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Abstract

We observe samples 𝑿 = 𝑋1,…,𝑋𝑛 that are IID according to some unknown
distribution 𝑃 ∈ ℋ. How many samples are needed to guess a ̂𝑃  “close” to 𝑃 ?

We seek the approximate sample complexity

𝑛𝜀,𝛿(ℋ) ≔ min{𝑛 : inf
𝑃̂
sup
𝑃∈ℋ

ℙ
𝑿~ IID𝑃

[𝐷(𝑃 , ̂𝑃 (𝑿)) > 𝜀] ≤ 𝛿}

Main Result (Informal)

The sample complexity is at most

𝑛𝜀,𝛿(ℋ) = 𝑂(
ln(1𝛿) + ln(𝒞)

inf𝐶,𝐶′∈𝒞 𝑑(𝐶,𝐶′)
).

The sample complexity is at least

𝑛𝜀,𝛿(ℋ) = Ω(
ln(1𝛿)

inf𝐶,𝐶′∈𝒞 𝑑(𝐶,𝐶′)
).

Here, 𝒞 is a collection of (𝐷, 𝜀)-dependent clusters that cover ℋ, and 
𝑑(𝐶,𝐶′) is the distance between clusters 𝐶 and 𝐶′ (defined below).

Classical Hypothesis Testing

Corresponds to 𝐷( ̂𝑃 , 𝑃) = 𝕀( ̂𝑃 = 𝑃) and 𝜀 = 0. Here, the sample complexity
is characterized by the least squared Hellinger distance on ℋ,

𝑛0,𝛿(ℋ) = Θ(
1

inf𝑃,𝑃 ′∈ℋ ℎ2(𝑃 , 𝑃 ′)
).

For example:

𝑃1

𝑃2

𝑃3

𝑃4

𝑛0,𝛿(ℋ) = Θ( 1
ℎ2(𝑃1,𝑃2)

)

ℋ = {𝑃1, 𝑃2, 𝑃3, 𝑃4}

Approximate Hypothesis Testing

We need no longer distinguish between 𝑃  and 𝑃 ′ that are 𝜀-close!

𝑪𝟏
𝑪𝟐

𝑃1

𝑃2

𝑃3

𝑃4

𝑛𝜀,𝛿(ℋ) = Θ( 1
ℎ2(𝑃1,𝑃3)

)

ℋ = 𝐶1 ∪ 𝐶2 where 𝐶1 = {𝑃1, 𝑃2}, 𝐶2 = {𝑃3, 𝑃4}

Key Insight

Cover ℋ with clusters 𝒞 = {𝐶1, 𝐶2,…} and define the distance

𝑑(𝐶,𝐶′) ≔ inf
𝑃∈𝐶,𝑃 ′∈𝐶′

ℎ2(𝑃 , 𝑃 ′).

Treat approximate hypothesis testing as classical hypothesis testing on
clusters with a sample complexity that scales as Θ(1/ inf𝐶,𝐶′∈𝒞 𝑑(𝐶,𝐶′)).

Proof Sketch: Upper Bound

First consider only distinguishing between two clusters 𝐶 and 𝐶′. To that end,
use a LLR test for suitable mixtures ∫

𝑃∈𝐶
𝑃𝜇(𝑃) vs. ∫

𝑃 ′∈𝐶′
𝑃 ′𝜇′(𝑃 ′):

sup
𝐶
sup
𝑃∈𝐶

ℙ
𝑿~ IID𝑃

[ ̂𝐶(𝑿) ≠ 𝐶]

≤ sup
𝑃∈𝐶

ℙ
𝑿~ IID𝑃

[ ̂𝐶(𝑿) ≠ 𝐶] + sup
𝑃 ′∈𝐶′

ℙ
𝑿~ IID𝑃 ′

[ ̂𝐶(𝑿) ≠ 𝐶′]

≤ 1 − inf
𝑃∈𝐶,𝑃 ′∈𝐶′

TV(𝑃⊗𝑛, 𝑃 ′⊗𝑛)

≤ 1 − inf
𝑃∈𝐶,𝑃 ′∈𝐶′

ℎ2(𝑃⊗𝑛, 𝑃 ′⊗𝑛)

≤ (1 − inf
𝑃∈𝐶,𝑃 ′∈𝐶′

ℎ2(𝑃 , 𝑃 ′))
𝑛

= (1 − 𝑑(𝐶,𝐶′))𝑛

≤ 𝑒−𝑛𝑑(𝐶,𝐶′)

To distinguish between all clusters, apply the above test for every pair (𝐶𝑖, 𝐶𝑗),
and take a majority vote: the cluster containing the data-generating distribution
wins if it is voted for when compared to any other cluster. By the union bound,
the majority vote is not won with probability at most:

sup
𝐶
sup
𝑃∈𝐶

ℙ
𝑿~ IID𝑃

[ ̂𝐶(𝑿)] ≤ |𝒞|𝑒−𝑛 inf𝐶,𝐶′∈𝒞 𝑑(𝐶,𝐶′).

Proof Sketch: Lower Bound

Observe that

• distinguishing between fixed clusters 𝐶 and 𝐶′ is easier than distinguishing
between all clusters.

• distinguishing between fixed distributions 𝑃 ∈ 𝐶 and 𝑃 ′ ∈ 𝐶′ is easier than
distinguishing between all distributions in 𝐶 and 𝐶′.

Thus, for any 𝐶,𝐶′ ∈ 𝒞, and 𝑃 ∈ 𝐶,𝑃 ′ ∈ 𝐶′:

sup
𝐶
sup
𝑃∈𝐶

ℙ
𝑿~ IID𝑃

[ ̂𝐶(𝑿)]

≥ max( ℙ
𝑿~ IID𝑃

[ ̂𝑃 (𝑿) ≠ 𝑃], ℙ
𝑿~ IID𝑃 ′

[ ̂𝑃 (𝑿) ≠ 𝑃 ′])

≥
1
2
−
TV(𝑃⊗𝑛, 𝑃 ′⊗𝑛)

2

>
1
4
(1 − ℎ2(𝑃 , 𝑃 ′))4𝑛

≥
1
4
𝑒−8𝑛ℎ2(𝑃,𝑃 ′)

Since this bound holds for any 𝑃 ∈ 𝐶,𝑃 ′ ∈ 𝐶′,

sup
𝐶
sup
𝑃∈𝐶

ℙ
𝑿~ IID𝑃

[ ̂𝐶(𝑿)] >
1
4
𝑒−8𝑛𝑑(𝐶,𝐶′).

And since it also holds for any 𝐶,𝐶′ ∈ 𝒞,

sup
𝐶
sup
𝑃∈𝐶

ℙ
𝑿~ IID𝑃

[ ̂𝐶(𝑿)] >
1
4
𝑒−8𝑛 inf𝐶,𝐶′∈𝒞 𝑑(𝐶,𝐶′).

Outlook

Key Paradigm

Approximate hypothesis testing is a flexible tool to understand data!

We plan to:

• study the minimal cluster covering inf𝒞|𝒞| as a complexity measure of the
hypothesis class ℋ.

• relate the distance 𝐷(𝑃 , 𝑃 ′) to real-world applications through

𝐷(𝑃 , 𝑃 ′) = |𝔼𝑋~𝑃 [𝑐(𝑋)] − 𝔼𝑋~𝑃 ′ [𝑐(𝑋)]|𝜌,

where 𝑐(𝑋) is the cost of outcome 𝑋 (e.g., loss due to rising stock price).

• run simulations on synthetic and real data.
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