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Context

X Encoder Channel Decoder1 X̂

Conventional communication : reconstruct the source even with distortion =>
Rate-Distortion theory

Goal-oriented communication : construct the coding scheme to address some machine
learning problems

Question : Do we need the same method for coding?
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State of the art

Existing works : Rate-distortion framework with semantic and appearance
distortion1; Rate for parameter estimation2; Hypothesis testing3;
Rate-distortion-perception trade-off4.

Rate-distortion + Goal;
Trade-off between the task and data reconstruction

Regression

A fundamental statistical method;
A rate-loss bound for general regression with side information is provided by Raginsky5;
This bound is loose and the trade-off is not investigated.

1J. Liu, W. Zhang, and H. V. Poor, “A rate-distortion framework for characterizing semantic information,” in 2021 IEEE International Symposium on Information Theory
(ISIT). IEEE, 2021, pp. 2894–2899.

2M. El Gamal and L. Lai, “Are slepian-wolf rates necessary for distributed parameter estimation?” in 2015 53rd Annual Allerton Conference on Communication, Control, and
Computing (Allerton). IEEE, 2015

3G. Katz, P. Piantanida and M. Debbah, ”Distributed Binary Detection With Lossy Data Compression,” in IEEE Transactions on Information Theory. Aug. 2017

4Y. Blau and T. Michaeli, “Rethinking lossy compression: The rate-distortion-perception tradeoff,” in International Conference on Machine Learning. PMLR, 2019

5M. Raginsky, “Learning from compressed observations,” in IEEE Information Theory Workshop, 2007
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Problem statement

X f̂Encoder Decoder Regression

Y

U

Figure 1: Coding scheme for regression

Regression model for X and Y :
X = f (Y ) + N, (1)

where N ∼ N (0, σ2) independent from X and Y .

1 Training phase with sequence Z = (U ,Y ) => f̂ ;

2 Inference phase => Generalization error.
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Regression model for X and Y :
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Parametric regression : OLS

X = βTY ⋆ + N =
k−1∑
i=0

βihi (Y ) + N, (2)

where Y ⋆
j = [h0(Yj), ..., hk−1(Yj)]

T and β = [β0, · · · , βk−1]
T is unknown. Further define

Y ⋆ = [Y ⋆
1 , ...,Y

⋆
n ] ∈ Rk×n, we have

OLS estimation between X and Y is given by6

β̂ =
(
Y ⋆Y ⋆T

)−1

Y ⋆X . (3)

Properties :

E
[
β̂
]
= β and C

[
β̂|Y

]
= σ2

X |Y

(
Y ⋆Y ⋆T

)−1

, (4)

where C
[
β̂|Y

]
is the covariance matrix of β̂ given Y and σ2

X |Y is the conditional

variance of X given Y .

6Chapter 7, A. C. Rencher and G. B. Schaalje, Linear models in statistics. John Wiley & Sons, 2008
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Non-parametric regression : kernel regression

X = f (Y ) + N (5)

without any prior knowledge of the regression form.

A one-dim kernel is any smooth and symmetric function K : R → R such that
∀x ∈ R,K (x) ≥ 0, and the following relations hold∫

R
K (x)dx = 1,

∫
R
xK (x)dx = 0, and 0 ≤

∫
R
x2K (x)dx ≤ ∞. (6)

The Nadaraya-Watson Kernel regression over (X ,Y ) is defined as 7:

f̂ (Y ) =

∑n
j=1 K

(
Y−Yj

h

)
Xj∑n

j=1 K
(

Y−Yj

h

) . (7)

7L. Wasserman, All of Nonparametric Statistics (Springer Texts in Statistics). Berlin, Heidelberg: Springer-Verlag, 2006.
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(
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Attention : X is not available in our setup so the regression needs to be processed with the
compressed observation U.

7L. Wasserman, All of Nonparametric Statistics (Springer Texts in Statistics). Berlin, Heidelberg: Springer-Verlag, 2006.
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Definitions
Definition

A regression scheme at rate R is defined by a sequence {(en, dn,R,Ln)} with

an encoder en : X n −→ {1, 2, ...,Mn},
a decoder dn : Yn × {1, 2, ...,Mn} → Un,

and the learner Ln : Yn × Un → F ,

such that

lim sup
n→∞

logMn

n
≤ R.

