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Two variations on Wyner’s common information are proposed: conditional common information and
relevant common information. These are shown to have operational meanings analogous to those of
Wyner’s common information in appropriately defined distributed problems of compression, simulation,
and channel synthesis. For relevant common information, an additional operational meaning is identified:
on a multiple-access channel with private and common messages, it is the minimal common-message rate
that enables communication at the maximum sum-rate under a weak coordination constraint on the inputs
and output. En route, the weak-coordination problem over a Gray-Wyner network is solved under the no-
excess-rate constraint.
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1. Introduction

Inspired by Wyner’s common information, which he introduced to quantify the information that is shared
by two chance variables [29], we propose two notions of shared information: conditional common
information and relevant common information." The former can be viewed as a conditional version of
Wyner’s common information, whereas the latter measures the amount of information that—in addition
to being shared by two chance variables— is also relevant to a third. In the simplest setting where the
two chance variables 77 and 75 are tuples of the form

Tl = (Xl 5 Y7A)

= (X27Y3A)7
where X1, Xz, Y, and (A, S) are independent, Wyner’s common information C(77;72) between 7j and T»
isH(Y)+H(A) (where H(-) denotes entropy); the conditional common information C(77;7>|Y) between
Ty and T, given Y is H(A); and the relevant common information C(7y;T, — §) between T and 75 of

IThese notions were first defined in [14], which contains a subset of the present results and proofs.
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relevance to S is I(A;S) (where I(-;-) denotes mutual information). The definitions of the different
common informations apply, of course, to general chance variables that are not necessarily tuples of this
form.

Indeed, Wyner [29] defined the common information C(77;75) between two discrete chance vari-
ables 77 and 7> of a given joint probability mass function (PMF) QOr,r, as

A .

C(T[,Tz) _W: TE%ATZI(T]’TZ’W), (11)
where the minimization is over all auxiliary chance variables W satisfying 7| — W — 1>, i.e., condition-
ally on which 77 and T, are independent. (Throughout this paper we write X — Y — Z to indicate that
X and Z are conditionally independent given Y.) When the alphabets 7] and .% in which T and 7, take
values are finite, W can be restricted to take values in a finite set of cardinality |7 ||%| [29]. Strictly
speaking, C(7;;T>) is not a function of the chance variables but of their joint distribution. Nevertheless,
following common practice in Information Theory, it is denoted C(7;73) as though it were.

Now widely known as Wyner’s common information, C(Ti;T,) was shown by Wyner to have two
operational meanings. The first is related to a source-encoding network—the Gray-Wyner network—
which was studied by Gray and Wyner [10] and which is similar to the one depicted in Fig. 1 but
without Y. In this network an encoder is presented with an n-length sequence of tuples {(71;,7>;)}
that are independent and identically distributed (IID) according to some given joint distribution Or,7,.
The encoder produces three descriptions of the sequence: a rate-R; description, which is provided to
Decoder 1 whose task is to reproduce 7/*; a rate-R, description, which is presented to Decoder 2 whose
task is to reproduce 7'; and a rate-Ry description, which is presented to both. (We use A” to denote
the n-length sequence Aj,...,A,.) The common information C(7};7>) indicates the smallest common
rate Ry that is required to achieve (almost) lossless compression by both decoders under the no-excess-
rate condition that the sum Ry + R 4 R; be at its minimum, i.e, at H(7},75).

The second operational meaning Wyner provided for C(7};73) is related to the simulation of n-
length sequences 7" and 7, in a setting similar to the one in Fig. 2 but without Y. Here the common
randomness J is used in order to ensure that the joint distribution of {(71;,75,)}"_; resembles Q%”Tz,
where the latter denotes the n-fold product of Qr,7,. (Wyner used the normalized Kullback-Leibler
(KL) divergence, a.k.a. relative entropy to measure the resemblance, but similar results hold under Total
Variation [5, 31, 11] or Rényi divergence [33].)

The conditional common information C(7;;7:|Y) that we define in Definition 2.1 ahead extends
Wyner’s by accounting for the side-information sequence Y” in Figures 1 and 2. For the relevant com-
mon information the corresponding figures are Figures 4 and 6. They correspond to source-driven weak
coordination and to remote simulation over a multiple-access channel (MAC).

Over the years, additional operational meanings for Wyner’s common information were presented.
Cuff [5] considered a distributed channel synthesis network similar to the one depicted in Figure 3 but
without Y”. Here we are presented with a sequence 7" ~ Q%", and we wish to simulate the result
of feeding it to a discrete memoryless channel (DMC) whose law is the conditional distribution of 7>
given 71. Aiding us in this task is the equiprobably-drawn rate-Rg common randomness K. The common
randomness and the sequence 7}' are mapped to a codeword in a communication codebook of rate R.
Based on this codeword and the common randomness, a sequence 7' is generated, and it is required that
the distribution of the sequence {(7} ;,73,;)} resemble Q%”Tz. In this setting C(7};7») is the minimum of
the sum Ry + R that makes this possible. A similar result holds for the conditional common information
in the presence of Y (Corollary 2.3 ahead).

Other operational meaning to Wyner’s common information, related to caching problems, were
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presented in [23, 16, 17, 28]. For example, [23, 16, 17] consider a two-phase caching scenario with
a single transmitter observing IID tuples {(71;,72,)} and a single receiver wishing to learn either the
sequence T}" or T,'. Prior to learning which, the transmitter uses the first phase, the placement phase,
to map (prefetch) {(71;,7»;)} to a rate-C message, which is placed in the receiver’s cache memory. In
the second phase, the delivery phase, the receiver reveals to the transmitter which of the two sequences
it seeks. The transmitte—knowing the message that it placed in the receiver’s cache and now also
which sequence the receiver seeks—completes the delivery phase by sending the receiver a message
that allows the receiver to losslessly reconstruct the desired sequence. This message is of rate R, if the
desired sequence is 17", and of rate R if 7}'. Success must be guaranteed irrespective of which of the two
sequences the receiver desires. The common information C(7};73) is the smallest “cache capacity” C
for which success can be guaranteed with delivery-phase rates R; and R; satisfying Ry + R, +C =
H(T1,T»). (With the aid of the rate-C cache message in the placement phase and of the two possible
rate Ry and R, messages in the delivery-phase, one can reconstruct both T{" and T;'. Consequently,
Ri+R,+C>H(T\,T»).)

1.1 Other Extensions of Wyner’s Common Information

Wyner’s common information was extended in a number of directions. Liu et al. [15] proposed an
extension that measures the information that is common to more than two, say N, chance variables
and that maintains Wyner’s operational meanings. This extension also maintains the channel synthesis
meaning (for an (N — 1)-receivers broadcast channel) [5] and the caching meaning (for an N-files single-
user caching system) [23].

A different direction was followed by Sula and Gastpar [20, 21] who defined relaxed common infor-
mation. It is parameterized by ¥ > 0 and is defined as

CyTi;)E  min - IT1:7T). (1.2)
W (TR |W)<y
When 7 is zero, the constraint in the minimization is equivalent to the constraint 7] — W — T3, and
Co(T1;T) thus equals Wyner’s common information C(77;73).

A lossy version of Wyner’s common information, the lossy common information, was introduced
independently in [25] and [32]. Given a pair of distortion functions d;(-,-),d>(+,-) and maximum
allowed expected distortions D1, D>, it is defined as

CDI,Dz(TI;TZ) = . IIIjl’l N I(f] y TQ;W). (13)
W, Iy i —=W—T)
W—(T1,15)—(T1,T2)
Eld(Ty,11)]<D;
Eld2(T2.13)|<D2
It reduces to Wyner’s common information when the distortion functions are Hamming distortions and
D| =D, =0. It too is related to Gray-Wyner networks: it is the smallest common rate Ry required in
a Gray-Wyner lossy source coding problem when the two decoders have to reconstruct the two source
components to within distortions D and D, under the no-excess-rate condition that the sum-rate Ry +
R + R, is at its minimum, i.e., coincides with the joint rate-distortion function for the two sources
[25, 32]. It has an operational meaning similar to Wyner’s common information in single-user caching
systems where the user is content with a lossy version of the file it seeks [23]. A relaxed version of lossy
common information, relaxed lossy common information, was proposed in [20].

The Gray-Wyner source-coding network, which motivated Wyner’s definition of common informa-

tion also serves as the motivation for the recently-defined Rényi common information [9]. The key is to
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replace the almost-lossless recovery criterion with the requirement that the p-th moment of the number
of guesses needed by the decoders to guess the source sequence be exponentially small.

Other notions of common information have been proposed and used in the past. A measure of a more
combinatorial nature than Wyner’s is the Gdcs-Korner common information K(Ti;T>) [8], which char-
acterizes the largest normalized entropy of the random variables that can be agreed upon by terminals
that observe 7{" and 7' respectively, when {(71;,T;2)} ~ Q%”Tz. This quantity—which is zero unless
Ti = (X;,A) and T = (X,,A) with H(A) positive [8],[26]—never exceeds Wyner’s common information,
and

K(Ti: ) <I(T1; 1) < C(T1; T). (1.4)

1.2 Organization and Sneak Preview

The conditional common information C(7;,73|Y) is defined in Section 2. After studying some of its
basic properties, we provide three operational meanings for it in Sections 2.1 through 2.3:

1. In the Gray-Wyner source-coding network with side information of Fig. 1, C(T1,T»|Y) is the
smallest common rate R that allows the two decoders to reproduce the individual source sequences
(almost) losslessly when the encoder and both decoders observe the side information (SI) sequence
Y", and Ry + R + R, mustn’t exceed H(7T;, T>|Y) (Corollary 2.2).

2. In the simulation problem with side information of Fig. 2, C(Ty,T»|Y) is the smallest randomness
rate allowing the two simulators to produce sequences 7{", T, that, together with Y, have a joint
distribution that closely resembles Q%”sz (Theorem 2.6).

3. In the distributed channel synthesis problem with side information of Fig. 3, where (77*,Y") ~
Q%’;, it corresponds to the smallest sum Rg + R of the common randomness rate Rx and the com-
munication rate R that allows the decoder to produce a sequence 75’ that, together with (77",Y"),
has a joint distribution that closely resembles Q%”TZY (Corollary 2.3).

The relevant common information C(77; 7> — S) is defined in Section 3. After studying some of its
basic properties, we provide the following operational meanings in Sections 3.1 through 3.3. Section 3.4
addresses a problem (depicted in Fig. 8) to which the relevant common information is often the answer,
but not always.

1. In the Gray-Wyner network of Fig. 4 with §" ~ Q‘?”, the quantity C(7;; 7> — S) is the minimal
common rate Ry that allows encoders of no excess-rate—i.e., of rates satisfying the condition that
Ro+ R1 + R equals I(T1,T;S) (with the latter computed w.r.t. Qr,7,5)—to produce sequences
T}" and T;' that are weakly coordinated with S" in the sense that their joint empirical type with "
approaches Q77,5 in probability as n — oo (Corollary 3.1).2

2. On the discrete memoryless multiple-access channel (MAC) of inputs 77, 7> and output S depicted
in Fig. 5, C(T};T» — S) is the smallest common rate required to reliably transmit common and
private messages, when the joint empirical type of the inputs and output must be approximately
Or 1,5, where the conditional law of S given (771, 7>) under the latter is the channel law (Corol-
lary 3.2).

2We often use the adjective “weakly” to indicate that the requirement is related to the empirical type of sequences. We use
“strongly” when the requirement is that the distribution of n-length sequences be close to some product distribution.
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3. Inthe network of Fig. 6, where the input sequences 7}* and 73 to the MAC must result in its output
sequence S" being approximately QS®” distributed, the least required rate of common randomness
is the minimum of C(73;T>» — S) over all joint PMFs whose S-marginal is Qg and under which
the conditional distribution of S given (77, 75) coincides with the MAC’s law (Theorem 3.9).

The theorem behind the first operational meaning of relevant common information (Item 1. above)
solves the Gray-Wyner weak coordination problem under the no-excess-rate condition. It generalizes
Ahlswede’s result on the rate-distortion region for multiple descriptions without excess rate [1], and
Ahlswede’s techniques are used heavily in the converse part of its proof in Section 4. Many of the other
proofs are provided in appendices.

1.3 Notation and Conventions

Unless otherwise specified, all the sets in this paper are finite, and all the chance variables take values
in finite sets. Chance variables are typically denoted using upper-case letters such as X, and their
realizations using lower-case letters such as x. Sets are typically denoted using the calligraphic font
as in 2, and the random variable X usually takes value in the set 2". The cardinality of the set 2~
is denoted |Z"|. The family of probability mass functions (PMFs) on the set 2~ is denoted Z(X).
We write X ~ P to indicate that X is distributed according to P € & (X). In this vein, X ~ Unif(.2")
indicates that X is equiprobably distributed over Z°, and X ~ Ber(p) indicates that X has a Bernoulli-p
distribution, i.e., takes on the values 1 and 0 with probabilities p and 1 — p. If X and Y are independent,
we write X 11 Y.

We use 1{-} to denote the indicator function that equals 1 if the argument is true and O otherwise.
We use [1 : n] to denote the set {1,...,n}.

Given an n-tuple Xi ..., X, and some k € [1 : n], we write X* for Xy, ..., X; and X" for X, ..., X,. The
joint PMF of a tuple X1, ..., X, is denoted by Px». The n-fold product distribution of Q is denoted Q®":
if Xi,...,X, are IID according to Q € Z(X), then Pxn = Q%".

The expectation operator is denoted E[-] or E4[-], where the subscript A indicates that expectation is
over the chance variable A.

The entropy of a chance variable X of PMF Q is denoted H(X), H(Q), or Hp(X). The mutual
information between X and Y is denoted I(X;Y), and the conditional mutual information between X
and Y given a third chance variable Z is denoted I(X;Y|Z). All entropies and mutual informations in
this paper are in nats and all logarithms natural.

The empirical type of a sequence x" € 2" is denoted 7,». It is a PMF in #2(2"), and the probabil-
ity e (a) it assigns a € 2" is the number of occurrences of a in the sequence x" normalized by n. If X"
is a random sequence, then 7y~ is a chance variable taking values in Z(2").

1.4 Total Variation Distance

To measure the distance between two PMFs P,Q € 22 (Z"), we use the Total Variation distance drv (P; Q),

which is defined as q |
drv (P;0) =5 ) |[P(x) = Q)| = 5[IP—Qll, (1.5)
2 &~ 2
xeZ
where || - ||; denotes the L;-norm.
Information measures such as entropy, mutual information, and conditional mutual information are
continuous with respect to (w.r.t.) the Total Variation metric. Consequently, since conditional indepen-

dence can be expressed in terms of conditional mutual information, the following holds:
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PROPOSITION 1.1 (Preservation of Markovity) Let {P)((”Y)Z} be a sequence of PMFs on 2" x % x %
under each of which X — Y — Z. If the sequence converges in Total Variation to Pyyz,then X —Y — Z
must also form a Markov chain under Pxyz.

