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Abstract—Cascaded binary hypothesis testing is studied in this
paper with two decision centers at the relay and the receiver.
All terminals have their own observations, where we assume that
the observations at the transmitter, the relay, and the receiver
form a Markov chain in this order. The communication occurs
over two hops, from the transmitter to the relay and from the
relay to the receiver. Expected rate constraints are imposed on
both communication links. In this work, we characterize the
optimal type-II error exponents at the two decision centers under
constraints on the allowed type-I error probabilities. Our recent
work characterized the optimal type-II error exponents in the
special case when the two decision centers have same type-I error
constraints and provided an achievability scheme for the general
setup. To obtain the exact characterization for the general case,
in this paper we provide a new converse proof as well as a new
matching achievability scheme. Our results indicate that under
unequal type-I error constraints at the relay and the receiver, a
tradeoff arises between the maximum type-II error probabilities at
these two terminals. Previous results showed that such a tradeoff
does not exist under equal type-I error constraints or under
general type-I error constraints when a maximum rate constraint
is imposed on the communication links.

Index Terms—Multi-hop, distributed hypothesis testing, error
exponents, expected rate constraints, variable-length coding,

I. INTRODUCTION

In a very connected world, where Internet of things (IoT)
and sensor networks are emerging widely, distributed hypoth-
esis testing have been utilized for improving decisions under
communication constraints. A well-known application is the
cascaded hypothesis testing where sensors communicate in a
serial way forming a multi-hop network. We consider binary
hypothesis testing over a two-hop network composed of a
sensor, a relay, and a receiver and two decision centers placed
at the relay and the receiver. In such a setup, both decision
centers try to correctly guess the binary hypothesis H € {0,1}
underlying all terminals’ observations including their own. Each
decision center aims to maximize the accuracy of its decisions,
where the error under the alternative hypothesis H = 1 (called
type-II error) is more critical than the error under the null
hypothesis H = 0 (called type-I error). Specifically, both
decision centers aim at maximizing the exponential decay (in the
number of observed samples) of the type-II error probabilities
under constraints on the accepted type-I error probabilities.

While most information-theoretic works on distributed hy-
pothesis testing constrain the maximum communication rates
between the terminals [1]-[6], some recent works [7]-[10] have
considered expected rate constraints. Expected rate constraints
were first considered in [7], [8] in a single-sensor single-
decision center setup, and the maximum error exponents were
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exactly characterized for testing-against independence when
under the alternative hypothesis the observations are distributed
according to the product of the distributions under the null
hypothesis. The optimal error exponent for this setup [7], [8],
is achieved by a simple coding and decision scheme which
chooses an event S,, of probability close to the permissible type-
I error probability e. Under this event, the transmitter sends a
single bit to the decision center, allowing it to decide directly on
the hypothesis H = 1. Otherwise, the transmitter and receiver
run the optimal scheme under the maximum rate constraints
[1], [2]. The described scheme achieves same type-II error
exponent as in [1], [2], but with a reduced communication rate
of (1 —¢)"'R. This gain is achieved by means of variable-
length coding which allows to send a message of different rate
for each sequence observed at the transmitter. Notice that only
under an expected rate constraint variable-length coding can
improve performance, but not under maximum rate constraints.
Similar conclusions also hold for more complicated setups,
as we showed in [9] for the partially-cooperating multi-access
network with two sensors and a single decision center, and in
[10] for a special case of the two-hop network studied in this
paper.

—

Hy
Tx M Rv M Rz H,
xr y" n

Fig. 1: Cascaded two-hop setup with two decision centers.

