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Introduction to Distributed Learning for Wireless

A Network of Intelligent Devices for Wireless Networks

Modern “Al" in the era of Big Data = Devices collecting data + Communication via wireless networks

m

Wireless = Cellular
communication commumnication
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Introduction to Distributed Learning for Wireless

A Network of Intelligent Devices for Wireless Networks

Modern “Al" in the era of Big Data = Devices collecting data + Communication via wireless networks

Challenges of Al for wireless networks

o Spatial data distributedness

o Useful data is distributed over multiple sites/nodes by nature.
o Every part of the data may not be enough by its own.

o Heterogeneity

o Devices may possess each a small amount of data. }
o Data is heterogeneous across devices, especially for sensory signals.

o Privacy

o Devices not allowed and/or not desiring to share raw data. ==
o Privacy/GDPR issues

o Communication

o Bandwidth/power constraints
o Devices mobility

AT (e
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Introduction to Distributed Learning for Wireless

Distributed Learning Solutions for Wireless Networks

Centralized Learning Distributed Learning
o \
X1~}17|l{ ﬁF[E = }]W[E 3" Dy
/ 3]
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X~ e i —D -
Single node, multiple processing units Devices in a wireless network
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Introduction to Distributed Learning for Wireless

Distributed Learning Solutions for Wireless Networks

Centralized Learning Distributed Learning
X, ’U‘\EH’U‘
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x|
XL e 5
Single node, multiple processing units Devices in a wireless network
o Easy design, e.g., use SOTA ML neural networks) o Saves bandwidth.
but... @ Preserves privacy (no raw data exchange).
@ requires large bandwidth. o But a priori possible degradation of performance.
o No privacy.
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Introduction to Distributed Learning for Wireless

Distributed Learning Solutions for Wireless Networks

Centralized Learning Distributed Learning
X, ’U‘\EH’U‘

-]

X1~}1T|l{ ﬁF[E oy P p

x|
XL e 5
Single node, multiple processing units Devices in a wireless network
o Easy design, e.g., use SOTA ML neural networks) o Saves bandwidth.
but... @ Preserves privacy (no raw data exchange).
@ requires large bandwidth. o But a priori possible degradation of performance.
o No privacy.

This talk: generalization error as performance measure
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Introduction to Distributed Learning for Wireless

Preliminaries - Generalization Error

Data: For an unknown distribution 1 on Z, Loss function: £: Z x W — R.
o Input data Z ~ p E.g., for binary classification:
— d —
o Dataset: n i.i.d. samples S = {Z;}]" | ~ u®n z=(z,y), z €RY y € {-1,1}, £(z,w) = Lys(ew)<0

. . ) (0-1 loss) with f decision function.
Learning algorithm: mapping A from Z € Z to a

hypothesis W € W.
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Preliminaries - Generalization Error

Data: For an unknown distribution p on Z,
o Input data Z ~
o Dataset: n i.i.d. samples S = {Z;}7 | ~ pu®"

Learning algorithm: mapping A from Z € Z to a
hypothesis W € W.

Loss function: £: Z x W — R.

E.g., for binary classification:

z=(z,y), z € Rd» y€{-1,1}, £(z,w) = lef(:c,w)<0
(0-1 loss) with f decision function.

Population risk:

L(w) =Bz p[l(Z, )] @ Loss function

Empirical risk:

L(S,w) =

=~ Wz w)

Related to algorithmic stability &

robustness:

Generalization error:

- o Uniform stability
@ Average stability

gen(S, w) = L(w) — L(S,w)

Generalization error depends on:

o Data distribution
@ Size of training dataset
1 @ Learning algorithm

Empirical
distribution

Exact analysis out of reach - resort to
bounds:

@ Tail bounds
@ In-expectation bounds

Distributed Learning
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Distributed Learning: Problem Setup (1/2)

K clients, each with a (local) dataset of size n.
Datasets: for a distribution p on Z,

o Input data Z ~ p.
o Client #i: n i.i.d. samples S; = {Z; ;}7_; ~ p®".

e Notation: S = S1.x == UK | S;.

All clients equipped with a same NN.

(Local) learning algorithms: Client #: learns model W;
using algorithm A; : S; € Z®" — W. Induces a
distribution Py, |g,.

Central server: aggregates the models Wy. i = (Wl)fil
as W according to

P = Por Ps, w,.
SvWI:Kvw W|W1;K HZE[K] Smwz

Distributed Learning

Wy
K
Client 1 A;

@
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Distributed Learning: Problem Setup (1/2)

K clients, each with a (local) dataset of size n.
Datasets: for a distribution p on Z,

o Input data Z ~ p.
o Client #i: n i.i.d. samples S; = {Z; ;}7_; ~ p®".

e Notation: S = S1.x == UK | S;.

All clients equipped with a same NN.

(Local) learning algorithms: Client #: learns model W;
using algorithm A; : S; € Z®" — W. Induces a
distribution Py, |g,.

Central server: aggregates the models Wy. i = (Wl)fil
as W according to

P = Por Ps, w,.
SvWI:Kvw W|W1;K HZE[K] Smwz

Example 1: Example 2: Example 3:
o A, = A Vi€ [K]. e A; = SGD with e A; = SGD.
o A=SGD or A = learning rate 0.01. o Ay = ADAM.
ADAM. o Ay = SGD with o Etc.

learning rate
0.002.

o Etc.

