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Part I: Markov Chains and Gaussian Inputs

Multiple-access channel with conferencing encoders

My X1t
Transmitter 1
Z o
Ciz Con @ (M, M)
Mo Xt
Transmitter 2
Ry < I(X1;Y|XoU) +C4a,
2 . R < I(XyY[X1WU) +Co,
e ” X —LUJ—X (B, Ba) : Ri+ Ry < (X1 X2;Y|U) +Ch2 +Cax,
E[Xf]glpl, E[X§]§P2 Ri+ Ry < I(X1X2Y)

Capacity region maximized by Gaussian Markov triples Xlg - U9 - X2g.

» Proof requires new technique, Max-Entropy theorem not sufficient
» Technique extends to multiple antennas and multiple Markov chains



Part |I: Dirty-Paper Coding for MACs with Conferencing

St

Zt t Receiver (]\%1’1\;[2)

Transmitter 2

» Costa-type result: Transmitters can cancel non-causally known
interference

> Also: Extension of Costa’s result to single-user channels with Gaussian
interference and (not necessarily Gaussian) dependent noise



Part |:

Markov Chains and Gaussian Inputs



Gaussian MAC with Conferencing Encoders

My X1t

— Transmitter 1 Z
\% Y: (M, Ma)

Vik Vak Receiver ——

]\JQ XQ,I,

— Transmitter 2

1. phase: Conference (x sequential uses of noise-free pipes)
» Messages M) and M, independent; M, uniform over {1,... 2"F}

> Vie=o1e (ML, VETY) s Vo = oo (M2, Vi)

» Rate-limitations: Zlog|vl,k| <nCiy and Zlog|V2,k| < nCy
k=1 k=1



Gaussian MAC with Conferencing Encoders

My X1t

— Transmitter 1 Z
\% Yy (M, M>)

Vik Vak Receiver ——

Mo Xot
—> Transmitter 2

2. phase: Transmission over channel

> th:Xl’t-f—XQ’t-f—Zt; {Zt}”DNN(O,N)
> X = fre (M1, V) Xoy = for (M2, V)
» Power constraints: Ly E[X2] <P, ve{l,2}

» Capacity region Cconf:
Set of all rate-pairs (R1, R2) such that p(error) — 0 as n — oo



Gaussian MAC with Conferencing Encoders

My X1t

— Transmitter 1 Z
j& Y, (N1, 1)

Vik Vak Receiver ——

Mo Xot

— Transmitter 2

Special Cases:
> Cia = C91 =00 : full cooperation (both txs know (M, Ms))
» C12 =0, Cy; =00 : Tx 1 knows (M7, Ms), Tx 2 only My

» Ci12 = C9 =0: no conferencing



Discrete Memoryless MAC with Conferencing Encoders

]\11 Xl,f,
— Transmitter 1
Yi (M, M>)
Vik Vo ke DMMAC Receiver ————
Mo Xo¢
— Transmitter 2
Theorem (Willems'83)
CDMConf =
R1 S I(Xl;Y|X2U)+012
U (R1,Rs) : Ry < I(X2;Y|X1U) + Cn
X, -U—X D R4+ Ry < I(X1Xg;Y|U) 4 Cra + O
e Ri+ Ry < I(X1 X2, Y)

where |U| < min{| X [[Xa] + 2, V] + 3}



Capacity of AWGN MAC with Conferencing Encoders

Theorem

CConf =
B = 3 log 1-1—M + Cia
Ry, < 1log 1+M ¥ Coy
U { (Bi,Ra):
el Ri+Ry < Llog (1 ¢ RO oo,
Ri+ Ry < %log (1 + P1+P2+glpvlp2m)




Capacity of AWGN MAC with Conferencing Encoders

Theorem
CConf =

U (R17 R2
P1,P2

€[0,1]
Cia=0Cn=0
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Capacity of AWGN MAC with Conferencing Encoders

(1 ri)
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+ 012

A Cgl

Theorem
CConf =
R <
Ry, <
U ¢ (Bi, Ro):
giéflz] R+ Ry <
Ri+ Ry <
Ro
Ci2,C21 #0,
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CFuHCoop

CNoConf
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Capacity of AWGN MAC with Conferencing Encoders

Theorem
CConf =

P1,P2
€[0,1]

