SIC under Space-Time Regulation in Random Wireless Networks Joint work with Jean-Marie Gorce* and François Baccelli[†] ^T Telecom Paris, INRIA-ENS

Kevin Zagalo* *CITI-lab, Inria, INSA Lyon kevin.zagalo@inria.fr

Context

The growth of IoT and the move toward 5G/6G technology highlights the importance of ultra-Reliable low Communication (uRLLC) networks critical for applications. Efficient interference management is key to ensure minimal latency and the reliability of a **multi-user wireless network**. The objective of this work is to quantify the **decoding delays** within random wireless networks that have bounding conditions on the number of users in space, and the number of messages in time. We want to check if the **de**coding delay outage probability can be bounded by a given threshold $\delta > 0$

Space regulation

Let Φ be a stationary marked point process with

$$\Phi(r) = \sum_{\|x\| < r} \delta_{(x,h_x)}$$

where x is the location of users and h_x their (i.i.d. w.r.t. x) fading coefficient.

Time regulation

We use the approach introduced in [1]. Suppose

- Successive Interference Cancellation (SIC)
- Per-user received power P_x
- Noise density N_0

For user *x*, the BS **information decoding power** (with AWGN) is

which provides a decoding speed that we consider as the service that the BS is able to provide to users. Thus the arrival process A enters the network and leaves with respect to the departure process D, at a speed given by the service process *S*.

Spatial regulation is introduced in [3]. With shell regulation we study point processes with a number of inteferers at most distance R and at least distance *r* almost surely upper-bounded, i.e.

 $\Phi(R) - \Phi(r) \le \sigma + \rho(R - r) + \nu(R^2 - r^2)$

which leads to a bound of the rate for a typical user *x*:

• The departure process is

 $D(t) = \inf_{u \le t} A(t - u) + S(u)$

References

D

- [1] I. Emre Telatar and Robert G. Gallager. Combining queueing theory with information theory for multiaccess. *IEEE Journal on Selected Areas in Communications*, 13(6):963--969, 1995.
- [2] Anne Bouillard, Marc Boyer, and Euriell Le Corronc. *Deterministic net*work calculus: From theory to practical implementation. John Wiley & Sons, 2018.
- [3] Ke Feng and François Baccelli. Spatial network calculus and performance guarantees in wireless networks. *IEEE Transactions on Wireless* Communications, 2023.

• If $\rho_a(\theta) < \rho_s(\theta)$, the virtual delay W is such that

$$\mathbb{P}(W > \boldsymbol{d}) \leq \frac{e^{\theta(\boldsymbol{\sigma}_{\boldsymbol{a}}(\theta) + \boldsymbol{\sigma}_{\boldsymbol{s}}(\theta) + \boldsymbol{\rho}_{\boldsymbol{a}}(\theta) - \boldsymbol{\rho}_{\boldsymbol{s}}(\theta)\boldsymbol{d})}{1 - e^{-\theta(\boldsymbol{\rho}_{\boldsymbol{s}}(\theta) - \boldsymbol{\rho}_{\boldsymbol{a}}(\theta))}}$$

transmitters (w.r.t. receiver power)

With SIC, the decoding delay is the maximum virtual delay over the set of users with more received power \mathcal{B}_x

$$W_x^{\text{SIC}} = \max\left(W_x, \max\left(W_y, y \in \mathcal{B}_x\right)\right)$$

Scientific cooperation

Research partially founded by the ERC NEMO hosted by the Inria project MATHNETS, and the Inria project MARACAS via the PEPR Future networks.

France PhD Information Theory Workshop, 2024 @ Telecom Paris