∑

i=1

d(Ui, Ûi)

]
≤ D, (7)

D
(
Q̂n ∥ Γ⊗n

Z|X(·|0n)
)
≤ δn, ∀n. (8)

C. Information-Theoretic Results

In this section, we characterize the fundamental limits of
our covert JSCC setup. Our results show that if one wishes
to attain a non-trivial distortion D and at the same time
satisfy a covertness constraint δn (see (8)) then the number
of source symbols k can scale at most proportional to

√
nδn

(see Result 2). We say that a distortion is trivial if it can
be achieved without communication by having the receiver
produce a constant reconstruction symbol, i.e., if

D ≥ Dtrivial := min
û∈Û

E[d(U, û)]. (9)

If the number of source symbols k scales as
√
nδn, we show

that a distortion is achievable if, and only if, it is achievable by
a separate source-channel code, i.e., the number of symbols
required for compressing the source is less than the channel
capacity multiplied by the bandwidth mismatch factor (Result
3). Finally, (in Result 1) we also show that if the number of
source symbols scales slower than

√
nδn, then arbitrary small

distortion levels D ≥ 0 can be achieved.
Before stating our main result, recall the definition of the

standard rate-distortion function [18]

R(D) ≜ min
PÛ|U (û|u):EPUP

Û|U [d(Û,U)]≤D
I(Û , U), (10)

and of the covert capacity [13], [14] for binary input alphabets

Ccovert ≜
√
2

D
(
ΓY |X(· | 1)∥ΓY |X(· | 0)

)
√
χ2(ΓZ|X(· | 1)∥ΓZ|X(· | 0)) . (11)

Recall that the number of source symbols k = f(n) for a
given function f(·).
Theorem 1. For any given function f(·) and vanishing
sequence {δn}n≥1 the following holds.

1) If

lim
n→∞

f(n)√
nδn

= 0, (12)

then all nonnegative distortions D ≥ 0 with finite R(D)
are (D, δn)-admissible.

2) If

lim
n→∞

f(n)√
nδn

= ∞, (13)

then only trivial distortions D ≥ Dtrivial are (D, δn)-
admissible.

3) If

lim
n→∞

f(n)√
nδn

=
1

γ
, (14)

for some γ > 0, then D is (D, δn)-admissible if, and
only if,

R(D) ≤ γCcovert. (15)

Notice that the parameter γ plays the same role as the
bandwidth mismatch factor in traditional JSCC.

Proof: Result 1) only requires a proof of achievability
and Result 2) only a proof of converse. Result 3) requires
both proofs. The two converses are proved in Appendix A. We
now prove the two achievability results based on the separate
source-channel coding architecture in Figure 2.

Uk
Source
Encoder

Channel
Encoder

M Xn
Channel
Decoder

Y n

Channel
Source
Decoder

M̂ Ûk

Transmitter Receiver

Fig. 2: Separate source and channel coding architecture.

Specifically, the transmitter initially compresses the source
sequence Uk into an index M ∈ {1, . . . , 2kR}, which is
subsequently encoded into a codeword Xn by a channel
code, and then transmitted over the DMC. A channel decoder
observe Y n, a noisy version of Xn, and maps it to a guess
M̂ of the index M . This index is then used by the source
decoder to produce the reconstruction of the source Ûk. It is
possible to choose a good lossy compression scheme, such
as the likelihood lossy compression scheme in [21], so that
the reconstruction Ûk satisfies the distortion constraint (7)
whenever M̂ = M and the rate R > R(D). On the other
hand, it can be shown that for any vanishing sequence δn
there exists a good covert channel code [13] that conveys the
message M with vanishing probability of error and at the
same time respects the covertness constraint (8) whenever

lim
n→∞

kR√
nδ

< Ccovert. (16)

Recall that k = f(n) and notice that under Condition (12),
Inequality (16) is satisfied for all finite values of R. This
establishes Result 1). Under Condition (14), it is possible to
find a finite value of R > R(D) satisfying (16) whenever

R(D) < γCcovert, (17)

thus proving achievability of Result 3). This concludes the
desired proofs.



