Optimal Activation Functions via Causal Wyner-Ziv Coding

Hui-An Shen (based on joint work with Jean-Pascal Pfister and Robert Graczyk)

France PhD Workshop on Information Theory

Efficient representation of stimuli and optimal estimation

Membrane potential \longrightarrow action potential

Existing frameworks in neuroscience

- Stimuli-generating distribution is completely known: optimal Bayes-estimation
- Restricted family of error measures (p-norms)
- Restricted family of activation functions (Gaussian, logistic function)

Objective

For a tolerable error (distortion value) under a specified distortion measure $\rho: \mathcal{X} \times \hat{\mathcal{X}} \to \mathbb{R}_{\geq 0}$, minimize the "description rate" of the static r.v. \mathcal{X} or stochastic process X_t .

The model I

• Source coding with causal side information at the decoder

- Continuous-time $\{X'_t\}$
 - $\{Y'_t\}$ inhomogeneous Poisson process of intensity $h'(X'_t)$

• Let
$$X_i = X'_{i\Delta}$$
, $Y_i = Y'_{(i+1)\Delta} - Y'_{i\Delta}$

- Y_i is Poisson-distributed with rate $h(X_i) \approx h'(X'_{i\Delta})\Delta$
 - Activation function $h \colon \mathcal{X} \to \mathbb{R}_{\geq 0}$

The model II

Encoder Side information Decoder $\{dec_i\}$

$$\mathcal{X}^{n} \rightarrow \{1, 2, \dots, \lfloor 2^{nR} \rfloor\}, X^{n} \mapsto M$$

causal pulse sequence Y^{n}
 $dec_{1} : (M, Y_{1}) \mapsto \hat{X}_{1}$
 $dec_{2} : (M, Y_{1}, Y_{2}) \mapsto \hat{X}_{2}$

• Reconstruction error:
For
$$\rho: \mathcal{X} \times \hat{\mathcal{X}} \to \mathbb{R}_{\geq 0}$$
, and threshold $D \geq 0$,
require that $\frac{1}{n} \sum_{i=1}^{n} \mathbb{E} \left[\rho(X_i, \hat{X}_i) \right] \leq D$.

 \longrightarrow Characterize the least description rate for general sources with causal SI: the causal Wyner-Ziv problem

The causal Wyner-Ziv rate-distortion function

 $X_i, Y_i \stackrel{\text{iid}}{\sim} P_{XY}$ (source sequence $X^n \in \mathcal{X}^n$, side information sequence $Y^n \in \mathcal{Y}^n$)

Theorem (Weissmann and El Gamal 2006) For $D \ge \mathbb{E} [\min_{\hat{x}} \rho(X, \hat{x})],$

$$R(D) = \min_{\substack{P_{W|X}, f: (W, Y) \mapsto \hat{X} \\ \mathbb{E}[\rho(X, \hat{X})] \le D}} I(X; W)$$

where the expectation and MI are computed w.r.t. $p_{XYW\hat{X}}(x, y, w, \hat{x}) = P_{XY}(x, y)P_{W|X}(w|x)\mathcal{I} \{\hat{x} = f(y, w)\}.$ (*)

We define an optimal (neuronal) communication system as one operating at

- 1) arbitrarily close to R(D)
- ⁽²⁾ arbitrarily close to the capacity-cost function for the effective channel $P^*_{W|X}$ defined implicitly by the optimization.
- \longrightarrow Find *h* (optimal) that satisfies (1) and (2)
 - Recall that Y_i is Poisson-distributed with rate $h(X_i)$, thus we identify $h: \mathcal{X} \to \mathbb{R}_{\geq 0}$ with the cost function, and cost = $\mathbb{E}[h(\mathcal{X})]$.

Results I: Optimal activation functions as relative entropy

Lemma (Gastpar, Rimoldi, and Vetterli 2003)

Let $c: \mathcal{X} \to \mathbb{R}_{\geq 0}$ be an input cost function. The input distribution P_X achieves the capacity of the channel $P_{W|X}$ at input cost $\mathbb{E}[c(X)]$ if and only if

$$c(x) = c_0 D_{\mathsf{KL}} \left(P_{W|X}(\cdot|x) \| P_W(\cdot) \right) + c_1 \tag{1}$$

whenever $P_X(x) > 0$, where $c_0 \ge 0$ and c_1 are constants.

And $P_W(\cdot) = \mathbb{E}[P_{W|X}(\cdot|X)]$ is the marginal distribution of W.

 At optimality, P_X is capacity-achieving for the channel P^{*}_{W|X} implicitly defined by optimization (*)

Results I (cont'd)

Theorem (S., Pfister, Graczyk 2024)

The optimal activation function h^* for the source distribution P_X , distortion function ρ , and distortion threshold D is given by

$$h^{*}(x) = c_{0} D_{\mathsf{KL}} \left(P^{*}_{W|X}(\cdot|x) \| P^{*}_{W}(\cdot) \right) + c_{1}$$
(2)

for suitable constants $c_0 \ge 0$ and c_1 .

Results II: Existence of self-consistent optimal activation functions

Theorem (S., Pfister, Graczyk 2024)

Let $D_0 = \inf \{D \ge 0 : R(D) = 0\}$ be well-defined. There exists a distortion value $D \in [\mathbb{E}[\min_{\hat{x}} \rho(X, \hat{x})], D_0)$ and a continuous activation function h s.t. $h^*(x) = h(x)$.

Proof: Apply Banach's fixed-point theorem to a complete metric space of (bounded) continuous functions $(C([0,1] \rightarrow \mathbb{R}), d_{\infty})$.

Results III: The cost-distortion function

Definition (cost-distortion function)

Let $h_D^*: \mathcal{X} \to \mathbb{R}_{\geq 0}$ be the optimal activation function as defined in (2) with choice of constants $c_0 = 1$ and $c_1 = 0$. We define the cost-distortion function as

 $E^*(D) \triangleq \mathbb{E}[h_D^*(X)].$

Theorem (S., Pfister, Graczyk 2024)

 $E^*(D)=R(D).$

Proof:

$$\begin{aligned} E^*(D) &= \mathbb{E}\left[h_D^*(X)\right] \\ &= \mathbb{E}\left[D_{\mathsf{KL}}\left(P_{W|X}^*(\cdot|X)\|P_W^*(\cdot)\right)\right] \\ &= l(P_X;P_{W|X}^*) = R(D). \end{aligned}$$

Conclusion and future work

- Novel theoretical framework for the computation of optimal activation function
 - Action potentials as side information
 - Optimal activation function depends on tolerable distortion and takes the form of relative entropy

$$h^*(x) = c_0 D_{\mathsf{KL}} \left(P^*_{W|X}(\cdot|x) \| P^*_W(\cdot)
ight) + c_1$$

- Generalize to functions beyond bounded continuous real functions
- Compute examples for $h^* \in C([0,1] \to \mathbb{R})$ and compare to biological activation functions