
1/35

Computational Methods for a Class of Constrained
Rate-Distortion Functions

Giuseppe Serra
Joint work with: P. A. Stavrou and M. Kountouris

EURECOM

Communication Systems Department

June 7, 2024

June 7, 2024 1 / 35



2/35

Outline

1 Rate-Distortion-Perception Tradeo�

2 RDPF for Gaussian Sources

Scalar Sources

Vector Sources

Perfect Realism Regime

3 Output-Constrained RDF

Copulas, Information Geometry and projections

Information Theoretic Optimization

Main Results

Numerical Examples

June 7, 2024 2 / 35



3/35
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The Rate-Distortion Problem

Encoder

e( )

Decoder

g( )

Distortion D

Rate-Distortion Function

R(D) = min
P
X|X̂

I(X, X̂)

s.t. E [d(x, x̂)] ≤ D

D

R(D)
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Human Perception, Semantic and Statistical Divergences

Objective:
"Show the picture of a

cat with a hat."

High fidelity to the
original sample.

Hardly perceivable
semantic

characteristics. 

Low fidelity to the
original sample.

Maintains recognizable
semantic

characteristics.

In various domains, perceptual quality has been associated with
the deviation of the distribution of output signals from the

distribution of the information source1.

1Y. Blau and T. Michaeli, �Rethinking lossy compression: The

rate-distortion-perception tradeo�,� in International Conference on Machine Learning.
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d(x,y)

Distortion : How different are they? Perception : How different are the
distribution they belong to?

d(x,z)
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Semantic Quality 2

Good Perceptual Quality - High Distortion

Bad Perceptual Quality - Low Distortion

Good Perceptual Quality ≠ Low Distortion

2E. Agustsson, M. Tschannen, F. Mentzer, R. Timofte, L. Van Gool, Generative adversarial
networks for extreme learned image compression, IEEE/CVF International Conference on
Computer Vision (ICCV), 2019, pp. 221-231
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Rate-Distortion-Perception Problem

Encoder

e( )

Decoder

g( )

Distortion

Perception

Perceptual quality indicator adds to the classical rate distortion
problem some human-centric aspects (e.g., human perception of

some visualization)
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Problem Formulation

Given an alphabet set X , we consider an I.I.D. source sequence of random
variables Xt : t = 1 . . . ,∞ with distribution pX .

(Encoder) fE : Xn → W (Decoder) gD : W → X̂n (1)

where W = {1, 2, . . . ,M}, M ∈ N+.

For a single-letter distortion metric d : X × X̂ → R+
0 and a divergence

measure D : P ×Q → R+
0 , we de�ne the distortion �delity criteria ∆ and

perception �delity criteria Φ as:

∆ ≜ E

[
1

n

n∑
i=1

d(xi, x̂i)

]
Φ ≜

1

n

n∑
i=1

D(pXi
||qX̂i

).

De�nition - Operational Rates

Given a distortion level D > 0 and a perception constraint P > 0, a rate R is said
to be (D,P )-achievable if for an arbitrary ϵ > 0, there exists, for large enough n, a
lossy source code (n,M,∆,Φ) with M ≤ 2n(R+ϵ) such that ∆ ≤ D + ϵ and
Φ ≤ P + ϵ. Then, we de�ne

Rop(D,P ) ≡ inf{R : (R,D, P ) is achievable}. (2)
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De�ntion - Rate-Distortion-Perception Function

For a given source distribution pX , a single-letter distortion measure d(·, ·) and a
divergence measure D(·||·), the RDPF is characterized as follows:

R(D,P ) = min
P
X̂|X

I(X, X̂)

s.t. E [d(x, x̂)] ≤ D D(pX ||qX̂) ≤ P

(3)

where D ∈ [Dmin, Dmax] ⊂ (0,∞), P ∈ [Pmin, Pmax] ⊂ (0,∞)

When (3) is achievable?

Theis and Wagner2 showed that variable-rate codes, per-letter
average distortion E [d(xi, x̂i)] ≤ D, t = 1, . . . , n, and common
randomness at the encoder/decoder achieve (3) for general sources
and perception constraints, with D > 0, P ≥ 0

Chen et al.3 showed that for |X | < ∞, D > 0, P > 0, we have that
Rnr(D,P ) = (3)

2
L. Theis and A. B. Wagner,A coding theorem for the rate-distortion-perception function, Neural

Compression Workshop at ICLR, 2021
3
J. Chen, L. Yu, J. Wang, W. Shi, Y. Ge, and W. Tong, On the Rate-Distortion-Perception

function, IEEE Journal on Selected Areas in Information Theory, 2022.
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RDPF for Gaussian Sources3

3G. Serra, P. A. Stavrou and M. Kountouris, "On the Computation of the Gaussian

Rate�Distortion�Perception Function", in IEEE Journal on Selected Areas in Information
Theory, vol. 5, pp. 314-330, 2024
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Scalar Gaussian RDPF

We derive analytical bounds of the RDPF under the MSE distortion when the
perception constraint belongs to certain well-known and widely-used
divergences, e.g. the Kullback�Leibler divergence DKL(pX , pX̂) and the

squared Hellinger distance H2(pX , pX̂).