We consider the distributed hypothesis testing over the two-
hop network in Figure 1, which consists of a transmitter, a relay,
and a receiver, and where the observations at the transmitter
X™, the relay Y™, and the receiver Z" form a Markov chain
X™ — Y™ — Z" under both hypothesis. Under maximum rate-
constraints, the optimal type-II error exponents at the relay and
the receiver for testing against independence were characterized
in [11], [12]. Under expected rate constraints, [10] characterized
the optimal type-II error exponents only when the relay and
the receiver have same type-I error constraint ¢ > 0. The result
shows that under equal type-I error probability € > 0, maximum
type-II error exponents can simultaneously be achieved at both
of them. Moreover, the expected rate constraints allow to boost
both rates by a factor (1 —¢€)~! as compared to maximum rate-
constraints. As in the single-user setup, the optimal exponents
are achieved by a simple scheme where the transmitter chooses



an event of probability ¢, and under this event both the trans-
mitter and the relay send a single bit indicating the event to
the relay and the receiver, which then decide on ‘H = 1, and
otherwise the optimal scheme of [11] is run. For the general
case, our previous work [10] only provides a set of achievable
error exponents but no matching converse.

In this paper, we provide an exact characterization of the
optimal error exponents in the general case. We thus recover
the main results of [10] as a special case. To obtain our results
we present both a new achievability result as well as a new
converse proof.

Notation: We follow the notation in [13], [8]. In particular,
we use sans serif font for bit-strings: e.g., m for a deterministic
and M for a random bit-string. We let string(m) denote the
shortest bit-string representation of a positive integer m, and
for any bit-string m we let len(m) and dec(m) denote its length
and its corresponding positive integer. In addition, ﬁn) denotes
the strongly typical set as defined in [14, Definition 2.8].

II. SYSTEM MODEL
Consider the distributed hypothesis testing problem in Fig. 1
under the Markov chain

X" YY" 2" (1)

and in the special case of testing against independence, i.e.,

depending on the binary hypothesis H € {0,1}, the tuple
(X™ Y™ Z™) is distributed as:

under H = 0: (X", Y",Z") ~iid. Pxy - Pzjy;

under H=1: (X", Y" Z") ~iid.Px - Py - Py

(2a)
(2b)

for given pmfs Pxy and Pgzy.

The system consists of a transmitter Tx, a relay Ry, and a
receiver Ry. The transmitter Tx observes the source sequence
X™ and sends its bit-string message M; = ¢§") (X™) to Ry,
where the encoding function is of the form ¢{™ : X" — {0,1}*
and satisfies the expected rate constraint

E [len (M1)] < nR;. 3)
The relay Ry observes the source sequence Y™ and with the
message M; received from Ty, it produces a guess Hy of the
hypothesis H using a decision function g§”> Y x {0,1} —

{0,1}: A
Hy = g{™ (My,Y™) € {0,1}. )

Relay Ry also computes a bit-string message M, =
qbg”) (Y™, M;) using some encoding function qbg") CY" x
{0,1}* — {0, 1}* that satisfies the expected rate constraint

E [len (M2)] < nRs. Q)

Then it sends M, to the receiver Rz, which guesses hypothesis
‘H using its observation Z" and the received message Mo, i.e.,
using a decision function gén) : 2" x{0,1}* — {0,1}, it
produces the guess:

Tz =g My, Z") €{0,1}. ©6)

The goal is to design encoding and decision functions such
that their type-I error probabilities

a1 2 Pr[Hy = 1|H =0 (7)

Qo 2 Pr[Hy = 1|H = 0] (8)

stay below given thresholds €; > 0, e2 > 0 and the type-II error
probabilities

Bim 2 Pr[Hy = 0|H = 1] 9)
Bon 2 Pr[Hz = 0/H = 1] (10)

decay to 0 with largest possible exponential decay.

Definition 1: Fix maximum type-I error probabilities €;, €2 €
(0,1) and rates Ry, R > 0. The exponent pair (61, 62) is called
(€1, €2)-achievable if there exists a sequence of encoding and
(1") (n) ("),gén)}nzl satisfying Vj €

decision functions {¢;",d5 ", g3
{1,2}:
Eflen(M;)] < nR;, (1)
o < a2
1 1
lim —log — ZQJ (13)
n—oo 1 j.n

Definition 2: The closure of the set of all (€1, €2)-achievable
exponent pairs (61, 62) is called the (€1, €2)-exponents region (or
exponents region for short) and is denoted by £* (R, Ra, €1, €2).