The Triangle inequality for the L;-norm implies that the distance between two PMFs upper-bounds
the distance between the corresponding marginals:

PROPOSITION 1.2 (Total Variation Distance between Marginals) Let Pyy and Qxy be two joint distri-
butions on 2" x % of X-marginals Py and Qx. Then,

drv (Px;Qx) < drv (Pxy;Oxy)- (1.6)
As a corollary we obtain that convergence of joint PMFs implies the convergence of their marginals:

COROLLARY 1.1 (Convergence of the Marginals) If {P;{Q} C P (X x %) converges in Total Variation

to Pyy, then the X-marginals of P)?;,) converge in Total Variation to the X-marginal of Pyy.

Directly from the definition we obtain the following result on Total Variation and discrete memory-
less channels:

PROPOSITION 1.3 (Total Variation Distance and DMCs) Let Pxy have the form Py (x) w(y|x), where Py
is the X-marginal of Pyy and w(y|x) is a channel law. Similarly assume that Qxy has the form Qy (x) w(y|x).
Then,

drv (Pxy;Oxy) = drv (Px; Ox) . (L.7)

COROLLARY 1.2 (Converging Sequence of Joint Input-Output PMFs) If each of the elements of a

sequence {P)(('Q} C P(Z x ¥) converging to Pxy has the form P)((”) (x) w(y|x), then so does the limit:
Pxy (x,y) = Px(x)w(y|x), where Py is the X-marginal of Pxy.

REMARK 1.1 Proposition 1.3 and Proposition 1.2 imply a Data Processing inequality for Total Varia-
tion: the Total Variation between two input distributions to a channel upper-bounds the distance between
the corresponding output distributions.

The following two properties of the Total Variation distance can be proved using its coupling char-
acterization.

PROPOSITION 1.4 (Total Variation Distance between Product PMFs) The Total Variation distance
between two product measures is upper-bounded by the sum of the Total Variation distances between
their components

drv (P X - X Pps Q1 X -+ X Q) <Y dry (Pis Ok) - (1.8)
k=1

PROPOSITION 1.5 (Total Variation Distance and Random Indices) Let X" and Y” have PMFs Pxn»
and Pyn, and let U take values in [1 : n] independently of (X",Y"). Let Py, and Py, be the PMFs of
Xy and Yy. Then,

drv (Px, 3 Pr,) < dry (Pyn; Pyn). (1.9)

2. Conditional Common Information

DEFINITION 2.1 (Conditional Common Information) Given a triple of chance variables (T1,73,Y) of
some joint PMF Prr,y € P (7 x F x ¥), the conditional common information between Ty and T»
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given'Y is

C(T;; TlY) = min (T, T»;W|Y), 2.1)
wW:T *)(W,Y)*)Tz

where the minimization is over all finite sets %, all joint PMFs Pr,,yw € P (71 X A X % x #') whose
(Ti,T»,Y )-marginal is the given Pr, 7,y and under which T — (W,Y) — T, and where the conditional
mutual information is calculated w.r.t. Pr,7,yw.

Denoting the Y-marginal of Pr,1,y by Py, we can express the minimum as being over all joint PMFs
of the form

Py (y) Py (W]y) Pryjw,y (11w, ) Pryw,y (2|w, ).

For each Y =y it thus entails a minimization over Byy—y, Pr,jw,y=y» and Pr,w y—,. This can be used to
represent C(77;T»|Y) as the expectation over Y of C(Ty; T2|Y =y):

PROPOSITION 2.2 The conditional common information C(77;73|Y) can be expressed as

C(Ti;Ta|Y) = Y Pr(y) C(Ti; T2lY =), (22)
ye&

where C(T1;T2|Y = y) is Wyner’s common information between 7} and 7> when their joint distribution
is Prizyly—y-

Proof: By the definition of conditional mutual information,

C(TI;T2|Y)
= min Y AO)UT, T WY =) (2.3)
Py |y=y:Pr, \W‘Y:y:PTZ\W,Y:yyegy
=Y Py min (T, ;WY =) (2.4)
vew W:Ti—=(WY=y)—=T,
=Y P (y)C(Ti: Y =y). (2.5)
ye¥

|

Since the auxiliary chance variable in the optimization defining Wyner’s common information can

be restricted to take values in a set of cardinality |7} ||-Z2| [29], and since, by (2.2), the opimization

defining the conditional common information can be broken up into |#| separate such optimizations,
we can conclude:

COROLLARY 2.1 The auxiliary chance variable W in the definition of the conditional common infor-
mation C(T7;72|Y) may be restricted to take values in a set of cardinality |77 ||.%|.

The representation in (2.2) of C(77;7»|Y) and known properties of Wyner’s common information
such as (1.4), establish the following:

REMARK 2.1
1. If 7} and 75 are conditionally independent given Y, then C(77;73|Y) is zero.

2. Conditional common information is no smaller than conditional mutual information:

C(Ti; |Y) > (Ti; TL[Y). (2.6)



8 of 51 R. GRACZYK, A. LAPIDOTH, AND M. WIGGER

3. If Y is independent of the pair (77,73), conditional common information reduces to Wyner’s
common information:
C(N;L|Y)=C(Th;Tr), Y1lL.(N,D©). 2.7

4. Conditional common information is continuous in the joint distribution Pr, 7,y w.r.t. the Total
Variation topology. (c.f. [27, Theorem 1 (v)].)

The following example shows that C(71;72) can exceed C(T1;T2|Y).

EXAMPLE 2.3 Suppose T} = (A,Y) and T» = (A,,Y), with the tuple (A;,A>) being independent of Y.
Using (2.2), we obtain that
C(T1:B|Y) = C(A1:43). 2.8)

But as we next argue,
C(T; ) =H(Y)+C(A1;A2). 2.9)

Indeed, since Y is a component of both 77 and 75, the Markov condition 77 — W — 75 implies that Y is
conditionally deterministic given W. Consequently, whenever 7} — W — T,

(T, ;W) =T, To;W,Y) (2.10)
=I(T}, Tp:¥) + 1(Ty, T WY) @11
=H(Y)+H(A;,A2) —H(A;,A2|W,Y) (2.12)
=—H(Y)+1(A;,Ax: W) (2.13)
> H(Y) +C(A13A2), 2.14)

where the second equality follows from the chain rule for mutual information; the third from the inde-
pendence between (A1,A;) and Y; the fourth from the computability of ¥ from W; and the last inequality
holds because 71 — W — T implies A — W — A,. Minimizing over the choice of W (subject to the
Markov condition) establishes that C(71;73) > H(Y) +C(A;;A3). Equality is established by considering
W = (W,Y) with W achieving C(A;A>).

The next example shows that C(71;T2|Y) can exceed C(T1; 7).

EXAMPLE 2.4 Let T; and 7> be independent Bernoulli-1/2 random variables, so
C(h;)=0. (2.15)

LetY =T, @ 7,. Conditional on Y =y, the random variables 77 and 7, are computable from each other,
so C(T1; Tr|Y =y) =H(T1|Y =y) = H(T1) = log?2. Thus,

C(T); B|Y) =log2. (2.16)

In the following subsections we present three different operational meanings of conditional com-
mon information. When the SI {Y¥;} is absent or deterministic, all these interpretations reduce to the
known operational interpretations of common information: the Gray-Wyner source coding and the sim-
ulation interpretations presented in Wyner’s original paper [29] and the channel synthesis interpretation
presented by Cuff [5].
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2.1 Source-Coding Interpretation

The first interpretation is related to (almost) lossless source coding over the Gray-Wyner network with
side information of Figure 1. Here a sequence of source and SI triples {(7} ;,7»;,Y;)} is drawn IID
according to some given joint PMF Qr, 7,y € Z(J1 x J x #'). For a given blocklength n, the encoder

Yn H Yn

v J1 v T”

1
—

™ encoder Jo - Decoder 1 )
s T
Decoder 2 —

Jo

A
v

FIG. 1. Lossless Gray-Wyner source coding with side information Y.

") observes all three sequences T, T)',Y" and produces the index tuple (Jo,J1,J2) € Zon X ZL1n X
SI q 142 p p ; ,

/Z.n SO
(Jos 1 J2) = O (T, T3, Y™, 2.17)
where
00 T X TIXD" = FouX JinX Fon (2.18)

is the encoding function, and _%y ,, _#1,, and _#; , are the (nonempty) index sets.
Indices Jy and J; are fed to Decoder 1 and Indices Jy and J> to Decoder 2. The two decoders also
observe the side information Y” and produce the reconstruction sequences

T = v (Jo, J1.Y") (2.19)

i — q/gfz (Jo,J2,Y™). (2.20)

where wé;’?l and ‘/’é?)z are their corresponding decoding functions.
A rate-triple (Ro,R1,R>) is said to be achievable on the Gray-Wyner network with SI if, for each
blocklength n, there exist index sets %, _#14, and _#> ,; an encoding function (j)s(?) as in (2.18); and

decoding functions !, and l//é?2 such that:

lim Pr((1{,T3") # (T}, 13")) =0 (2.21)
n—soo
and |
im — <
r}l_r&n log| Zinl <R¢, x€{0,1,2}. (2.22)

By the classical (single-user) Source Coding theorem, (H(T17T2|Y),0,0) is achievable, and every
achievable tuple must satisfy
Ro+R1+Ry > H(T1,1L]Y).
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A tuple that is achievable and also satisfies this condition with equality, i.e., for which
Ry+Ri+R,=H(T1,T»]Y), (2.23)

is said to be a no-excess-rate tuple.
The achievable rate-triples in the absence of SI were characterized in [10] and in its presence in [22,
Thm. 1 and Rem. 2]:

THEOREM 2.5 (Gray-Wyner Network with Side Information [22]) Given a PMF Q7 7,y, a rate-tuple
(Ro,R1,R,) is achievable on the Gray-Wyner network with SI if, and only if, there exists an auxiliary
chance variable W and a joint PMF Qr,7,yw of (T1 T»Y )-marginal equal to the given Or,1,y such that

Ry > 1(W:Ty, o|Y) (2.24a)
R > H(T,|W,Y) (2.24b)
Ry > H(T,|W,Y). (2.24¢)

The following corollary establishes that C(7;;7>|Y) is the minimal common rate Ry that still allows
for no-excess-rate-encoding.

COROLLARY 2.2 A necessary condition for (Ry,R;,R;) to be a no-excess-rate tuple is
Ry > C(Ty; 1L|Y). (2.25)

Conversely, to each Ry satisfying (2.25) there correspond private rates Ry, R, for which (Rg,R;,R;) is a
no-excess-rate tuple.

Proof of Corollary: Expressing the mutual information in (2.24a) as H(Ty, T»|Y ) —H(T;, T2 |Y, W)
and summing the three inequalities establishes that every achievable rate tuple must satisfy

Ro+Ri+Ry > H(T17T2|Y) —H(ThTz‘Y,W) —‘rH(T] |W,Y) +H(T2|W,Y). (2.26)

For a no-excess-rate tuple the left-hand side (LHS) of (2.26) equals H(T},7>|Y) (see (2.23)), so for such
a rate tuple (2.26) implies

H(T\,T,|Y,W) > H(T1|W,Y) + H(T>|W,Y).

This inequality cannot hold strictly (because the joint entropy never exceeds the sum of the entropies),
and it can therefore be replaced with equality. It is thus equivalent to the Markov condition appearing in
the minimization defining C(77;7»|Y) (2.1). The expression being minimized in (2.1) is identical to the
right-hand side (RHS) of (2.24a), so (2.25) must hold.

The corollary’s second claim follows by choosing W as the auxiliary that achieves C(71;73|Y) and
setting the rates so that all the inequalities in (2.24) hold with equality. ]

2.2 Simulation Interpretation

The second interpretation is related to the following strong coordination problem. Consider the network
in Figure 2, where we refer to the sequence {Y;} as side information. We say that a joint distribution
Or 1y € P (T x F x %) can be strongly-coordinated with rate R and SI'Y if, for each blocklength n,
there exist a nonempty index set _#, satisfying

— 1
im — <
r}ggonlog|/n\ <R (2.27)
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Y’ﬂ

y

17
Simulator 1 f——

n
T2

Simulator 2 F——

A

Y’ﬂ

FIG. 2. A simulation problem with side information. We require that drvy (PTIn yns Q%"Tz y) approach 0.

and independent random mappings
) Jux W T (2.28)

and

DYy Jux V" T (2.29)
such that when Y" ~ Q3" and J ~ Unif(_#,,) are independent (and independent of the random mappings
dbé'f‘)l, @S(Y‘)z) the PMF Pragayn of the sequences 71", T;', and Y", where the former two are defined by

T = @), (J,Y") (2.30)
T3 = o, (J,Y"), 2.31)

is close to the n-fold product distribution QT T,y in the sense that
lim drv (Prorgrn; 057y ) =0. (2.32)
Note that the Y"-marginal of both Prozpyn and Q%”sz is Qf?”, )
drv (PTfTZ"Yn;Q%rszy)

- ZQ dTV (PT"TZH‘Y"*) B QTnTn‘ynf‘ ) (233)

where QT” is the conditional distribution of (7}",T}') given Y" = y" under 077,y

T”‘Yn_ M

QTnT"\yn:y: 1,13) HQTITZ\Y 3o (T t2,0)- (2.34)

This setup, but without SI, was introduced by Wyner [29], but using the normalized KL-divergence
instead of the Total Variation distance in (2.32). Under this KL-divergence constraint, Wyner char-
acterized the set of all PMFs Qr,7, that can be strongly-coordinated with rate R. From related work
[11, 5, 31], it is not difficult to see that Wyner’s result continues to hold under the Total Variation dis-
tance constraint in (2.32). In fact, in a sense made precise in [5, p. 7076, Eq. (30)], the exponential
decay of the normalized KL-divergence is often similar to that of the Total Variation distance.



12 of 51 R. GRACZYK, A. LAPIDOTH, AND M. WIGGER

THEOREM 2.6 The joint PMF QOr, 1,y can be strongly coordinated with rate R and SI'Y if, and only if,
R>C(T:To|Y), (2.35)

where the RHS is calculated w.r.t. the joint PMF Or,1,y.