(a) (a) (b) (b)

Figure: R(D,P ) for a Gaussian source X ∼ N (0, 1) source under (a) DKL(pX , p
X̂

) divergence

and (b) H2(pX , p
X̂

) distance.
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Vector Gaussian RDPF

Under tensorizable distortion and perceptual metrics and if the RDPF for the
scalar Gaussian source is available, we propose an algorithm for the
computation of vector RDPF counterpart.

(a) (a) (b) (b)

Figure: R(D,P ) for a Gaussian source X ∼ N (0,ΣX ) source with ΣX = diag(1, 3, 5) under (a)
W2(pX , p

X̂
) distance 4 and (b) H2(pX , p

X̂
) distance.

4The corresponding scalar case is introduced in [Zhang et. al. - "Universal

rate-distortion-perception representations for lossy compression� ]
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Algorithm Overview

Leveraging the tensorization properties of the involved metrics, the vector
function can be decomposed in a sum scalar functions.

Tensorization

Introducing the variables {Di, Pi}i=[1:N ], the de�nition of the scalar RDPF

function for the ith dimension Ri(Di, Pi) appears in the optimization
problem.
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Algorithm Overview

The resulting optimization problem, despite being simpler than the original
problem, is not easily solvable when both constraint are active.

Alternating 
Minimization

Algorithm

However, since the two constraints operate on distinct optimization variables,
an alternating minimization routine can be implemented to solve optimally
the problem.
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Perfect Realism RDPF (PR-RDPF)

The proposed AM approach allows to derive closed form expression for �xed
perception levels Pi. Of particular interest results the case where Pi = 0, referred
to as "perfect realism", where X̂ will have the same distribution as X.

PR-RDP Water�lling
solution:

D∗
i,RDP = 2λi[ΣX ] +

1

2sD

−
√

4λ
1
2
i [ΣX ] +

1

4s2D

RD Water�lling solution:

D∗
i,RD = min

{
1

2sD
, λi[ΣX ]

}
Figure: Comparison of the per-dimension distortion D∗

i
and perception P∗

i levels between the water�lling
solution for D = 6.
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Computation of the
Output-Constrained RDFs5

5Serra, G., Stavrou, P. A., Kountouris, M. (2024). Copula-based Estimation of

Continuous Sources for a Class of Constrained Rate-Distortion-Functions. arXiv preprint
arXiv:2401.17089.
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Notation

Given a scalar random variable (RV) X on X ⊆ R, we denote
the distribution function (d.f.) of X, i.e., its law, FX ;

the quantile function (q.f.) of X, i.e., QX(u) ≜ sup{x ∈ X : F (x) ≤ u};
the probability density function (p.d.f.) of X, i.e., its density, fX ;

Furthermore, given a multivariate random variable X = (X1, . . . , Xd) with
Xi ∼ FXi

for i = 1, . . . , d, we de�ne the following vector functions:

Uniform Transformation:
ΦX : X → [0, 1]d de�ned as ΦX(X) ≜ (FX1

(X1), . . . , FXd
(Xd))

Inverse Uniform Transformation:
ΨX : [0, 1]d → X de�ned as ΨX(U) ≜ (QX1

(U1), . . . , QXd
(Ud)).

June 7, 2024 17 / 35
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Output-Constrained Rate-Distortion Function (OC-RDF)

OC-RDF 6.

Let X ⊂ Rd and let fX ∈ P(X ). Then, the OC-RDF for the source X ∼ fX under
a distortion measure ∆ : X × Y → R+

0 and a target reconstruction distribution
fY ∈ P(Y) is given as follows

ROC(D) = min
fY |X∈Π̂(fX ,fY )

E[∆(X,Y )]≤D

I(X,Y ) (4)

where the minimization is on the convex set of Markov kernels
Π̂(fX , fY ) ≜ {fX|Y : mY (fY |X · fX) = fY }.

We denote the following di�erences:

in the PR-RDPF case, we speci�cally constrain the reconstruction
distribution and source distribution to be identical;

in the OC-RDF case, we have an additional degree of freedom allowing for the
distribution of the reconstruction to be chosen freely.

