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@ Conventional communication : reconstruct the source even with distortion =>
Rate-Distortion theory

@ Goal-oriented communication : construct the coding scheme to address some machine
learning problems

@ Question : Do we need the same method for coding?
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State of the art

@ Existing works : Rate-distortion framework with semantic and appearance
distortion'; Rate for parameter estimation?; Hypothesis testing?;
Rate-distortion-perception trade-off*.

Appearance distortion
ERER]

Semantic distortion
d.(s,5)
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State of the art

o Existing works : Rate-distortion framework with semantic and appearance distortion'; Rate
for parameter estimation?; Hypothesis testing®; Rate-distortion-perception trade-off*.

o Rate-distortion + Goal;
o Trade-off between the task and data reconstruction

@ Regression

o A fundamental statistical method;
o A rate-loss bound for general regression with side information is provided by Raginsky®;
e This bound is loose and the trade-off is not investigated.
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Problem statement
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Figure 1: Coding scheme for regression

Regression model for X and Y:

X =f(Y)+N,

where N ~ N(0, o%) independent from X and Y.

@ Training phase with sequence Z =

(U,Y) =>f;
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Problem statement

Y — Receiver — #(Y)

X

Figure 1: Inference phase

Regression model for X and Y:
X=f(Y)+N, (1)

where N ~ N(0, o%) independent from X and Y.

~

@ Training phase with sequence Z = (U, Y) => f;

@ Inference phase => Generalization error.
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Parametric regression : OLS

k—1
X=BTY*+N=> gihi(Y)+N, (2)
i=0

where Y = [ho(Y]), ..., he—1(Y;)]T and B = [Bo, -, Bk—1]" is unknown. Further define
Y  =[Y{, .., Y] € R we have
@ OLS estimation between X and Y is given by®

p=(rv’) yx. 3)
@ Properties :
E (B =8 and C[BIY] =0k (X*X*T)_l, (4)

where C [6| Y} is the covariance matrix of 3 given Y and afqy is the conditional
variance of X given Y.

6Chaptcr 7, A. C. Rencher and G. B. Schaalje, Linear models in statistics. John Wiley & Sons, 2008
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Non-parametric regression : kernel regression

X=fY)+N

without any prior knowledge of the regression form.

@ A one-dim kernel is any smooth and symmetric function K : R — R such that
Vx € R, K(x) > 0, and the following relations hold

/K(X)dx:l7 /xK(x)dx:O, and 0§/X2K(x)dx§oo.
R R R

@ The Nadaraya-Watson Kernel regression over (X, Y) is defined as '

oo Sk ()X
f(Y)= Z,LlK(YZYj) )

7L. Wasserman, All of Nonparametric Statistics (Springer Texts in Statistics). Berlin, Heidelberg: Springer-Verlag, 2006
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Non-parametric regression : kernel regression

X=f(Y)+N

without any prior knowledge of the regression form.

@ A one-dim kernel is any smooth and symmetric function K : R — R such that
Vx € R, K(x) > 0, and the following relations hold

/K(X)dX:l, /XK(X)dX:O, and 0§/X2K(X)dxgoo.
R R R

e The Nadaraya-Watson Kernel regression over (X, Y) is defined as '

) = Sk (5%
S K ()

(7)

Attention : X is not available in our setup so the regression needs to be processed with the

compressed observation U.

7L. Wasserman, All of Nonparametric Statistics (Springer Texts in Statistics). Berlin, Heidelberg: Springer-Verlag, 2006
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Definitions
Definition

A regression scheme at rate R is defined by a sequence {(e,, dn, R, L,)} with

an encoder e, : X" — {1,2,..., M,},
a decoder d,:Y" x{1,2,...M,} = U",
and the learner L,:Y" xU" — F,

such that

log M,
lim sup & <R.

n— oo

Loss function £(x, %) = (x — £)2.

For a fixed function f, the expected loss is defined as
L(f) =E[¢(X, f(Y))]
and the minimum expected loss is defined as the

L*(F) = jnf L(f) = o

Jiahui WEI — France PhD Workshop on Information theory
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Generalization error
The generalization error is defined as
G(F™, 2) = Bgy [z (x fin(z, Y/)) |z} . (10)

where (X, Y) ~ Pxy is independent from Z (i.e. (U, yn).

Objective

Derive the rate-generalization error regions

2 methods of regression : Parametric regression using OLS estimator and Kernel
regression.
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Generalization error
The generalization error is defined as
G(F",2) = Egy [ (X.7(Z,7)) 1Z]. (10)

where (X, Y) ~ Pxy is independent from Z (i.e. (um, yn).

Objective

Derive the rate-generalization error regions

2 methods of regression : Parametric regression using OLS estimator and Kernel
regression.