C(127 C(21
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IN
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IN

(Rl, Rg) o
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R+ Ro
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Superposition-Scheme Achieves Capacity (insp. by Willems'83)

» Conference: Create common message M, private messages M ,, Mo

> Transmitters split messages: My = (Mi,c, M1,) and My = (Ma,c, M2 )
AN

> Conference M1, and M. = Common Message Mo = (M, Ma.c)

> Rate of My, < Ci2 and rate of Mz < Co1



Superposition-Scheme Achieves Capacity (insp. by Willems'83)

» Conference: Create common message My, private messages M ,, Mo

C1(1)

= (1, 1)

» Superposition:
perp o

Co =
m (2™ Lp 1
» For each u™(myg) generate u” (1) i )
Cl(mo) and Cg(mo) u™(2)
. Co(1)
» Encode M, , and M, with un(27F0) T,,le "
codebooks Cq(My) and Ca (M) ,\i,@' 5
B (2,

1:3’(2”1?24’,'1




Superposition-Scheme Achieves Capacity (insp. by Willems'83)

» Conference: Create common message My, private messages M ,, Mo

C1(1)

= (1, 1)

» Superposition:
perp o

Co =
m (2™ Lp 1
» For each u™(myg) generate u” (1) i )
Cl(mo) and Cg(mo) u™(2)
. Co(1)
» Encode M, , and M, with un(27F0) T,,le "
codebooks Cq(My) and Ca (M) ,\i,@' 5
B (2,

1:3’(2”1?24’,'1

» Joint decoding: Find (7, 711 p, 12 p) such that
(u"(1h0), 2 (1h1,p, o), 2 (12,p, 10 )) Jointly typical



Also Independent Enc./Successive Dec. Achieves Capacity

» Conference as before: common M and private M ,, Ms

Co c1 Co
» Independent codes Cy, C1, Co (1) Wf (1) vl (1)
. ' (2) v (2) v (2)
» Addition of codewords: :
= A u™(Mo) + vl (M, ) S— - -
where )\1 = (1 — )\2) c [07 1] un (2 Ro) o (2" F1p) o (2" F2,p

— channel coherently combines u™(Mjp):

» Successive decoding and stripping off

» Capacity region: time-share different decoding orders




Also Independent Enc./Successive Dec. Achieves Capacity

» Conference as before: common M and private M ,, My,

Co C1 Co
» Independent codes Cy, C1, Co (1) W (1) v (1)
s . u™(2) o} (2) w3 (2)
» Addition of codewords:
x:} — )\Vun(MO) T U’T’L(My’p) n(2nRo) Xy Ry
u 2 o™ P oo (omR2,p
where Ay = (1 — \y) € [0,1] pene) 2(2n02

— channel coherently combines u™(My):

» Successive decoding and stripping off

» Decode My from Y = u"(Mo) + v (M1,p) + v5 (Map) + Z7;

subtract u™(Mo)

» Capacity region: time-share different decoding orders




Also Independent Enc./Successive Dec. Achieves Capacity

» Conference as before: common M and private M ,, My,

Co C1 Co
» Independent codes Cy, C1, Co (1) W (1) v (1)
s . u™(2) o} (2) w3 (2)
» Addition of codewords:
x:} — )\Vun(MO) T U’T’L(My’p) n(2nRo) Xy Ry
u 2 o™ P oo (omR2,p
where Ay = (1 — \y) € [0,1] pene) 2(2n02

— channel coherently combines u™(My):

» Successive decoding and stripping off

> Decode Mi , from Y§* = o7 (Mi,p) + vy (Map) + Z7;
subtract v1 (M1 p)

» Capacity region: time-share different decoding orders




Also Independent Enc./Successive Dec. Achieves Capacity

» Conference as before: common My and private My ;,, Ms p

co cy cs
» Independent codes Cy, Cy1, Co 7 (1) T T
» Addition of codewords: ) o 2) P @)
zy = Au”(Mo) + vy (My,p) :
where A; = (1 — A;) € [0,1] pi(znfo) | et foe)] L (e

— channel coherently combines u™(Mp):

» Successive decoding and stripping off
» Decode My ), from Y{" = v3 (Ma,) + Z"

» Capacity region: time-share different decoding orders




Converse

» Step 1: Willems's outer bound with power constraints:

