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@ Hypothesis Testing in Information Theory
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Testing and Information Theory

@ Hypothesis Testing is a standard problem in Statistics :
The probability distribution of a sequence x™ = (x1, x2, ..., Zx) is given by

Ho : X" ~ Pox
Hi: X" ~ Pix

@ Statistician : how to optimally decide between Ho and H1, by fully observing the
data x" 7
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Testing and Information Theory

@ Hypothesis Testing is a standard problem in Statistics :
The probability distribution of a sequence x™ = (x1, x2, ..., Zx) is given by

Ho : X" ~ Pox
Hi: X" ~ Pix

@ Statistician : how to optimally decide between Ho and H1, by fully observing the
data x" 7

@ Hypothesis Testing in Information Theory :

HoH
X > Encoder > Decoder 2>

@ Information theorist : How to design the Encoder such that to optimally decide
between Ho and H1 7
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Distributed Hypothesis Testing (DHT)

R H,IH
X—> Encoder #> Decoder |——>"

DHT Formulation

H() . (X7Y) "~ POXY
7‘[1 : (X,Y) = PlXY
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Distributed Hypothesis Testing (DHT)

—> Encoder > Decoder

DHT Formulation

Ho : (X,Y) ~ Poxy
Hi: (X, Y) ~ Pixy

@ Encoder : f(™ : X" — M, ={1,...M}
@ Rate-constraint : y <R,

@ Decoder : g™ : M,, x Y* — H = {Hy, H,}
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Performance criterion

@ Type-| error probability
an =P [g(") (f<"> (X" ,Y") — H, | Ho s true} ,
@ Type-ll error probability

Bn =P [g<"> (f<"> (X™) ,Y") — Ho | Hiis true]
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Performance criterion

@ Type-| error probability
an =P [g(") (f<"> (X" ,Y") — H, | Ho s true} ,
@ Type-ll error probability

Bn =P [g<"> (f<"> (X™) ,Y") — Ho | Hiis true]

@ Objective : For given a,, < ¢, find the Type-Il error exponent 6 such that

lim sup 1 log % >0 (1)

n—oo N n
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Achievable error exponent bounds for i.i.d. sources model

Quantization scheme [Ahlswede86] [HAN87]
@ Ahlswede and al derived optimal error exponent for testing against independence.

@ HAN improved it with joint typicality check at the encoder.

Quantize-binning scheme [SHA 94]

@ Shimokowa et. al combined quantization with random binning (similar to
Woyner-Ziv and Slepian-Wolf).

@ It allows to exploit the correlation between the sources to reduce the compression
rate

@ It optimality was considered in [Rahman 2012], [Katz 2015], [Watanabe 2022]

@ It was extended to various more complex setups [Salehkalaibar 18], [Sreekuma 19],
[Escamilla2020]

@ |t has been recently improved by [Kochman2023]

However, it was limited only to i.i.d. sources model
Objective : extend it to more general sources models, not necessarily i.i.d.
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© Considered source model
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General source model

We consider a more generic sources model [Han1998|

X ={X"=(X1,Xo, -, Xn)}rey and Y ={Y" = (Y1,Y2,--- , V) } 02, J

@ The components of X and Y are not necessarily i.i.d

@ Includes the previous i.i.d. models as particular instances.

@ The objective is to derive more generic exponent error bounds

@ We rely on Information-Spectrum approach [Han1998]
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Information-Spectrum tools [Han1998]

For a sequence {Z,} -,

@ p —limsup,,_,., Zn = inf {a|lim,— 40 P(Z, > a) =0},
@ p—liminf, o Zn = sup{a | limp4o0 P(Zn < @) = 0}

Examples
For a pair (U™, X"), sup and inf spectral mutual information :

Pyn|xn (U"|X"™)

@ I(X;U)=p—limsup,_,., + log P (07

® I(X;U)=p — liminf, o L log "o X070

When U and X are i.i.d., we can show that
° I(X;U) =I(X;U) = I(X;U)
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© Error exponent bounds for general sources
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1

Error exponent bounds for general sources

)

0 < sup {min {Btest, Ovin } },

Pyx

@ Opin =7 — (I(X;U) - I[(U;Y)), r <R
@ Oiest = D (Pouy||Piuy) + (l(x; U) — I(X; U))

The error exponent is a trade-off between a binning error and a testing error.