The maximum exponents that are achievable at each of the
two decision centers are also of interest:

07 ¢, (R1) := max{fy: (01,02) € E* (R, R, €1, €2)
for some e > 0,602 > 0} (14)

9;’62 (Rl, Rg) = max{@z : (91, 92) S 5*(R17 Ry, €, 62)
for some €; > 0,60; > 0}. (15)

III. MAIN RESULTS
Our main result provides an exact characterization of the
exponents region £*(R1, Ra, €1, €2).
Theorem 1: Ve + e < 1, the exponents region
E*(R1, Ro, €1,€9) is the set of all (01,02) pairs satisfying
01 < min{I(U1;Y), [(Us;Y)}, (16a)
O < min{I(Us;Y) +I(Va; Z),I(Us;Y) + I(V3;Z)}, (16b)
for some conditional pme PU1|X7 PU2|Xa PU3\X; PV1|Y7 PVQ‘Y
and a number o € [1 — (€1 + €2),1 — max{e, e2}] so that
Ri>(1—-€—0)[(U;X)+0l(Us; X)
+(1 — €2 —0)I(Us; X),
R2 Z O’I(va,Y) + (1 — €2 — O‘)I(Vg,Y)

(16¢)
(16d)

Proof: Achievability is proved in Section IV, and the
converse is proved in Section V. [ ]
It can be shown that in the special case ¢; = €2, in Theorem 1
one can set without loss in optimality o = (1 —€1) = (1 — €2),
U, =Us = X, V3 =Y. This recovers the simpler characteriza-
tion of the exponents region in [10, Theorem 1]. The result is
presented in the following corollary, where for readability we
exchanged Us by U and V5 by V.
Corollary 1 (Theorem 1 in [10]): If ¢ = €5 = ¢, then the
exponents region £* (R, Ra, €1, €2) is the set of all (61, 63) pairs
satisfying

(17a)
(17b)



for some conditional pmfs Py x, Py |y so that

Ry > (1-I(U; X), (17¢)
Ry > (1— ) I(V;Y). (17d)

Proof: See [10]. [ |

We remark the factors (1 — €) in the rate constraints (17c¢)
and (17d) compared to the optimal exponents under a maximum
rate constraint determined in [12]. Under equal type-I error
probabilities €; = €2 = ¢, the expected rate constraint thus
allows to boost the communication rates by a factor (1 — €)=}
compared to maximum rate constraints. Similar boosts can also
be observed in the rate constraints (16¢) and (16d) under general
maximum type-I error probabilities €, €5.

Example 1: In this example, we confirm the benefit of
variable-length coding compared to fixed-length coding for
general permissible type-I error probabilities. Let X,S,7T be
independent Bernoulli random variables of parameters px =
0.5,ps =09, pr=08andsetY =X Sand Z =Y pT.
We consider e; = 0.1 > e = 0.05 and we plot in Fig. 2
the optimal error exponents region £* for Ry = Ry = 0.5,
which shows a tradeoff between the two exponents at the
relay and the receiver. As already mentioned, such a tradeoff
does not exist in the case of equal type-I error probabilities
€1 = €2 = 0.05 (obtained by Corollary 1). Fig. 2 illustrates also
the gain obtained by the expected rate constraints as opposed
to the maximum rate-constraint; in fact, the rectangular region
Enaxr Shows the maximum exponents region under maximum
rate constraints Ry = Re = 0.5 for any values of €1, e¢s.
(Under maximum rate constraints a strong converse holds, and

the exponents region &,z does not depend on €1, €3.)
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Fig. 2: Error exponents regions under expected and maximum
rate constraints when e; > es.

IV. GENERAL ACHIEVABILITY SCHEME

We provide a general coding and decision scheme that
includes the coding and decision schemes described in [10,
Section II]. The idea is to employ three different versions
of the basic two-hop scheme [11], depending on the observed
sequence x". For each version, we can choose different code-
books, rates, and decision making strategy. To distinguish each
case, 2-bit flags are used. Details are as follows.

