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Abstract—A point-to-point integrated sensing and communica-
tion (ISAC) system is considered where a transmitter conveys a
message to a receiver over a discrete memoryless channel (DMC)
and simultaneously estimates the state of the channel through
the backscattered signals of the emitted waveform. We derive
achievability and converse bounds on the rate-distortion-error
tradeoff in the finite blocklength regime, and also characterize the
second-order rate-distortion-error region for the proposed setup.
Numerical analysis shows that our proposed joint ISAC scheme
significantly outperforms traditional time-sharing based schemes
where the available resources are split between the sensing and
communication tasks.

I. INTRODUCTION

Integrating sensing capabilities into a communication net-
work is a promising approach to resolve the challenges of the
upcoming sixth generation (6G) wireless communication system
[1]–[5]. In fact, network sensing functionality is a key enabler to
allow sensory data collection from the environment, which is re-
quired in applications such as industrial robots and autonomous
vehicles. A recent paradigm, called integrated sensing and
communication (ISAC), suggests to fully integrate the sensing
functionality into the communication functionality [6]–[8]. In
other words, ISAC systems jointly perform both the sensing and
communication tasks using common hardware, antenna(s) and
spectrum.. The benefits of such a joint approach are reductions
in hardware and signaling costs and improvements in energy
consumption and spectral efficiency [9], [10].

Despite a consider amount of interesting ISAC research ef-
forts, the fundamental performance limits, and thus the inherent
tradeoffs between sensing and communication performances of
optimal systems, remain unsolved. In particular, while [12]–[20]
determined the information-theoretic fundamental performance
limits for the asymptotic infinite blocklength regime, the focus
of this article lies on the performances of real codes at finite
blocklengths.

Specifically, in this work we consider a point-to-point ISAC
system in which the transmitter conveys a message to a receiver
over a discrete memoryless state-dependent channel, and in
addition, based on a generalized feedback signal, it estimates the
memoryless state sequence of the channel so as to minimize a
given distortion criterion. We derive achievability and converse
bounds on the optimal tradeoff between the communication rate
and decoding error and the sensing distortion. Our achievability
and converse bounds are close, and coincide up to third-order
terms in the asymptotic regimes of infinite blocklengths. For this
asymptotic regime we thus refine the capacity-distortion result

in [14], [16] to the optimal scaling of the rate as a function
of the allowed distortion and decoding error probability. The
finite-blocklength behavior of ISAC has already been studied
in [21], however for a Gaussian channel model where a single
state (the channel coefficient) governs the entire transmission
and the receiver wishes to estimate this state with smallest
possible squared-error. In our setup, the state is described by
a memoryless sequence impacting the various channel uses and
the goal of the estimation is to reconstruct this sequence with
minimum distortion.

II. PROBLEM SETUP

Consider the point-to-point setup in Figure 1 where a trans-
mitter wishes to communicate a message M , which is uniformly
distributed over a set {1, . . . ,M}, to a receiver over a state-
dependent memoryless channel and at the same time wishes
to estimate the channel state sequence based on a generalized
feedback signal. So, if M = m, at a given time i ∈ {1, . . . , n}
and after observing the feedback sequence Zi−1, the transmitter
sends an input symbol

Xi = f
(n)
i (m,Zi−1) (1)

where for any i ∈ {1, . . . , n} the encoding function f
(n)
i is

defined on appropriate domains. The transmitter also estimates
the channel state Sn as

Ŝn = h(n)(Zn, Xn), (2)

based on a block-estimation function h(n), defined on appropri-
ate domains.

We consider the discrete memoryless state-dependent channel
with finite input alphabet X , finite channel state alphabet S,
finite feedback alphabet Z , finite output alphabet Y and the
channel transition law

PY nZn|XnSn(yn, zn|xn, sn) =

n∏
i=1

W (yi, zi|xi, si) (3)

for a given conditional pmf W (·, ·|·, ·).
After observing the channel outputs Y n, the receiver decodes

the message M as

M̂ = g(n)(Y n), (4)
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Fig. 1: ISAC System model.

where g(n) is a decoding function on appropriate domains. The
quality of the state estimation at the transmitter is measured by
the expected average per-block distortion

∆(n) := E[d(Sn; Ŝn)] =
1

n

n∑
i=1

E[d(S)i, Ŝi)] (5)

for a given bounded per-symbol distortion function d(·, ·).
The decoding error probability is defined as:

ϵ(n) := P[M̂ ̸= M ]. (6)