Distributed Learning

S Wi

S Py
Client 1 A; ClientK Ax
[ 2] ooo =
S-Em| """ |- 8wy
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Introduction to Distributed Learning for Wireless

Distributed Learning: Problem Setup (2/2)

For a hypothesis w,
Loss function:
L:ZxW — R+

Population risk:
L) :=Ez~u[¢(Z, )]

Empirical risk:

LS = — S5 U5, w) W

i=1j=1 ‘Clienﬂ Ay

=
G-ow

ClientK

Ax
[—
il

oo0o

Generalization error

gen(S,w) = L(w) — L(S,w)

How to characterize generalization error of Distributed Learning?
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Advantages of Distributed Learning over Centralized Learning

Case study: Distributed Support Vector Machines (DSVM)

Consider a binary classification problem.
Local learning algorithms A;: Support Vector Machines (SVM).
Hypothesis W;: hyperplane coefficients.

(Centralized) SVM

Hyperplane W~

Class 1 Class 2
Q,
(o]
o ° o
o]
o o]
0o ® 0%
©
OO

W aims at classifying correctly all points, while
maximizing a margin between them.

For a point x with class label y, the SVM prediction is
9 = sign(W T ).

T (e
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Advantages of Distributed Learning over Centralized Learning

Case study: Distributed Support Vector Machines (DSVM)

Consider a binary classification problem.

Local learning algorithms A;: Support Vector Machines (SVM).

Hypothesis W;: hyperplane coefficients.

(Centralized) SVM

Hyperplane W~

Class 1 Class 2
Q,
(o]
o ° o
o]
o o]
0o ® 0%
©
OO

Margin

W aims at classifying correctly all points, while
maximizing a margin between them.

For a point x with class label y, the SVM prediction is
9 = sign(W T ).

Distributed SVM, K = 2 clients

Hyperplane
W= (W, + Wa)/2
¢
Class 1 ® o , Class 2
’
° ° °
Q,
* ° ’ [°]
° (o]
" ° Client 2
° o
Client 1 o o i o CAC]
Client 2 Client 1
jen ® °
0,
[ ]
1
Hyperplane TV

o Wi can not classify all purple points errorless.
o Wy can not classify all green points errorless.
o W classifies all points errorless!
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Advantages of Distributed Learning over Centralized Learnin

Generalization error of DSVM

___________________________ _[ Theorem [SCZ22] ]___________________________‘
1
: Consider DSVM with K clients. Then, :
1
! 1
: = log(nK) log( K i
| E[geny (S1.1c, )] < 0 LB gD .
1 nk :
| o o o o o o o o o o o )
Class 1 e o ,I Class 2
® ° ‘
% ° o/ © o
/9 ® o I‘ ° Client2
clemt 7. oo f 000 @ o

° ° 0/

Hyperplane 17z

[SCZ22] Rate-distortion Theoretic Bounds on Generalization Error for Distributed Learning. Sefidgaran M., Chor R. and Zaidi A., 2022
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Advantages of Distributed Learning over Centralized Learning

Generalization error of DSVM

___________________________ _[ Theorem [SCZ22] ]___________________________‘

1

: Consider DSVM with K clients. Then, :
1

I 1

! — 1 K)log(K

. E[geny (1.1, W)] < 0 V08O log(K) ) :

! nk?2 !
1
1

Hyperplane
W = (W) + W))/2

@ Bound for distributed SVM decreases faster than that of the centralized one

(with nK samples) with a factor of order \/log(K)/K. =, % S
@ Similar behavior showed in high probability with a tail bound. ‘o S e e,

, o ® %/ Client2
N °

Client 1
° ° Oo‘/

—> SVM generalizes better (is more robust) when applied distributedly than in EEe 7. °
a centralized manner. Clen2

Hyperplane 17z

[SCZ22] Rate-distortion Theoretic Bounds on Generalization Error for Distributed Learning. Sefidgaran M., Chor R. and Zaidi A., 2022
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Advantages of Distributed Learning over Centralized Learning

Elements of proof

© Rate-distortion in standard lossy source coding.
@ Rate-distortion for lossy algorithm compression.
© Rate-distortion bound for generalization error in centralized learning.

@ Dimensionality reduction: Johnson-Lindenstrauss transformation

Distributed Learning 10 /42



Elements of proof (1/3)

Rate-distortion function and sochastic learning algorithms

(In standard source coding) Quantifies fundamental compression rate of a source within a fixed average distortion
level e. If W is obtained given S, the compression of W into W within average distortion € has minimum rate
RD(Q,e) = inf I(S,W) st E[dW,W) <e
P.-
W|s
where @ is a joint distribution over S X W.
(For statistical learning) Measures lossy compressibility of an algorithm i.e., smallest compressed hypothesis space
that can be found s.t. distortion given by d(W, W) := gen(S, W) — gen(S, W) smaller than e (in average):
RD(Q, €)= inf I(S,W) st. E[gen(S, W) — gen(S,W)] < e

Pyris

_______________ ( Theorem (Centralized learning) ]_ e e e

Consider the centralized learning setup with dataset S of nK i.i.d. samples
and learning algorithm A : Z®"K — . Suppose that for all w € W, £(Z, )
is o-subgaussian i.e., Vt € R, Elexp(t(4(Z,w) — E[¢(Z,w]))] < exp(c?t?/2).