Proof: The converse is proved in Appendix A. Here we prove achievability using Wyner’s result
(under the Total Variation criterion).
Let my» denote the empirical type of y" € #, so nmy (y) is the number of occurrences of y € % in
the sequence y" € #". Given some € > 0, we say that y" is typical if 7 (y) is zero whenever Qy (y) is
zero, and

[T () —Qr(y)| <€, Vye. (2.36)

The manner in which the simulations of (7 ;,T» ;) are produced depends on whether y" is typical or
not. If not, then Simulator 1 produces its sequence IID ~ Q7 and Simulator 2 IID ~ Qr,. For such y"
sequences,

drv (PTI"T{"Y":)"' 5 Q%;ZTzrz‘yn:yn) (237)

grows linearly in #, but the probability of their occurrence decays exponentially in n, so their contribution
to (2.33) vanishes with n.

We therefore focus on the typical y" sequences. To address those, we construct a family of Wyner
simulators indexed by the SI alphabet ¢, with the Wyner simulator indexed by y, “the y-th Wyner
simulator,” designed for the joint distribution Qr, 7,y—, and required to achieve Total Variation distance
smaller than £/|%/|. The system produces the tuple it reads off from the y-th Wyner simulator whenever
the side information Y equals y. This guarantees that the Total Variation distance in (2.37) be smaller
than &, because the Total Variation distance between product distributions is upper-bounded by the sum
of the Total Variation distances between their respective components (Proposition 1.4).

As the y-th Wyner simulator is used nmy (y) times, and since the latter is smaller than n(Qy (y) +€),
the y-th Wyner simulator can be implemented to produce nmy(y) tuples with Total Variation dis-
tance smaller than €/|%/| (for sufficiently large n) with a chance variable J, that takes on at most
My ()+&)(CTELIY=y)+8) yalues (where § > 0 can be arbitrarily small). Using independent such Jy’s
for the different Wyner simulators, we can perform the overall simulation with a chance variable J that
is equiprobably distributed over a set of size

MOr )FE)(CTHT|Y=y)+8) — n(C(Th ;TzlY)+5(8~,5))’
ye¥

where (g, 8) tends to zero as its arguments tend to zero. [ |

2.3 Distributed Channel Synthesis Interpretation

The third interpretation is related to Cuff’s distributed channel synthesis problem [5]. Consider the
network in Figure 3, where tuples {(7};,Y;)} of source and SI symbols are drawn IID according to
some PMF Qry € Z(% x #'). The goal is for the decoder to produce a sequence {7 ;} whose joint
PMF Prozpyn with {(T1,i,Y;)} closely resembles the product distribution Q%"sz, where Qr, 7,y lies in
P (T x P x#) and is some target PMF having as its (71Y)-marginal the PMF Q7,y according to
which {(7;;,Y;)} are generated.
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To achieve this goal, the encoder and decoder share a common randomness K, and the encoder can
also convey to the decoder some random index J (that depends on 7}" and Y"). The decoder then pro-
duces the sequence 7' based on K, J, and the SI'Y". For a given blocklength n, the common randomness
K is drawn equiprobably from some set _Zk , independently of the source and SI sequences (77",Y"),
and the index J takes values in some set _¢Z,,.

RS ye
n y y mn
Ty J 1
—— Encoder > Decoder ——

K
FIG. 3. Distributed channel synthesis with side information. The joint PMF Prpzpyn of {T2,;} with {(73;,Y;)} should closely

resemble Q‘%"Tz v

We say that a joint PMF Q7, 7,y can be channel-synthesized with SI'Y at communication rate R and com-
mon randomness rate Ry if, for each blocklength n, there exist nonempty sets _#, and _Zx , satistying

— 1
nlgroloﬁlog\f,J <R (2.38)
and
— 1
im — <
r}g{ln log| Zkn| < Rk (2.39)
and independent random mappings
F: T X I x D" = 7 (2.40)
and
G Fux Fxnx V" — T (2.41)

(that are independent of (7}",Y",K)) such that when the tuples { (77 ;,Y;)} are drawn IID ~ Qr,y and the
sequence T,' is produced as

73 =GO (F& (17,K,Y"),K,Y") (2.42)
the resulting joint PMF Prazpyn of (T}, 13, Y") satisfies
Tim dry (Prorgrn; 057y ) =0. (243)

In the absence of SI, the set of PMFs Q7,7, that can be strongly-coordinated with rates (R,Rk) was

characterized in [5]. The following theorem extends this result to the setup with SI.
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THEOREM 2.7 A joint PMF Qf,7,y can be channel-synthesized with SI'Y at communication rate R and
common randomness rate Ry if, and only if, it is the marginal of some joint PMF Q7,7,yw under which

n—WY —"n (2.44)

and
RZ>I(W;Th|Y) (2.45a)
R+Rx > I(W;Th,1|Y), (2.45b)

where the mutual informations are computed w.r.t. O, ,yw -

Proof: Achievability follows from Cuff’s result [5] in much the same way that the achievability
part in the proof of Theorem 2.6 followed from Wyner’s work. It is therefore omitted. The “only-if”
direction (converse) is proved in Appendix B. [ |

REMARK 2.2 To exhaust the set of all the rate pairs promised in the theorem, we may restrict W to take
values in an alphabet % of cardinality |71 |||+ 1, e.g.,
v ={1,....| %% +1}. (2.46)

Moreover, said set of rate pairs is closed.

Proof of Remark: We can consider the choice of the auxiliary W separately for each y € #". For
a fixed Y =y, we must choose O,y y—, and Or,w,y—, subject to the constraints

Y, Owiyey W) O jwawy—y (t1) Oy jw ey =y (2)

wew
=0nply— (i), () € AAx D (2.47)
(corresponding to |.71||.Z| — 1 constraints, one for all but one pair (#1,#,), where one pair can be omitted

because the probabilities sum to one). The conditional (on Y = y) mutual informations on the RHS of
the rate inequalities are determined by {Q7, 7,)y—y(t1,%2)} and

Y Qwy—y WH(T W =w,Y =) (2.48)
weW
and
Y, Owy—yWH(T\, LW =w,Y =y). (2.49)
wewW

It follows from Carathéodory’s theorem (for connected sets) that for each y € % we need at most

|71]|Z5] + 1 labels for W. Since all three expressions (2.47)—(2.48) do not depend on the labels of

W but only on their conditional probabilities, we can choose the same labels under each y € %', This
establishes the desired cardinality constraint.

The second part of the remark follows from the first using a compactness and continuity argument.

|

We now focus on the minimum sum-rate R + R in the distributed channel synthesis problem.
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COROLLARY 2.3 A joint PMF Qr, 1,y can be channel-synthesized with SI' Y at communication rate R
and common randomness rate Rg only if

R+Rg > C(Tl;T2|Y). (2.50)

Moreover, there exists a pair (R,Rg) such that (2.50) holds with equality and such that Q7,7,y can be
channel-synthesized with SI Y at communication rate R and common randomness rate Rg

Proof: The necessity of (2.50) follows from the necessity of (2.45b) and from the definition
of C(T}; T2|Y) (2.1). The second assertion follows by setting Rk to zero and then using the achievability
part of the theorem. [

3. Relevant Common Information

The relevant common information C(Ty;T» — S) quantifies how much of the common information
C(T1;T») is relevant to S. For example, if 71 = (X;,U,T) and T» = (X»,U,T) with X1, X, U, and (7, S)
being independent, then the information that is common to 7} and 75 is H(U, T), but of that only I(S;T)
is relevant to S, so C(71;T2) =H(U,T) and C(T}; 1> — S) =1(S;T).

DEFINITION 3.1 Given a triple of chance variables (S, 71, 7>) of some joint PMF Ps, 7, € (. X 7| x
%), the common information of the pair (T, T») that is relevant to S is

C(T1;T, — S) & W:TIIIEIV}/_)TZ I(S;W), (3.1
W—)(Tl,Tz)—hS'

where the minimization is over all finite sets %/, all joint PMFs Psr,w € &2 (7 X 1 x Fh x #') whose
(S,T1,T»)-marginal is the given Ps7, 7, and under which both 7} = W — T and W — (T1,7>) — S hold,
and where the mutual information I(S; W) is calculated w.r.t. Psr, 7w

REMARK 3.1 The relevant common information has the following basic properties:
1. If S = (T1,T»), then the relevant common information reduces to Wyner’s common information:
C(Ti; — (T1,12) =C(Ti; T»). (3.2)

(When S = (T, T), the minimization in (3.1) is identical to the minimization defining Wyner’s
common information (1.1) except for the extra constraint W — (T7,72) — S, which—when S =
(T1, T>)—is satisfied irrespective of W.)

2. If T and 7, are independent, then—irrespective of S— the relevant common information is zero
C(h;h—S)=0, T L. T (3.3)
(In this case choosing W to be deterministic satisfies the constraints.)
3. Relevant common information is no larger than Wyner’s common information:
C(T;T» — S) < C(T1; Ta). (3.4)

(By the Data Processing inequality, the constraint W — (77,72) — S implies that I(S;W) <
I(T1,T>;W). This allows us to upper-bound C(77; 7> — S) by a modified expression similar to that
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for Wyner’s common information (1.1), except for the said constraint. Choosing By, ,s equal to
Py|1,1,» Where the latter achieves the common information, shows that the extra constraint does
not increase the minimum in the modified expression and is, in fact, redundant there.)

4. Relevant common information is no larger than the mutual informations between 7} or 7> and S:
C(T1; T — S) < min{I(T1;S),1(T»;5) }. (3.5)

(This holds because both W = T; and W = T, are admissible choices in the minimization (3.1)
defining C(T1;T> — S).)

5. In the minimization in (3.1), it suffices to consider auxiliary chance variables W taking values in
alphabets of cardinality |#| < |.Z1||Z| + 1. (This holds by Charathéodory’s theorem: we have
|71||2| — 1 constraints on our choice of Pp,y and Pr,y analogous to those in (2.47) (without
Y); the entropy H(S) is given; and the Markovity constraint W — (77,7>) — S guarantees that
H(S|W) can be expressed as an expectation over W of a function of Py, ,, and Pr,),.)

6. Relevant common information C(77;7> — S) is continuous in the PMF of the triple (71,73, 5).
(The proof of continuity in Pr,7, for a fixd Py7, 7, is very similar to Witsenhausen’s proof of the
continuity of Wyner’s common information [27, Theorem 1(v)]: instead of maximizing H (7T}, T>|W),
we maximize H(S|W); the term h,(p) + h,(q) in the mapping (p,q) — (pq’,/(P) + hm(q)) in
[27] is therefore replaced with the entropy h(p7q;PS‘T1 Tz) of the distribution on . that assigns
each s € . the probability Y.(;, ,,) Psjr7, (s|t1,12) p(t1) q(t2) (with the resulting mapping also
being continuous); and the co-domain of the mapping is now A, x [0,log|.#|] instead of A, x
[0,lognm]. Continuity in (P57, 7, Pr;7,) is now established by noting that when PS(‘IT)1 7, and PS(‘ZT)1 7

are close, maxp q ’7’1(p7 q;P(l) ) —h(p, q;PS(“|2T)1 Tz) | is small, e.g., with the help of [2, Theorem 17.3.3]).

ST,

7. Relevant common information is related to lossy common information (1.3) in much the same
way that weak coordination is related to rate-distortion theory [4]:

Cp, 0, (T1;T2)

= min ) C(T];Tz — (T],Tz)). 3.6)
1,1, : Eld\(T1,1)]<D,
Eld2 (T2, 12)]<Ds

EXAMPLE 3.2 In the setting of Example 2.3, the common information of 77 and 75 that is relevant to Y
is

C(Ti:T, — Y) = H(Y). (3.7)

Indeed, C(Ty;T» — Y) > H(Y) because Y must be computable from any auxiliary chance variable W for
which (A},Y) = W — (A2,Y), and equality holds when W is chosen as Y.

From (2.8), (2.9), and (3.7) we infer that, for the setting of Example 2.3, C(Ty; 12|Y)+ C(T1; T, — Y)
equals C(T1;T2). But this does not hold in general. As shown by the following two examples, the LHS
can be smaller or larger than the RHS.
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EXAMPLE 3.3 (Example 2.4 Contd.) Since 77 and 75 are independent, the common information of 7}
and 75 relevant to Y is zero (3.3). The conditional common information is log 2 (2.16), and consequently,
in this example,

lOgZZC(T];T2|Y)—|—C(T1;T2—>Y) >C(T];T2)=O. (3.8)

EXAMPLE 3.4 Let Y ~ Ber(1/2), B ~ Ber(p), and B, ~ Ber(q) be independent Bernoulli random
variables, where p,q € [0,1/2] and p > g. Define Ty =Y & By and T, =Y @& B,. Since (T1,T») is
a doubly-symmetric binary source whose parameter r equals p(1 —¢q) + (1 — p)gq, Wyner’s common
information is given by [29, Example on p. 167]

C(Ti; 1) =log2+ Hy(r) —2Hp(r1), (3.9

where r; = 0.5—0.5-+/1—2r, and Hyp(-) denotes the binary entropy function. Since 7 and T3 are
conditionally independent given Y, the conditional common information is

C(hi;|Y)=0. (3.10)
The relevant common information can be upper bounded as (see Item 4 in Remark 3.1)
C(Ti; T = Y) <I(T1;Y) = log2 — Hy(p). 3.11)
Evaluating the bounds in (3.9)—(3.11) for p = 0.4 and g = 0.2 yields (in nats)

C(Ti: DY) +C(T1; T — ¥) <0.020 < 0.115 = C(T}; T). (3.12)

In the following, we present various operational interpretations of relevant common information.
The first is presented in Corollary 3.1 ahead and is related to the source-driven weak coordination
network depicted in Figure 4. The second is presented in Corollary 3.2 and is related to combined
transmission and weak coordination on a MAC (Figure 5 ). The third is related to remote simulation
through a MAC (Figure 6) and is presented in Theorem 3.9.

3.1 Source-Driven Weak Coordination

The source-driven weak coordination of a PMF Qg7,7, € Z( x 9 x J5) is depicted in Figure 4. A
sequence {S;} is drawn IID according to the marginal distribution Qg of Qs7,7, and is presented to a
Gray-Wyner-like encoder. For a given blocklength n, the encoder

Jl "
gn Decoder 1 1>
—{ Encoder ﬂ‘:

13

Jo Decoder 2 —=

FIG. 4. The source-driven weak-coordination problem. We require that the joint empirical type 7 st 1) Converge in probability
to QST] T (3.17).