6N. Saldi, T. Linder, and S. Yüksel, �Randomized quantization and source coding with

constrained output distribution�, IEEE Transactions on Information Theory, vol. 61, no. 1,
pp. 91�106, 2015.
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Entropic Optimal Transport (EOT)

EOT 7

Let X ⊂ Rd, Y ⊂ Rm and let fX ∈ P(X ) and fY ∈ P(Y). Then, the EOT for
ϵ > 0 and distortion measure ∆ : X × Y → R+

0 , is given as follows

DEOT (ϵ) = min
fX,Y ∈Π̄(fX ,fY )

E [∆(X,Y )] + ϵI(X,Y ) (5)

where the minimization is on the convex set of joint pdfs
Π̄(fX , fY ) ≜ {fX,Y : mX(fX,Y ) = fX ,mY (fX,Y ) = fY }.

7Y. Bai, X. Wu, and A. Özgür, �Information constrained optimal transport: From

Talagrand, to Marton, to Cover�, IEEE Transactions on Information Theory, vol. 69, no. 4,
pp. 2059�2073, 2023.
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Links between PR-RDPF, OC-RDF, and EOT

We show that the RDPF, OC-RDF and EOT share a common underlining
structure, which allows to map one problem instance to the other.

PR-RDPF

OC-RDF

EOT

pX = pY

Equivalence Via
Lagrangian Duality

Therefore, although our analysis will focus on the OC-RDF problem, all the
results can be easily adapted to the remaining problems.
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What is a Copula?

Copula Distribution

A d-dimensional Copula distribution is a distribution on the volume [0, 1]d with
uniform marginals.

Why is it so interesting then? The answer is Sklar's Theorem

Sklar's Theorem

Let F be a d-dimensional d.f. with marginal d.f. F1, F2, . . . , Fd. Then, there exists
a d-copula d.f. C such that for all (x1, x2, . . . , xd) ∈ R̄d,

F (x1, . . . , xd) = C (F1(x1), . . . , Fd(xd)) . (6)

Such a C is uniquely determined on [0, 1]d and, hence, it is unique when
F1, F2, . . . , Fd are continuous.
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Sklar's Theorem (Corollary)

Let X ⊂ Rd and let f ∈ P(X ) . Then, f can be uniquely factorized as

f(x1, . . . , xd) = c (F1(x1), . . . , Fd(xd))
d∏

j=1

fj(xj) (7)

where fj is the p.d.f. associated with the univariate marginal d.f. Fj and
c : [0, 1]d → R+ is the p.d.f. associated with the copula d.f. C.

In other words, any multivariate distribution can be decomposed into:

 Multivariate density Copula density Marginal densities= +

a copula density, expressing the relations between the marginal RVs.

a product of marginal density, representing the information of each single
marginal RV.

June 7, 2024 22 / 35
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Information Geometry

Information Geometry (IG) is an interdisciplinary �eld that applies the techniques
of di�erential geometry to the study of statistical manifold.

For the purpose of this work, we will use
the tools of IG to characterize the
solution of projection problems of the
type:

min
P∈Π

DKL(P ||Q)

where Π is a convex set of probability
measures.

Q

P

June 7, 2024 23 / 35
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Projection Theorems

For speci�c typologies of convex set Π, the functional characterization of the
optimal projection has been characterized in [Csizar,1975]. The characterization is
expressed in terms of density, i.e. Radon�Nikodym derivative, of the projection.

The following cases are of interest for our problems:

(Case A) - Π is de�ned as a linear set of equality constraints, i.e.
Π = {P : EP [hi] = αi, i = 1, . . . , n}, then the projection P is unique, with
density:

dP ∗

dQ
(u) = eµ+

∑n
i=1 θihi(u)

for some values of µ and θi, i = 1, . . . , n.

(Case B) - Π is de�ned as a set of constraint on the marginals of P , i.e.
Π = {P : Pi ∼ Fi, i = 1, . . . , d}

dP ∗

dQ
(u) =

d∏
i=1

gi(ui).

for some scalar functions gi, i = 1, . . . , d, such that log(gi) ∈ l1

June 7, 2024 24 / 35
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Successinve Projections Theorem

The last result in IG we need characterizes the solution for a sequence of
projections on a given sequence of subsets.

Let the sets Π1 and Π2 be convex sets
such that Π1 ⊆ Π2, and let P and R be
the respective projections of Q thereon.
Then,

DKL(P ||Q) = DKL(R||Q) +DKL(P ||R)

and,

dP

dQ
(u) =

dR

dQ
(u) ·

dP

dR
(u).

Q

PR

June 7, 2024 25 / 35
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OC-RDF is a IG Projection Problem

Lemma - Copula Reparametrization

Let (X,Y ) ∼ fXY ∈ P(X × Y) be a 2d-variate RV with marginal pdfs fX ∈ P(X )
and fY ∈ P(Y). Then, the mutual information I(X,Y ) can be equivalently
written as follows

I(X,Y ) = DKL(CX,Y ||CX ⊗ CY ) (8)

where CX,Y , CX , CY are the copula d.f.'s associated with distributions FX,Y , FX ,
and FY , respectively. In addition, given a distortion function ∆ : X × Y → R+,
the following holds

EFX,Y
[∆(X,Y )] = ECX,Y

[∆ (ΨX(UX),ΨY (UY ))] (9)

where U = (UX , UY ) ∼ CX,Y .