1
1
1
:
1
1 Then, for any € € R,
1
1
202
: E[gen(S, W)] < {/ =—=RD(Ps,w, ¢)
i nK
[}

AT (e Y



Advantages of Distributed Learning over Centralized Learning

Elements of proof (2/3)

o For each client i € [K]:
o Dataset of n i.i.d. samples: S; = {Z; ;};c[n) € 27, Si ~ udm
o Learning algorithm: A;(S;) = W; € W, W; local model.
o Aggregated/Global model: W' = (3,5 Ws)/ K

o A; induces the distribution Py, |s,, which together with n induce the joint distribution Ps, w, = H®HPWi|Si-
Thus, for S = U;S;, Wi.x = (W;),, the distributed learning algorithm A(S) induces

PS,WI:K7W = PW\WLK H Ps;,w;
iclK]

o Compression of W; with W;, Vj # i fixed: let Wy.g\; = (W1,...,Wi—1, Wiy1,...,Wk), W; compression
of W;. Hence, W; = (W; + Wi.k\i)/K is the resulting compressed global hypothesis.
o Depends on S; and Wy ;.
o Rate-distortion function: for every distribution Q over W x (287 x W)®K,
RD(Q )= inf  I(SiWilWixy) st E[gen(S;, W) - gen(Si, Wy)| <<

P
WilSi:Wiik\i

et L R



Elements of proof (3/3)

Block-coding: we use the previously introduced compression scheme to extend the centralized learning
generalization bound to our distributed learning setup.

Doing the compression of the hypothesis W; of client #i in a lower-dimensional space using the
Johnson-Lindenstrauss transformation gives the following.

For every m € N* and every non-negative triplet (c1, c2, V), it holds that

NDi(Q, €) < mlog((cz +v)/v)

where € depends on m,cy,c2 and v.

T (e Y



Advantages of Distributed Learning over Centralized Learning

Experiments: Results

* 1 Distributed setting

100 Centralized setting

\ N 107

S
S
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H \ s

H \
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—e— Distributed setting
—~ Centralized setting

~®~ Distributed setting
— Centralized setting

(a) n = 100
100
+ 6~ Distributed setting
N = Centralized setting 10t
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K
(b) n = 300

Figure: Theoretical bound (left plots) and generalization error (right plots) for

distributed and centralized learning settings versus K.

Distributed Learning

Experimental setup
@ Dataset: MNIST, 2 classes

@ Model: SVM with Gaussian kernel, SGD
training

o Hyperparameters:

o Initial learning rate: 0.01

o Regularization parameter: 0.00001

o Kernel parameter: 0.01

o Kernel feature space’s dimension:
2000

.

Interpretation

@ Generalization error of DSVM is smaller
than for centralized SVM, for any K.

@ In-expectation bound follows the
behavior of the generalization error.

.
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Advantages of Distributed Learning over Centralized Learning

Distributed Learning: Problem Setup (recall)

K clients, each with a (local) dataset of size n. (Local) learning algorithms: mapping A from S; € Z®™
Datasets: for a distribution p on Z, to W; € W. For client #i, induces a distribution Py, s, .
o Input data Z ~ p. .
. ) . n &n Central server/Fusion center: aggregates the models

o Client #4: n i.i.d. samples S; = {Zi’j}j:1 ~ p®n, Wik = (Wi)K | according to

[ — K ¢
@ Notation: S = S1.x = U;LS;. Py W T = PWIW1 p H'e[z{] Ps, w;-
Wik, : i

Population risk:
L) =Ezu[¢(Z, )]

Empirical risk:

N . 1 K n
L(8, @) = — Zi:l Zj:1 U Z;,5,w)

Generalization error

Client1 A, ClientK

G| | E B

AT (e oY

gen(S,w) = L(w) — L(S,w)
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Advantages of Distributed Learning over Centralized Learning

Generalization Error of Distributed Learning Algorithms

If the loss is o-subgaussian, then Ve € R,

— 202
E[gen(slzKaw)] S Tzrg[alg] ERcDl‘(jt)_5’1~7W1;1<7W7 6) +e.

where RD; (P Wy, g W €) is the rate-distortion function, measuring the fundamental local algorithm com-
pressibility of client 7 within € distortion, conditioned on other W;, j # i.

T (e
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Advantages of Distributed Learning over Centralized Learning

Generalization Error of Distributed Learning Algorithms

If the loss is o-subgaussian, then Ve € R,

_ 202
E[gen(SLK, W)] < E— SR’Di(PSth:K’W, €) + e

where RD; (P Wy, g W €) is the rate-distortion function, measuring the fundamental local algorithm com-
pressibility of client 7 within € distortion, conditioned on other W;, j # i.

o Intuitively, each W; has effect of 1/K on W; hence with Lipschitz loss, separate compression allows for local
distortion of order Ke.

@ Bound reduces to mutual-information based bounds for e = 0 (Xu and Raginsky, 2017).

@ Multiple extensions and similar tail bounds.

T (e TV



Advantages of Distributed Learning over Centralized Learning

Summary

o Problem: Generalization error of distributed stochastic learning algorithms.

Distributed Learning 17 /42



Advantages of Distributed Learning over Centralized Learning

Summary

o Problem: Generalization error of distributed stochastic learning algorithms.

@ General tail bounds and in-expectation bounds on the generalization error.
o Improves over the prior arts [YDP20, BDP22].
@ Generalization error bound decreases as number of clients increases, for

o Distributed SVM
o Federated SGLD
o Locally deterministic algorithms with Lipschitz loss

© Experimentally verified the findings.
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Advantages of Distributed Learning over Centralized Learning

Summary

o Problem: Generalization error of distributed stochastic learning algorithms.

@ General tail bounds and in-expectation bounds on the generalization error.
o Improves over the prior arts [YDP20, BDP22].
@ Generalization error bound decreases as number of clients increases, for

o Distributed SVM
o Federated SGLD
o Locally deterministic algorithms with Lipschitz loss

© Experimentally verified the findings.

o Approach: Rate-distortion theoretic framework, adapted for algorithm compressibility

o Intuition: Distributed algorithms reduce the variance of the model!