Definition 1: Given a blocklength n, the rate-distortion-error
triple (R,D, ϵ) is said to be achievable, if there exist encoding,
decoding, and estimation functions {f (n), g(n), h(n)} satisfying

1

n
log2(M) ≥ R, (7)

ϵ(n) ≤ ϵ, (8)
∆(n) ≤ D. (9)

III. OPTIMAL ESTIMATOR

For the described memoryless setup, the optimal state es-
timator is a symbolwise estimator applied to the transmitter’s
observations Xn and Zn:

Ŝn = [(ŝ∗(X1, Z1), ŝ
∗(X2, Z2), . . . , ŝ

∗(Xn, Zn)], (10)

where

ŝ∗(x, z) := arg min
s”∈Ŝ

∑
s∈S

PS|XZ(s|x, z)d(s, s′), (11)

with

PS|XZ(s|x, z) =
PS(s)PZ|SX(z|s, x)∑
s̃∈S PS(s̃)PZ|SX(z|s̃, x)

. (12)

The proof of optimality of this symbolwise estimator relies on
the Markov chain relation

(Xi−1, Xn
i+1, Z

i−1, Zn
i+1) ⊸−(Xi, Zi) ⊸−Si, (13)

see [16, Appendix A] for more details.

IV. MAIN RESULTS

Given two random variables X and Y having joint probability
mass function (pmf) PXY (x, y), define their information density

i(X;Y ) := log
PY |X(y|x)
PY (y)

, (14)

and notice that the expectation of the information density equals
the mutual information I(X;Y ) = E[i(X,Y )]. Denote the
higher central moments of the information density as

V := Var[i(X;Y )]

=
∑
x,y

PX(x)PY |X(y|x) log2
PY |X(y|x)
PY (y)

− I(X;Y )2, (15)

T := E[|i(X;Y )− I(X;Y )|3]

=
∑
x,y

PX(x)PY |X(y|x)
∣∣∣∣log PY |X(y|x)

PY (y)
− I(X;Y )

∣∣∣∣3 . (16)

Our main results are the following theorems on the rate-
distortion-error tradeoff.

Theorem 1 (Achievability Bound): Given a blocklength n,
the rate-distortion-error tradeoff (R,D, ϵ) is achievable if there
exists a PX and a constant K > 0 such that the following two
conditions are satisfied,

R ≤ I(X;Y )−
√

V

n
Q−1 (ϵ− βu)− K

log(n)

n
, (17)

D ≥
∑
x∈X

∑
s∈S

∑
z∈Z

d(s, ŝ∗(x, z))PX(x)PS(s)PZ|XS(z|x, s), (18)

with
βu :=

1

nK
+

0.7975T√
nV3

, (19)

and where the mutual information I(X;Y ) and the two cen-
tral moments V and T are defined based on the joint pmf
PXY (x, y) = PX(x)PY |X(y|x).

Proof: See Section VI.
We also have the following converse bounds.
Theorem 2 (Converse Bound): Given the blocklength n, a

rate-distortion-error triple (R,D, ϵ) is not achievable if for all
δ > 0 and pmfs PX satisfying (18) the following lower bound
holds:

R ≥ I(X;Y )−
√

V

n
Q−1 (ϵ+ βl) +

log(n)

2n
− log δ

n
, (20)

where
βl :=

6T√
nV3

+
δ√
n
. (21)

Proof: The proof of the bound in (20) follows similar steps
as the proof of [22, Lemma 58, Theorem 28], where one has
to integrate the optimal estimator in (10).

Proposition 1: For sufficiently large n, the rate-distortion-
error triple (R,D, ϵ) is achievable if, and only if, there is a PX

such that condition (18) holds and

R = I(X;Y )−
√

V

n
Q−1 (ϵ) +O

(
log n

n

)
. (22)



Proof: By the differentiability Q−1 and by the forms of
βu and βl in (19) and (21), we have

Q−1(ϵ− βu) = Q−1(ϵ) +O

(
1√
n

)
, (23)

Q−1(ϵ+ βl) = Q−1(ϵ) +O

(
1√
n

)
. (24)

Substituting (23) into (17), and (24) into (20) proves the
proposition.

Remark 1: Equality (22) agrees with [22, Theorem 49] which
determines the second-order coding rate of a DMC in the finite
blocklength regime.

V. COMPARISONS AND EXAMPLES

In this section, we evaluate Theorems 1 and 2 numerically
for a binary example and compare them also with the perfor-
mance of two baseline schemes that are frequently employed in
practice.