Our contributions :

o The rate-generalization error regions in both asymptotic and non-asymptotic regime;
o Improvement of the upper bound provided by Raginsky;
o Investigation of reconstruction vs regression trade-off.
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Outline

9 Asymptotic rate-generalization error regions
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Asymptotic Rate-generalization error regions R
An (n,M, G) code for regression is a code with |e,| = M such that Ez [G()"(”)7 Z)} <G.

Definition

A pair (R, ) is said to be achievable if an (n, M, G)—code exists such as

limsupEz {G(f("),Z)] <IL*F,Z)+6 (11)

n— oo

Recall the result of Raginsky®
LH(F, Z) <limsupE [G(F"), Z)}| < L4(F, Z) + 2Dy (R)? (12)

n— oo

8M. Raginsky, “Learning from compressed observations,” in IEEE Information Theory Workshop, 2007
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Asymptotic Rate-generalization error regions R
An (n, M, G) code for regression is a code with |e,| = M such that E» [G()"(”)7 Z)} <G.

Definition

A pair (R, ) is said to be achievable if an (n, M, G)—code exists such as

limsup Ez {G(f(”),Z)] < LNF,Z)+0 (11)

n— oo

Recall the result of Raginsky®
LH(F, Z) <limsupE [G(F"), Z)}| < L4(F, Z) + 2Dy (R)? (12)

n— oo

Theorem (Parametric & Kernel regression)

Given any rate R > 0, the pair (R, Q) is achievable for the parametric regression and kernel
regression with squared loss, for sources (X, Y) following the regression model, that is

)
limsup E [G(fW, Z)} = [*(F,Z) and §=0. (13)
n—oo
v
8M. Raginsky, “Learning from compressed observations,” in IEEE Information Theory Workshop, 2007
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Sketch of proof : Parametric regression
o Idea : quantization 4+ binning. Consider a Gaussian test channel

U=a(X+d), with ®~ N(0,03)

Remark : The method is based on prefix transmission of types® of observations +
binning of conventional WZ coding.

9S. C. Draper, “Universal incremental slepian-wolf coding,” in Proc. 42nd Allerton Conf. on Communication, Control and Computing. Citeseer, 2004
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Sketch of proof : Parametric regression
o Idea : quantization + binning. Consider a Gaussian test channel

U=a(X+d), with ®~ N(0,02)

e For a training sequences (y, u), the OLS estimator B becomes

B=aY(YYT)lYu. (14)
% Ya
where Y = | ... e ]
ylkfl y"*1

@ The generalization error can be rewritten as
G(F",Z) = 0>+ (8- B]"Ey [Y V7] 18- 4] (15)
o Let i =Ey {\7?7—}, = %YYT and C = ’/\\’""_X(%, the expected generalization error :

2 2 2 2

E, [G(ﬂ”), Z)] =%+ HT%E [Tr (g*l)} <o+ @kc (16)
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Sketch of proof : Kernel regression
@ The same test channel, we suppose the following conditions for kernel regression :
Y bounded; py continuously differentiable and positively bounded; 3f', f”;
n — co,h — 0 and nh — oco.
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Sketch of proof : Kernel regression
@ The same test channel, we suppose the following conditions for kernel regression :
Y bounded; py continuously differentiable and positively bounded; 3f', f”;
n — co,h — 0 and nh — oco.
@ The kernel regression between the sequence (y, u) becomes

R noK(Yi) Y
Py = =2 K0 (17)
21 KOF)
@ The generalization error can be rewritten as
B2 [6(F". 2)] = o+ [ G20)pv(7)d5 +[ Va(Ppr (7)35. (18)

where b,(7) = E {f('ﬂ(y, Z)— f(y)} is the bias and V,(j) = V [fw(y, 2)} is the

variance of the estimator (") with respect to the training sequence Z.
@ We proved that

ba(7) = % (2 f/(il’(’/yf)(y) + f”(y)) /Ru2K(u)du+ o(h?), (19)
(0% + 0% 2
vi9) = L@ () (20)
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Regression-Reconstruction trade-off

There is no trade-off in terms of coding rate between distortion and regression generalization
error. That is

R(G,D) = R(D) (21)

where R(G, D) is the communication rate under reconstruction and regression constraints.
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R(G,D) = R(D) (21)

where R(G, D) is the communication rate under reconstruction and regression constraints.

@ Idea of the proof : show that the scheme provided for regression achieves the optimal
rate-distortion region for reconstruction.
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Regression-Reconstruction trade-off

There is no trade-off in terms of coding rate between distortion and regression generalization
error. That is

R(G,D) = R(D) (21)

where R(G, D) is the communication rate under reconstruction and regression constraints.