[YDP20] Information-theoretic bounds on the generalization error and privacy leakage in federated learning. Yagli S., Dytso A., Poor H.V., 2020
[BDP22] Improved Information Theoretic Generalization Bounds for Distributed and Federated Learning. Barnes L.P., Dytso A., and Poor H.V., 2022

Romail
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Federated Learning & Communication

From “one-shot” to multi-round Federated Learning

R subsets 5}(:),7' =1,...R R rounds
~r=L1..,R

Server i

For a model w = w(®)
Empirical risk:

£(S,m) = niK S S Uz w)

ke[K]i€[n]

Population risk:
L(w) =Ez[l(Z,w)]
Generalization error:
gen(S,w) = L(W) — L(S, )

R-rounds FL algorithm

K clients, each equipped with a dataset S, = {Zj ;}7; ~ u®™.

© Round 7 = 0: every client k € [K] initializes its model W,"
with some W(O) = Wo.

@ Rounds r € [1; R]: every client k € [K] learns a local model
ngr) with their algorithm Ay, using samples S,(CT) and
initialization W™~ ":

W = A (5O, W)
Local models {Wér)}ke[K] are sent to the server.

© Server aggregates local models as W(r) and send this global
model back to the clients.

Final global model (after R rounds): W™

Technical problem Practical value

What is the effect of the # of
communication rounds R in
Federated Learning?

Saving in # of communication
rounds R would translate into
bandwidth savings!

Distributed Learning 18 /42



Federated Learning & Communication

What do we know about this problem?

Result 1: Empirical risk of LocalSGD

When Ay, = SGD,Vk € [K] and W is the arithmetic average of
clients’ local models, empirical risk [l(S, w) decreases with #
of communication rounds R. [McMahan+17]

—> More communication with the parameter server helps for
optimization in Federated Learning (FL).

Empirical risk

R

One-shot Mini-batch SGD
R=1 R=n

CIFAR-10

[McMa-
han+17]

[McMahan+17] Communication-efficient Learning of Deep Networks from Decentralized Data.
McMahan B.H. et al., 2017

T (e
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Federated Learning & Communication

What do we know about this problem?

Result 1: Empirical risk of LocalSGD

When Ay, = SGD,Vk € [K] and W is the arithmetic average of
clients’ local models, empirical risk [l(S, w) decreases with #
of communication rounds R. [McMahan+17]

—> More communication with the parameter server helps for
optimization in Federated Learning (FL).

Technical Problem

@ As previously said, empirical risk does not reflect the true
performance of the model w.

o What matters is how the population risk or the
generalization error evolve w.r.t. R!

In some cases, it was observed experimentally that LocalSGD
with R < n has smaller population risk than ParallelSGD
(R=n).

[McMahan+17] Communication-efficient Learning of Deep Networks from Decentralized Data.
McMahan B.H. et al., 2017

[GLHA23] Why (and When) Does LocalSGD Generalize Better Than SGD? Gu X. et al., 2023

e (e

Empirical risk

R

One-shot Mini-batch SGD
R=1 R=n

CIFAR-10

[McMa-
han+17]

[GLHA23]

Test Accuracy

0.91- . . . . . .
o1 1 6 30 150 750 3000

Number of Local Steps H (log scale)
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Federated Learning & Communication

Only a few theoretical results on generalization error in FL

o Rate-distortion theoretic bounds for “one-shot” FL algorithms (previous section) [SCZ22]
o Centralized learning: all datasets collected at one point i.e., Uszlsk = S to train a model W,
Es,w[gen(S, W)] = O(1/vnK)
o One-shot FL: Eg w [gen(S, W)] = O(1/VnK?)
—> More clients = smaller generalization error than centralized setting!

AT (e 0



Federated Learning & Communication

Only a few theoretical results on generalization error in FL

o Rate-distortion theoretic bounds for “one-shot” FL algorithms (previous section) [SCZ22]
o Centralized learning: all datasets collected at one point i.e., Uszlsk = S to train a model W,
Es,w[gen(S, W)] = O(1/vnK)
o One-shot FL: Eg w [gen(S, W)] = O(1/VnK?)
—> More clients = smaller generalization error than centralized setting!
o For multi-round FL:

o Bound on a proxy to generalization error. [BDP22]
o Bound for generalization error for specific loss functions and learning algorithms, suggesting that
generalization error increases with R. [CSZ23]

[CSZ23] More Communication Does Not Result in Smaller Generalization Error in Federated Learning. Chor R., Sefidgaran M. and Zaidi A., 2023

T (e
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Federated Learning & Communication

Only a few theoretical results on generalization error in FL

o Rate-distortion theoretic bounds for “one-shot” FL algorithms (previous section) [SCZ22]
o Centralized learning: all datasets collected at one point i.e., uszlsk = S to train a model W,
Es,w[gen(S, W)] = O(1/vVnK)
o One-shot FL: Eg w [gen(S, W)] = O(1/VnK?)
—> More clients = smaller generalization error than centralized setting!
o For multi-round FL:
o Bound on a proxy to generalization error. [BDP22]

o Bound for generalization error for specific loss functions and learning algorithms, suggesting that
generalization error increases with R. [CSZ23]

(In more general settings) Does generalization error increases with the number of communication rounds R in FL?J

[CSZ23] More Communication Does Not Result in Smaller Generalization Error in Federated Learning. Chor R., Sefidgaran M. and Zaidi A., 2023

AT (e
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derated Learning & Communication

What can we expect?

o FL helps to make individual models extract features that are in other

clients’ data when R is larger.

@ Works as if every client “sees” more data locally i.e., “virtually” larger

training dataset.

@ Generalization error is shown to decrease with the dataset size n

[XR2017]: for a model W trained on S,

— Generalization error of FL should decrease with R.