A. Time-Sharing Schemes

Many practical systems employ a basic resource-sharing
approach where a fraction of the resources (here (1 − γ)n
channel uses) are dedicated only to the communication task and
the remaining resources (here γn channel uses) to the sensing
task, each one completely ignoring the other task. A slightly
improved scheme uses the resources for the communication task
also for some basic sensing, but using the waveform that is
best for communication, and similarly uses the resources for
the sensing task also for communication, but using the best
waveform for sensing.

1) Basic Resource-Sharing Scheme: Given time-sharing pa-
rameter γ ∈ [0, 1], the performance of the basic resource-sharing
scheme described above achieves rate

R = (1− γ)Rmax (25)

and distortion

D = γDmin + (1− γ)Dtrivial, (26)

where Rmax is the largest achievable rate:

Rmax := max
PX

[
I(X;Y )−

√
V

n
Q−1 (ϵ− βu)− K

log(n)

n

]
(27)

and Dmin denotes the best possible distortion while Dtrivial
denotes the distortion achieved by the optimal trivial estimator
that does not exploit the feedback:

Dmin := min
PX

∑
x∈X

∑
s∈S

∑
z∈Z

PX(x)PS(s)PZ|SX(z|s, x)ŝ∗(x, z),

(28)

Dtrivial := min
s′∈S

∑
s∈S

PS(s)d(s, s
′). (29)

2) Improved Resource-Sharing Scheme: For a given time-
sharing parameter γ ∈ [0, 1], the improved resource-sharing
scheme achieves rate

R = γRsense + (1− γ)Rmax (30)

and distortion

D = γDmin + (1− γ)Dcomm, (31)

where

Dcomm :=
∑
x∈X

P ⋆
X(x)

∑
s∈S

∑
z∈Z

PS(s)PZ|SX(z|s, x)ŝ∗(x, z) (32)

for P ⋆
X the optimizer in (27) and

Rsense := I(X;Y )−
√

V

n
Q−1 (ϵ− βu)− K

log(n)

n
(33)

evaluated for PXY = P ′
XPY |X with P ′

X the optimizer of (28).

B. Binary Channel with Multiplicative Bernoulli State

Consider the channel

Y = SX, (34)

with binary alphabets X = S = Y ∈ {0, 1} and where the state
is Bernoulli-q with q ∈ (0, 1) and the feedback is perfect, i.e.,
Z = Y . We consider the Hamming distortion measure d(s, ŝ) =
s⊕ ŝ.

To compare the performance specified in Theorems 1 and 2
with each other and with the performance of the two baseline
time-sharing schemes, we parametrize the binary input distribu-
tion PX by α := P[X = 1]. We also notice that the channel in
(34) is equivalent to a Z-Channel: input 0 always leads to the
output symbol 0 and input 1 leads to output 0 with probability
1−q and to output 1 with probability q. The mutual information
between input and output of the channel is then obtained as

I(X;Y ) = Hb(qα)− αHb(q) (35a)

and for the second and third central moments of the information
density we have

Vα = α

(
q log2

1

α
+ (1− q) log2

1− q

1− qα

)
+(1− α) log2

1

1− qα
− I(X;Y )2, (35b)

Tα = αq

∣∣∣∣log 1

α
− I(X;Y )

∣∣∣∣3
+(1− q)

∣∣∣∣log 1− q

1− qα
− I(X;Y )

∣∣∣∣3
+(1− α)

∣∣∣∣log 1

1− qα
− I(X;Y )

∣∣∣∣3 , (35c)

where Hb(x) = −x log(x) − (1 − x) log(1− x) is the binary
entropy function. We can then substitute I(X;Y ) and V,T from
(35) into (17) and (20) to obtain the desired bounds on the rate.

To calculate the distortion bound (18), notice that whenever
x = 1, then z = y = s and thus the distortion is zero. On
the other hand, when x = 0 then y = 0 and the transmitter



does not receive any information about the state of the channel.
In this case, the optimal estimator is to choose the most likely
state symbol, i.e. ŝ = 0 if q < 1/2 and ŝ = 1 if q ≥ 1/2. We
combine these observations to obtain the following bound:

D ≥ PX(0)
∑
s,y

d(s, ŝ∗(x = 0, y))PS(s)PY |XS(y|x = 0, s) (36)

= PX(0)
∑
s∈S

d(s, ŝ∗(x = 0, y = 0))PS(s) (37)

= (1− α)min{q, 1− q}. (38)

In other words, a distortion constraint imposes the following
bound on α:

α ≥ 1− D

min{q, 1− q}
. (39)

Thus, for this example Theorem 1 states that for any D > 0,
all triples (R,D, ϵ) are achievable if

