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Testing and Information Theory

Hypothesis Testing is a standard problem in Statistics :
The probability distribution of a sequence xn = (x1, x2, ..., xn) is given by

H0 : Xn ∼ P0X

H1 : Xn ∼ P1X

Statistician : how to optimally decide between H0 and H1, by fully observing the
data xn ?

Hypothesis Testing in Information Theory :

Encoder DecoderR H0  H1

Information theorist : How to design the Encoder such that to optimally decide
between H0 and H1 ?
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Distributed Hypothesis Testing (DHT)

Encoder Decoder
RX

Y

H0  H1

DHT Formulation

H0 : (X,Y) ∼ P0XY

H1 : (X,Y) ∼ P1XY

Encoder : f (n) : Xn −→ Mn = {1, . . .M}

Rate-constraint : logM
n ≤ R,

Decoder : g(n) : Mn × Yn −→ H = {H0, H1}
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Performance criterion

Type-I error probability

αn = P
[
g(n)

(
f (n) (Xn) ,Yn

)
= H1 | H0 is true

]
,

Type-II error probability

βn = P
[
g(n)

(
f (n) (Xn) ,Yn

)
= H0 | H1 is true

]

Objective : For given αn ≤ ϵ, find the Type-II error exponent θ such that

lim sup
n→∞

1

n
log

1

βn
≥ θ (1)
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Achievable error exponent bounds for i.i.d. sources model

Quantization scheme [Ahlswede86] [HAN87]

Ahlswede and al derived optimal error exponent for testing against independence.

HAN improved it with joint typicality check at the encoder.

Quantize-binning scheme [SHA 94]

Shimokowa et. al combined quantization with random binning (similar to
Wyner-Ziv and Slepian-Wolf).

It allows to exploit the correlation between the sources to reduce the compression
rate

It optimality was considered in [Rahman 2012], [Katz 2015], [Watanabe 2022]

It was extended to various more complex setups [Salehkalaibar 18], [Sreekuma 19],
[Escamilla2020]

It has been recently improved by [Kochman2023]

However, it was limited only to i.i.d. sources model
Objective : extend it to more general sources models, not necessarily i.i.d.
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General source model

We consider a more generic sources model [Han1998]

X = {Xn = (X1, X2, · · · , Xn)}∞n=1 and Y = {Y n = (Y1, Y2, · · · , Yn)}∞n=1

The components of X and Y are not necessarily i.i.d

Includes the previous i.i.d. models as particular instances.

The objective is to derive more generic exponent error bounds

We rely on Information-Spectrum approach [Han1998]
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Information-Spectrum tools [Han1998]

For a sequence {Zn}∞n=1

p− lim supn→∞ Zn = inf {α | limn→+∞ P (Zn > α) = 0} ,
p− lim infn→∞ Zn = sup {α | limn→+∞ P (Zn < α) = 0}

Examples
For a pair (Un,Xn), sup and inf spectral mutual information :

Ī(X;U) = p− lim supn→∞
1
n
log

PUn|Xn (Un|Xn)

PUn (Un)

I(X;U) = p− lim infn→∞
1
n
log

PUn|Xn (Un|Xn)

PUn (Un)

When U and X are i.i.d., we can show that

I(X;U) = I(X;U) = I(X;U)
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Error exponent bounds for general sources 1

Theorem

θ ≤ sup
PU|X

{
min {θtest, θbin}

}
, (2)

θbin = r −
(
I(X;U)− I(U;Y)

)
, r ≤ R

θtest = D (P0UY∥P1UY) +
(
I(X;U)− I(X;U)

)
The error exponent is a trade-off between a binning error and a testing error.

Ī(X;U) = p− lim supn→∞
1
n
log

P0Un|Xn (Un|Xn)

P0Un (Un)

D (P0UY∥P1UY) = p− lim infn→∞
1
n
log P0UnYn (Un,Yn)

P1UnYn (Un,Yn)
.