[XR17] Information-theoretic analysis of generalization capability of learning algorithms. Xu A. and Raginsky M., 2017

Distributed Learning

Generalization error

R
One-shot Mini-batch SGD
R=1 R=n
Rsubsets S, r =1,...R Rrounds

seeey

Model |

aggregation
) i
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Generalization error of Federated SVM (FSVM)

_________________ [ Theorem [SCZW24] ]________________

For FSVM optimized using (K, R, n, e, b)-FL-SGD with W = B4(1), X =
B4(B) and 6 € R, under some assumptions and for some constants Ge,b
and «,

Hyperplane

Class 1 Class 2

' |
! 1
I :
! 1
! 1
I _ B2log(nKVEK Ly |

o ! E[gene (S, W(R))] —o \/ og(n ) 2relR] :
' |
I :
! 1
! 1
1

O. °

/9 ., ° Client 2

o

clent 1 /. ° " @ @ o %‘/
Glent 2

nK?262 ’

Client 1

7
Hyperplane W,

where L, < qg(bR_r) log max(Bf;er), 2).
: q
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Generalization error of Federated SVM (FSVM)

[ Theorem [SCZW24] ] ________________
For FSVM optimized using (K, R, n, e, b)-FL-SGD with W = B4(1), X =

! 1
i 1
7w : B4(B) and 6 € R, under some assumptions and for some constants Ge,b :
B : and «, \
ass . ; ass | :
1
% ° °o o ! —(R) B2log(nKVK) Zre[R] Ly ;
Ao e o | E[geny (5,W7)] = 0 — : .
clent 1 0/‘ ° 7 @ © °o %‘/ : n !
Client 1 I
Client 2 5] 1 1
(o]

® O‘/ : 2(R—r) K0 |
N i where L, < 9% log max BaR=T) 2. 1
1 e, 1
I‘ ______________________________________________ )

@ Explicit bound that depends on # of communication rounds R, # of

clients K and local dataset size n. : Generalization rror

@ Bound increases with R, for fixed (n, K) = More communication
may hurts for generalization!

[SCZW24] Lessons from Generalization Error Analysis of Federated Learning : You May Communicate Less Often!. R

Sefidgaran M., Chor R., Zaidi. A and Wan Y., 2024 One-shot Mini-batch SGD
R=1 R=n
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Federated Learning & Communication

Towards optimal communication?

Generalization error

Recall that generalization error is given by
gen(S, W) = L(W) — L(S, W)

with empirical risk £(S,w) and population risk £().

@ Population risk = Empirical risk + Generalization Error.

@ Empirical risk decreases with R. Empirical risk i R
. . . . . - i ¥ Mini-batch SGD
© Generalization error increases with R (previous results). Oﬁequ °"";*":"j‘§° off WREI:cn
Consequences Implications
= Population risk may have a minimum for R* < Rqz! @ Choice of # of communication rounds
—> Less communication can be beneficial for the true performance directly related to the required system
of an FL algorithm. bandwidth!

@ Should be designed on the true system
performance indicators, not the empirical
risk (often considered for simplicity).

AT (e Sy



Federated Learning & Communication

Experiments: FSVM

Experimental setup

o Dataset: MNIST, 2 classes,
n = 100

@ Model: SVM with Gaussian kernel,
SGD training

@ Learning rate 0.01, batch size 1, #
of epochs 40

v

Interpretation

(a) Generalization error increases with
R for different fixed K. Similar
results for other values of n.

(b) In-expectation bound follows the
behavior of the generalization error.

(c) Empirical risk decreases with R.

(d) Population risk quickly converges
to a value

0.35

(a) Empirical risk

Distributed Learning

(b) Population risk
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Federated Learning & Communication

Generalization error of FL for general algorithms & models (1/2)

( Theorem [SCZW24] ) _ _ _ __ _____________________

For any (Pyws; K, R, n)-FL model with distributed dataset S ~ Pg, if the loss £(Zy,,w) is o-subgaussian
for every w € W and any k € [K], then for every € € R it holds that

R
Es W~ Ps w [gen(S w ) ] < \/ 202 Zke RO (Ps,w, k, 7, €x,r)/(nK) + €.

for any set of parameters {ex , }rc(k],re[r] C R which satisfy ﬁ ZkE[K] ZTE[R] €k, < €.
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Federated Learning & Communication

Generalization error of FL for general algorithms & models (1/2)

o m e e e e ( Theorem [SCZW24] ) _ - _ _ - _ o _______

For any (Pyws; K, R, n)-FL model with distributed dataset S ~ Pg, if the loss £(Zy,,w) is o-subgaussian
for every w € W and any k € [K], then for every € € R it holds that

for any set of parameters {ex , }rc(k],re[r] C R which satisfy ﬁ ZkE[K] ZTE[R] €k, < €.

1
1
1
:
1
w7 (R)
Es,wrs w [gon(S, W™)] < \/202 > et TR W ok )/ (nK) +e.
1
1
1
I

o Captures “contribution” of each client’s local model during each round to the global model through
rate-distortion functions.