III. COVERT SEMANTIC EXTRACTION: NEURAL
NETWORK EXPERIMENT
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Fig. 3: Neural Network architecture for distributed classifica-
tion under a covertness constraint.

To illustrate our theoretical findings in a practical context,
we train two DNNs for the task of image classification over an
Additive White Gaussian Noise (AWGN) channel, see Figure
3. Specifically, we train a first DNN based on a training dataset
Dtrain of images and corresponding labels to implement the
pair of Semantic Encoder (feature extractor) and Classifier,
see Figure 3. We subsequently train a second DNN (on the
same training dataset Dtrain) to implement the Source-Channel
Encoder and Decoder over the AWGN channel based on the
output sequence Uk produced by the previously trained Se-
mantic Encoder, so that communication remains undetectable
to an external warden. In contrast to the standard JSCC model,
in our experiment the sequence of extracted features Uk (also
called semantic vector) is not i.i.d. but has a given distribution
dictated by the Semantic Encoder.

Our datasets Dtraining and Dtest both consist of image-label
pairs (I, y), where I ∈ Rh×w×c (for h, w and c the height,
width and the number of channels of the image respectively)
and y ∈ {1, . . . , C} (for C indicating the number of classes).
If we denote by fθ(I) the output of the combined two DNNs
(see Figure 3) when the input image is I and the DNNs
parameters fixed after the training are described by θ, then the
accuracy on the test data, which measures the performance of
our model on unseen images, is defined as

Acc(θ,Dtest)≜
1

|Dtest|
∑

(I,y)∈Dtest

1{fθ(I) = y}. (18)

Notice that when combining the two DNNs, we can tweak
the parameter k indicating the number of features to be
extracted from the images or equivalently the number of
source symbols that have to be sent over the AWGN channel.
Based on the theoretical findings in the previous Section II-C,
our goal is to show that in order to achieve a satisfactory
accuracy, the length k of the semantic vector Uk that contains
the semantic information used to classify an image must
approximately be

√
nδn for a small δn and a large blocklength

n. Failure to adhere to this scaling should result in a bad
classification accuracy because we expect the channel coding
to introduce too many errors.

A. DNN Architectures and Training

As aforementioned, our first DNN comprises a Semantic
Encoder and a Classifier. The Semantic Encoder maps the

input image I to a hidden representation (a vector in Rk)
to which we apply the binary quantization function Q(x) ≜
1{x > 0} componentwise. The output of this quantization
procedure then provides the binary semantic vector Uk with
k a parameter that we can choose in our implementation. This
first DNN is trained so as to minimize the cross-entropy3, i.e.,
the loss

L(1) = −λce

C∑

y=1

y log(py), (19)

where py represents the probability4 that the DNN gives to the
class y whereas λce is a scaling constant that can be adjusted
through tuning.

The second DNN implements the Source-Channel En-
coder and the Decoder. It simultaneously seeks to minimize
the Hamming distortion error for the reconstruction of the
semantic vector Uk and aims to achieve covert commu-
nication. Instead of constraining the warden’s divergence5

D
(
Q̂n ∥ Γ⊗n

Z|X(·|0n)
)

, as we did in the previous section,
here we attempt to constrain the power of the transmit signal
Xn. In some sense, this can be viewed as a more universal
approach as the covertness constraint does not rely on a
specific model for the warden. Specifically, we add the loss
term

Lcovert =

∣∣∣∣∣

( 1
n

∑n
i=1 Xi√
nϵ

)2

− 1

∣∣∣∣∣ , (20)

which is motivated by the Central Limit Theorem which states
that the noise uncertainty at a receiver suffering from Gaussian
noise is in the order of

√
n. The

√
ϵ factor allows to adapt to

the desired level of covertness. The objective when training
the second DNN is thus to minimize the loss

L(2) = λd ·
1

k

k∑

i=1

|Ûi − Ui|+λcovert · Lcovert, (21)

where λd and λcovert are scaling constants that can be adjusted
through tuning.

Notice that the quantizer Q(·) as defined earlier in this
subsection is non-differentiable and is thus not trainable. To
enable an end-to-end differentiable approach, we resort to the
”Straight-Through Estimator” [23], which basically sets the
gradients with respect to the quantizer to 1 in the backward
pass. In fact, the gradients are ”straight-through” from the loss
function to the model parameters, despite the discontinuity
introduced by the discrete sampling in the forward pass.