Loss function ℓ(x , x̂) = (x − x̂)2.
For a fixed function f , the expected loss is defined as

L(f ) = E [ℓ(X , f (Y ))] (8)

and the minimum expected loss is defined as the

L⋆(F) = inf
f∈F

L(f ) = σ2 (9)
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Generalization error

The generalization error is defined as

G (f̂ (n),Z ) = EX̃ Ỹ

[
ℓ
(
X̃ , f̂ (n)(Z , Ỹ )

)
|Z

]
. (10)

where (X̃ , Ỹ ) ∼ PXY is independent from Z (i.e.
(
Un,Y n

)
).

Objective

Derive the rate-generalization error regions

2 methods of regression : Parametric regression using OLS estimator and Kernel
regression.

Our contributions :

The rate-generalization error regions in both asymptotic and non-asymptotic regime;
Improvement of the upper bound provided by Raginsky;
Investigation of reconstruction vs regression trade-off.
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Asymptotic Rate-generalization error regions
An (n,M,G) code for regression is a code with |en| = M such that EZ

[
G (f̂ (n),Z )

]
≤ G .

Definition

A pair (R, δ) is said to be achievable if an (n,M,G )−code exists such as

lim sup
n→∞

EZ

[
G (f̂ (n),Z )

]
≤ L∗(F ,Z ) + δ (11)

Recall the result of Raginsky8

L⋆
1
2 (F ,Z ) ≤ lim sup

n→∞
E
[
G (f̂ (n),Z )

1
2

]
≤ L⋆

1
2 (F ,Z ) + 2DX |Y (R)

1/2 (12)

Theorem (Parametric & Kernel regression)

Given any rate R > 0, the pair (R, 0) is achievable for the parametric regression and kernel
regression with squared loss, for sources (X ,Y ) following the regression model, that is

lim sup
n→∞

E
[
G (f̂ (n),Z )

]
= L∗(F ,Z ) and δ = 0. (13)

8M. Raginsky, “Learning from compressed observations,” in IEEE Information Theory Workshop, 2007
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Sketch of proof : Parametric regression
Idea : quantization + binning. Consider a Gaussian test channel

U = α(X +Φ), with Φ ∼ N (0, σ2
Φ)

Remark : The method is based on prefix transmission of types9 of observations +
binning of conventional WZ coding.

For a training sequences (y ,u), the OLS estimator β̂ becomes

β̂ = α−1(YY T )−1Yu. (14)

where Y =

 y0
1 ... y0

n

... ... ...

yk−1
1 ... yk−1

n

.
The generalization error can be rewritten as

G (f̂ (n),Z ) = σ2 + [β − β̂]TEỸ

[
Ỹ Ỹ T

]
[β − β̂] (15)

Let Σ̃ = EỸ

[
Ỹ Ỹ

T
]
, Σ = 1

nYY T and C = λmax (Σ̃)

λmin(Σ̃)
, the expected generalization error :

EZ

[
G (f̂ (n),Z )

]
= σ2 +

σ2 + σ2
Φ

n
E
[
Tr

(
Σ̃Σ−1

)]
≤ σ2 +

(σ2 + σ2
Φ)

n
kC (16)

9S. C. Draper, “Universal incremental slepian-wolf coding,” in Proc. 42nd Allerton Conf. on Communication, Control and Computing. Citeseer, 2004
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[
Ỹ Ỹ
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Sketch of proof : Kernel regression
The same test channel, we suppose the following conditions for kernel regression :
Y bounded; pY continuously differentiable and positively bounded; ∃f ′, f ′′;
n → ∞,h → 0 and nh → ∞.