@ Same observation in high probability with a tail bound.
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Generalization error of FL for general algorithms & models (2/2)

__________________________ .[ Theorem [SCZW23] ]_________________________

Assume that £(Z, w) is o-subgaussian for every w € W and any k € [K]. Denote as
o W a concatenation of all local and global models at every round,
o For every k € [K] and r € [R], Py, a conditional prior on W,EM given W
Then, with probability at least (1 — §) over S, for all Py s, ]EWNPW\S [gen(S,W(R))] is bounded by

(r=1)

1 2
KR 2kelK],relR) Bypr—1) {DKL (PW(T)|S(T) FFr=1) HPk,r)} +log(%53)
WW*U\S[;{‘” k k

(2n/R — 1)/(40%)

T (e
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Federated Learning & Communication

Generalization error of FL for general algorithms & models (2/2)

.[ Theorem [SCZW23] ]_ __________________________

Assume that £(Z, w) is o-subgaussian for every w € W and any k € [K]. Denote as
o W a concatenation of all local and global models at every round,
o For every k € [K] and r € [R], Py, a conditional prior on WIEM given W
Then, with probability at least (1 — §) over S, for all Py s, ]EWNPW\S [gen(S,W(R))] is bounded by

(r=1)

1 2
KR 2kelK],relR) Bypr—1) {DKL (PW(T)|S(T) FFr=1) HPk,r)} +log(%53)
WW*U\S[;{‘” k k

(2n/R — 1)/(40%)

o Accounts explicitly for the effect of the number of rounds R + number of participating clients K and size of
local datasets n.

o Captures “contribution” of each client's local model during each round to the global model: KL divergence
terms.

@ Same observations with a tail bound and bounds for lossy compression case.
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Experiments: Ordinary Least Squares

Experimental setup

o Dataset: synthetic dataset with dimension d = 10,
n = 500, K = 10
0.8
@ Model: Ordinary Least Squares with SGD training.
0.7
@ Hyperparameters:
o Learning rate: 0.01 o6
o Client batch size: 1 y 0s
0.4
Interpretation "
Generalization error increases with R, as in FSVM - gen(s, ™
experiments. 0.2 —— Bound of Th.1
o L] 100 200 300 400 500
R
Note: the shown bound is theoretically derived in
[CSZ23]. Figure: Generalization error vs. R

See [CSZ23]
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Experiments: CNNs

Experimental setup 0-07
0.06

o Dataset: CIFAR-10 (50000 training images, 008
10000 test images) with K = 16. ‘
0.04
o Model: ResNet-56 with SGD training
0.03
o Hyperpararamers: 0.02
o Client batch size: 128 1 10 100 1000
o Learning rate: 1.0 R
o Epochs: 100 J (a) Generalization error vs. R
Interpretation o £W)
0.12 L(S, W)
O As in FSVM experiments, similar observations 0.1
for generalization error and empirical risk. 0.08
@ Explicit “U-shape” of the population risk; 0.06
minimizer R* ~ 100. 0.04
© R* << Rpmaz = 3600 hence huge savings in 0.02
communication rounds are possible! 1 10 100 1000
v R
See [SCZW24] (b) Empirical and population risks vs. R
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Computation of Generalization Bounds for FL (1/2)

Let W = W and pwlgr)lsl(;)’w<r,1) = PW;iT)‘S;(CT) !W(T,U.

can be upper bounded as

Then, the rate distortion function for € = 0

r r) 57(r—1)
202 3 ke(K],relR) (s winw )
nk ’

Es,W~ Ps w [gen(S: W(R>)] <
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Computation of Generalization Bounds for FL (1/2)

Let W = W and pwlgr)lsl(;)’w<r,1) = PW;iT)‘S;(CT) !W(T,U.

can be upper bounded as

Then, the rate distortion function for € = 0

r r) 57(r—1)
202 3 ke(K],relR) (s winw )
nk ’

Es, W~ Pg w [gen(S:W(m)] <

o CMI term I(S,(Cr); W,y) \W(T_l)) has no closed-form expression.
@ Only access to a single instance of (S, W, W) = (S,(J),Wé”,W(T_l)).

Can we compute the CMI generalization bound in a “one-shot” manner?

[SCZ24] On the Effect of Communication on the Generalization Error in Federated Learning. Sefidgaran M., Chor R., Zaidi. A, 2024
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Computation of Generalization Bounds for FL (2/2)

@ CMI reformulation:

I(S;W|W) =Ep, ., DKL(PWIS’WHPWIW)] = min EpsW[DKL(PW‘S’WHPW‘W) 2 (1)
; wiw S

where the minimum is achieved whenever the prior PW|W equals the marginal distribution
P* := Py, 57 = Epg [PW|S,W]' Such a prior is often called “oracle”.

o Assume that Py = N (pr> Xy57) and Py s = N(ag 77 Csw)- Then,

I(S; WIW) o< Ep o [(e — 1) TS (@~ w)] = Ep, o [a T8 a] ~ Epy [uT £ 14,

3 estimation steps

@ Oracle prior (inverse) covariance matrix ¥~ !: Use a bootstrap technique over the dataset distribution Ps.

@ Posterior and prior means o and p for given W and S.

© Expectation over Pg 71 Monte-Carlo estimation methods naturally come to mind, but they rely on the
generation of many i.i.d. samples from Pg 37 = PsPy7, which is not an option.

T (e 0



Federated Learning & Communication

Experiments: Estimation of Generalization Error Bound for FL (1/2)

Experimental setup 0.10

0.8
o Dataset: CIFAR-10 with K = 16. 0.09- gen(s, W)
i L Bound estim. 0.6
@ Model: ResNet-56 with Adam optimizer 0.08- c
o Hyperpararamers: E_ 0.07 044
o Client batch size: 128 S 0.06 o zg
B = <o
o Learning rate: 1le-3 0.05. a
o Epochs: 100 0.0
y 0.04-
n 003, 2 3 4 5 6 7 8 9 10
Interpretation R
Computed (estimated) bound follows the behavior Figure: Generalization error & Computed bound vs. R
of the generalization error.