¢Rel(n): S — /O,n X fl,n X /2,n (3.13)
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produces three indices

(Jo,J1,J2) = 0" (S™) (3.14)

taking values in the index sets _Zo,, _Z1,, and _#; . Indices Jy and J; are presented to Decoder 1 and
indices Jo and J, to Decoder 2. The two decoders 1[/1({3‘1 and 1//1({21 , produce the sequences

' = nge,:)l,l (Jo,J1) (3.15)
T = Vi, (o, ). (3.16)

The joint empirical type of (S",7}",T;'), namely s 7o 1) takes values in P(S x T x F) and is
random because S" is random. We require that it approach Qsr, 7, in the sense that

plimdry (n(sn’Tl,l’Tzn);QSTsz) —0, (3.17)

n—oo

where plim stands for limit in probability.
We say that the rates (Ro,Ri1,R>) allow for the source-driven weak coordination of Qsr,,, if for
every blocklength n, there exist index sets %0, £1., 72 satisfying

— 1
— 1 o )
,}5‘;”109/"»”' < Ry, k€{0,1,2}; (3.18)

an encoding function (1)1({;)1 as in (3.13); and decoder functions l,l/l({g’l and y/é'?l’z such that (3.17) holds.

Similar setups were addressed in [4] and [18]. In [4], however, the encoder only conveys individual
indices J; and J, to the decoders and no common index Jy. In [18] the goal is different: rather than
(3.17), the requirement is that the empirical types 7 1T and 7 s approach target PMFs Qgr, and
Qst,; no requirement is imposed on the empirical joint type 7 SnT0 T Like us, both [18] and [4] only
present sufficient conditions for achievability and no necessary conditions. We do, however, provide a
complete characterization in the no-excess-rate case (Theorem 3.6 ahead).

The following theorem presents our sufficient conditions for a rate triple (Ry,R1,R») to allow for the
source-driven weak coordination of Qgr,7,.

THEOREM 3.5 The rates (Ry,R;,R;) allow for the source-driven weak coordination of Ost, 1, Whenever
there exists a random variable W taking values in a finite set %" and a joint PMF Qwgs7,7, on W, S,T1,T>
whose ST T>-marginal is Qsr, 7, and under which

> 1(S;W) (3.192)
R0+R1/I(S W) (3.19b)
Ro+Rs > 1(S;To,W) (3.19¢)

Ro+Ri+Ry > 1(S;T1, 1o, W) + [(Ti: To|W). (3.19d)

Proof: Let (S,T1,T>,W) be distributed according to the postulated PMF Qwsr,7,. Apply the
random coding scheme described in [34, Proof of Theorem 1] with the substitutions

X<+S Xo+ W X1+ T X1 (3.20)
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and ¢;(a,b) = ¢(a,b) = b. As shown in [34, Eqns. (39)—(48)], the limit (3.17) holds on average over
the random choice of the codebooks if the following conditions are satisfied:

Ro > I(S;W) (3.21a)
Ry > I(S:T;|W) (3.21b)
Ry > I(S:T>|W) (3.21c)
Ri+Ry = I(S:T1, To|W) + I(Ty; T,|W). (3.21d)

A random-coding argument establishes that Conditions (3.21) gurantee the existence of a sequence of
deterministic schemes that attains the weak coordination in (3.17). We next show using a rate-transfer
argument [24] that, in fact, Conditions (3.19) suffice.

We next show using a rate-transfer argument [24] that, in fact, Conditions (3.19) suffice.

Key is that the decoders can reproduce the same reconstructions if the encoder splits the private
indices J1 and J into pairs of subindices and—together with the common index Jo—sends one subindex
of each pair over the common link. This argument shows that (Ry + R} 4+ Rj,R},R}) is achievable
whenever (RmR/l +R{,R,+R} ) is achievable and hence whenever this latter triple satisfies the sufficient
conditions we derived using the random coding argument.

Substituting R, — R| — R4 for Ry, we obtain that the nonnegative triple (R{,,R},R}) is achievable
whenever there exist R{, R} > 0 such that the triple (Ro,R;,R:) given by

Ry=R,—R|—R} (3.22a)
R =R, +R] (3.22b)
R, =R, +R) (3.22¢)

is achievable. Using the sufficient condition we obtained via random coding, we conclude that (R, R}, R})
is achievable whenever there exist R{,R5 > 0 such

Ry—R{—R5 > 1(S;W) (3.23a)

Ry +R! > 1(S;Th|W) (3.23b)

R, +R) > 1(S;Th|W) (3.23¢)

R, —R{+R,— Ry > I(S;T1, TL|W) + 1(Ty; To|W). (3.23d)

Using the Fourier-Motzkin elimination, it can be shown that this condition is equivalent to

Ry = 1(S;W) (3.24a)

Ry+R, = 1(S;Ty,W) (3.24b)

Ry+R, > 1(S;Th,W) (3.24¢)

Ry+R, +R, = 1(S;T1, o, W) + I(T1; | W), (3.24d)

which, but for the primes, is identical to (3.19) [ |

The next theorem establishes a converse result under the no excess-rate condition, i.e., for rate tuples
satisfying

Ro+Ri+R=1(S;T1,T7). (3.25)

Notice that I(S;T},T>) is the smallest rate required to weakly coordinate the reconstruction sequences

T{" and T;' with the source $" according to a target PMF Qsr,7, when a single decoder observes all three
indices Jy,J1,J> and produces both 77" and 7;' [4, Thm. 3].
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THEOREM 3.6 Consider a PMF Qsry1, € Z(¥ X J1 x %) and a rate-tuple (Ro,R1,R») satisfying the
no-excess-rate condition (3.25) when the RHS of the latter is calculated w.r.t. Qsr,7,. Said rate tuple
allows for the source-driven weak coordination of Qg7 7, if, and only if, there exists some joint PMF
on (W,S,Ti,T>) whose ST T>-marginal is Qsr,7, and under which

Ry > I(S;W) (3.262)
Ro+R; > I(S; Tl,W) (3.26b)
Ro+Ry = 1(8;T, W) (3.26¢)

W (T1,1) =S (3.26d)
In—W-—="0n (3.26¢)

Proof: To prove achievability, we will establish (3.19d) and then invoke Theorem 3.5. To estab-
lish (3.19d) we note that the no-excess-rate condition (3.25) implies that its LHS equals I(S; 71, 73), and
the Markov conditions (3.26d)—(3.26¢) imply that its RHS is also equal to I(S; 7, T3).

The converse is proved in Section 4. [ |
The following corollary shows that C(71;7> — S) is the smallest common rate that allows achiev-
abity with no excess-rate.

COROLLARY 3.1 Consider a PMF Qg7,7, € (. x 1 x %). If the rate tuple (Ro,R1, R, ) satisfies the
no-excess-rate condition (3.25) (when the RHS of the latter is calculated w.r.t. Qsr,7,) and also allows
for the source-driven weak coordination of Qgr,7,, then

Ry >C(T\;T, — ). (3.27)

Moreover, there exists such a rate tuple for which (3.27) holds with equality.

Proof: To establish (3.27), we discard (3.26b)—(3.26¢) and optimize over the conditional law
of W given (S,T;,T>) subject to the Markov conditions (3.26d)—(3.26e).

As to the claim that (3.27) can be achieved with equality, fix some chance variable W and a joint
PMF on (W,S,T;,T) that achieves C(T1;T> — S), so I(S;W) equals C(73;T» — S) and the Markov
conditions (3.26d)—(3.26¢) both hold.

Define Ry as I(S; W) and Ry as I(S;T1,W) —I(S; W), so that Ry = C(T1;T» — S) and both (3.26a)
and (3.26b) hold with equality. Define R, as I(S; T2, W) — I(S;W) + A, so that (3.26¢) would hold
whenever A is positive. Choose A so that the no-excess-rate condition (3.25) holds with equality. It
remains to establish that, with this choice, A is nonnegative or, equivalently, that

(ST, W) + (S5, W) = 1(S;W) < I(S; T, Ta). (3.28)
This is, indeed, the case because

I(S: T, W) +1(S; T, W) —1(S; W)

=1(S;Ty|W) +1(S; o, W) (3.29)
=H(T1|W) — H(Ti|W,S) +1(S; T2, W) (3.30)

<H(T{|W) —H(T{|W, S, T) + 1(S; To, W) (3.31)
= H(T}|W,T5) —H(T\|W, S, T5) + 1(S; T»,W) (3.32)
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= 1(S; T3 |W, T3) +1(S: T, W) (3.33)
—1(S;W,T1, D) (3.34)

where (3.31) holds because conditioning cannot increase entropy; (3.32) follows from the Markov con-
dition (3.26e); and (3.35) follows from the Markov condition (3.26d). [ |

3.2  Combined Transmission and Weak Coordination on a MAC

The scenario we consider next is the classical two-to-one MAC (with a common message) depicted in
Figure 5, but with the extra twist that we require that the joint empirical type of the input and output
sequences approximate a given PMF Qg7 7,. For this to be at all possible, Qs7, 7, must have the form

Osty1,(8:11,12) = Oy 1, (11, 12) pe(8]t1,12), (3.36)

where pc(s|t1,t2) is the MAC’s law, and Qr, 7, is some PMF in &2(7] x 9). We refer to such a PMF
Osr1, as having conditional law pc(s|ti,72). Here .71 and % are the MAC’s input alphabets, and .’
denotes its output alphabet. The common message is denoted My and the two private messages M1, M.
The three are independent and, given a blocklength 7, equiprobably distributed over the corresponding
message sets .4, .\ n, and .#> ,. Employing the mapping (p]({gl, Encoder 1 maps the pair (Mo, M)
to the n-tuple of of channel inputs

I = nf{?u (Mo, M)). (3.37)
Similarly, Encoder 2 maps (Mo, M>) to
13 = Tt (Mo, My). (3.38)

The decoder observes the MAC’s output sequence S” and, employing the mapping Cl({'g, produces its
guess (Mo, My, M) € Mop X M1 p X M, Of the message triple:

(Mo, ¥, ) = 1) (7). (3.39)

A MAC pc(s|t1,2) supports transmission at rates (Ro,Ri,Rz) with weak coordination w.r.t. the
PMF Qgr, 1, of conditional law pc(s|t1,t,) if, for each blocklength n, there exist discrete message sets

Mop, M1 5, and A5 5 encoding functions 111({3 | and 771(22,2§ and a decoding function Clgg guaranteeing
that the following three requirements (3.40)—(3.43) are satisfied:

1
lim —log|.#u| > Re, Kk€{0,1,2}; (3.40)

n—oo 1

the input and output sequences are weakly-coordinated w.r.t. Os7, 7,

plideV (ﬂ(s’l7T{l,T2’l);QST| Tz) = 07 (341)
n—oo
i.e.,
plim (g 70 72y (5,11, 12) = Qsrymy (8,11, 12), V(s,01,12) € S X T x T, (3.42)

n—oo
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Mi— gncoder 1 T R
M| sm (Aij)
— pe(slti, t2) = Decoder —| M,

R M,
My—] Encoder 2 T

FIG. 5. Combined transmission and weak coordination on a MAC. In addition to reliable communication, we require that the
MAC’s terminals be weakly coordinated w.r.t. some Q7 7,5.

and the decoding error vanishes with the blocklength

lim Pr((Mo, M1, M>) # (Mo, My,M>)] = 0. (3.43)

n—soo

THEOREM 3.7 The MAC pc(s|t|,72) supports transmission at rates (Ro,R;,R,) with weak coordina-
tion w.r.t. a PMF Qgsr,7, of conditional law pc(s|t1,1,) if, and only if, there exists a joint distribution
on (W,S,T1,T) of STy T>-marginal Qsr, 7, satisfying the Markov conditions

hi— W =1 (3.44)
W —(T,»)— S (3.45)
and the rate constraints
R1 < I(T],S‘Tz, ) (346.’:1)
R, <I(D;S|Ty,W) (3.46b)
Ri+Ry <I(T1,T»;S|W) (3.46¢)
Roy+Ri+Ry £ I(Tl,Tz, ) (3.46d)

Proof: We begin with the proof of achievability. Denote the postulated joint PMF Qg7 7,w,
and let (Ro,Ry,R,) satisfy (3.46) with strict inequalities (under Qsr,7,w). Consider the random code
construction that was proposed by Slepian and Wolf for the MAC with common and private messages
[19]. They showed that if a joint PMF Qr,7,w is used in this scheme, then the average probability of
error tends to zero

V}EEOPI[(MO;MI ,Mp) # (Mo, M, M)] =0, (3.47)
where the probability is over the messages (Mo, M), M), the random code construction, and the chan-
nel’s randomness. Moreover, in this random code construction, the codewords are drawn IID ~ Q7w
and, consequently, for every triple (s,71,) € ¥ X 7} x F, the distribution of Tsnry7y (s,11,12) is that
of the empirical average of n IID mean-QOsr, 7, (s,1,t2) random variables. It therefore follows from the
Weak Law of Large Numbers that, under random coding,

plimdry (w1 70 13): Qs ) = 0. (3.48)

n—oo
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We next need to show the existence of good determinstic codes. Let C denote a generic code for
our network, and dyv(C) the Total Variation distance induced by it, i.e., the conditional expectation

of drv (ﬂ'( ST S Osr, Tz) given that the randomly chosen code is C. By (3.48) there exists an increas-
ing sequence {n} } such that
1 1
Pr({c L d1v(C) < %}) >3, W (3.49)

As to the probability of error, (3.47) implies the existence of an increasing sequence {n} } such that

A A s 1
Pr[(Mo,My,M>) # (Mo, M;,M>)] < TR Vn > n (3.50)
and, consequently, by Markov’s inequality,
1 1
Pr({C 1P(C) < Z}) >3 Vn > ny, 3.51)

where P.(C) denotes average probability of error associated with C (i.e., the conditional probability
of (Mo, My,My) # (Mo, M, M,) given that the randomly chosen code is C). It follows from (3.49)
and (3.51) that, for every max{n,n}} <n <max{n_ ,ny/, }, we can find a code C for which neither
drv(C) nor P, (C) exceeds 1/k. This choice establishes the direct part.

To prove the converse we follow the steps in [19], [12, Sec. 8.4] to obtain that, for every block-
length n,

R <I(Tvu;SulDu,W)+ &, (3.52a)

R <I(Ly;SulTiu, W)+ &, (3.52b)

Ri+R, <INy, hy;SulW)+e&, (3.52¢)
Ro+Ri+ Ry <I(Tvu,Tru;Su) + &n, (3.52d)
(3.52e)

where the chance variable U is equiprobably distributed over [1 : n] and independent of {(S;, 71, 72,) }7_;
where W is an auxiliary chance variable satisfying

w *)(TLU, T27U)*> S (3533)

T1,U —-W—= T27U; (3.53b)

and where g, tends to zero as n tends to infinity. Carathéodory’s theorem shows that there exists a

chance variable W taking values in a set of cardinality |.7;||.75| +2 and having some joint PMF with the

triple (Su,71.v,T>,v) such that, when W is replaced by W, the rate constraints (3.52) and the Markov
conditions (3.53) are satisfied.