The kernel regression between the sequence (y ,u) becomes

f̂ (y) =

∑n
i=1 K ( y−yi

h ) uiα∑n
i=1 K ( y−yi

h )
. (17)

The generalization error can be rewritten as

EZ

[
G (f̂ (n),Z )

]
= σ2+

∫
b2n(ỹ)pY (ỹ)dỹ +

∫
Vn(ỹ)pY (ỹ)dỹ . (18)

where bn(ỹ) = E
[
f̂ (n)(ỹ ,Z )− f (ỹ)

]
is the bias and Vn(ỹ) = V

[
f̂ (n)(ỹ ,Z )

]
is the

variance of the estimator f̂ (n) with respect to the training sequence Z.
We proved that

bn(ỹ) =
h2

2

(
2
f ′(ỹ)p′Y (ỹ)

pY (ỹ)
+ f ′′(ỹ)

)∫
R
u2K (u)du + o(h2), (19)

Vn(ỹ) =
(σ2 + σ2

Φ)

pY (ỹ)nh

∫
R
K 2(u)du + o

(
1

nh

)
. (20)
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f ′(ỹ)p′Y (ỹ)
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Regression-Reconstruction trade-off

Corollary

There is no trade-off in terms of coding rate between distortion and regression generalization
error. That is

R(G ,D) = R(D) (21)

where R(G ,D) is the communication rate under reconstruction and regression constraints.

Idea of the proof : show that the scheme provided for regression achieves the optimal
rate-distortion region for reconstruction.

For X |Y ∼ N , by replacing σ2
Φ = Dσ2

σ2−D , we obtain

Rb(D) =
1

2
log

(
σ2 + σ2

Φ

σ2
Φ

)
=

1

2
log

(
σ2

D

)
(22)
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Non-asymptotic rate-distortion-generalization error regions

In finite block-length n, the excess error probability is P
[
G (f̂ (n),β) ≥ G or d(X , X̂ ) ≥ D

]
.

Definition

An (n,M,G ,D, ε) code for the sequence {(en, dn,R, f̂ (n))} and ε ∈ (0, 1) is a code with
|en| = M such that

P
[
G (f̂ (n),β) ≥ G or d(X , X̂ ) ≥ D

]
≤ ε and

logM

n
≤ R. (23)

Definition

For fixed G and block-length n, the finite block-length rate-loss functions with excess loss is
defined by:

R(n,G ,D, ε) = inf
R
{∃ (n,M,G ,D, ε) code} (24)
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Non-asymptotic achievable regions

Define the loss-information density i as i (U,X ,Y , X̂ ) :=



− log
PU|Y (U|Y )

PU(U)

log
PU|X (U|X )

PU(U)

EX̃ Ỹ

[
ℓ(X̃ , f̂ (n)(Z, Ỹ ))

]
d(X , X̂ )


,

Let J = EUXY X̂ [i ] and V = C
[
i (U,X ,Y , X̂ )

]
.

The dispersion region is defined as S (V , ε) := {b ∈ Rk : Pr(B ≤ b) ≥ 1− ε} with
B ∼ N (0,V ).

Theorem

For every 0 < ε < 1, and n sufficiently large, the (n, ε)-rate-generalization error function
satisfies:

Rb(n, ε,G ,D) ≤ inf

{
M

(
J +

S (V , ε)√
n

+
2 log n

n
14

)}
(25)

with M = [1 1 0 0].

Jiahui WEI — France PhD Workshop on Information theory 18/30



Non-asymptotic achievable regions

Define the loss-information density i as i (U,X ,Y , X̂ ) :=



− log
PU|Y (U|Y )

PU(U)

log
PU|X (U|X )

PU(U)

EX̃ Ỹ
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Sketch of proof
Consider the following sets similar to that of [WKT15]9

Tp(γp) :=
{
(u, y) : log

PY |U(y |u)
PY (y)

≥ γp

}
, (26)

Tc(γc) :=
{
(u, x) : log

PX |U(x |u)
PX (x)

≤ γc

}
, (27)

Td(D) := {(x , x̂) : d(x , x̂) ≤ D} , (28)

Tg (G ) :=
{
(u, y) : EX̃ Ỹ

[
ℓ(X̃ , f̂ (n)(z, Ỹ ))

]
≤ G

}
. (29)

Theorem

For arbitrary constants γp, γc ,G ,D ≥ 0, and positive integer N, there exists an (n,M,G ,D, ε)
code satisfying

ε ≤PUXY X̂ [(u, y) ∈ Tp(γp)c ∪ (u, x) ∈ Tc(γc)c ∪ (u, y) ∈ Tg (G )c ∪ (x , x̂) ∈ Td(D)c ]

+
N

2γp |M|
+

1

2

√
2γc

N
. (30)

9S. Watanabe, S. Kuzuoka, and V. Y. Tan, “Nonasymptotic and second-order achievability bounds for coding with side-information,” IEEE Transactions on Information Theory,
vol. 61, no. 4, pp. 1574–1605, 2015.
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Numerical results

Figure 2: Rate-generalization error region for
polynomial regression labeled on the
block-length n and the excess probability ε.