T (e
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Experiments: Estimation of Generalization Error Bound for FL (2/2)

Experimental setup 2 (Fig. (b))
o Dataset: MNIST with K = 16.
@ Model: 2-layer MLP (784-256-10) with Adam
optimizer
e Hyperpararamers:

o Client batch size: 128
o Learning rate: 0.1
o Epochs: 100

Interpretation

Computed (estimated) bound follows the behavior
of the generalization error.

See []

0.07- a
0.06 gen(s, W)
Bound estim. 3
0.05- .
s 2£
=0.08 2
T 2
§ 0.03 15
0.02- @
-0
0.01
0.00;

0 2 4 6 8 10 12 14 16 18 20
R

Figure: Generalization error & Computed bound vs. R

Distributed Learning
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Summary

Problem: Generalization error of Federated Learning algorithms, beyond
the one-shot case.

@ General tail bounds and in-expectation bounds on generalization error:

Novel in their kind.

Depend explicitly on number of communication rounds R, number of

clients K and local datasets size n.

o Bounds decrease as number of communication rounds increases for
Federated SVM.

e Two different proof frameworks: PAC-Bayes and rate-distortion
theory.

o Method for estimating one generalization bound.
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Federated Learning & Communication

Summary

Problem: Generalization error of Federated Learning algorithms, beyond
the one-shot case.

@ General tail bounds and in-expectation bounds on generalization error:

Novel in their kind.

Depend explicitly on number of communication rounds R, number of
clients K and local datasets size n.

Bounds decrease as number of communication rounds increases for
Federated SVM.

Two different proof frameworks: PAC-Bayes and rate-distortion
theory.

Method for estimating one generalization bound.

@ Experimental observations:

Verification of theoretical findings for Federated SVM.

Similar observations for Convolutional Neural Networks (ResNet).
Observed that population risk has a minimizer R* much smaller than
the maximum number of communication rounds.

4

Generalization error

Empirical risk

One-shot Optimal trade-off Mini-batch SGD
R=1 R=R* R

Implications

o Less bandwidth usage
o Better learning performance

@ Smaller complexity

=n

AT (e
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Statistical Learning through Examples

Statistical learning aims at solving a variety of problems using collected data.
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Statistical learning aims at solving a variety of problems using collected data. E.g.

@ Predict whether a patient, hospitalized due to a heart attack, will have a second heart attack (and/or when
this might happen). The prediction is to be based on demographic, diet and clinical measurements for that
patient.
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Statistical learning aims at solving a variety of problems using collected data. E.g.

@ Predict whether a patient, hospitalized due to a heart attack, will have a second heart attack (and/or when
this might happen). The prediction is to be based on demographic, diet and clinical measurements for that
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@ Identify a handwritten number from a digitized image. This needs considering each pixel of the image.
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Backup: Preliminaries on Statistical Learning

Statistical Learning through Examples

Statistical learning aims at solving a variety of problems using collected data. E.g.

@ Predict whether a patient, hospitalized due to a heart attack, will have a second heart attack (and/or when
this might happen). The prediction is to be based on demographic, diet and clinical measurements for that
patient.

@ Identify a handwritten number from a digitized image. This needs considering each pixel of the image.

© Classify an email as a spam based e.g. on the occurrence of specific keywords in the email body.

AT (e Y



Backup: Preliminaries on Statistical Learning

Statistical Learning through Examples

Statistical learning aims at solving a variety of problems using collected data. E.g.

@ Predict whether a patient, hospitalized due to a heart attack, will have a second heart attack (and/or when
this might happen). The prediction is to be based on demographic, diet and clinical measurements for that
patient.

@ Identify a handwritten number from a digitized image. This needs considering each pixel of the image.
© Classify an email as a spam based e.g. on the occurrence of specific keywords in the email body.

Such problems are said to be supervised because there is a target variable Y, linked to some variables X called

features.
Y = f(X) 42

where f is the target mapping, ¢ is some noise.
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Backup: Preliminaries on Statistical Learning

Why Estimate f7

@ Determine statistical correlations between the features.

o Determine statistical correlations between X and Y i.e., understand which components of X are helpful to

explain Y.

o Accurately predict values of Y given any features values X.
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Statistical Models

f can be any mapping from X into ), which renders the estimation unaffordable. Statistical models restrict the
considered mappings to a certain hypothesis class #.

o Statistical model: (Z,#) where Z = (X,)) is the data space and H = {g : X — Y} is the hypothesis
class/space.
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considered mappings to a certain hypothesis class #.

o Statistical model: (Z,#) where Z = (X,)) is the data space and H = {g : X — Y} is the hypothesis
class/space.

o Parametric model: When the hypothesis functions of the family # are entirely determined by parameters
WeWie H={g=gw : X = Y| W € W}
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f can be any mapping from X into ), which renders the estimation unaffordable. Statistical models restrict the
considered mappings to a certain hypothesis class #.

o Statistical model: (Z,#) where Z = (X,)) is the data space and H = {g : X — Y} is the hypothesis
class/space.

o Parametric model: When the hypothesis functions of the family # are entirely determined by parameters
WeWie H={g=gw : X = Y| W € W}

o Example (Linear regression): X = R4, ) =R, and H is the class of linear functions i.e.
Yw € W, gy(z) = wle, © € X.
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Statistical Models

f can be any mapping from X into ), which renders the estimation unaffordable. Statistical models restrict the
considered mappings to a certain hypothesis class #.

o Statistical model: (Z,#) where Z = (X,)) is the data space and H = {g : X — Y} is the hypothesis
class/space.

o Parametric model: When the hypothesis functions of the family # are entirely determined by parameters
WeWie H={g=gw : X = Y| W € W}

o Example (Linear regression): X = R4, ) =R, and H is the class of linear functions i.e.
Yw € W, gy(z) = wle, © € X.