We first choose a subset S,, C ’7;(")(PX) of probability
PriX"eS,|=0+e +e—1—p, (18)

where 41 € [0,0 — (1 — (1 + €2))]. We partition the remaining
subset of X™ into three disjoint sets D1, D2 and Ds

Dy UDy UDs = X™M\S,

D;ND; =0, i,j€{1,2,3},i#j (19
such that

PrX"eDi)=1—€—0 (20)

PrX"eDy]l=0+u (21)

PI‘[X”GDg}:l*GQ*O'. (22)

We further split Ry = R11+Ri2+Ri3and Ry = Ry o+ Ro 3
for R1,17 RLQ, R1737 R272, R273 > 0.

Whenever X™ € S,,, Tx and Ry both send the 2-bit flag
M; = My = [0, 0], and Ry and Ry declare Hy =Hy =1.

Whenever X" € Dy, Tx and Ry follow the basic single-hop
scheme in [1], [2] (which is included in the two-hop scheme
[11] as a special case) with a choice of parameters u, P, x
satisfying

R1712(1—61—0)(I(U1;X)+2,u), (23)

and where Tx additionally sends a [0, 1]-flag at the beginning
of M; to Ry, which simply relays this flag My = [0, 1] without
adding additional information. Upon observing My = [0, 1], Rz
immediately declares Hy=1.

Whenever X" € Dy, Tx, Ry, and Rz follow the basic two-
hop scheme in [11] but now for a different choice of parameters

i, Py, x, Py, |y satisfying
Ry = (04 p)(I(Uz; X) + 24)
Roo = (0 4+ p)I(Va;Y) +2p).
Whenever X" € D3, Tx, Ry, and Rz follow the basic two-
hop scheme but now for parameters i, Py, x, Py, |y satisfying
Ris= (1—62—0)(I(U3;X)+2/1,) (26)
Roz = (1—e—o)(I(V3;Y)+2p), 27

(24)
(25)

and Tx and Ry add a [1, 1]-flag to their messages M; and M3 to
indicate to Ry and Ry that X™ € Ds. Here, we note that Ry,
upon observing the [1,1]-flag, declares Hy = 1 even if the
computed decision 7—Aly, 3 following the basic two-hop scheme is
different.

In a similar way to [10], it can be shown that this scheme
achieves the error exponents in Theorem 1 when n — oo and
1} 0. Details omitted for brevity.

V. CONVERSE PROOF TO THEOREM 1
Fix 6, < 67, (Ry), 02 < 0., (R1, R2), a sequence of
encoding and decision functions satisfying the type-I and type-
IT error constraints and a blocklength n. Our proof relies on the
following lemma:

Lemma 1: Fix a blocklength n aqd a set 72 - CY ™ of positive
probability, and let the tuple (M1, Mo, X™, Y™, Z™) follow the
pmf

n ,n . n\ A
By gnyn zn (M1, ma, 2",y 2") =



n n n ]l{xn e D}
{1 (2") = mi} - Ha(y", ¢1(a")) = mo}. (28)

Further, define U = (My, XT~1,T),V = (Mp, YT~} T) X =
X1, Y =Yy, and Z = Zp, where T is uniform over {1,...,n}
and independent of all other random variables, and notice the
Markov chains U - X Y and V — Y — Z Then,

PXW,YnZn (

H(M,) > nI(U; X) + log Px~ (D), (29)
H(Ms) > nI(V;Y) + log Px«(D), (30)
Moreover, let n > 0 be arbitrary. If
Pr[Hz =0 =0,X"=2"] >17, Va"eD, (31)
then
—%logPr[’]:iZ —0[H=1,X" €D
<IU;Y)+1(V;Z) +02(n),  (32)
and if
Pr[Hy =0/H =0,X"=2"]>n, Va"eD, (33)

then
1 . -
—ElogPr[HY =0H=1,X"e€D]<IU;Y)+ 035(n), 34)

where ¢2(n), g3(n) are functions tending to 0 as n — oo.
Proof: See Appendix A. ]
We now prove the converse to Theorem 1. Fix a positive
n >0, set p, = n~3, and define the sets