The limit in probability in (3.42) is of bounded random variables, so the convergence in probability
implies the convergence of the expectations

}H)EJEI:ES",T{',TZ"(SJIJZ)} = QST]TZ(S7t17t2)7 V<S,t1,[2) € % ‘% X '%7 (354)

where the expectation is over the messages (Mo, M;,M;) and the randomness in the channel. This
expectation equals Ps, 7, , 7, (5,71,%2), and we thus conclude that

lim drv (Pyy7,1503 Q17 ) = 0. (3.55)
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Compactness implies the existence of a subsequence of blocklengths along which the joint PMF of
(Su,Tiy,Thu,W) converges. The converse now follows from continuity by considering limits along
this subsequence using (3.55), the rate-constraints in (3.52), and the Markov chains (3.53) where W is
replaced by W in both. [ ]

The RHS of (3.46d) is fully determined by Qsr,7,, and Ry + Ri + Ry < I(T1,75;S) is a necessary
condition for the channel to support (Ro,R1,R2) and Qsr,1,. Equality can be achieved, for example,
by the rate triple (I(T17T2;S)7O,O), where the private messages are absent. But this need not be the
only supported tuple with this sum-rate. We say that (Ry,R;,R;) is of maximum sum rate (for the
law pe(s|t1,t2) and target PMF Qgr, 1) if

Ro+Ri+R, =1(T1,T5:9), (3.56)

where the RHS is computed w.r.t. Os7,7, -
How small can the common rate Ry be in a maximal-sum-rate triple? As the following corollary
shows, it can be as low as C(Ty; 7> — S) and no lower.

COROLLARY 3.2 Consider a PMF Qgr, 7, whose conditional S-given-(T1,7>) distribution is the MAC’s
channel law pc(s|t1,t). If the rates (Ro,R;,R) are such that (3.56) holds and that the MAC supports
transmission at rates (Ro,R1,R») with weak coordination w.r.t. Osr, 7,, then

Ry = C(T1;T» — S). (3.57)
Moreover, there exists such a rate tuple for which (3.57) holds with equality.
Proof: To prove that (3.57) is necessary, we note that (3.56) and (3.46¢) imply that
Ro > I(T1,12:8) —I(Th, To; S|W) (3.58)
=I(T,T»,W;S)—1(T;,T»;S|W) (3.59)
=1(W;S), (3.60)

where the first equality follows from the Markov condition (3.45) and the second from the chain rule.
Minimizing the RHS subject to (3.44)—(3.45) establishes (3.57).

We next turn to the second part of the corollary. Fix a joint distribution achieving C(71;7, — S)
and set Ry = I(W;S). Now choose R; and R; so that (3.46¢) holds with equality and so that (3.46a) and
(3.46b) both hold. This is possible because (3.46a)—(3.46¢) and (3.44) are the constraints that appear on
a MAC without a common message, and on a MAC the sum-rate constraint is always pinching [2]. ®

3.3 Remote Simulation through a MAC

The network depicted in Figure 6 is required to produce a sequence S” that appears I[ID ~ Qg, where
Qs € Z(.) is an inducible output distribution on the MAC pc(s|t1,2), i.e., an output distribution for
which the set Zp,7, C Z(J1 x F5) comprising the joint input distributions that induce Qs, i.e., for
which

ZQTsz(II;IZ)pc(SVI;tZ) :QS(S)a Vsey, (361)

1,12
is nonempty. To achieve this goal, a chance variable J that is equiprobably distributed is fed to the two
stochastic simulators, which produce the respective channel inputs. We shall see that the least entropy
of J (normalized by the blocklength) that makes this possible is

min  C(T; T —S), (3.62)

01 1,5€91, 18
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where Zr,1,s € P (T x F x .#) comprises the joint PMFs whose conditional law is pc(s|f1,#,) and
whose S-marginal is the given Qy, i.e., having the form

o1 (11,12) pe(slt1,2),  Onm € P11y - (3.63)

Ty
Simulator 1 >

mn
pe(slty, t2)[ 5",

. 13
Simulator 2 >

FIG. 6. Remote simulation through a multiple-access channel. The goal is for S” to appear approximately IID ~ Qg (3.70).

The single-user version of this problem—which corresponds to p.(s|t;,#2) being a function of s
and #; only—was studied by Wyner (under the normalized divergence criterion) [29, Thm. 6.3] and by
Han and Verdu [11] and Cuff [5] (under the Total Variation criterion.) They showed that it suffices that
the rate of J exceeds the minimum, over all input distributions that induce the given output distribution,
of the mutual information between the channel terminals.

A naive approach to our problem would be to choose some Qr,7, from 27,7, and to use J to induce
input sequences of a joint law that closely approximates Q%”Tz. This would require J to have normalized
entropy C(71;72) or, upon optimizing over the choice of Qr,7, € Zr1,1,,

min  C(Ty; 7). (3.64)

o1, €711,

As the following example shows, this is in general suboptimal: (3.64) can exceed (3.62).

EXAMPLE 3.8 Consider a MAC with binary input alphabets, 7 = % = {0, 1}, and the four-element
output alphabet . = .7, U{1,8}. If its inputs differ, the MAC produces the output & (for “differ”).
Otherwise, it behaves like an erasure channel: it produces the output ¢ (for “identical”’) w.p. p and the
output that is equal to the inputs (which are identical) w.p. 1 — p:

pe(slti,12)
=1{s=dandt; #1}
+(1—p)-l{s=l‘1212}+p-l{S=lalldl‘1=t2}. (3.65)
Consider now the target PMF
0 s=0
Os(s)=<p s=1 . (3.66)
(1-p); s€A
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Since Qg(0) is zero, this output distribution can only be induced by a joint PMF under which 7} and T»
never differ. Moreover, to induce this output, 71 must be distributed equiprobably. Thus, only the PMF

- 1
Onrn ()= El{tl =n}

induces this output distribution, and Zr, 1, is a singleton. Under this PMF, 71 = T5 deterministically, so
C(T1;T») is the entropy of 71, and (3.64) equals log(2). In contrast, (3.62) equals C(7;; 7> — S), when
the latter is computed under Q7, 7, (t1,72) pe(slt1,£2). It thus equals (1 — p)log(2), which is smaller than
log(2) whenever p is positive.

The suboptimality of the naive approach is in failing to exploit the randomness introduced by the
erasure channel: to simulate its output, it is unnecessary to have 7}" (= T3') be (roughly) uniform
over {0,1}": as we know from the single-user simulation problem, it suffices that it be uniform over a
codebook containing approximately ¢! =P)10¢(2) codewords.

We turn now to a formal statement of the problem. We say that the “target PMF” Qg € Z(S) can
be remotely simulated through the MAC p.(s|t1,t2) with rate R if, for each blocklength n, there exists an
index set _#, satistying

— 1
im — <
l}g{}onlog|/n\ <R 3.67)

and independent random mappings (Plg’;)l‘l and @é’;)l_z, such that when J is drawn independently of them
and equiprobably over _#,, and their outputs /

T = o, (J) (3.68)
T3 = D, () (3.69)

are sent over the MAC, the distribution Ps» of the MAC’s output sequence S closely resembles Q?” in
the sense that
lim dry (Psn ; Q?”) =0. (3.70)
n—soo

THEOREM 3.9 Let the target PMF Qs € () be inducible at the output of the MAC p¢(slt1,#2) in
the sense that 27,1, above is nonemtpy. The PMF Qg can be remotely simulated through the MAC with
rate R if, and only if,

R> min  C(T; T —S), (3.71)

O 1,s€DT, Ty5

where 97, 1,s is defined above.

Proof: The necessity of (3.71) (converse) is proved in Appendix C. Sufficiency (achievability)
can be established using the scheme of Figure 7 as follows. Let Qs r,w € Z( x 71 x Fo x #) be a
PMF having a (7i,7>)-marginal Qr,7, in 27,7, (i.e., for which (3.61) holds) and having the form

Ostiryw (5,11,12,w) = Qw (W) Oy \w (11 |w) Oy w (12|w) pe(s]t1,12), (3.72)

where W is an auxiliary chance variable that takes values in a set % and that has the PMF Q. This
form guarantees that the Markov conditions in (3.1) are satisfied. Consider the scheme depicted in
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Figure 7, where J is mapped to the codeword w(J) € #" in a codebook {w(j)} indexed by j € [1 : e"F].
Simulator 1, which is random, feeds w(J) to the DMC Qg w (¢1/w) and produces the resulting n-length
output sequence. Simulator 2 does the same, but to the DMC Qr, y (f2|w).

Simulator 1

— De(s|t1, ta)l—

P e e

n I n
i e T e

L e e

Simulator 2

FIG. 7. A scheme for remote simulation through a MAC.

We need to show that if R exceeds I(W;S), then a codebook as above can be found for which the
distibution of the MAC’s output sequence Ps» closely resembles Q?" in the sense of (3.70). This can be
proved using a random coding argument, where the codewords of the codebook {w(j)} are drawn IID
~ Q" We claim that if R exceeds I(W;S), then the expectation (over the codebook) of dry (Psr; 05")
(where Ps» is the PMF of the n-length output sequence induced by the codebook) tends to zero. Once the
claim is established, we can infer the existence of a deterministic sequence of codebooks (indexed by the
blocklength) for which dtvy (Pgn ; Q?") tends to zero. The claim follows directly from [5, Lemma IV.1]
with the substitutions

VS,  Uew, (3.73a)
and
Dy Osw (s|w) = Y., Oy yw (11 1w) Oy w (12 w) pe (s, 12). (3.73b)
1,
| |

3.4 Remote Simulation through a State-Dependent DMC

In the network of Figure 8, the relevant common information plays an important, but not decisive, role.
A state-dependent discrete memoryless channel (SD-DMC) (pe(s|t1,2),0r, (1)) is driven by a state
sequence {77} that is drawn IID ~ Qr,. The goal is to produce a channel output sequence S" whose
law Pg» resembles the product distribution Q?” in the sense that

lim dTV (PSH;Q?H) =0. (374)
n—oo

This is accomplished by having the state encoder describe the state sequence to the channel encoder
using the codeword J in a rate-R codebook _Z, of cardinality ¢"®, and by having the shared common
randomness K be drawn equiprobably and independently of 7}* from a rate-Rg set _Zx , of cardinality
¢"RK . We seek the rate pairs (R, Rx) that make this possible.
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TTL
Channel Enc|— De(slty, ta) = S™
K ] I
— J

A

'

State Enc.

T{' ~ 1D Qr,
FIG. 8. Remote simulation over a state-dependent channel. The goal is for S” to appear approximately IID ~ Qg (3.74).

A PMF Qg € P () can be channel-synthesized with state-description rate R and common ran-
domness rate Rg over the SD-DMC (pc (s|t1,12), O, (11 )) if, for each blocklength 7, there exist sets _¢Z,

and _Zk , satistying

— 1
im — <
r}g‘x}gnlog|/n\ <R (3.75)
and
— 1
im — <
Jim -~ log| Zk.a| < Rk (3.76)
and independent random mappings
Rl FX Fn — (3.77)
and
G Iu % Jkn x-S = T3 (3.78)

(that are independent of (7}, K)) such that when the sequence
73 = G (R (17, K) ,K) (3.79)
is fed to the SD-DMC (pc (s]t1,1),0r, (tl)), the PMF Pg» of the output sequence S” satisfies (3.74).

We say that the desired output law Qg is inducible over the SD-DMC (pc(s|t1,22), O, (1)) if there
exists a joint PMF QOr, 1, 5 of the following three properties: its 71-marginal is the state law, its conditional
Os|ry1, is the channel law pe(s|ti,12), and its S-marginal is the desired output law. The subset of
P (T x T x ) comprising all such joint PMFs is denoted Z(p.(s|t1,12), 01, Os).

THEOREM 3.10 An output law Qg that is inducible over the SD-DMC of laws (pc(slt1,22), O, (11))
can be channel-synthesized over the said SD-DMC at rates (R, Rx) if, and only if, there exists a joint
PMF Qr,7,sw whose T T>S-marginal is in Z(pc(s|t1,12),07,,Os) and that satisfies the following four
conditions:

W —->W-—=T, (3.802)
W= (T,[) =S (3.80b)

R>1(W;Ty) (3.81a)
R+Rk > 1(W;S). (3.81b)
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Before proving the theorem, we make the following remark, whose proof is omitted.

REMARK 3.2 To exhaust the rate pairs promised in the theorem, we may restrict W to take values in an
alphabet # of cardinality |7 ||%|+ 1, e.g.,

!

W ={1,...,| 7P| +1}. (3.82)

Moreover, said set of rate pairs is closed.

Proof of Theorem 3.10: The proof of necessity (converse) resembles the one in [5, Section V1.
The main differences are that in the steps recovering Inequality (3.81b) the source reconstruction pairs
(17, T3) (called (X",Y™) in [5]) should be replaced by the SD-DMC’s output sequence S” and that the
Markov condition (3.80b) requires justification. This and other details are presented Appendix D.
Also the proof of the sufficiency (achievability) closely follows the proof of the main result in [5].
Let Ostinw € P (S x T x 5 x #') be a PMF whose T-marginal is the given state PMF Qr,, whose
S-marginal is the target PMF Qg, and having the form

Ostiryw (s,11,11,w) = Ow (W) Oy \w (11 |w) O \w (12|w) pe(slt1, 12), (3.83)

where W is an auxiliary chance variable that takes values in a set # and that has the PMF Qy . This
form guarantees that the Markov conditions in (3.1) are satisfied.

Consider the random code construction and the simulators of Figure 7 that were used to prove
sufficiency for the MAC in Theorem 3.9 in Section 3.3, but denote the random index J = (J,K) instead
of J and its alphabet jn = _Zux Fkn instead of Z,. Let PJKT{szrlsn‘cg denote the conditional-on-
the-random-codebook-being-% joint PMF induced by the simulators described in Section 3.3 and the
MAC pc(s|t1,t2), when J and K are independent and equiprobably distributed:

Pikrrpsrie = FikProjike Pry ke Ps oy s (3.84)

where Pk is uniform over Zk , x _#,, the conditional PMFs 13T1”| sk and ISTZ"\ sk describe the opera-
tions of the two simulators, and Psn‘T{szn is the n-fold product of the MAC’s transition law (which is also
our SD-DMC’s transition law) p.(s|t1,12).

Returning to our SD-DMC, to perform the remote simulation, we propose to randomly draw the
codebook as in Section 3.3 for the MAC, and for any given realization of the codebook % apply the
scheme illustrated in Figure 9 based on the PMF PJKTInTZn s above.

Channel Enc.

— T
Pryjgrke  —pc(s|t1, ta)> S™

A
K J

Pjgrpe |«

TP ~1ID Qr,

State Enc.

FIG. 9. A coding scheme for remote simulation over a state-dependent discrete memoryless channel.