B. Numerical Results

We use the MNIST-digit dataset [24] with |Dtraining|= 50000
training samples, |Dtest|= 10000 test samples, C = 10 classes,

3It can also be viewed as a minimization of the KL-divergence between
the true distribution P and the DNN distribution Q, i.e. L(1) = −λce ·
[H(P ) + D(P∥Q)].

4Our DNN provides probabilities on the classes, which here we denote
{py}Cy=1 before deciding on its argmax class.

5One could consider the KL divergence of the histograms by resorting to
soft histograms [22]. In practice, we find that this leads to poor performance.



and c = 1 channel (black and white images). We train the first
DNN within 60 epochs and with a fixed learning rate of 0.01,
while we use λce = 1. The second DNN is trained with 60
epochs, a learning rate of 0.005, λd = 10, λcovert = 10, ϵ =
0.01, δn = 0.02 and the noise power of the AWGN channel is
fixed at 0.63. For the two DNNs, we set the batch size to 128
and we use the Adam optimizer [25] with β = (0.9, 0.999)
and ϵ = 10−8.

We consider two different values for the blocklength n ∈
{512, 2048}, and start by considering a model where the size
of the semantic vector k is in the order of

√
nδn, as indicated

by Theorem 1.
1) Square-root covert model: For n = 512 we let k take

value in K(512)
square-root ≜ {1, 3, 4, 6, 7} and for n = 2048 we let

k in K(2048)
square-root ≜ {2, 4, 5, 8, 10, 11, 12, 14}. For each value of

n we then optimize the accuracy Acc(θ,Dtest) in (18) over the
value of k, and denote the optimal value by k∗. As indicated
by Table I, the accuracy increases with larger blocklength
n since a larger blocklength provides more room for error
correction over the AWGN channel. Moreover, the number of
classes in our experiment is C = 10 and thus smaller than
2k

∗
, so it is beneficial to extract a larger semantic vector than

available classes.

Blocklength Accuracy Optimal k∗
512 58.45 6

2048 87.44 11

TABLE I: Performance under the square-root covert model.

Our results indicate that the training of the DNNs was
successful. In particular the joint source-channel transmission
of the semantic vector seems to have been successful, when
the size of the semantic vector k is close to 2·

√
nδn, which

for the chosen parameters evaluates to 6.4 and 12.8.
In the following, we further investigate above conclusions.

To this end, we run two additional related models with sizes of
the semantic vector that are in the order of n. In particular, for
the Linear covert model 2) we keep the covertness constraint,
which we then remove for the Linear non-covert model 3). The
goal is to see whether extracting larger semantic vectors yields
better classification performance (i.e. higher accuracy), and
whether the conclusions depend on the imposed covertness
constraint.
2) Linear covert model: Here, for n = 512 the parameter k

takes value in K(512)
linear ≜ {102, 409, 512} and for n = 2048

it takes value in K(2048)
linear ≜ {409, 1638, 2048}. We again

optimize over the proposed set of k-values.

Blocklength Accuracy Optimal k∗
512 10.10 409

2048 11.34 1638

TABLE II: Performance under the linear covert model

3) Non-covert model: Same as the linear covert model, but the
loss related to covertness is ignored, i.e., λcovert = 0.

As Tables II and III show, the accuracy again increases
with the blocklength n. However, while under the covertness

Blocklength Accuracy Optimal k∗
512 98.88 102

2048 98.95 409

TABLE III: Performance under the linear non-covert model

constraint the achieved accuracies with the Linear covert
model fall short compared to the ones with the Square-root
covert model, without the covertness constraint the accuracy is
high even at short blocklengths. This last finding indicates that
large semantic vectors are beneficial to increase accuracy. In
contrast, the low accuracy in the Linear covert model indicates
that under a covertness constraint the probability of error over
the communication channel is high when the feature vector is
in the order of the blocklength, thus compromising the overall
performance of the classifier.