Figure 3: Rate-generalization error region for
kernel regression labeled on the block-length n
and the excess loss probability ε.
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Non-asymptotic trade-off

Corollary

For 0 < ε < 1 and n sufficiently large, there exists an achievable rate-distortion-generalization
error region such that

Rb(n,G ,D, ε) > max{Rb(n,G , ε),Rb(n,D, ε)}. (31)

And there is no trade-off between generalization error of regression and reconstruction.

By Gaussian approximation, the dispersion matrix S (V , ε) is determined by the correlation
matrix V . We show that

Cov
(
EX̃ Ỹ

[
ℓ(X̃ , f̂ (n)(Z, Ỹ ))

]
, d(X , X̂ )|Z = z

)
= 0 (32)
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Distortion-generalization error region

Figure 4: Distortion-generalization error region
for polynomial regression on the block-length
n, the excess loss probability ε and rate R.

Figure 5: Distortion-generalization error region
for kernel regression on the block-length n,
the excess loss probability ε and rate R.
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4 Practical coding scheme

5 Conclusion and perspectives
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Practical coding scheme for parametric regression

Figure 6: Practical coding scheme using LDPC codes

Encoder

Scalar quantizer over 2q levels (Lloyd-max or uniform)
LDPC encoder : s = Hu with LDPC codes in GF (q)

Decoder

Maximum Likelihood parameter estimation over the syndrom s : β̂ = argmaxβ∈Rp P(s|y)
LDPC decoder from estimated β̂
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Numerical results for polynomial regression
Y ∼ U [−1, 1],X = β0 + β1Y + β2Y

2 + N
n = 100, regular (3, 6)-LDPC code in GF(4), with rate r = 1

2
R = 1 bit/symbol

Lower bound : σ2; Upper bound : σ2 +
kC(σ2+σ2

Φ)
n

Figure 7: Generalization error with respect to σ for polynomial regression of order 3 with rate R = 1
bit/symbol
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Numerical results for logistic regression
Y ∼ U [−1, 1],X = β0 +

β1

1+e−2Y + β2

1+e−4Y + N

n = 100, regular (3, 6)-LDPC code in GF(4), with rate r = 1
2

R = 1 bit/symbol

Figure 8: Generalization error with respect to σ for logistic regression of order 3 with rate R = 1
bit/symbol
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Conclusion

Conclusions :

In asymptotic regime: R(D,G) = R(D);
In non-asymptotic regime: an achievable region with excess probability is provided;
No trade-off between regression and reconstruction;
Learning over compressed data without any prior decompression is possible;
Same coding method can be used for regression.

Ongoing work :

Semantic communication with decoder’s side information;
Classification as an example.
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Current work : Classification

S X

X̂

Ŝ

Encoder Decoder

Y

PX |S

ds(s, ŝ)

d(x , x̂)

Figure 9: Coding scheme for semantic WZ coding

We consider the following problem

R (D,Ds) = inf
p(u | x) :

E
[
d(X , X̂ )

]
≤ D

E
[
d ′(X , Ŝ)

]
≤ Ds

I (X ;U|Y ). (33)

with d ′(x , ŝ) = 1
p(x)

∑
s∈S p(x , s)ds(s, ŝ), ds(sn, ŝn) = 1

n

∑n
i=1 ds(si , ŝi ) and

d(xn, x̂n) = 1
n

∑n
i=1 d(xi , x̂i ).
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Thank You!

J. Wei, E. Dupraz, and P. Mary, “Distributed source coding for parametric and non-parametric
regression,” arXiv preprint arXiv:2404.18688, 2024
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