R ≤ max
α,K≥0

I(X;Y )−
√

V

n
Q−1 (ϵ− βu)− K

log(n)

n
, (40)

where the maximization is over all α ∈ [0, 1] satisfying 1 ≥
α ≥ 1 − D

min{q,1−q} . Theorem 2 states that for any D > 0 all
triples (R,D, ϵ) satisfying

R ≥ max
α,δ>0

I(X;Y )−
√

V

n
Q−1 (ϵ+ βl)+

log(n)

2n
− log δ

n
(41)

are not achievable. Here, the maximization is again over values
α ∈

[
min

{
0, 1− D

min{q,1−q}

}
, 1
]
.

Notice that for this channel (which is a Z-channel) the
capacity is equal to [23]

C = log
(
1 + q(1− q)

1−q
q

)
, (42)

and is achieved for

P ⋆
X(1) = α⋆ =

1

q
(
1 + 2

Hb(q)

q

) . (43)

The distortion achieved with this capacity-achieving α⋆ is
Dcomm = (1− α⋆)min{q, 1− q}.

C. Numerical Analysis

Fig. 2 illustrates the achievability and converse bounds on
the rate-distortion-error tradeoff presented in (40) and (41) for
ϵ = 10−3, q = 0.4, K = 0.5. As can be seen from this figure the
bounds are tight for large values of n. Notice that for q = 0.4
the capacity of the channel is C = 0.246 and the achieved
distortion is Dcomm = 0.2432.

Fig. 3 compares the rate-distortion-error tradeoff achieved
by our scheme with the tradeoff achieved under the basic and
improved resource-sharing schemes. As can be seen from this
figure, our scheme outperforms the other two baseline schemes.

VI. PROOF OF THEOREM 1

A. Codebook Generation

Fix PX . The codebook C = {xn(m)}Mm=1 is generated by
randomly and independently choosing each entry according to
PX .
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Fig. 2: Achievability and converse bounds on the rate-distortion-
error trade-off of Theorems 1 and 2 for ϵ = 10−3, q = 0.4,
K = 0.5 and different values of n.
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Fig. 3: Comparison of the rate-distortion-error trade-off in
Theorems 1 and 2 with the basic and improved resource-sharing
schemes for ϵ = 10−3, q = 0.4, K = 0.5 and n = 700.

B. Encoding
To send a message m, the transmitter encodes this message

via the codeword xn(m) and sends it over the channel.

C. Estimation
After observing the feedback sequence Zn = zn, the trans-

mitter estimates the channel state through (10).

D. Decoding
Given the channel outputs Y n = yn, the receiver estimates

the message M by choosing the index m̂ that corresponds to
the codeword xn(m̂) that maximizes the information density:

m̂ := argmax
m

i (xn(m); yn) . (44)

The receiver then produces the guess M̂ = m̂.



E. Error Analysis

To analyze P[M̂ ̸= M ], we use the threshold-based metric
bound in [22]. For any γ ∈ R, we have

P[M̂ ̸= M ] ≤ P[i(Xn;Y n) ≤ γ] +M · P[i(X̄n;Y n) ≥ γ], (45)

where X̄n ∼ PXn and is independent of Xn and Y n. We will
set

γ := logM+ K log n, (46)

for some K > 0, and employ the Berry-Esseen theorem and
Bayes’ formula to evaluate the two terms on the right-hand
side of (45).

By the strengthening of the Berry-Esseen theorem in [24], and
because E[i(Xn;Y n)] = nI(X;Y ), we have with the definition
in (46)

P [i(Xn;Y n) ≤ γ] ≤ Q
(
− logM+ nI(X;Y )− K log(n)√

nV

)
+
0.7975T√

nV3
. (47)

To bound P[i(X̄n;Y n) ≥ γ], we first use Bayes’ formula to
write

PXn(xn) =
PY n(yn)PXn|Y n(xn|yn)

PY n|Xn(yn|xn)
(48)

= PX̄n|Y n(xn|yn)2−i(x̄n;yn). (49)

For any yn ∈ Rn, we then have∑
x̄n∈X

1 {i(x̄n; yn) > γ}PXn(xn)

=
∑

x̄n∈X
2−i(x̄n;yn)

1

{
PY n|Xn(yn|xn)

PY n(yn)
> 2γ

}
· PXn|Y n(xn|yn) (50)

≤
∑

x̄n∈X
2−i(x̄n;yn)PY n|Xn(yn|xn)

PY n(yn)
2−γPXn|Y n(xn|yn)