Specifically, the Channel Encoder performs the same operations as Simulator 2 of Section 3.3, which



30 of 51 R. GRACZYK, A. LAPIDOTH, AND M. WIGGER

is characterized by the conditional PMF ISTzn‘ Jk¢> and the State Encoder uses the reverse encoder corre-
sponding to the conditional PMF 131‘ KT

We analyze the expected Total Variation distance in (3.74) induced by the described state and channel
encoders, averaged over the random choice of the codebook. Let PJKTln 5| (without tilde) denote the
joint PMF induced on (/,K, T}, T;',S") by the state and channel encoders of Figure 9 for a given code €.
By the Triangle inequality

Ec [drv (Pyijc: O5")]
< EC [dTV (PS"|C;F)S”‘C>] + EC [dTV (an‘c;Q?”)] (385)
<Ec [dTV (PJKTI”TZ"S”\C§PJKT1”T2”S"|C>} +Ec [drv (Ponic; O5™) ] (3.86)
@ EK |:Ec |:dTV (Q%’I;PT{I‘K(:)]} + EC [dTV (PSn‘C;Q?n)] (387)

where the second inequality follows from Proposition 1.2, and (a) holds by Proposition 1.3 because
for each realization € of C the following hold: the PMFs PKM and Pk coincide (they are both uniform
over the same set); the conditional PMF 13]‘ KT coincides with Py, KT and the conditional PMF
ﬁTan IKTIG coincides with PTzllsnl JKTIG - We now study the two expectations on the RHS of (3.87)
separately, starting with the second. By [5, Lemma IV.1] (with the substitutions in (3.73) and J
(J,K)), the expectation Ec [dry (Psn‘c; 05") ] tends to 0 as n — oo if

1 1
;log\/n| + ;10g|/1(3n| >1(S;W)+e. (3.83)

As to the first, we fix a realization K = k and employ again Lemma IV.1 of [5], but now only for the
random index J and using the substitutions

VT, U+—W, (DV\U — QTl\W' (3.89)

The lemma implies that, for each realization of K = k , the expectation E4 [dTV (Q%";f’m K=k,C)} tends
to0asn — oo if |
ﬁlog|/n| >I(T;W)+e. (3.90)

Under the two conditions (3.88) and (3.90) there must thus be a sequence (one for each n) of realizations
of the code construction % such that the Total Variation distance in (3.74) vanishes.

It remains to get rid of the €. This is just a technical matter: Since € can be any positive number, for
any (R,Rg) satisfying (3.81), there exists a sequence {&,};_, | 0 such that for each n it is possible to
choose sets _Z, = {1,...,[¢"®*&) |} and g, ={1,..., Le”gRK“”)J} and a deterministic codebook ¢
so that our proposed encoders produce sequences (17", 7;') satisfying (3.74). Now

o1
r}ﬂ;log|/n| =R (3.91)
o1
r}g{}oﬁlog|/1@n| = Rk, (3.92)

and the achievability proof is complete. ]
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We now focus on the minimum sum-rate R + Rk that allows an inducible output law Qg to be
channel-synthesized over a SD-DMC (pc(s|t1,22), Oz, (11)). This minimum sum-rate is achieved when
Rk =0, because a bit of state description is at least as valuable as a bit of common randomness. Indeed,
since we allow for random state encoders, the state encoder can always include in its description a
random bit that is then common. The minimum sum-rate is thus

min max{I(W;T}),[(W;S)}, (3.93)

min
01y 1,5€2(pe(s11.12),01, .05) Cw |1, 758

where the second minimization is subject to (3.80a) and (3.80b). As the following two examples show,
the minimum sum-rate is sometimes, though not always, related to the relevant common information.
Whether it is or not depends on which term in the maximum is largest. We begin with an example where
the common relevant information is key.

EXAMPLE 3.11 Consider a SD-DMC that is noiseless in the sense that its output is the tuple comprising
its input and state, so .¥ = 7] x % and

S=(N,D). (3.94)

Irrespective of W and of the output PMF Qg,
I(S;W) = I(Ty; W) +1(To; W|T) (3.95)
> (T W), (3.96)

and max{I(W;T;),I(W;S)} thus equals I(W;S). Consequently, the minimum sum-rate (3.93) for this
channel is

~ min C(h; T —S). (3.97)
01, 1,5€ 2 (pe(slt12).Q1,:05)

In our next example the relevant common information does not play a role, because, rather than
being I(W;S), the maximum between I(W;T1) and I(W;S) in (3.93) is (W T}).

EXAMPLE 3.12 Consider a SD-DMC whose law is as in (3.65) of Example 3.8 and whose state 77 is
drawn equiprobably from {0, 1}. Let the target output PMF Qg be as in (3.66) of that example. As in
that example, since Qs(6) is zero, this output distribution can only be induced by a joint PMF under
which 77 and 75 never differ. The sole element of Z(pc(s|t1,%2), 01, Os) is thus the PMF

Or,15(t1,12,5)
1 1
= (El{tl =1 = 0} + El{tl == 1}) pc(s‘ll,lz) (3.98)
and the first mimization in (3.93) is superfluous. Moreover, since 77 and 7> never differ, the Markov
condition (3.80a) implies that 7} is computable from W, and consequently I(W;T;) = H(T;) = log(2).

The minimum sum-rate in (3.93) thus equals max{log(2),C(7;;T> — S)}. Since C(T1;T> — S) equals
(1 —p)log(2), the minimum sum-rate is log(2) and unrelaed to C(Ty; T, — S).

4. The Converse Part of the proof of Theorem 3.6

To prove the converse part of Theorem 3.6, fix a target PMF Qgr,7, and an achievable rate triple
(Ro,R1,R>) satisfying the no-excess-rate condition (3.25). The achievability of the rate triple guarantees
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the existence, for every blocklength n, of index sets %0, £1., #2.n satisfying

— 1
nlgg;log|/0)n| <Ry (4.1a)
— 1

im — < .
r}grolonlog|/1,n| <R (4.1b)
— 1

im — <
y}l_r)rgon log| 724 < R» (4.1¢)

and the existence of corresponding encoder ¢ng% and decoders ‘I’l(zg_] and %({Q , for which the sequences
T{* and T3 satisfy the weak coordination constraint (3.17) that the random empirical type Tse 10 13)
approach the target PMF Qgr, 7, in probability

pllm dTV (ﬂ(S”,Tl”,Tz”)§ QST] TZ) = O, (42)
n—o0
or, equivalently,
Plim”(sn,Tf,TZ")(Safl ,tz) e QST]TZ (S,tl 7l‘z), V(S,ﬁ ,tz) €S XN XD. “4.3)

n—yoo

The convergence in probability of bounded random variables implies their convergence in expec-
tation. Since the expectation of ”(sn,T{',T;)(SJlJZ) is the evaluation of the uniform mixture of the
PMFs {Pg,.T]‘[TzJ YL, at (s,t1,t2), it follows that n! Y1 Ps;1y,1,,; converges componentwise t0 Osri 7y
or, equivalently, Ps, 7, ,7,, converges in Total Variation to QOs7,7, whenever the chance variable U is
drawn equiprobably from [1 : ] and independently of {(S;,T1,,72,)}:

nlgl;lodTV (PSUTLUTZ‘lﬁQSTI Tz) =0,

U~ Ul’ll([l :n]), U_U_{(Si,Tl,i,Tzﬂ')}?:l. (44)

This latter statement will be crucial to the converse. By the continuity of mutual information we also
obtain, under the same assumptions on U,

im (T y, »y;Sy) =1(T1,1»;S), 4.5)

n—

where the RHS is computed w.r.t. Or,7s.
We shall need the following lemma.

LEMMA 4.1 Assume that §",T{*,T5!,Jo are as above and, in particular, that they are produced under the
no-excess-rate condition (3.25) and that the weak coordination constraint (4.2) is satisfied. Let PSnTlnTZn Jo
denote their joint PMF. Then for every blocklength #n, there exist

e a positive g, for which {g,} | 0;
e achance variable W taking values in an alphabet % of size
n82/5 )182/5
V<A [ A" (4.6)

and having some conditional PMF Ry|guzety s, given (8", 71", T3',Jo); and
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e asubset .4 C [1:n]of size
A= (1-2log(2) aey)n, @.7)
where
a 2108|171 72)) + & (4.8)
such that for any p € (0, 1) and under the joint PMF

P(sn7t}l17t£17j7w)
= Pyrprps (800583, ) - Pwisnrpags, (WIs™, 11,13, ) (4.9)
over " x F" x T x _Fo . x W the following three requirements are satisfied

1 Ty Toi | o W) < &°, Vie(l:in];

2. Ly K(Spdo | T Tos W) < agd;

3. Pr({we? « |Pyw(w) — Bl <p}) = 1-&'" ", Vies.
Proof: The proof is based on Dueck’s and Ahlswede’s Wringing Lemmas [6, 1] and is provided
in Appendix E. ]
Fix a blocklength n, and let &,,W, and .4 be as in the above lemma. Let U be drawn equiprobably
from [1 : n] and independently of (S”, 1,17, W). Let PS"TI”TZ" JoU» or P for short, be the extension of the
PMF in (4.9) that also includes U':

P(Sn’t?’t5,l7j7w? l)

= Pyrprys (800,13, ) - Pwisnrprys, (WIs™ 11,13, ) - % (4.10)
Define the following subsets of [1 : n] x #:
o = {(i,w): (T s | Jo, W = w) gs,l/S} @.11)
B = {(i, w): I(SiJo | T1,i, Ti, W =w) < Ol&‘r}/s} 4.12)
¢ = {(i, wy: i€ A and [Py (- | w) — Ps() 1 < p} (4.13)
D= NBNE, 4.14)

where mutual informations are again w.r.t. the PMF P in (4.10).
We next show that, for any fixed p € (0,1), P(2) tends to one when &, tends to zero and hence

lim P(2) =1, Vp € (0,1). (4.15)

To show this we note that, by Lemma 4.1 and Markov’s inequality,
P(UW)ed)>1-6" (4.16)
and

P(UW)eB)>1—g". (4.17)



34 of 51 R. GRACZYK, A. LAPIDOTH, AND M. WIGGER

Moreover, by (4.7) and Requirement 3) in Lemma 4.1,

P((U.W)€?)
>P((UW)e€|UeN)-P(U€eN) (4.18)
>P((UW)e%|Uec.N)-(1-2log(2)-ag) (4.19)
>(1-6/" ") (1-2log(2) ae,”). (4.20)

From (4.16), (4.17), (4.20) and the definition of & (4.14),

P(UW)e2)
—1-P((U,W) e 7)U((U.W) € ) U ((UW) €%°)) (4.21)
>1-P((UW)e«)—P((UW)e€) (4.22)
>(1—g/"% 1. (1-2log2ae*) —el* —&2°, 4.23)

which concludes the proof of (4.15) because, as n tends to infinity, g, tends to zero.
We turn now to the cardinality constraints. In what follows, all mutual informations are calculated
w.r.t. the PMF P (4.10). Beginning with the common rate,

1
E10g|/07n|
—H(Jo|W) (4.24)
n
1
~H(Jo,W) — —H(W) (4.25)
1 1
> —1(8";Jo,W) — —H(W) (4.26)
n n
1 1
==Y I(SiJo,W | S71) — —H(W) 4.27)
n i=1 n
1 |
==Y 1(S;:Jo,W,8"") — —H(W) (4.28)
ni= n
1 1
> =Y I(S;; ~—H 42
n LS olW) = JHW) (4.29)
@ ;~P(W:w)-I(S,-;J0|W:w,U:i)
(i,w)E[Ln] x W
~Lhw) (4.30)
" .
®) , ,
> Y PU=iW=w)I(SiJo|W=wU=1i)
(iw)ez

— &’ 108(1 71| %)), 4.31)
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where (a) holds because U is drawn equiprobably from [1 : n] and independently of (S",Jy,W); and in

(b) we restricted the sum and used the cardinality bound (4.6) on %'
Similarly,

1 1
;10g|/0,n|+;10g‘/l,n|

>H(Jo,J1|W) (4.32)
1 1
= —H(Jo,J1,W)— —H(W) (4.33)
n n
1 1
—H(Jo,T',\W) — —H(W) (4.34)
n n
1 1
> —I(S"Jo, T, W) — —H(W) (4.35)
n n
1 |
==Y U(SiJo, T\ W | S™") = =H(W) (4.36)
nl=1 n
1 ¢ n i—1 1
== Y (S Jo, T{', W, 8™ 1) = — H(W) (4.37)
ni3
> LY (S d0. 71 W) 1H(W) 438)
= nl:l 1%} 07 ll .
> P(UZi,WZW)-I(S,';J(),TL,‘|WZW,U:i)
(i,w)e@
— & log(| 7| %)). (4.39)

Likewise, by swapping _#i , and _#3 ,,,

1 1
—log| Foal + - log| 72l

Y, PU=iW=w)1(SiJo,Toi|lW =w,U =)
(iw)e2

— &% log(|7i|| %)) (4.40)

Finally,

1 1 1
log| Fual + - log| F1a| + - log| F|

H(Jo,J1,J2|W) (4.41)
_ %H(JO,JI W) — %H(W) 4.42)
%H(Tl T W) — %H(W) (4.43)
%I(S" T3, W) — %H(W) (4.44)
= igl(&, I W | ST — %H(W) (4.45)
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1 & . 1
==Y 1S, 1, W, 8 — —H(W 4.46
s LUSSTY W) = L HOY) (4.40)
1 & 1
>~ Y (ST, T W) — - H(W) (4.47)
i=1
> PU=i,W=w)-I(S;T;, T |W=w,U =)
(iw)eD
— &' -log(| 7| %3)). (4.48)
Define now the new PMF
A(s™, 11,85, 0,w)
PU=iW=w)
=—" 2. 1{(u,w) €D
P((UW)eP) () }
PS=5"T" =01, T =t5,Jo = j|W =w), (4.49)
and note that the mutual informations
I(S,';Jo ‘ W= W) (4.50)
I(Si3Jo, Tii | W =w) 4.51)
I(Si;J0, Toi | W =w) (4.52)
I(Si;T i, T | W=w) (4.53)
I(Si;Jo | T, T2, W = w) (4.54)
T, T, | Jo,W =w) (4.55)

are the same under the PMFs P and A. We can therefore rewrite the inequalities (4.31), (4.39), (4.40),
and (4.48) as in Equation (4.56) on top of the next page, where the mutual informations are w.r.t. A. (To
make this dependence explicit, we add subscript A to the mutual informations.) Notice further that by
the definition of the set &, for each pair (i,w) € Z the following inequalities hold:

