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Introduction to Distributed Learning for Wireless

A Network of Intelligent Devices for Wireless Networks

Modern “AI” in the era of Big Data = Devices collecting data + Communication via wireless networks

Challenges of AI for wireless networks

Spatial data distributedness

Useful data is distributed over multiple sites/nodes by nature.
Every part of the data may not be enough by its own.

Heterogeneity

Devices may possess each a small amount of data.
Data is heterogeneous across devices, especially for sensory signals.

Privacy

Devices not allowed and/or not desiring to share raw data.
Privacy/GDPR issues

Communication

Bandwidth/power constraints
Devices mobility
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Introduction to Distributed Learning for Wireless

Distributed Learning Solutions for Wireless Networks

Centralized Learning

Single node, multiple processing units

Easy design, e.g., use SOTA ML neural networks)
but...

requires large bandwidth.

No privacy.

Distributed Learning

Devices in a wireless network

Saves bandwidth.

Preserves privacy (no raw data exchange).

But a priori possible degradation of performance.

This talk: generalization error as performance measure
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Introduction to Distributed Learning for Wireless

Preliminaries - Generalization Error

Data: For an unknown distribution µ on Z,

Input data Z ∼ µ
Dataset: n i.i.d. samples S = {Zi}ni=1 ∼ µ⊗n

Learning algorithm: mapping A from Z ∈ Z to a
hypothesis W ∈ W.

Loss function: ℓ : Z ×W → R+.
E.g., for binary classification:
z = (x, y), x ∈ Rd, y ∈ {−1, 1}, ℓ(z, w) := 1yf(x,w)<0

(0-1 loss) with f decision function.

Population risk:

L(w) := EZ∼µ[ℓ(Z, µ)]

Empirical risk:

L̂(S,w) :=
1

n

∑n

i=1
ℓ(Zi, w)

Generalization error:

gen(S,w) := L(w)− L̂(S,w)

Generalization error depends on:

Loss function
Data distribution
Size of training dataset
Learning algorithm

Related to algorithmic stability &
robustness:

Uniform stability
Average stability

Exact analysis out of reach - resort to
bounds:

Tail bounds
In-expectation bounds
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Introduction to Distributed Learning for Wireless

Distributed Learning: Problem Setup (1/2)

K clients, each with a (local) dataset of size n.
Datasets: for a distribution µ on Z,

Input data Z ∼ µ.

Client #i: n i.i.d. samples Si = {Zi,j}nj=1 ∼ µ⊗n.

Notation: S = S1:K := ∪K
i=1Si.

All clients equipped with a same NN.
(Local) learning algorithms: Client #i learns model Wi

using algorithm Ai : Si ∈ Z⊗n → W. Induces a
distribution PWi|Si

.

Central server: aggregates the models W1:K := (Wi)
K
i=1

as W according to

PS,W1:K ,W
:= PW |W1:K

∏
i∈[K]

PSi,Wi
.

Example 1:

Ai = A, ∀i ∈ [K].

A = SGD or A =
ADAM.

Example 2:

A1 = SGD with
learning rate 0.01.

A2 = SGD with
learning rate
0.002.

Etc.

Example 3:

A1 = SGD.

A2 = ADAM.

Etc.
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Introduction to Distributed Learning for Wireless

Distributed Learning: Problem Setup (2/2)

For a hypothesis w,

Loss function:
ℓ : Z ×W → R+

Population risk:
L(w) := EZ∼µ[ℓ(Z,w)]

Empirical risk:

L̂(S,w) :=
1

nK

K∑
i=1

n∑
j=1

ℓ(Zi,j , w)

Generalization error

gen(S,w) := L(w)− L̂(S,w)

How to characterize generalization error of Distributed Learning?
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Advantages of Distributed Learning over Centralized Learning

Case study: Distributed Support Vector Machines (DSVM)

Consider a binary classification problem.
Local learning algorithms Ai: Support Vector Machines (SVM).
Hypothesis Wi: hyperplane coefficients.