Bi(n) & {x”E'ﬁf?(PX): Pr[Hy = 0| X" =z",H = 0] > 7},

(35)

Ba(n) 2 {2 € T{M (Px): Prlfly = 0)X" =2" H = 0] > n},

(36)

Da(n) = Bi(n) N Ba(n), (37

Di(n) £ Bi(n)\Da(n), (38)

D3(n) £ Ba(n)\Da(n). (39)
Further define:

A; £ Pxn(Di(n)), i€ {1,2,3}, (40

and notice that

Al + AQ = Pxn(Bl(T])) and AQ + Ag = wa(BQ(’I])), (41)

where by [14, Remark to Lemma 2.12] and the type-I error

probability constraints in (12):

l—e—n |X|
1- n 2,unn

Assume that A; > 0 for all ¢ € {1,2,3}. Degenerate cases

can be treated similarly. We apply Lemma 1 to each set D;, to
obtain

Pxn(Bj(n) > , Jed{l,2}. 42

H(M;) > nI(Ui; X;) + log Px~(D;) i€ {1,2,3}, (43)
H(Ms ;) > nI(Vi;Y;) + log Pxn(D;) i€{2,3}, (44
and

1 N
——logPr[Hy =0|H =1,X" € D]
n

< I(Us; Y3) + 03.4(n), ie{1,2}, (45)
1 ~
—ElogPr[’Hz =0H=1,X" € D]
< I(UY:) + 1(Vi; Zi) + 02.4(n), i €{2,3}, (46)

where for each i the functions ¢ ;(n),03,(n) — 0 as n —
oo and the random variables UZ,VZ,X“Y“Z,Ml “MQZ are
defined as in the lemma applied to the subset D;. By the total
law of probability, we can then obtain

f/)} + a3(n),

—%bgﬁg < min{I(Us: V) 4 1(Ve: 2))}
+02(n), (48)

where ¢2(n) and g3(n) are functions tending to 0 as n — oo.
Further define the following random variables for j € {1, 2}
and 7 € {1,2,3}

1 -
—flogﬁltn < min{I(Uy;Y); I(Us; 47)

V) +1(Va; Z); I(Us;

L;; £len(M;,), (49)

By the rate constraints (3) and (5), and the definition of the ran-
dom variables M, ;, we obtain by the total law of expectations:

> ) (51)
i€{1,2,3}
Moreover,
H (Mj,i) —H (M 3 ) (52)
< ZPr ji = lills + H(L;:) (54)
= E[Ljﬂ-] + H(Lj,i), (55)

which combined with (51) establishes
> O AHM) < Y AE[Ly]+AH (L) (56)

i€{1,2,3} i€{1,2,3}
<nRy+nR Y hy (B[L] )67
1€{1,2,3}
A;
=nR; |1+ Z hb<nR > ,(58)
i€{1,2,3} 1

where (57) holds because a Geometric distribution maximizes
entropy of random variables over the positive integers under an
expectation constraint [15, Theorem 12.1.1].

In a similar way we obtain

A
AQ (MQ 2)+A3H(M2 3) < HRQ 1+ E hb ( R >
2
1€{2,3}
(39)

The desired converse then follows by combining (58) and (59)
with (43) and (44), noting (41) and (42), considering also (47)
and (48), and letting n — oo and 7 | 0. Notice in particular
that since D1, Do, D3 are all subsets of T(" (Px), for each
i € {1,2,3} we have [Py — Px| < py, which tends to 0
as n — oo, and given X; the random variables (Y;, Z;) ar
obtained by the conditional law Py 7| x.
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APPENDIX A
PROOF OF LEMMA 1

Note first that by (28):
D(Pg,||P%) = D(Pgnyn

where we defined A,, := Px« (D).
Further define V; := (Mg, Y1) and U, := (M, X*~1) and
notice:

P;Y) S IOgAgl,

(60)

H(My)
> I(My; X™) + D(Pg.||P%) +log A,
= H(X") + D(Pg.||P¥) — H(X"|M;) +log A,

(61)
(62)

n[H(Xr) + D(Pg,||Px)] = Y H(X|U,) +log A, (63)

t=1
= n[H(X7) + D(Pg, ||Px) = H(Xr|Ur,T)] +log A,
(64)
n[H(X7) — H(Xr|Ur,T)] +log A, (65)
I(X;U) + %log An} . (66)

Here, (61) holds by (60); (63) holds by the super-additivity
property in [16, Proposition 1], by the chain rule, and by the
definition of Uy; (64) by defining T uniform over {1,...,n} in-
dependent of all other random variables; and (66) by definitions
of U, X.