Pyyn|xn (U™[X™)

I(X;U) =p — limsup,,_,, % log Poon (O
Poynyn (U™, Y")
D Piynyn (Un,Y™) "

[+
o (POUYHPIUY) =p— lim inf, o % log

1. Adamou, I. S., Dupraz, E., Matsumoto, T. " An Information-Spectrum Approach to Distributed Hypothesis Testing for

General Sources”, International Zurich Seminar (I1ZS) on Information and Communication, Zurich 2024
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Achievable coding scheme

Codebook generation
@ Generate e"R sequences u™ according to a fixed distribution Pynxn

@ Distribute them uniformly in ™" bins

Encoder
@ Search a sequence u” such that (u”,x") € TV
@ Send the index of the bin to which u™ belongs

@ Otherwise, send a message error to the decoder to simply declare H;

1 P n n u" Xn
M = {(x",u”) s.t. —log b (0 | x7) <rg 5}
n

PUn (u”)
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Achievable coding scheme

Decoder
From the received bin index and side information y™ :

@ Pick 4" such that (a”,y") € T
@ Decide H, if (0", y™) belongs to an acceptance region A,

@ Otherwise, decide 71 (also when a message error is received)
1 Pynjyn (W™ |y")
TTEZ) — {(y'ﬂ’un) s.t. E 10g lP]Jn—(un) <rg—¢€

n n PUnyn (u’ﬂ,y’ﬂ) }
A,=<(@F"u") st.————=—<L > 55,
{( ) Pgngn (u™,y™)

@ We can not rely on the method of types as in i.i.d. case
@ Our achievability proof is information-spectrum based.

@ Here T'¥ and A, are different that typical set as known in i.i.d. case

13/30



Proof outlines : Type-I error «,, analysis

@ Eip = {Pu" st (X", u") € Tr(Ll)v (Y™ u") € An ¢,

Q@ Iy = {Eum #u” s.t. i(um) = ’l:(un)bUt (u/n7Yn) ¢ An }
@ We show that : o, <P (E11) + P (E12)

Information-Spectrum approach
@ For ro = I(X;U), and from the definition of I(X;U), we show

lim P ((X",U") ¢ Tﬁ”) = 0.

n—oo
@ When S = D (Puy||Pgv) and from the definition of D (Puy || Pgy), we have

lim P((Y",U") ¢ A,) =0.

n—00

n—oo

@ Thus, We show that : «,, — 0.

Pyn|xn (u™|x™)

T7<11) = {(x",u") s.t. l10 w <T'()*€}
Ay = {(y",u") st Pyl gl

UnY" (um,ym)

14 /30



Proof outlines : Type-Il error 3, analysis

@ Fy = {Hﬁ" #u”:i(a”") = i(u"), but (?n,ﬁn) € Ax },

P E22 — {(un7?n) c T'r(LQ)a (un7?n) c An} )
0 (3, <P(E2)+P(E22)

Information-Spectrum approach
@ When o = I(X;U), r = I(Y;U), and S = D (Puv||Pgy)
0 B, < e (—(IXV-LY0)) =) | —n(LXU)-T(X;U)+D(Puy I Pgy)—2¢)
@ Since, limsup,,_, ., +log i >0

@ This shows that the error exponent 6 in the theorem is achievable.

niyn
(2) _ ; 1 Pyn|yn (u™ly™) ’
T, = {(y”,u") s.t. ;logw >r —e
— n n P! nymn (u‘,L'y,,L)
Ay = {(y ,u) st Pgngn (8757 > Se.
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@ Examples of source models
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Short-length nature of DHT

n

@ For Binary i.i.d. sources, we compute 8, = e~ "? as function of code length n

@ For instance, for n = 100, 3, = 1072, for n = 50, Bn = 1076,
@ This strongly suggests that practical schemes should focus on values of n < 50.
@ We now introduce two practical coding schemes for such short sequence lengths

@ So far, we only focus on Binary sources
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© Practical short-length coding schemes for DHT
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DHT for Binary sources model
X—s> | > D H

]

@ Source model : (X,Y) are such that Y = X + Z, where X and Z are independent
and P(X =1)=02andand P(Z=1)=p

@ Hypothesis definition :
HO * P = po,
Hi:p=p1.