This is perfectly in line with the theoretical findings of our
previous Section II-C.
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Fig. 4: Accuracy in (%) as a function of the blocklength n for
the three models at SNR=1dB. The solid red curve denotes
the Non-covert model, the dashed blue curve the Square-root
covert model and the dash-dotted black curve the Linear covert
model.

In Figure 4, we illustrate the comparison of the accuracies
of the three models in function of the blocklengths n. Clearly,
the linear covert model saturates and the high probability of
communication error severely limits the classification task.

IV. SUMMARY AND DISCUSSION

We established the fundamental limits of semantic commu-
nication under a covertness constraint by providing sufficient
and necessary conditions for a source to be reconstructed
with desired distortion at a distant receiver. In particular, we
have demonstrated the optimality of source-channel separation
for joint source-channel coding under a covertness constraint.
Moreover, our experimental setup underscores the feasibil-
ity of training a deep neural network to accomplish covert
semantic communication as long as it suffices to extract a
feature vector of length approximately equal to the square-
root of the communication blocklength. This confirms our
theoretical findings showing the necessity of the described
scaling, similarly to the case of covert data communication.

Future interesting research directions include extensions
to setups with many users and with power and resource
allocation strategies, as well as identifying the minimum
secret-key that is required to ensure covertness.



APPENDIX A
INFORMATION-THEORETIC CONVERSE PROOF

Fix a function f(·) and a vanishing sequence {δn}n≥1.
Consider then a sequence (one for each n) of JSCC schemes
that satisfies both (7) and (8).

Following the same steps as in [13], it can be shown that:

δn ≥ n
ᾱ2
n

2
·
[
χ2(ΓZ|X(·|1)∥ΓZ|X(·|0)) + o(1)

]
, (22)

where o(1) is a decreasing function in n and

ᾱn ≜
1

n

n∑

i=1

αn,i. (23)

Define T to be uniform over {1, . . . , n} independent of all
inputs, outputs, source and reconstruction symbols. Then:

E
[
d(UT , ÛT )

]
= E

[
1

k

k∑

i=1

d(Ui, Ûi)

]
≤ D, (24)

where the last step holds by (7). Continue to bound:

I(Uk; Ûk) = H(Uk)−H(Uk | Ûk) (25)
(a)

≥
k∑

i=1

H(Ui)−H(Ui | Ûi) =

k∑

i=1

I(Ui; Ûi) (26)

= kI(UT ; ÛT | T )
(b)

≥ kI(UT ; ÛT )
(c)

≥ kR(D), (27)

where (a) holds because conditioning reduces entropy and Ui

is independent of S; (b) holds by the independence of UT and
T ; and (c) holds by the definition of R(D) and because UT

is distributed according to PU and ÛT satisfies (24).
Next, notice that the Markov Chain Uk ↔ (Xn, S) ↔

(Y n, S) ↔ Ûk implies by the Data Processing Inequality:

I(Uk; Ûk) = ≤ I(Uk; Ûk, S)
(a)
= I(Uk; Ûk | S) (28)

≤ I(Xn;Y n | S) (29)

=

n∑

i=1

H(Yi | Y i−1)−H(Yi | Y i−1, Xn, S) (30)

(b)

≤
n∑

i=1

H(Yi)−H(Yi | Xi) (31)

(c)

≤ nᾱnD
(
ΓY |X(· | 1)∥ΓY |X(· | 0)

)
(32)

(d)

≤
√

nδnCcovert, (33)

where (a) holds because I(Uk;S) = 0; (b) by the memoryless
channel; (c) by [13, Lemma 1]; and (d) by (22) and the
definition of Ccovert in (11). Combining (27) with (33) yields

R(D) ≤ lim
n→∞

√
nδn
k

Ccovert. (34)

Recalling that k = f(n), we can conclude that when-
ever limn→∞

f(n)√
nδn

= 0, then Inequality (34) implies that
R(D) = 0, allowing only for the trivial distortion Dtrivial, thus
establishing the converse to Result 2). On the other hand, if
limn→∞

f(n)√
nδn

= 1
γ , then Inequality (34) is only satisfied if

R(D) ≤ γCcovert, thus establishing the converse to Result 3).
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