1. Adamou, I. S., Dupraz, E., Matsumoto, T. ”An Information-Spectrum Approach to Distributed Hypothesis Testing for

General Sources”, International Zurich Seminar (IZS) on Information and Communication, Zurich 2024
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Achievable coding scheme

Codebook generation

Generate enR sequences un according to a fixed distribution PUn|Xn

Distribute them uniformly in enr bins

Encoder

Search a sequence un such that (un,xn) ∈ T
(1)
n

Send the index of the bin to which un belongs

Otherwise, send a message error to the decoder to simply declare H1

T (1)
n =

{
(xn,un) s.t.

1

n
log

PUn|Xn (un | xn)

PUn (un)
< r0 − ε

}
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Achievable coding scheme

Decoder
From the received bin index and side information yn :

Pick ûn such that (ûn,yn) ∈ T
(2)
n

Decide H0 if (ûn,yn) belongs to an acceptance region An

Otherwise, decide H1 (also when a message error is received)

T (2)
n =

{
(yn,un) s.t.

1

n
log

PUn|Yn (un | yn)

PUn (un)
< r0 − ε

}
An =

{
(yn,un) s.t.

PUnYn (un,yn)

PU
n
Y

n (un,yn)
> S

}
.

We can not rely on the method of types as in i.i.d. case

Our achievability proof is information-spectrum based.

Here T
(2)
n and An are different that typical set as known in i.i.d. case
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Proof outlines : Type-I error αn analysis

E11 =

{
∄un s.t. (Xn,un) ∈ T

(1)
n , (Yn,un) ∈ An

}
,

E12 =

{
∃u′n ̸= un s.t. i(u′n) = i(un)but (u′n,Yn) /∈ An

}
.

We show that : αn ≤ P (E11) + P (E12)

Information-Spectrum approach

For r0 = I(X;U), and from the definition of I(X;U), we show

lim
n→∞

P
(
(Xn,Un) /∈ T (1)

n

)
= 0.

When S = D (PUY∥PUY) and from the definition of D (PUY∥PUY), we have

lim
n→∞

P ((Yn,Un) /∈ An) = 0.

Thus, We show that : αn
n→∞−→ 0.

T
(1)
n =

{
(xn,un) s.t. 1

n
log

PUn|Xn (un|xn)

PUn (un)
< r0 − ε

}
An =

{
(yn,un) s.t.PUnYn (un,yn)

P
UnYn (un,yn)

> S
}
.
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Proof outlines : Type-II error βn analysis

E21 =

{
∃ũn ̸= un : i(ũn) = i(un), but

(
Y

n
, ũn

)
∈ An

}
,

E22 =
{
(un,Y

n
) ∈ T

(2)
n , (un,Y

n
) ∈ An

}
.

βn ≤ P (E21) + P (E22)

Information-Spectrum approach

When r0 = I(X;U), r
′
= I(Y;U) , and S = D (PUY∥PUY)

βn ≤ e−n(r−(I(X;U)−I(Y;U))−ϵ) + e−n(I(X;U)−I(X;U)+D(PUY∥P
UY)−2ϵ).

Since, lim supn→∞
1
n
log 1

βn
≥ θ

This shows that the error exponent θ in the theorem is achievable.

T
(2)
n =

{
(yn,un) s.t. 1

n
log

PUn|Yn (un|yn)

PUn (un)
> r

′
− ε

}
An =

{
(yn,un) s.t.

PUnYn (un,yn)
P
UnYn (un,yn)

> S

}
.
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Short-length nature of DHT

For Binary i.i.d. sources, we compute βn = e−nθ as function of code length n

For instance, for n = 100, βn = 10−12, for n = 50, βn = 10−6.

This strongly suggests that practical schemes should focus on values of n < 50.

We now introduce two practical coding schemes for such short sequence lengths

So far, we only focus on Binary sources
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DHT for Binary sources model

Source model : (X,Y ) are such that Y = X +Z, where X and Z are independent
and P (X = 1) = 0.2 and and P (Z = 1) = p

Hypothesis definition :
H0 : p = p0,

H1 : p = p1.