@ Decoder : Decide between Ho and H; from Y™ and a coded version of X"

@ Objective : Design practical coding schemes for this setup
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Scheme 1 : Binary Quantization

Implementation
@ From the Generator matrix G of a linear block code, we calculate z;” as :

mo__

Zq

argmind (Gz™,x")
o

@ At the receiver, we obtain the quantized vector xg = ng1

@ The receiver performs the NP test over (x7,y")
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Scheme 1 : Binary Quantization

Performance 2

(a)

dmax 1

Aq
_ 1 S5 S B j n—j
a, =1-— N(q) E"/ F/\7j7’7p0(1 - po) ) (3)

0 A=0~=0;=0

Ag dS) n
1 . o
B= i 2D D B Taapi (= p)" (4)
No™ 320 3=0 =0

where for j =y + X —2uand 0 <u < min(y,\) <n, Tx;,= () (0.

o dfg;x is the maximum hamming weight of words x™ of a decision region Cj
(q)
@ E'” is the number of words x™ of Hamming weight ~, and N = Zi’fs EY

@ One can optimize Eﬁ‘” to obtain a lower bound for practical DHT

2. Dupraz, E., Adamou, I. S., Asvadi, R., Matsumoto, T. "APractical Short-Length Coding Schemes for Binary Distributed

Hypothesis Testing”, International Symposium in Information Theory (ISIT) 2024
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Scheme 2 : Quantize-binning

Encoder

@ Quantization : From the Generator matrix GG of a linear block code, we calculate
m .
zg as:

Zm
q

= argmind (Gz",x")
@ Binning : From a parity check matrix H of another linear block code, we compute
k m
=H
@ Send u” at rate k/n u Za

Decoder

@ Identify the vector z" such that
2" = argmind (Gzy',y") st. Hz" = u”

zm

q

@ Compute X" = Gz™

@ Then, apply the NP test onto (X", y").
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Scheme 2 : Quantize-Binning

Performance an =1 - Ps(po) — Ps(po), (5)

Bn =Pg(p1) +Pg(p1), (6)

where

qb)
min(d{I2) A qb) o (qb) ala) E(q) n

Ps(d)= . R D Tuind(1—=08)"",

v=0 Néq) 7=0
n i n n_Xab (qb) 4(ab)
E Eu A Fi,u,t
Pp(d) = . Z N(q) ZF i, 1 0" ZZ (n) : (n)
=0 =0 t=1v=0 v i

o Ef,q) is the number of words x™ of Hamming weight ~y

@ the set {Aiqb)}te[[om]] is the code weight distribution of the concatenated code (G
and H)

@ One can optimized Efyq) and qub) to obtain a lower bound for practical DHT
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@ Simulation results
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Simulation results

@ Baseline Truncation Scheme : we send | = 16 non-coded bits

@ Quantization Scheme : BCH (31, 16)-code with dmin = 7. As a result m = 16
coded bits are sent.

0.08

Truncation practical (I=16, p0=0.1)
- Truncation theoretical (I=16, p0=0.1)
Quantization practical (m=16, 1)
- Quantization theoretical (m= 0.1)
Truncation practical (1=16, p0= 0 07)

0.06 - - Truncation theoretical (I=16, p0=0.07)
Quantization practical (m=16, p0=0.07)

- Quantization theoretical (m=16, p0=0.07)

0.04

Type-Il error

Type-| error

@ The quantization scheme performs better that the Truncation scheme
@ The theoretical expressions are consistent with the Monte-Carlo simulations
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Simulation results

@ Baseline Truncation scheme : we send | = 8 non-coded bits of x™

@ Quantize-binning Scheme : BCH (31, 16)-code with dy,:n = 7 and Reed-Muller
(16, 5)-code with dpmin = 8. As a result kK = 8 coded bits are sent

Truncation practical (I=8, p0=0.03)
N T Truncation theoretical (I=8, p0=0.03)
0.25 | \ Quantizer + binning practical (k=8, p0=0.03)
- - Quantizer + binning theoretical (k=8, p0=0.03)
Truncation practical (I=8, p0=0.01)
- Truncation theoretical (1=8, p0=0.01)

N \ Quantizer + binning practical (k=8, p0=0.01)
0.20 R\ AN Quantizer + binning theoretical (k=8,p0=0.01)

Type-Il error

0.00 L L L L L L )
0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07

Type-I error

@ The Quantize-binning scheme performs better that the Truncation scheme
@ The theoretical expressions are consistent with the Monte-Carlo simulations
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@ Conclusion and Perspectives
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Conclusion and Perspectives

Conclusion

@ We derived a general expression of the Type-Il error exponent for general sources
that are not necessarily i.i.d.

@ Our approach is information-spectrum based.

@ We then proposed practical quantization scheme and quantize-binning scheme
@ Our proposed schemes perform better than the baseline non-coded scheme

@ We provided exact analytical expressions of Type-l and Type-Il errors for the
proposed schemes.

Current Works

@ Add an empirical entropy check in our quantize-binning as in [Kochman2023]

@ Extend both theoretical and practical results to the results to the case where both
X and Y are encoded
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