Proof: Direct result from Sklar's Theorem

June 7, 2024 26 / 35



27/35

RDP Tradeo� RDPF - Gaussian Sources OC-RD Function

Applying the result of the previous Lemma to the OC-RDF problem:

ROC(D) = min
fY |X∈Π̂(fX ,fY )

I(X,Y ) s.t E [∆(X,Y )] ≤ D

we derive the following copula optimization problem:

Copula-based OC-RDF

The mathematical expression of the OC-RDF Problem in (4) can be reformulated
as

ROC(D) = min
C∈C2d

DKL(C||CX ⊗ CY ) (10)

s.t. EC [∆(ΨX(UX),ΨY (UY ))] = D

where C2d is the set of 2d-copula distributions and D ∈ [Dmin, Dmax].

Analyzing the structure of the optimization problem, we can understand
that the Copula-based OC-RDF problem is an IG projection

problem on a convex domain.
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The set of constraints of the OC-RDF can be decoupled as two sets Π1 and Π2

such that:

Π2 is the set of all distributions on [0, 1]2d respecting the distortion
constraint, i.e. Π2 is a linear set of constraint.

Π1 ⊂ Π2 is the set of all copula distributions respecting the distortion
constraint, i.e. Π1 imposes conditions on the projection marginals.

Under this description, using the sequential projection results we can derive:

Solution of the Copula OC-RDF solution

Let R = CX ⊗ CY . Then, the Copula OC-RDF problem admits a minimizing
copula Q with Radon�Nikodym derivative with respect to the measure R of the
form

dC

dR
(u) = eµ+θ[∆(ΨX (ux),ΨY (uy))]

2d∏
i=1

gi(ui) (11)

for some constants (µ, θ), and nonnegative uni-variate functions gi such that
log(gi(s)) ∈ l1([0, 1]) for i = 1, . . . , 2d.

Proof: Application of sequential projection using the solutions of Case A (linear
constraint) and Case B (marginal constraint).
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So... job �nished, everybody home?
Sadly no.

Do you think we can numerically compute the previous projection?

June 7, 2024 29 / 35
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Approximate IG Projection

The problem with the previous characterization is that we don't know the
functions gi, introduced by the uniform marginal constraint.
⇒ What if we can enforce the uniform marginal constraints in a di�erent way?

Hausdor� moments problem: Any RV on [0, 1] that respects E [un] = 1
n+1

for
all n = 1, . . ., is necessarily uniformly distributed.

Lower bound to Copula OC-RDF

For any integer N , the Copula OC-RDF can be lower bounded as follows

ROC(D) ≥ R
(N)
OC = min

Q∈D([0,1]2d)
E[∆(ΨX (UX ),ΨY (UY ))]=D

EQ[un
i ]=αn, (i,n)∈I

DKL(Q||R)

where R = CX ⊗ CY , I = (1, . . . , 2d)× (1, . . . , N), D ∈ [Dmin, Dmax], and αn is
the nth moment of a uniform distribution on [0, 1].
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Solution of the Lower bound ot the Copula OC-RDF solution

Let R = CX ⊗ CY and assume there exists a d.f. P on [0, 1]2d such that

DKL(P ||R) < ∞. Then, R
(N)
OC (D) admits minimizing copula Q with

Radon�Nikodym derivative with respect to the measure R of the form

dQ

dR
(u) = eµ+θ∆(ΨX (ux),ΨY (uy))

2d∏
i=1

e
∑N

n=0 νi,nun
i (12)

where the constants (µ, θ, {νi,n}(i,n)∈I) are the associated Lagrangian multipliers
can be obtained as a result of the following dual program

min
(µ,θ,{νi,n}(i,n)∈I )

− µ− θD −
∑

(i,n)∈I

νi,nαn +

(∫
[0,1]2d

dQ

dR
(u)dR(u)− 1

)
. (13)

Proof: Existence of the solution derives from the results on IG Case A. The
optimization problem is derived imposing stationarity of the �rst variation.
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Algorithm Design

The optimization problem de�ned in (13) is stictly convex, hence we can
rely on gradient methods for its optimal solution.

MonteCarlo Estimation of

June 7, 2024 32 / 35
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Numerical Examples - PR-RDPF
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Figure: PR-RDPF for various source distributions with σX = 1 under (a) MSE distortion metric
and (b) MAE distortion metric.
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Numerical Examples - PR-RDPF
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Figure: PR-RDPF under MSE distortion metric for a (a) Gaussian, and (b) exponential bivariate
source with varying degree of correlation coe�cient ρ.
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Thanks for the Attention!
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