In the following, we will consider only parametric models for ease of presentation. The parameters W will be
referred as hypothesis and W as hypothesis space.
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Backup: Preliminaries on Statistical Learning

Model Evaluation

Once a model has been chosen, one needs to compute a hypothesis W, using X, which results in a good
estimation of the target Y.
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Model Evaluation

Once a model has been chosen, one needs to compute a hypothesis W, using X, which results in a good
estimation of the target Y.

o Loss function: A function £: Z x YW — R measuring how well a hypothesis w € W predicts the target y
based on features z. Example (least squares regression): Vz = (z,y) € Z, Yw € W, £(z,w) = (wTz — y)?
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Backup: Preliminaries on Statistical Learning

Model Evaluation

Once a model has been chosen, one needs to compute a hypothesis W, using X, which results in a good
estimation of the target Y.

o Loss function: A function £: Z x YW — R measuring how well a hypothesis w € W predicts the target y
based on features z. Example (least squares regression): Vz = (z,y) € Z, Yw € W, £(z,w) = (wTz — y)?

o Population risk: For a given hypothesis w € W,

£(w) = Ezonlt(Z, w)). J

o Objective: Find the hypothesis w* € W such that

w* € argmin L(w).
wew
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Backup: Preliminaries on Statistical Learning

Model Evaluation

Once a model has been chosen, one needs to compute a hypothesis W, using X, which results in a good
estimation of the target Y.

o Loss function: A function £: Z x YW — R measuring how well a hypothesis w € W predicts the target y
based on features z. Example (least squares regression): Vz = (z,y) € Z, Yw € W, £(z,w) = (wTz — y)?

o Population risk: For a given hypothesis w € W,

£(w) = Bz, [6(Z,w)]. J

o Objective: Find the hypothesis w* € W such that

w* € argmin L(w).
wew

Problem

Data distribution p unknown hence £(w) can not be computed!
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Empirical Risk Minimization (ERM)

o Training dataset: Let S = {Z1,...,Z,} be n independent random variables distributed according to y, and
independent of Z = (X,Y).
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Backup: Preliminaries on Statistical Learning

Empirical Risk Minimization (ERM)

o Training dataset: Let S = {Z1,...,Z,} be n independent random variables distributed according to y, and
independent of Z = (X,Y).

o Learning algorithm: A (possibly stochastic) mapping A : Z™ — W that inputs a training dataset S and picks
a hypothesis .

T (e
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Empirical Risk Minimization (ERM)

o Training dataset: Let S = {Z1,...,Z,} be n independent random variables distributed according to y, and
independent of Z = (X,Y).

o Learning algorithm: A (possibly stochastic) mapping A : Z™ — W that inputs a training dataset S and picks
a hypothesis .

e S is used by A to estimate the target function f by finding the hypothesis w minimizing the empirical risk:

(s,) = Ze(zz,w) J

o It is an estimator of the population risk.
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Empirical Risk Minimization (ERM)

o Training dataset: Let S = {Z1,...,Z,} be n independent random variables distributed according to y, and
independent of Z = (X,Y).

o Learning algorithm: A (possibly stochastic) mapping A : Z™ — W that inputs a training dataset S and picks
a hypothesis .

e S is used by A to estimate the target function f by finding the hypothesis w minimizing the empirical risk:

(s,) = Ze(zz,w) J

It is an estimator of the population risk.

o Problem: How to measure the quality of the estimation?
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Backup: Preliminaries on Statistical Learning

Summary of the Statistical Learning Framework

Unknown target Unknown data

X1,...,Xn distribution

function
1 X

=Y Px

Training samples

S§={(X1,1),..., (X Ya)}

Hypothesis space Leaiig, L'.(S, W)
W i

—> algorithm —-—¢
A:ZM W)/

Parametric model

Figure: lllustration of statistical learning framework
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Backup: Preliminaries on Statistical Learning

Generalization of a hypothesis

o Difference of performance of a given hypothesis W for predicting any target value Y given X, that is
generated by the distribution p (“ground truth” performance), as compared to the performance on a training
dataset (empirical performance).
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Backup: Preliminaries on Statistical Learning

Generalization of a hypothesis

o Difference of performance of a given hypothesis W for predicting any target value Y given X, that is
generated by the distribution p (“ground truth” performance), as compared to the performance on a training

dataset (empirical performance).
o Generalization Error: Most common way to evaluate the generalization of a hypothesis,

gen(s, w) = L(w) — L(s,w) J

42/42
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Generalization of a hypothesis

o Difference of performance of a given hypothesis W for predicting any target value Y given X, that is
generated by the distribution p (“ground truth” performance), as compared to the performance on a training
dataset (empirical performance).

o Generalization Error: Most common way to evaluate the generalization of a hypothesis,

gen(s,w) = L(w) — L(s,w) J

o Overfitting can happen i.e. the hypothesis is really performant on S but has poor accuracy on new data
Zn+1, Zn+2,++ ~ 14, resulting in large generalization error.
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Backup: Preliminaries on Statistical Learning

Generalization of a hypothesis

o Difference of performance of a given hypothesis W for predicting any target value Y given X, that is
generated by the distribution p (“ground truth” performance), as compared to the performance on a training
dataset (empirical performance).

o Generalization Error: Most common way to evaluate the generalization of a hypothesis,

gen(s,w) = L(w) — L(s,w) J

o Overfitting can happen i.e. the hypothesis is really performant on S but has poor accuracy on new data
Zn+1, Zn+2,++ ~ 14, resulting in large generalization error.

Problem with generalization error

Exact analysis out of reach - resort to bounds:
o Tail bounds

@ In-expectation bounds
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