@ Idea of the proof : show that the scheme provided for regression achieves the optimal
rate-distortion region for reconstruction.

e For X|Y ~ N, by replacing o3 = Do’ e obtain

o2—D"

1 o2 + o2 1 o?
®
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Outline

9 Non-asymptotic rate-distortion-generalization error regions
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Non-asymptotic rate-distortion-generalization error regions

In finite block-length n, the excess error probability is P [G(?(”),ﬁ) > G ord(X,X) > D} .
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Non-asymptotic rate-distortion-generalization error regions

In finite block-length n, the excess error probability is P [G(?(”),ﬁ) > G ord(X,X) > D} .

An (n,M, G, D,¢) code for the sequence {(e,, dn, R, FM)} and e € (0,1) is a code with
len] = M such that

P [G(ﬂ"),ﬁ) > G ord(X,X) > D} < ¢ and 'OgnM <R. (23)

Definition

For fixed G and block-length n, the finite block-length rate-loss functions with excess loss is
defined by:
R(n,G,D,e) = ir;f{EI (n,M, G, D,e) code} (24)

.
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Non-asymptotic achievable regions

Define the loss-information density i as i(U, X, Y,)A<) =

Let J = Eyyyx [l and V = C [i(U, X, ¥, X)|.

—log
log

Egy [0(%,F)(Z, V)]

Py(U)
Pyix(U|X)
Py(U)

d(X, X)

Pyy (U[Y)

The dispersion region is defined as .7 (V,¢) := {b € R : Pr(B < b) > 1 — &} with

B ~ N(0, V).
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Non-asymptotic achievable regions

Define the loss-information density i as i(U, X, Y,)A<) =

Let J = Eyyyx [l and V = C [i(U, X, ¥, X)|.

—log

log

Py(U)
Pyix(U|X)
Py(U)

Egy [0(%,F)(Z, V)]

d(X, X)

Pyy (U[Y)

The dispersion region is defined as .7 (V,¢) := {b € R : Pr(B < b) > 1 — &} with

B ~ N(0, V).

For every 0 < € < 1, and n sufficiently large, the (n, €)-rate-generalization error function

satisfies:

Ry(n,e, G, D) ginf{M <J+ FWoe) | 2'°g”14> }
n

NG
withM=[1 1 0 0].

(25)
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Sketch of proof

Consider the following sets similar to that of [WKT15]°
Ta(D) :={(x,%) : d(x,X) < D}, (28)

{
Te(6) = {(uy) : Exy [0X. 7"z V)| < 6} (29)

9S. Watanabe, S. Kuzuoka, and V. Y. Tan, “Nonasymptotic and second-order achievability bounds for coding with side-information,” IEEE Transactions on Information Theory,
vol. 61, no. 4, pp. 1574-1605, 2015
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Sketch of proof

Consider the following sets similar to that of [WKT15]°

) = {(07) 10g 2 o L (20
Titoe) = { (w1 1og 2 <.}, (1)
Ta(D) :={(x,%) : d(x,X) < D}, (28)
To(6) = {(u,y) : Exy [UX FO 2, V)] < 6} (29)

For arbitrary constants ~yp,7c, G, D > 0, and positive integer N, there exists an (n, M, G, D, )
code satisfying

e <Puxyl(u,y) € (%) U (u,x) € Te(1e)® U (u,y) € Tg(G)° U (x, %) € Ta(D)]

P i (30)
2wM] T2V N
4
95 Watanabe, S. Kuzuoka, and V. Y. Tan, “Nonasymptotic and second-order achievability bounds for coding with side-information,” IEEE Transactions on Information Theory,

vol. 61, no. 4, pp. 1574-1605, 2015
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Numerical results

—— n=50,eps =0.1
—-- n=100, eps = 0.01
—— n=100, eps = 0.1
—-- n=100, eps = 0.2
—— n=1000, eps = 0.1
—— Asymptotic

0z

0.4 0.6 08 1.0 12 14

Figure 2: Rate-generalization error region for
polynomial regression labeled on the
block-length n and the excess probability €.

18
—— n=50, eps = 0.1
--- n=100, eps = 0.01
164 —— n=100, eps = 0.1
—-- n=100, eps = 0.2
—— n=1000, eps = 0.1
144 —— Asymptotic
b
0 124
10
0.8 1
0.6 T T T T T T T
0.0 02 0.4 0.6 0.8 10 12 14

Figure 3: Rate-generalization error region for
kernel regression labeled on the block-length n

and the excess loss probability ¢.
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Non-asymptotic trade-off

For 0 < e < 1 and n sufficiently large, there exists an achievable rate-distortion-generalization
error region such that

Ry(n, G, D,e) > max{Rp(n, G,€), Rp(n, D,€)}. (31)

And there is no trade-off between generalization error of regression and reconstruction.