Ceconf € U Rx,,U,Xs» (1)
X1—-U—X»
E[Xf]gpl, E[X§]§P2

where
Ry < I(Xl;Y‘XQU) +C12,
a ) R2 < I(X2;Y|X1U) +Co,
Rxivxe =4 (B, Ba) Ri+ Ry < I(X1X2;Y|U) +C12 +Co1,
Ri+ Ry < I(X1X%Y)

> Step 2: In (1) suffices to take Gaussian Markov triples X{ — U9 — X§

» Step 3: Evaluate Rx, r.x, V Gaussian Markov triples X{ — U9 — X§



Step 2: Substitution Approach

Gaussians XY — U9 — XJ optimal for Rx, v x,

?
U Rx,u.x, = U Rxs vo xg
X1—-U—-X> Xfogfxg
E[X7]<Pi, E[X3]|<P; E[(X9)?] <Py, E[(X§)2]<Ps

If there were no Markov condition:
e Gaussian = Rest Ro

all distributions on (X1, U, X2) of covariance K1
M' A 'f Q
X7 K1 K, Ky _.K@ Rx6,u9,x9
a L [ ]
| ] LR 1]
(' ® /n K5l ke 'K/ M/ U, X2
o "/ '. o /< Ry
on/y o o D

s all dist. with powers < Py, P>

Direct application of Conditional Max-Entropy Theorem [Thomas'81]



Step 2: Substitution Approach

Gaussians XY — U9 — XJ optimal for Rx, v.x,

U RX U.X ; U R ya g x9
1,U, X2 X7,U9,X5
L -U—Xs X¢-U9-Xx§
E[XT]<Pi, E[XF]<P, E[(X9)2]| <Py, E[(X§)?] <P
First try with Markov condition —  same as without Markov condition
Ry

e Gaussian Markov ® Non-Gaussian Markov

) y.\7‘f\
u [
/. = Ky K2/ K3/ W\\ RX?ngng
[ il A
iy Ks 4 Ks / Ki/ X
( fa l.. 5 (., 6 .7 n .. T,U, X2
T s /0 [ - T Ry

* - (] y/ ) .
all Markov dist. with powers < Pp, P»

Problem: VK = 0 there is a Markov triple but not necess. a Gaussian Markov!



Step 2: Substitution Approach

Gaussians XY — U9 — XJ optimal for Rx, v.x,

?
U Rx,,Ux: = U Rxs ye xg
L -U—Xs X9-Uy—xJ5
E[X?|<P1, EXZ]<P E[(X9)?]<Pi, E[(X§)?] <P,

Trick: Consider X1, V, X5, where V/(U) = E[X1|U] — E[X]

Ro
® Gaussian Markov = Non-Gaussian Markov ~ =Rest e
q X1,V(U), X2
b, y (LY
) " R6 vo x9
s /a K Ko 'K‘f)" K “o X7, VY, X3
n n ¥ D -

all Markov dist. with powers < Pj, Po

1. Rx,,v.x, larger than Rx, v x, because V = f(U)
2. For X1,V, X5 there is a Gaussian Markov of same covariance O



Step 2: Max-Correlation Approach

® Gaussian Markov " Non-Gaussian Markov R

all Markov distributions in Set Sq

all Markov dist. with powers < Pj, P>

S;: X1 — U — X, with same E[X}] ,E[X3] , E[Var(X1|U)],E[Var(X,|U)]
1. In every S; there is a Gaussian Markov!

2. Within every S, Gaussian Markov triples have the largest region

Main tool in proof of 2. (with equality in Gaussian case): ¥V X1 — U — Xo:

CovlXy, Xa] < \/E[X?) — E|Var(X, |U)]/E[X3] — E[Var(Xo|U)]



Details to Max-Correlation Approach
» With Max-Entropy & Jensen:

I(X1;Y[X2U) 11og (1+M>

IN

l\')\l—‘ N = N

N
log <1 n E[Var(]\)f(2|U)]>
log <1 . E[Var(X1|U)];E[Var(X2|U)]>

I(Xo; Y|X1U) <

I(X1 X2, Y|U) <

» With Max-Entropy & Max-correlation inequality:

I(X1X2;Y)

- %log <1+ E[X?] + E[X]%} +2E[X1X2]>

J1y [ B ELXE) 4 2 BT — ElVer(Xa )] E[XF] — ENar(Xal0)]
=5 og + N

All inequalities hold with equality for Gaussian Markov triples.