=
∑

x̄n∈X
PXn|Y n(xn|yn)2−γ

= 2−γ . (51)

As a consequence,

P[i(X̄n;Y n) ≥ γ] ≤ 2−γ (52)

and

MP[i(X̄n;Y n) ≥ γ] ≤ 2−γ+logM = n−K. (53)

Combining (45), (47), and (53), we obtain

P[M̂ ̸= M ] ≤ Q
(
− logM+ nI(X;Y )− K log(n)√

nV

)
+ βu,

(54)

where βu is defined in (19).
Thus, the probability of error stays below ϵ whenever

ϵ− βu ≥ Q
(
− logM+ nI(X;Y )− K log(n)√

nV

)
, (55)

or equivalently when

logM ≤ nI(X;Y )−
√
nVQ−1(ϵ− βu)− K log(n), (56)

establishing the bound in (17).

F. Expected Distortion

The expected distortion can be written as

∆(n) =
1

n

n∑
i=1

E[d(Si, Ŝi)] (57)

=
∑
x∈X

∑
s∈S

∑
z∈Z

d(s, ŝ∗(x, z))PX(x)PS(s)PZ|XS(z|x, s).

(58)

This proves the inequality (18) and consequently Theorem 1.

VII. CONCLUSIONS

We have studied the rate-distortion-error tradeoff of a point-
to-point ISAC system where a transmitter conveys a message to
a receiver over a discrete memoryless state-dependent channel
and simultaneously estimates the state of the channel. We
have derived achievability and converse bounds on the rate-
distortion-error tradeoff in the finite blocklength regime. We
also have characterized the second-order rate-distortion-error
region of the proposed setup. Our numerical analysis shows that
our joint design scheme significantly outperforms the resource-
sharing baseline schemes where the available resources are split
between the sensing and communication tasks. In our model
the receiver has no state-information. The generality of our
model allows however to obtain results for perfect or partial
state-information as special cases from our Theorems 1 and
2, simply by including the state-information as part of the
receiver’s output. An interesting line of future work is to study
the ISAC problem with general state and channel distribution
in the finite blocklength regime [25].
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APPENDIX A
PROOF OF THEOREM 2

The proof of the bound in (20) follows similar steps as the
proof of [22, Lemma 58, Theorem 28]. In the following, we
sketch the proof of the converse bound (20).

Consider a random variable Y on Y which can take proba-
bility measures PY |X and PY . Define by PZ|Y : Y → {0, 1} a
randomized test between those two distributions where 0 indi-
cates that the test chooses PY . The best performance achievable
among such randomized tests is given by

βα(PY |X , PY )



= min
PZ|Y :

∑
y∈Y PY (y)PZ|Y (1|y)≥α

∑
y∈Y

PY (y)PZ|Y (1|y). (59)

Thus βα(PY |X , PY ) gives the minimum probability of error
under hypothesis PY if the probability of error under hypothesis
PY |X is below 1− α. It is easy to show that for any γ̃ > 0,

α ≤ P[
dPY |X

dPY
≥ γ̃] + γ̃βα(PY |X , PY ). (60)

Equivalently, for any γn > 0

βα(PY n|Xn , PY n) ≥ 1

γn

(
α− P[log

dPY n|Xn

dPY n

≥ log γn]

)
. (61)

Set

log γn = nI(X;Y ) +
√
nVQ−1(αn) (62)

with
αn = α− 6T√

nV 3
− δ√

n
(63)

for some δ > 0. By employing the Berry-Esseen theorem, we
have ∣∣∣∣P [

log
dPY n|Xn

dPY n

≥ log γn

]
− αn

∣∣∣∣ ≤ 6T√
nV 3

. (64)

Consequently

P
[
log

dPY n|Xn

dPY n

≥ log γn

]
≤ α− δ√

n
. (65)

Substituting (65) into (61), we have

βα(PY n|Xn , PY n) ≥ δ

γn
√
n
, (66)

and by (62)

log
(
βα(PY n|Xn , PY n)

)
≥ log(δ)− nI(X : Y )−

√
nVQ−1(αn)−

1

2
log(n). (67)

Using [22, Theorem 27], every (M, ϵ)-code satisfies

logM ≤ − log β1−ϵ(PY n|Xn , PY n)). (68)

By (67) and α = 1−ϵ and the fact that Q−1(1−x) = −Q−1(x),

logM ≤ nI(X : Y )−
√
nVQ−1(ϵ+

6T√
nV 3

+
δ√
n
)

+
1

2
log(n)− log(δ) (69)

which proves the inequality (20).
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