By Gaussian approximation, the dispersion matrix ./(V, ¢) is determined by the correlation
matrix V. We show that

Cov (]E;(;, [e(x, F(z, v, d(X,X)|Z = z) ~0 (32)
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Distortion-generalization error region

18 i 18 ;
I !
i !
i i
I 1
L6 I 161 T
I 1
i !
! i
i i
14 4 14 4 !
L — I
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o 12 - o2y e
—— n=50,€=0.1, R =1 bits per symbol —— n=50, &£ = 0.1, R = 1 bits per symbol
101 --- n=50,£= 0.1 R = 0.3 bits per symbol 104 =-- n=50,& = 0.1, R = 0.3 bits per symbol
—— n=100, € = 0.01, R = 1 bits per symbol —— n=100, € = 0.01, R = 1 bits per symbol
08 100, £ = 0.01, R = 0.3 bits per symbol 08|~ M=100.€ = 0.01. R = 0.3 bits per symbol
—— n=100, € = 0.1, R = 1 bits per symbol " | — n=100, £ = 0.1, R = 1 bits per symbol
——- n=100, € = 0.1, R = 0.3 bits per symbol —-- n=100, € = 0.1, R = 0.3 bits per symbol
o6 0.‘4 O:G D.‘B 1.‘0 l.IZ 14 oe 014 O.‘G OIB 1.‘0 l.‘Z 14
D D
Figure 4: Distortion-generalization error region Figure 5: Distortion-generalization error region
for polynomial regression on the block-length for kernel regression on the block-length n,
n, the excess loss probability € and rate R. the excess loss probability € and rate R.
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@ Practical coding scheme
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Practical coding scheme for parametric regression

X U Regression 6
Scalar LDPC « | "ed
P quantizer > Encoder = from
Syndrom
LDPC 5‘(
Encoder A Decoder
Decoder *
Y ]
Figure 6: Practical coding scheme using LDPC codes
@ Encoder

e Scalar quantizer over 29 levels (Lloyd-max or uniform)
o LDPC encoder : s = Hu with LDPC codes in GF(q)

@ Decoder

o Maximum Likelihood parameter estimation over the syndrom s : 3 = arg maxgcre P(sy)

o LDPC decoder from estimated 3

Jiahui WEI — France PhD Workshop on Information theory
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Numerical results for polynomial regression

("]
o R =1 bit/symbol
o

Lower bound : o2; Upper bound : o2 + %€

Figure 7: Generalization error with respect to o for polynomial regression of order 3 with rate R =1

bit/symbol

Gen. Error

0.00 ¢

t |——From U (Lloyd-Max quantizer)

t [-=--From U (unif. quantizer)

Y ~U[-1,1],X =g+ BY + Y2+ N
n = 100, regular (3, 6)-LDPC code in GF(4), with rate r = 1

2

(6°+03)
n

——From S (Lloyd-Max quantizer)
----From S (unif. quantizer)
——From U (Lloyd-Max quantizer)

—— Lower bound
——Upper bound

L L L L
0.2 0.4 0.6 0.8
o
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Numerical results for logistic regression

° Ywu[—l,l],X:BO+]£7lw+%+N

e n =100, regular (3, 6)-LDPC code in GF(4), with rate r = }

e R =1 bit/symbol

0.8

0.6

Gen. Error

0.2 |

0.4

——From U (unif. quantizer)
——From S (unif. quantizer)
——From U (unif. quantizer)

—— Lower bound
——Upper bound

L L
0.2 0.4
o

L L
0.6 0.8

Figure 8: Generalization error with respect to o for logistic regression of order 3 with rate R =1

bit/symbol
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Outline

© Conclusion and perspectives
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Conclusion

@ Conclusions :
o In asymptotic regime: R(D, G) = R(D);
o In non-asymptotic regime: an achievable region with excess probability is provided;
o No trade-off between regression and reconstruction;
o Learning over compressed data without any prior decompression is possible;
o Same coding method can be used for regression.

@ Ongoing work :
e Semantic communication with decoder’s side information;
o Classification as an example.
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Current work : Classification

ds(s, 9)
| — §
| Px|s
S > X 3| Encoder 3 Decoder
: T )
| d(x,5) ¥ rX

Figure 9: Coding scheme for semantic WZ coding

We consider the following problem

R(D,Ds) = ( in ) I(X; U]Y). (33)
plu|x):
E [d(X,X)| <D

E |d'(X,5)| < D,

with d’(x, §) = ﬁ Yees P(x,5)ds(s,8), ds(s™,8") = 137 | ds(si, &) and

d(x", %") = 15" d(x;, %)

n
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Thank You!

J. Wei, E. Dupraz, and P. Mary, “Distributed source coding for parametric and non-parametric
regression,” arXiv preprint arXiv:2404.18688, 2024
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