Technique Applies for More Two-User Settings

» Capacity of two-user MAC with a common and two private messages
(Slepian&Wolf'73)

» Capacity of interference channels with partial transmitter cooperation
(Maric/Yates/Kramer'07)

» Capacity of compound MAC with conferencing encoders
(Maric/Yates/Kramer'08)

> Achievable region for MAC noise-free (one-sided) feedback (Cover-Leung's1)

» OQuter bound for MAC with user-cooperation/noisy cribbing
(Tandon/Ulukus’08)

It suffices to consider Gaussian Markov triples!



Multi-Antenna AWGN MAC with Conferencing Encoders

Hy

My Xl,t

— Transmitter 1

Ze (M, M2)
Vik Vo k Ho Receiver ——

]\JQ X2,f,

— Transmitter 2

» 2. phase: Transmission over channel
> Y; = H1X1,t+H2X2,t+Zt {Zt} 11D NN(O,NldT)

» Xi¢ € R, Xy, € R*2 and Y, € R

> Hi,Ha> fixed and known to everyone

» Power constraints: LS CE[IXuel?] € P, ve{l,2}



Capacity of Multi-Antenna AWGN MAC with Conferencing
Encoders

Theorem
Cmimo,Conf
(RlaRQ) :
Ry < 3log(det (1+HiA;ATH])) + Cio
Ry < 1log(det (I 4+ HaA2ATHY)) + Can
Ri+ Ry < 1log(det (I+ HiA;ATH] + HoAsATHY) )

= U +C12 + O
Al,Az,Bl,BQ:
tr(AA]+B:B])<P | Ri+ Ry 1 log (det (I + HyA;ATHT + H,B{BIH]
tr(A2 AT +BoBI )< Py
+H2A2AJHS + HaBaBjHS
+H,B1BIHT + HQBQB{H{))

IN




Superposition-Scheme Achieves Capacity (insp. by Willems'83)

As before:
» Conference as before: common My = (M ,, My ), private M ,, Mo,
» Superposition M , or Ms , on top of My

> Jointly decode Messages My, M1 ;,, M3 p

MIMO: conferenced bits describe common beamforming direction



Multi-Antenna Converse: 3 Steps

» Step 1: Extend Willems's outer bound with power constraints to MIMO:

Cmimo, conf © U Rx,,0.X,) (2)
X1 -U—Xo
E[x?]<pi, E[x3]<P;

where
Ry < I(X1;Y|X2U) +Clg,
Rx,uxs 2 4 (R, Ra) : Ry < I(X2;Y|X1U) +Co,
R+ Ry < I(X1X2;Y|U) +Ci2 +Coy,
Ri+ Ry < I(X1X2;Y)

» Step 2: In (2) suffices to take Gaussian Markov triples Xf —U9Y - Xg
where U9 ¢ Rmin{der,diz}

» Step 3: Evaluate Rx, r.x, V Gaussian Markov triples X§ — U9 — X§
with U9 c Rmin{dthdw}



Main “Step 2": Max-Correlation Approach?

Gaussians X§ — U9 — X§ optimal also under Markov condition

?
X1 -U-X; 55— =55
E[IX. 2] <P, g%, 112]<P,

dim(U9)=min{d¢1,ds2}

» Max-correlation inequality

Cov[X1. Xa] < \/E[X?] — E[Var(X,|U)]/E[X3] — EVar(Xo|U)]

seems difficult to extend to vector case!



Main “Step 2": Substitution Approach

Gaussians X§ — U9 — X§ optimal also under Markov condition

?
U Rx,,ux, = U Rx%,Ug,xg

X1 -U-—-X, KT =558

E[IX. 2] <P, X, 1] <P,

dim(Ug )=min{d¢1,d¢2}

Choose V(U) = E[X;|U] — E[X|]
Ro
® Gaussian Markov = Non-Gaussian Markov ~ =Rest

Rx,,v, X5

/--Kl. Ka' / K/ K e
.7

all dist. satisfying power constr.

— Bound on dimensionality of V for free!



More General Markov Structures?

» Does technique also apply for more involved Markov chains?