LTy | Jo. W = w) < & (4.57a)
L(Siido | Tii, T W = w) < 0 & (4.57b)
| A, jw=w — Fsll1 < p. (4.57¢)
We next cast (4.4) in terms of A. To this end, note that by its definition (4.49),
ASy=sTiy=0,Thy=n)
=P(Sy=s5,Tiy=11,Tu =0|(U,W) € 2) (4.58)

and by the law of total probability
P(Su=sTv=tThy="n)
= P(SU =5,y =t,Hhy =1t and (U,w)e @)
+P(Sy=sTiv=t,Thu =12, and (U,W) ¢ 2). (4.59)
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1
log| 70|

>P((UW)e2) Y AU=i,W=w)-Li(SiJo|W=w)
(iw)ez

— & 1og(| 71| %)), (4.56a)

1 1
ElOg|jO,n| + ;10g|jl,n‘

>P((UW)e2)- Y, MU=i,W=w)-1;(SiJo,Ti; | W =w)
(iw)ez

— & log(| % %)), (4.56b)

1 1
- log | Zon| + - log | 72

>P(UW)€2) Y AU=i,W =w) -1, (Si:Jo, Toi |[W = w)
(i,w)eD

— & 1og(| 71| %)), (4.56¢)

1 1 1
;loglfo,nl + ;logI/Ln\ +;10g|/z,n|

>P(UW)e2)- Y, MU=i,W=w)-Li(S:T1;,Toi | W =w)
(iw)ez

— &' log(| 7] 7)) (4.56d)

Consequently, since P((U,W) € 2) approaches 1 as n tends to oo (4.23),

Jlim dry ()VSUTI,UTZAU ; PSUTLUTZ,U) =0. (4.60)

It follows from this and (4.4), using the Triangle inequality, that

lim drv (Asym 105 Qs1i7; ) =0 (4.61)
and a fortiori (since p is positive) that for all sufficiently large values of n

||)’SUT1,UT2AU — Qs |1 <p, nlarge. (4.62)

We continue the proof by studying the implications of (4.56), (4.57), and (4.62), which deal with
A rather than P. The next step is to analyze the limiting behavior of these inequalities as n — oo (and
thus g, — 0) and p — 0. The main difficulty is in analyzing the limiting behavior of the constraints in
(4.56) and the sums in (4.57), because the range of the index i and the alphabets of the chance variables
Jo and W grow with the blocklength n. We circumvent this problem with the following lemma, whose
proof requires two consecutive applications of Carathéodory’s theorem.
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LEMMA 4.2 There exists a subset & C & whose size is at most |.||.71||.%2| + 4 with a corresponding
PMF on it o € &(&), and for each (i,w) € & there exists a subset _Z;,, C _#;, whose size is at most
|-Z1|71||%2| 4+ 5 with a corresponding PMF on it B;,, € &(_#; ), so that the conditions in (4.56),
(4.57), and (4.62) remain valid when the PMF A is replaced by the PMF

v(sn’t?7t£l7w’ i’ j)
= a(i,w) - Biw(j) Ponzr rpiw s (8", 17,13 W, ) (4.63)
and the summations is over (i,w) € & (instead of over (i,w) € 2).

Proof: See Appendix F. ]

Notice that conditions (4.56), (4.57), and (4.62) depend on the elements of the sets & and { %W}

only through the conditional probability distribution Psn,Tln’Tan 7o (8", 11,85 |w, j). By relabeling these
conditional distributions, we can assume that & does not depend on # and is equal to &*, where

Similarly, we can assume that _#; ,, depends on neither n, i, or w and is equal to _#*, where

Since the alphabets are now all fixed and finite, the class of joint PMFs on them is compact, and we can
pick a subsequence of blocklengths along which they converge. Let v € (.7 x 71 x o x E* x _F7*)
denote the limiting PMF, and let (S*, 77", 7,5, E*,J*) ~ v*.

We now consider the limits of the relevant quantities in (4.56), (4.57), and (4.62) (with A replaced
by v and with the summations in (4.56) being over (i,w) € &™) along this subsequence (with &, conse-
quently tending to zero) and then let p approach zero. Since all involved chance variables are over fixed
and finite alphabets, standard continuity arguments allow us to conclude that a rate-triple (Ro,R1,R) is
achievable with no excess-rate only if the following two-auxiliary condition holds: there exists a joint
distribution satisfying

S*ILE™ (4.66)
y— (JNE2% =17 (4.67)
I = (BT, Ty)— S5, (4.68)
under which the following inequalities hold
Ry = 1(S%J° | E) (4.69a)
Ry +Ry 2 1(S5J%, T | E™) (4.69b)
Ry+Ry 2 1(S5J%, T | E™) (4.69¢)
Ry+Ry+Ry 2 1(S5T, T | %) (4.694d)
Ry+Ri+Ry= I(S*;Tl*, 2*), (4.69¢)

where the last equality accounts for the no-excess-rate condition and follows from (3.25) and (4.61).
We next show that this two-auxiliary condition implies the following one-auxiliary condition: there
exists a joint distribution satisfying
= (JSE) =Ty (4.70)
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and
(JE) > (T, ) —» §*

under which

Ry >1(S*:J*, &%)
Ri+Ry = 1(S: T}, J* E¥)
Ro+Ro = 1(ST5,J*, EY).

From this the converse will follow by defining W* as
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.71

(4.72a)
(4.72b)
(4.72¢)

(4.73)

Condition (4.70) is just a restatement of (4.67); (4.72a) follows from (4.69a) and the independence
condition (4.66); (4.72b) follows from (4.69b) and (4.66); and (4.72c) follows from (4.69¢c) and (4.66).

It remains to establish (4.71).

To this end, we first observe that (4.69d) and the independence condition (4.66) imply that

Ry+Ri+Ry > I(S*;Tl*,Tz*,E*).
This, (4.69¢), and the chain rule imply that
I(S*,E* | Tl*,Tz*) =0.

Consequently,

(S*30%, &% | TY, T5) = IS5 &% | 7, T3) + 1(S*0* | T, Ty, E*)

=1(§J° | T7, T, &)
= O’

4.74)

(4.75)

(4.76)
4.77)
(4.78)

where the first equality follows from the chain rule, the second from (4.75), and the last from (4.68).

This establishes (4.71) and concludes the proof of the converse.

Funding
This work was supported by the European Research Council [715111].

Acknowledgment

The authors acknowledge helpful discussions with M. Bloch.

A. The Converse Part of Theorem 2.6

Before proceeding to the converse part of the proof of Theorem 2.6, we recall a lemma from [5].

LEMMA A.1 (Lemma VI-3 in [5]) Let </ be a finite set, and let A" ~ Py» € &?(&/") be approximately

IID in the sense that there exists some Q € (/) for which

dry (Pan;Q%") <€

(A1)
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for some € < 1/4. Let the time-sharing chance variable U be uniform over [1 : n] and independent of
A". Then,

1 , o

=Y (A A7) <delog u. (A.2)
n4= €

and

I(Ay;U) < 4elog@. (A.3)

We now establish the desired converse to Theorem 2.6.
The converse part of the proof of Theorem 2.6:

Consider a sequence of simulators {(pél)l _; and { Pgp’ 2} , for which the induced outputs {77"}7

and {73}, and the SI sequence {Y"}>_, satisfy (2.32),i.e., for which there exists a positive sequence
{a}r ¢ 0 such that

drv (Prymgyns 05y ) < & (A4)

Fix a blocklength n sufficiently large that

1
and note that for the chosen blocklength:
1
*10g|/n|—; (A.6)
1
> —1(J;T, T3 |Y") (A7)
n
1 n 1 < n
;H(Tl JTHY™) T Z (T1 1, T, Y") (A.8)
1 n n n 1 - n
= —[H(T!, T3, Y") —H(Y")] = = Y H(Ti4, ToslJ,Y") (A.9)
n n =1
1 1 1 &
== [H(T", T3, Y") = Y. H(Y)] — - Y H(Ti 1 Toxl,Y") (A.10)
k=1 k=1
1 n _ B B
. {H(Tl,kaTZ,kayk) — (T 3, Do, Yis T T AT
k=1
_H(Yk)_H(Tl,k,Tz,kU,Yn)} (A.11)
(@1 & AIFAIEA
>-Y [H(Tl.kaTz.kaYk) —4€nlogM
= S n
—H(Yk) —H(Tl’k,Tch\J, Y”)} (A.12)

b
:)H(Tl,sz,U,YU\U) —H(Yy|U)
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TG Dul|l¥
—H(TLU,T27U|J,YU,U,YU*‘,Y3+1)—4snlogM (A.13)
(é)H(Tl,UaTZ,U»YU‘U)_H(YU)
TG Dul|l¥
—H(T\y, Doy |W,, Yy) — 4€,log |7l 20l (A.14)
=H(Ny, Ly, Yv)—I(T1v,hv,Yy;U)—H(Yy)
G Dol ¥
H(Ty g Tap W Vi) — 4y log (7220121 (A.15)
n
()
> H(Ty,hy,Yy)—H(Yy)
w
—H(TLU,T27U|W,,,YU)—88n10g% (A16)
n
TS|
— (T, To: Wl Yy) — 8y log L2212 (A.17)

n

where (a) follows from Lemma A.1 because {(Tix,Tox,Yx)} are nearly IID (A.4), and g, < 1/4;
(b) holds when we draw U equiprobably from [l : n] and independently of the other chance vari-
ables (J,T{", T3, Y"); (c) follows from the independence between U and Yy and by defining W, £
(J,U,YU=1 ¥l |); and (d) follows from the second part of Lemma A.1.

To relate the RHS of (A.17) to C(T1;T>|Y) (under Qr,1,y), we note that, with the above definitions
of U and W, the independence between the encoding functions implies that

hy—=>WuYu =Ty (A.18)
forms a Markov chain. Consequently, if 9,, denotes the joint PMF of (iy,Tu,Yy), then
[Ty, Du;WilYy) = Cg, (Ti; T2|Y), (A.19)

where the conditional common information on the right is calculated under Q,. This and (A.17) imply

that
MEAEACZ)

n

1
- log| 7| 2 Cp, (T1: T2|Y) — 8¢, lo (A.20)

The converse now follows by letting n tend to infinity because (2.32) and Proposition 1.5 imply that

,}E}}odw (0n;On15y) =0 (A.21)

and hence, by the continuity of the conditional common information,
JE}TJQCQ}ATUTz‘Y) = C(Tl;T2|Y). (A22)
|

B. The Converse Part of Theorem 2.7

Consider a sequence of encoders and decoders {Fs<;1) ~_, and {Gé’l') »_, for which the sequences
{1} ATy o, and {Y"}5_ | satisfy (2.43), i.e., for which there exists a positive sequence {&,}7_,
decaying to zero such that

drv (Pryzgvn: Oy ) < & A1)
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A close inspection of the converse part of the proof of Theorem 2.6 (Appendix A) reveals that if one
replaces % log|_#,| by the sum !log| #,|+ Llog| #k .| and the index J by the pair (J,K), then all the
steps remain valid except that i 1n (A.6) the equallty needs to be replaced by the inequality >. We thus
conclude that for the setup under consideration here, for any blocklength n:

1 1
zloglﬁHglogI/K,nl

>1W Ty, Ty |Yu) —8€,lo

MEAIEAIEAN (A2)

n

where U is drawn independently of (J,K, 7", T3, ¥") and equiprobably from [1 : n], and W,, = (J,K,U, YV~ v 1)
Notice that the Markov chain 77 y — (W,,Yy) — Toy continues to hold, because T3 is a random (inde-
pendent of 7}") function of (J,K,Y"), so T» iy is a random mapping of (W,,,Yy).

We next derive an additional inequality. Since J takes values in _#,, for every blocklength n,

1 1
-1 W == Y" K A3
p; og| 7| > . LT Y™, K) (A.3)
1
= —I(J,K;T"|Y") (A.4)
n
1 & ,
=-Y 10U, KT, ly", 77" (A.5)
nl:1
_ly i1 yn 1y
7nz (LK, YL Y TlY) (A.6)
=1J,K, YUV Y} i Ty |U, YY) (A7)
=1(J,K, YY" Y}, U;Tiy|Yy) (A.8)
=I(Wy;Tvu|Yu), (A.9)

where the first equality holds because the common randomness K is independent of (7}*,Y"), so I(K; T{"|Y"™)
is zero; the second equality follows from the chain rule; and the third equality holds because H(Tj ;|Y", 7~ ")
equals H(73 ;|Y;) (which holds because {(7};,Y;)} are IID).

Let Q, denote the joint PMF of (7 v, Ty, Yy). By (2.43) and Proposition 1.5

lim drv (Gn; Q7 1v) = 0. (A.10)

It follows from Remark 2.2 and from (A.2) and (A.9) that there exists a chance variable W, taking
values in the finite set #* of (2.46) and a joint distribution QTLuTz.UYuW;f EP(AXD XY XW*)
under which

Ty — (W, . Yy) = Ty (A.11a)

1 1
EIOg‘/ﬂ"’;lOg‘f&ﬂ

TS|
>1W, Ty, Thu|Yu) — 8€,1og |7l %] ]

n

(A.11b)

710g|/n|/ (W) Ty|Yy). (A.11¢)
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We next consider a subsequence {n,} along which QTLuTz.uYUW,i‘ converges in Total Variation. Its
marginal converges to Or, 7,y by (A.10), and continuity implies that the limiting distribution satisfies
the required Markov condition. Taking the limit superior of (A.11b) and (A.11c) along the subsequence
establishes the converse.

C. The Converse Part of the Proof of Theorem 3.9

Proof of the necessity of (3.71): Consider a sequence of simulators {@Rel 1}, and {CDRel 2t
for which the induced MAC outputs {S"}7_, satisfy (3.70), i.e., for which there exists a posmve
sequence {&,}_; | 0 such that

drv (Py; 05") < €. (A.])
Fix a blocklength n sufficiently large so
& < 1/4. (A2)

Let 7" and T;' be the sequences produced by the encoders & (n ei | and P, (n e)l , when fed J. Let U be drawn

equiprobably from [1 : n] and independently of the tuple (J,T}",7;',S"), and define

W, £ (J,U). (A3)
Then,

Llog| £l = HU) > 11387 (A4)

> % %; (i) (A.5)

= fllg‘l [H(S|S 1) — H(Sk|))] (A.6)

_ % k; [1(Si2d) — 1(S4:55 )] (A7)

g1 kzl [usk;f) s, <log 'i: ')} (A8)

 W(Sysd|U) — e <log "Z ) (A9)

Y 1(Sy:J,U) — 8e, (log |‘Z|) (A.10)

(S W) — 8e <10g "?) , (A1)

where (a) follows by invoking the first part of Lemma A.1 and (b) the second.