We can lower bound the entropy of M, in a similar way to
obtain:

H(My) >n |I(Y;V) + %log A, (67)

We next upper bound the error exponent at the receiver.

Define for each z", the set

Ay zn(x") 2 {(y",2"): ga(@2(d1(z"),y™), 2") = 0}, (68)
and its Hamming neighborhood:
Ay (™) 2 {2 3y, 2") € AYZn( ") st
du((y”,z"), (7", ))Sé} (69)
for some real number ¢,, satisfying lim, . ¢,/n = 0 and

lim,, o0 £ /+/n = 00. Since by condition (31),

Pyogn zn(Ayzn(@™)|z™) 2, Va" €D,  (70)
the blowing-up lemma [17] yields
Py gn gn (AYy,(@™)[2") > 1= Gy, Va" €D, (71)
for a real number (,, > 0 such that lim (, = 0.
n—oo
Further define:
Afﬁzz,n(l“n’yn) £ {(m2’zn) : (ynvzn) € A&ZW(Z‘TL),
my = ¢a(d1(z"),y")}, (72)
and R R
Af\}gz,n é U A§?2Z7n<xn7yn)? (73)

n_gn
Y

Then:
P|\~/|22" (AgzzZ,n) = Z P)?"?"Z”I(/Iz (zn’ yn’ Zna m2) (74)
+"ED,
(" 2MEAY, (=7,
mz=¢2(¢1(z"),y")
= (1= Gn). (75)
Defining
ma) £ > Py (m1) Py (y") - 1{a(m1,y") = ma},
y",m
1 (76)
we can write
14n
Ql\?IQPZ" ('AMZ n)
< Qi Pan (Anizn) e /MY 2|k (77)

Pr[#lz=0/H=1,X"€D]

: Py (y)Pz(z)
v, yoaw PrPa(E)
Py (y'),Pz(z')>0

[14, Proof of Lemma 5.1].
By standard inequalities (see [8, Lemma 1]), we obtain the
following expression:

where k, = Here, (77) holds by

1 N
——logPr[Hz =0H=1,X" € D]
n

D(Pq, z-|1@a, Pzn) + 0n (78)

1
n(l—Cu)
where 6,, tends to 0 as n — oo, where we can upper bound the
divergence term as

D(Pg, 7 11Qg1, Pzn)

= I(MmZ”) + D(Py,|1Qw,) (79)

<I(M 2aZn)+D(PY/nM HPYnPMl) (80)

=I(My; Z™) + I(My; Y™) (81)

:ZI(M%ZHZt_l)+I('\7|1;5~/t|f/t_1) (82)
t=1

< Z[(Mﬁnqth; Zt) + I(Mlj(tqiftq;f/t) (83)
t=1

=Y I(MoY' 1 Zy) + I(M X1 Y)) (84)
t=1

=Y " I(Vis Z4) + (U3 V3) (85)
t=1

= n[I(Vps Z7|T) + I(Up; Yo |T)] (86)

< n[I[(VyT; Zr) + I(UrT; Yr)) (87)

=n[[(V;2)+ I(U;Y)]. (88)

Here (80) is obtained by data processing inequality for relative
entropy; (82) by the chain rule; (84) by the Markov chains
Zt-1 5 yt- 1%Zt and Y1=1 — X'=1 5 V,: and (85)—(88)
by definitions of Ut, Vi, U,V, Y, Z.

Following similar steps, one can prove also the desired upper
bound for Pr[Hy = 0| = 1, X" € D] if (33) is satisfied. In
this latter proof it suffices to blow up the set of y" sequences.
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