» 3-user MAC with unicast-conferencing

» 3-user MAC with common and private messages



3-User AWGN MAC with Common and Private Messages

My, Mz, Maz, Mi23

My, Ma, M3, M2

Mg, Mag, M123

» Channel: Vi = X1+ Xot + X3+ + Z4

» Common/private messages :
> 7 independent messages M1, Mo, Ms, M2, Mi3, M2z, Mi23
» M, known to Transmitter v only

» M, , known to Transmitter v & Transmitter v/

» Mji23 known to all transmitters



3-User AWGN MAC with Common and Private Messages

My, Mo, M1z, Mi23

Mz, My2, Mas, Mi23 Xot J Y My, Ma, Mg, M2
—| Trans.% N Receiver ‘_A

Mg, Mas, M123

v

7 independent messages My, My, M3, Myo, My3, Moz, Mi23

v

of rates Ry, Ry, R3, Ri2, R13, Ro3, R123

» Capacity region: set of all rate seven-tuples s.t. p(error) — 0

v

Discrete memoryless setup: Slepian/Wolf'73 & Han



Capacity of 3 User AWGN MAC with Priv./Common Msgs
Theorem

A
U Ru x;,X2,x5 = {(RlaR2,R37R127R13;R23,R123) :
Uo,U12,U13,Us3 independent
X1—(Uo,U12,U13)—(X2,X3,Us3) Ry < I(X1;Y|X2, X3, Uo, Ui2, U13)

X2—(Uo,U12,U23)—(X1,X3,Us13) Ry < I(Xo;Y|X1, X3, Uy, U2, Ua3)
X3—(Uo,U13,U23)—(X1,X2,U12)
N R3 < I(X3;Y|X1, X2, Uo, U1, U23)
E[lX. 1] <P, ve{1,2,3}
R1 4+ Ry < I(X1,X2;Y|X3,Up, U2, U1, Us23)
Ry + R3 < I(X1, X3;Y|X2,Uo, U2, U1s, Ua3)
Ry + R3 < I(X2, X3;Y|X1,Uop, Ur2, U1s, Us3)

Ri3 + Ra3 + R1 + R2 + R3 < I(X1, X2, X3;Y|Uo, Ui2)

Ri12 + R13 + R23 + R1 + R2 + R3 < I(X1, X2, X3;Y|Uo)
Ro + Ri2 + Riz + Ra3 + R1 + R2 + R3 < I(X1,X2, X3;Y) }

Gaussian Xlg7 XQQ, Xg., Uog., Ung., Ulg?), U§3 satisfying Markov chains suffice!



Converse: Gaussians Optimal under Mult. Markov Chains

Main Step “2": Gaussians Optimal for Ry x,, x,, x;

?
U RU’XI’XZ’X3 = U RUg7X197X2g7X3g
Uo,U12,U13,Uz23 independent Uog,Ul%,UlgB,Ug3 independent
X1—(Uo,U12,U13)—(X2,X3,U23) X?*(U(JQ-U% U193>7(X2g ng-Uzgg

X2—(Uo,U12,U23)—(X1,X3,U13)
X3—(Uo,U13,U23)—(X1,X2,U12)

E[I X, 1°]<Py, ve{1,2,3}

Xg*(UOg>U192aU§?>7<X1gaX3ng5?)
ng*(Uog'rUlgSvUzgs)*<X1g1X2g=U1gz
gIxJI°]<P,, ve{1,2,3}

» Max-correlation approach: OK, but more involved correlation-ineq.

» Substitution approach: OK with following auxiliary r.v.
E[X1|Uo] — E[X)]
Vo 2 | E[X2|Uo] — E[X2] |,
E[X3|Uo] — E[X3]

A E[XV|UVV17U}_E[XV|U] /
Vo = (E[XMUW“US} B E[XV,“?O]) . ) €{(1,2),(1,3),(2,3)}



Part |l:

Dirty-Paper MAC with Conferencing
Encoders



Single-User Writing on Dirty Paper (Costa’'82)

o
M Xy 2t N
—Transmitter Receiver —

> {S,} ~ IID N(0,Q) {Z,} ~1ID N(0,N)

» Transmitter knows interference S™ £ (S1,..., S, ) non-causally

> Input power constraint: LE[||z"(M,S™)|]?] < P
Theorem (Costa'82)
Capacity is 2 log (1 + £) — Interference can be perfectly canceled!