Since the (possibly-random) encoders & 1(1511 and P, 1(152 are independent,

hi—J—T,. (A.12a)
And, since S; is the output of a memoryless MAC of inputs (71, 7>),

J—= (T, Ti) = Si. (A.12b)
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These two Markov conditions together with the definition of W,, (A.3) and the independence between U
and (7", T;,8",J) imply

hy—W,—Thy (A.132)
and
Wu = (Tiy, Tou) = Su. (A.13b)
Denoting by Qn the joint PMF of (T} y,T».v,Su), it now follows from (A.11) and (A.13) that
1 Ed
—log| 2| = Cp, (T1: T2 — S) — 8¢, logg— , (A.14)
n n -

where the relevant common information is calculated under Q,,.

To derive the large-n limiting behavior of (A.14), we first note that, by compactness, from every
subsequence of blocklengths, we can pick a subsequnce {r;} under which the (7;,7»)-marginal of Q,
converges to some Q7. 7, € # (71 x 7). It then follows from Proposition 1.3 that O, converges to the
PMF Q7. 7, (t1,12) pe(slt1,t2), which we denote Q7. 1. .

As we next argue, the S-marginal of the latter must be the target PMF Qg, and Q7,7, must con-
sequently be in 1,7, and Q*T1 s in Z7,7,5 of (3.71). To establish this it suffices to show that the
S-marginal of O, converges to the target PMF Qg (Proposition 1.2), which is indeed the case by (A.1)
and Proposition 1.5.

Having established that Q* has the right form, we conclude that

CQ* (Tl;TQ — S) > min C(Tl;Tz — S) (A.15)

O 1,5€ 71,158

Using this and a continuity argument establishes that we can deduce from (A.14) that

1
lim —log|_#,,| > min C(h; > —S). (A.16)

k—soo Tl o1 1,5€ 71,158

Since this holds for every subsequence of blocklengths,

1
lim —lo = min C(T; T, — ), (A.17)
oo 11 glAl 01 1,5€91, 18 ( )
and the necessity of (3.71) is established. [ |

D. The Converse Part of the Proof of Theorem 3.10

The Converse Part of the Proof of Theorem 3.10: Consider sequences { _#,} and {_Zk ,} of sets
satisfying (3.75) and (3.76) and a sequence of state encoders {Fégf ~_, and channel encoders {GE:I) ol
such that—with the channel state being 77" ~ Q" its description being Fé’;l) (T{",K),K), and the channel
input being 7' = Gg'e)l (Fézl) (TI",K ),K)—the channel output sequence {S"}>_, satisfies (3.74). There

n=1
then exists a positive sequence {&,}>_, | 0 such that, for each blocklength n,

drv (Pe; O5") < €. (A1)

We proceed as in Appendix C, but with the index J there replaced by the pair (/, K) here. Thus—rather
than as in (A.3)—we now define
W, & (J,K,U), (A.2)
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with U drawn equiprobably from [1 : n] and independently of (J,K,T",T;',S"). We repeat the steps
leading from (A.4) to (A.11), but with the LHS of (A.4) replaced by ﬁlog | Znl + %log | Zk n|; with the
index J replaced by the pair (J,K); and with the equality sign in (A.4) replaced by a > sign. In this way
we conclude that, in our current setup, for any blocklength #,

%log | Znl + %10g|jk,n‘ > 1(W,; Sy ) — 8¢, log Z' : (A.3)

In analogy to (A.13), but with W, defined in (A.2),
Ty —=Wa—TDy (A4a)
W, = (Tiy, hhu) = Su. (A.4b)

We need an additional rate inequality, which we derive using the independence between J and K,
the independence between K and 7', the chain rule for mutual information, and the fact that {Tl.,i} are
IID:

1 1
1
> EI(J; T{'|K) (A.6)
1
= ZI(J,K; " (A7)
1 .
=- Y 10,k 1T (A.8)
=1
1 l"
>~ Y 1U.K:Th) (A9)
i=1
=1(J,K;T1 y|U) (A.10)
:I(J,K,U;T]’U) (All)
=IWuTip). (A.12)

By the rate inequalities (A.3) and (A.12), the Markov conditions (A.4), and the cardinality remark
(Remark 3.2), we can extend the joint PMF of (T} y,T>,y,Sy) to a joint distribution Or 1 ysyw; €

PN x T xS X V/*l) of (T\y,Thu,Su,W, ), where W, takes values in the blocklength-independent
finite set #* of (3.82), and where

hiy— W, —hy (A.132)
W, =(Tiy, hu)— Su (A.13b)

1 1
log| 7|+~ log| 7l

TS
> 1(W,);Sy) — &e‘nlogM

n

(A.13¢)
and

1 *
;log|/n| >I(W5Ty). (A.13d)
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Consider a subsequence {n;} along which the sequences {n~'log| Z,|} and {n"'log| #x .|} both
converge (to limits that by (3.75) and (3.76) lower-bound R and Rg), and along which QNTLUTZ_USUW,:
converges in total variation to some Q*}l 5w+ Taking limits in (A.13) along this subsequence and using
(3.75), (3.76), and a continuity argument, we establish the validity of (3.80) and the necessity of (3.81)
when those are calculated w.r.t. Q;I TSW-

It thus remains to show that the 7} 7>S-marginal of Q*T1 ToSW* isin Z(pc(s|t1,12),0r,, Os).

Since {Qr, , Ty SuW;, o1 CONVEIZes to {0, D,uSuW;, Jew1- the same is true for the corresponding
marginals (Corollary 1.1). The 7-marginal of Q’}l 7, sw+ Mmust thus be Qr,, because the sequence of 71 -
marginals of {QT1,UT2.U SuWy, }r_, is constant and equal to Qr,. Likewise the S-marginal of Q*T1 TosW
must be Qg, because, by (3.74) and Proposition 1.5, the Sy-marginals of {QTLUTz,USUWn*k }1?:1 converge
to Qs.

Finally, Q7. 7.5(t1,12,5) factorizes as OF, 1, (t1,12) pe(s|ti,12) by Corollary 1.2, because the PMF of
T,y Ty Sy factorizes in this way. [ |

E. Proof of Lemma 4.1

To prove Lemma 4.1, we begin by observing that the no-excess-rate condition (3.25) and the rate
inequalities (3.18) imply that

I(S;T1,T,) =Ry+ R+ R (A.1)
— 1 — 1 — 1
2Jﬂ;10g|/0,n|+r}g{}o;10g|jhn|+nlgr°1°;10g|j2,n|- (A2)

Consequently, there exists a positive sequence {S,SD} converging to zero such that for all blocklengths
n,

1 1 1
US:71,12) > | foul + ~log| #1] + - log| F2] — &' (A3)

Draw U equiprobably from [1 : n] and independently of {(S;,T1;,T2,)}. By (4.3), I(Sy;Tvv,Thv)

approaches I(S;T;,T»), so there exists a positive sequence {8,52)} converging to zero such that for all
blocklengths n,

(Sy; Ty, Tow) = U(S;Th, o) — . (A4)
We now define
&=l +e? (A.5)
and begin with (A.3):
I(S’ Tl ) TZ)
1 1 1 1)
>;|f0,n|+;10g|/1,n +E10g|/2,n|_£n (A6)
1
> ~(H(Jo) +H(J1 | Jo) +H(J2 | Jo)) — & (A7)
1
>~ (H(Jo) +H(T{" | Jo) + H(T3' | Jy)) — & (A8)
1
>~ (H(Jo) + H(T}", T3 \0) — gl (A.9)
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1
;H(Tl T3 Jo) — & (A.10)
1
> ~H(T}T3) _gll (A.11)
> lI( nn ) — gl (A.12)
= 1-42 n .
n
_ly w1y el
nZI(S,,Tl,T | S — & (A.13)
i=1
1 l)
=Y I(Ss Ty, Ty, 8 ) — A.l4
nl:ZI (Sl* 1> 27S ) ( )
Iy (1)
> . Y 1(Si:T1,, o) — & (A.15)
i=1
—1(Sy; Ty, Tow | U) — &) (A.16)
:I(SU;TLU7T2,U7U)_£}’<LI) (A.17)
>1(Sy; Ty, Tow) — €1 (A.13)
>1(S:T, 1) — &) — &) (A.19)
=1(8;T1,T2) — &, (A.20)

where the last inequality follows from (A.4) and the last equality from (A.5).
Since the RHS of (A.20) is within g, of its LHS, the RHS of (A.9) must be within g, of the RHS
of (A.8). Consequently,
(T, T3 | o) < ney, (A.21)

and, by Dueck’s Wringing Lemma [6], there exists an index set .4y C [1:n] of size nen/ such that
3/5 . .
(1T | Jo,W)<&'", Vie[l:n], (A.22)
when W is defined as

W={(T1:,T2) }ic s, (A.23)

and therefore takes values in a set %" whose cardinality is upper-bounded as in (4.6).
The chosen chance variable W thus fulfills Requirement 1) in the lemma. We now show that it also
fulfills Requirement 2). To this end, observe that by (A.6):

I(S;1,T7)
1 ) 1 (1)

p + = 0g|/1,n|+;10g‘/2-,n|_3n (A.24)
1
; H(Jo,J1,J2) —g! (A.25)
1 1 1 (1)
> SH(T{, T3 Jo) + ~ H(W) = ~ H(W) — & (A.26)
n
1 ! (1)
;H(Tl 1 Jo, W) — ;H(W) — & (A.27)
1 1
SX(S" T T, Jo, W) — —H(W) — gl (A.28)
n n
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1 & . 1 1
— YIS T T Jo, W | S — —H(W) — g} A29
nl:zl ( 1 15,142,790, | ) n ( ) n ( )
_1 iI(S,-;TI",TZ",Jo,WS"_l) Ly — g (A.30)
n4= n
1 1 .
>~ EI(Si;TI.hTz,i,Jo,W) ~ H(W) - ) (A31)
P
1 n
> Z(I(SiQTl,hTZ,i) +1(SisJo | Tl,i,Tz,i,W))
i=1
1
—H(W) ey (A.32)
1 n
> IS0, 1)+ - ZI(S,';JO | T, T, W)
i=1
1
~ H(W) —&, (A.33)
1 n
> Y USido | Tias Tors W) +1(S:T1. ) — te (A34)

where (A.33) can be argued by following the steps leading from (A.15) to (A.19), and where the last

2/5
inequality holds because W takes on at most (|7} ||%|)"E"/ distinct values and by the definition of « in
(4.8). Inequality (A.34) establishes that Requirement 2) is also satisfied:

1 n
CY Sido | T Ton W) < 0. (A35)
i=1

We next turn to the existence of the set .4 and to the fulfillment of Requirement 3). These follow
by applying Ahlswede’s Wringing Lemma [1, Lemma 2] with the substitution of S; for X; there; of W
for Y there, and with the choice of 7y there as

y=(2log2) 'a g, 7~ 1. (A.36)

Requirement 3) then follows from [1, Eq. (3.8¢c)] upon upper-bounding the entropy of W by that of a
uniform (over the same support) and then noting that &~ 'log(|.Z1|-|%|) < 1 by (4.8). The cardinality
bound (4.7) follows from [1, Eq. (3.82)].

F. Proof of Lemma 4.2

Proof of Lemma 4.2: Fix some triple (s',¢],1}) € . x 7 x F5. A first application of Carathéodory’s
theorem establishes the existence of a subset & C Z of size not exceeding |.%||.71||.%2| + 4 and a PMF
o € P (&) such that

Y, aliw) 1(Sido |W=w)
(i,w)e&
= Y Auw(i,w)-L(Sido | W =w) (A.1)
(iw)ez
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Y, aliw) 1 (Sido, Tii [ W =w)

(iw)e&
= Y dow(i;w)-Ta(SiJo, Tri | W =w) (A2)
(iw)ez
Z (X(i,w) ~I;L(S,';J0,T27i | W= W)
(iw)e&
= Y Auw(i,w) -1 (Sido, Toi | W =w) (A.3)
(iw)ez
Y a(iw) L (SsT T | W=w)
(iw)e&
= Z )yyw(l',w) -I;L(S,';TLZ‘,TQ_’,' ‘ W = W) (A4)
(iw)e?

and such that for every (s,x,y) € . x 7} x Z; other than (5,1],1))

Z a(i,w) - A,y 15w (8,11, 12 (W)
(iw)e&

= Z ).;UW(Z,W) 'ASI'TIJTZilW(S’tl’t2|w)’ (AS)
(iw)ED

Because probabilities sum to 1, these latter |.%||.71||Z2| — 1 equalities ensure that (A.5) holds also for
the triple (s",x',y).

We now apply Carathéodory’s theorem a second time for Jy. Consider an arbitrary pair (i,w) € &.
By Carathéodory’s theorem, there exists a subset _#;,, C _#, of size not exceeding |.||71||Z| + 5
and a PMF B;,, € &(_#;,,) satisfying the conditions that

Y, Biw()-Ha(Si[Jo=j,W=w)

jez,ji.w
= Y Apw(ilw,w) -Hy(Si [ Jo = j,W =w) (A.6)
jef().n
Y Biw(i)-Ha(Si | Tiido = j,W = w)
.ieji.w
= Y Auw(iluw) -Hy(Si | Tiido = j,W =w)
je/O.n
(A7)
Y, Biw(i)-Ha(Si| Toisdo = j,W =w)
je(ji,w
= Z Agojow (flu,w) -HRSi | o Jo = j,W = w)
je;jo,n
(A.8)

Z ﬁi,w(j) 'Hl(si ‘ Tl,i7T27i7J0 = ]7W = W)
jeji.w
= Y AgowGilw,w) - Hy(Si | Ty Toin Jo = j, W = w)
je/O.n
(A.9)
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Y, Biw() L(TiToildo=j,W =w)

je,)gi,w
= Y Apowlww) - L(TsTai | Jo=j,W =w)

jejOAn

(A.10)
and that for every triple (s,71,t) in . X 7] x 7 other than (s,1{,1})
Z Bi-,W(j) : A’SjT]JTleJ(),W (S7tl 7t2|j3 W)
jefi‘w
= Z /110|Uw(j\iaw) ‘ AS,ITL;TZ_,\JOW(SJI»f2|jaW)~ (A.11)

jezfi.w

(Again, because porbabilities sum to 1, Equality (A.11) must also hold when (s,7,%,) equals (s',{,2,).)
These conditions guarantee that the conditional entropies H(S; | W =w), H(S; | T1 ;,T>,;, W = w) and the
conditional joint PMF on (T ;,75;,S) given W = w are the same under the PMF

and

B, 11 .5 0w (8511512, jIw) = Biw (J) - As;ry 13 1130w (8,11, 22|, w) (A.12)

lSiTl,iTZ.iJO‘W(S’x7y’j|w)' (A13)

These guarantee that the terms in (4.57) do not change when we replace A with the above 3. [ |
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