Decoder : Decide between H0 and H1 from Yn and a coded version of Xn

Objective : Design practical coding schemes for this setup
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Scheme 1 : Binary Quantization

Implementation

From the Generator matrix G of a linear block code, we calculate zmq as :

zmq = argmin
zm

d (Gzm,xn)

At the receiver, we obtain the quantized vector xn
q = Gzmq

The receiver performs the NP test over (xn
q ,y

n)
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Scheme 1 : Binary Quantization

Performance 2

αn = 1− 1

N
(q)
0

λq∑
λ=0

d
(q)
max∑

γ=0

n∑
j=0

E(q)
γ Γλ,j,γp

j
0(1− p0)

n−j , (3)

β =
1

N
(q)
0

λq∑
λ=0

d
(q)
max∑

γ=0

n∑
j=0

E(q)
γ Γλ,j,γp

j
1(1− p1)

n−j , (4)

where for j = γ + λ− 2u and 0 ≤ u ≤ min(γ, λ) ≤ n, Γλ,j,γ =
(
γ
u

)(
n−γ
λ−u

)
.

d
(q)
max is the maximum hamming weight of words xn of a decision region C0

E
(q)
γ is the number of words xn of Hamming weight γ, and N

(q)
0 =

∑d
(q)
max

γ=0 E
(q)
γ

One can optimize E
(q)
γ to obtain a lower bound for practical DHT

2. Dupraz, E., Adamou, I. S., Asvadi, R., Matsumoto, T. ”APractical Short-Length Coding Schemes for Binary Distributed

Hypothesis Testing”, International Symposium in Information Theory (ISIT) 2024
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Scheme 2 : Quantize-binning

Encoder

Quantization : From the Generator matrix G of a linear block code, we calculate
zmq as :

zmq = argmin
zm

d (Gzm,xn)

Binning : From a parity check matrix H of another linear block code, we compute

uk = HzmqSend uk at rate k/n

Decoder

Identify the vector zmq such that

ẑm = argmin
zmq

d
(
Gzmq ,yn) s.t. Hzm = uk

Compute x̂n = Gẑm

Then, apply the NP test onto (x̂n,yn).
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Scheme 2 : Quantize-Binning

Performance
αn = 1− PB(p0)− PB̄(p0), (5)

βn = PB(p1) + PB̄(p1), (6)

where

PB(δ) =

min(d
(qb)
max,λqb)∑
ν=0

E
(qb)
ν(
n
ν

) d
(q)
max∑
γ=0

E
(q)
γ

N
(q)
0

n∑
j=0

Γν,j,γδ
j(1− δ)n−j ,

PB̄(δ) =
n∑

i=0

d
(q)
max∑

γ=0

E
(q)
γ

N
(q)
0

n∑
j=0

Γi,j,wδ
j(1− δ)n−j

 n∑
t=1

λqb∑
ν=0

E
(qb)
ν(
n
ν

) A
(qb)
t Γi,ν,t(

n
i

)
 .

E
(q)
γ is the number of words xn of Hamming weight γ

the set {A(qb)
t }t∈J0,nK is the code weight distribution of the concatenated code (G

and H)

One can optimized E
(q)
γ and A

(qb)
t to obtain a lower bound for practical DHT
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Simulation results

Baseline Truncation Scheme : we send l = 16 non-coded bits

Quantization Scheme : BCH (31, 16)-code with dmin = 7. As a result m = 16
coded bits are sent.

The quantization scheme performs better that the Truncation scheme

The theoretical expressions are consistent with the Monte-Carlo simulations
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Simulation results

Baseline Truncation scheme : we send l = 8 non-coded bits of xn

Quantize-binning Scheme : BCH (31, 16)-code with dmin = 7 and Reed-Muller
(16, 5)-code with dmin = 8. As a result k = 8 coded bits are sent

The Quantize-binning scheme performs better that the Truncation scheme

The theoretical expressions are consistent with the Monte-Carlo simulations
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Conclusion and Perspectives

Conclusion

We derived a general expression of the Type-II error exponent for general sources
that are not necessarily i.i.d.

Our approach is information-spectrum based.

We then proposed practical quantization scheme and quantize-binning scheme

Our proposed schemes perform better than the baseline non-coded scheme

We provided exact analytical expressions of Type-I and Type-II errors for the
proposed schemes.

Current Works

Add an empirical entropy check in our quantize-binning as in [Kochman2023]

Extend both theoretical and practical results to the results to the case where both
X and Y are encoded
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