» Extension to ergodic noise (Cohen/Lapidoth’02) or arbitrary interference
(Erez/Zamir'05)



Dirty-Paper Extension to Dependent Noise & Interfer.
> {S;} ~ IID N(0,Q)
» Noise {Z;} can depend on interference if

> it has empirical noise variance approximately N
> it is approximately orthogonal to interference {S;}

Noise is such that V suff. small § > 0 35*(6) (0,N) s.t.

P+aQ N o4 ol5__P
P+a2Q+/P+N+Q+(3—2a)e* (5) *\/ P+N“ "P+a?Q

2. limp oo Pr[|1]|Z7)2 = N| < e*(8)] =1
3. Ve > 0: limp oo Pri—e < 1 (27, 57) < e*(5)] = 1.

Theorem
_1 P :
Rate R = 3log (1+ %) achievable
— same performance as over Gaussian channel without interference

Proof: Refined analysis of scheme by Cohen/Lapidoth’02



Dirty-Paper Scheme (Cohen&Lapidoth'02)

For simplicity: S™ uniform over n-sphere of radius n@

» 2"F hins each with 27%’
codewords

w™(1,1) ,“n<2n,1?,’1>

> {u™(m,k)} 11D uniform
over n-sphere of radius

un (1: 27LR/) (20 R, 271,1?,/)

—_— —_— r= n(P + OéQQ)
Bin 1 Bin 2R > P

= PN

» Encoding: In Bin M = m choose u™(m, k*(s™)) closest to s™
& send =™ = u(m, k*(s"™)) — as™

» Decoding: Find u™ (1, k) closest to y™ and declare 7



Dirty-Paper Scheme (Cohen&Lapidoth'02)

For simplicity: S™ uniform over n-sphere of radius nQ

» 2"F hins each with 27%’
codewords

uw™(1,1) “71,<271,R1-]>

> {u™(m,k)} 11D uniform
over n-sphere of radius

un(l: 27.3’) (20 R, Qn,R/>

e ——— r=+/n(P+ a2Q)
Bin 1 Bin 2R P
" > &= prN

» Encoding: In Bin M = m choose u™(m, k*(s™)) closest to s™
& send z™ = u"(m, k*(s")) — as™

» Decoding: Find u™ (7, k) closest to 4™ and declare

For proper choice of R’,r, o scheme achieves R = % log (1 + %)
— can cancel interference perfectly



Dirty-Paper Scheme (Cohen&Lapidoth'02)

For simplicity: S™ uniform over n-sphere of radius n@

» 2R hins each with 27F
codewords

u"(1,1) un(2nR 1)

> {u"(m,k)} lID uniform
over n-sphere of radius

W (1, 2n R  n(onR_onR/
( ) et et r=+/n(P+a2Q)
Bin 1 H nR
Bin 2 =_PF
" > o=

» Encoding: In Bin M = m choose u™(m, k*(s™)) closest to s”
& send z™ = u"(m, k*(s")) — as™

» Decoding: Find u™ (1, k) closest to y™ and declare 7

» X" and u" (M, K*(S™)) depend on S™!

» Receiver can only recover u™ (M, K*(S™)) but not X™ !



Dirty-Paper MAC with Conferencing Encoders

v

— > Transmitter 1
\ 7 (M1, M)

Vl,k VZ.k Receiver ——

Mo Xo¢ /

— > Transmitter 2

b |

> {5} ~1ID N(0,Q)

» Transmitters know interference S™ £ (S, ...,S,) non-causally

> Inputs X £ (X, 1,...,X,.) at Transmitter v:

XD = foie (M, V5, 5", v,pe{1,2}, v#TD



Dirty-Paper MAC with Conferencing Encoders

v :

—> Transmitter 1
\ Ze (NI, i)

Vl,k VZ.k Receiver ——

Mo Xot /
—

Transmitter 2

b |

2 Settings:
» Transmitters learn S™ before the conference

> Vi =o1e(M, VT S")  and Vo = @16(Ma, V1, S™)

» Transmitters learn S™ after the conference



Related Results

» Dirty-paper MAC (Gel'fand/Pinsker'84 & Kim et al. '04)

» MAC with degraded message set and intereference known to only one
transmitter (Kotagiri et al."06 & Somekh-Baruch et al.’06)

» Doubly-dirty MAC (Philosof et al.’07)



Interference Non-Causally Known at Txs can be Canceled

Theorem

In two-user Gaussian MAC with conferencing encoders transmitters can
cancel non-causally known interference:

Clnt,before = Clnt,after = CConf

Special cases:
» MAC (Gel'fand/Pinsker, and Kim et al.) when C1 2 =C27 =0

» MAC with degraded message sets when C; 2 =00 and C1 =0

Remark: Achievability holds for all ergodic noises!



Converse

» Reveal interference also to receiver

» Receiver can subtract interference off

» After subtraction: interference is independent of channel — does not
influence capacity



Achievability: Independent Encoding/Successive Decoding

» Conference as before: common My = (M ¢, M), private M ,,, M> ),
> Independent dirty-paper coding of My, M1 ;,, Ms p
» Transmitters add up coded sequences

» Successive decoding and stripping off

» Independent encoding & successive decoding achieve capacity when
there is no interference

» With dirty-paper coding we achieve same performance as without
interference



Encoding: Independent Dirty-Paper Coding

» With independent dirty-paper codes (of parameters determined later)
» Encode Mp: X§& = (ul(Mo, K (S™)) — apS™)

» Encode M, ,: XI' = (ul(M,,p, K;(S)) — a,S™)

» Transmitters scale and add up codewords.

X=X AXE, A =(1-X)€0,1]

» Channel coherently adds up transmissions of Mj:

Y =X+ X+ Xy 4+ S 4 2n



Successive Decoding & Stripping Off

Y™ = (Mo, K5 (S™)) — coS™ + X7 +X5 + 5" + 2"

X

1. Decode M treating X7, X3 as noise & strip off ull(My, Ko(S™)) — Y

» Steps 1. & 2.: Noise and interference dependent but = orthogonal

» Our costa-extension: With proper parameters dirty-paper coding
achieves same performance as without interference



Successive Decoding & Stripping Off

Yo = —apS" + XX+ ST+ 2"

1. Decode M treating X7, X% as noise & strip off uZ(My, Ko(S™)) — Y

» Steps 1. & 2.: Noise and interference dependent but = orthogonal

» Our costa-extension: With proper parameters dirty-paper coding
achieves same performance as without interference



Successive Decoding & Stripping Off

Yo = X4 X2+ (1 —ag)S" + 2"

1. Decode M treating X7, X% as noise & strip off uZ(My, Ko(S™)) — Y
2. Decode M, , treating X4 as noise & strip off u} (M ,, K;(S™)) — Y

» Steps 1. & 2.: Noise and interference dependent but = orthogonal

» Our costa-extension: With proper parameters dirty-paper coding
achieves same performance as without interference



Successive Decoding & Stripping Off

Yo' = uft (M, K (S)) — a1 S" + X3 + (1 — ag)S" + 2"

X7

1. Decode M treating X7, X% as noise & strip off uZ(My, Ko(S™)) — Y
2. Decode M, , treating X4 as noise & strip off u} (M ,, K;(S™)) — Y

» Steps 1. & 2.: Noise and interference dependent but = orthogonal

» Our costa-extension: With proper parameters dirty-paper coding
achieves same performance as without interference



Successive Decoding & Stripping Off

Yln = US(M27P,K;(S)) - OéQSn +(1 — oy — al)S" + z"

X3

1. Decode M treating X7, X% as noise & strip off uZ(My, Ko(S™)) — Y
2. Decode M, , treating X4 as noise & strip off u} (M ,, K;(S™)) — Y
3. Decode Ms

» Steps 1. & 2.: Noise and interference dependent but = orthogonal

» Our costa-extension: With proper parameters dirty-paper coding
achieves same performance as without interference



Summary

» Capacity region of two-user Gaussian MAC with conferencing encoders

» New technique for proving Gaussians maximize mutual informations
under Markov conditions

» Technique useful also to optimize Slepian-Wolf region (with many users)
and multi-antenna regions

» Costa-type result for two-user Gaussian MAC with conferencing encoders

» Extension of Costa’s result to Gaussian interference and dependent (not
necessarily Gaussian) noise
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