(Centralized) SVM

W aims at classifying correctly all points, while
maximizing a margin between them.
For a point x with class label y, the SVM prediction is
ŷ = sign(W⊤x).

Distributed SVM, K = 2 clients

W1 can not classify all purple points errorless.
W2 can not classify all green points errorless.
W classifies all points errorless!
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Advantages of Distributed Learning over Centralized Learning

Generalization error of DSVM

Theorem [SCZ22]

Consider DSVM with K clients. Then,

E
[
genθ

(
S1:K ,W

)]
≤ O

(√
log(nK) log(K)

√
nK2

)
.

1 Bound for distributed SVM decreases faster than that of the centralized one
(with nK samples) with a factor of order

√
log(K)/K.

2 Similar behavior showed in high probability with a tail bound.

=⇒ SVM generalizes better (is more robust) when applied distributedly than in
a centralized manner.

[SCZ22] Rate-distortion Theoretic Bounds on Generalization Error for Distributed Learning. Sefidgaran M., Chor R. and Zaidi A., 2022
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Advantages of Distributed Learning over Centralized Learning

Elements of proof

1 Rate-distortion in standard lossy source coding.

2 Rate-distortion for lossy algorithm compression.

3 Rate-distortion bound for generalization error in centralized learning.

4 Dimensionality reduction: Johnson-Lindenstrauss transformation
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Advantages of Distributed Learning over Centralized Learning

Elements of proof (1/3)

Rate-distortion function and sochastic learning algorithms

(In standard source coding) Quantifies fundamental compression rate of a source within a fixed average distortion

level ϵ. If W is obtained given S, the compression of W into Ŵ within average distortion ϵ has minimum rate

RD(Q, ϵ) := inf
P
Ŵ |S

I(S, Ŵ ) s.t. E[d(W, Ŵ )] ≤ ϵ

where Q is a joint distribution over S ×W.
(For statistical learning) Measures lossy compressibility of an algorithm i.e., smallest compressed hypothesis space

that can be found s.t. distortion given by d(W, Ŵ ) := gen(S,W )− gen(S, Ŵ ) smaller than ϵ (in average):

RD(Q, ϵ) := inf
P
Ŵ |S

I(S, Ŵ ) s.t. E[gen(S,W )− gen(S, Ŵ )] ≤ ϵ

Theorem (Centralized learning)

Consider the centralized learning setup with dataset S of nK i.i.d. samples
and learning algorithm A : Z⊗nK → W. Suppose that for all ŵ ∈ W, ℓ(Z, ŵ)
is σ-subgaussian i.e., ∀t ∈ R, E[exp(t(ℓ(Z, ŵ) − E[ℓ(Z, ŵ]))] ≤ exp(σ2t2/2).
Then, for any ϵ ∈ R,

E[gen(S,W )] ≤

√
2σ2

nK
RD(PS,W , ϵ)
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Advantages of Distributed Learning over Centralized Learning

Elements of proof (2/3)

Definitions

For each client i ∈ [K]:

Dataset of n i.i.d. samples: Si = {Zi,j}j∈[n] ⊆ Zn, Si ∼ µ⊗n

Learning algorithm: Ai(Si) = Wi ∈ W, Wi local model.
Aggregated/Global model: W = (

∑
i∈[K] Wi)/K

Ai induces the distribution PWi|Si
, which together with µ induce the joint distribution PSi,Wi

= µ⊗nPWi|Si
.

Thus, for S = ∪iSi, W1:K = (Wi)i, the distributed learning algorithm A(S) induces

PS,W1:K ,W = PW |W1:K

∏
i∈[K]

PSi,Wi

Compression of Wi with Wj , ∀j ̸= i fixed: let W1:K\i = (W1, . . . ,Wi−1,Wi+1, . . . ,WK), Ŵi compression

of Wi. Hence, Ŵ i = (Ŵi +W1:K\i)/K is the resulting compressed global hypothesis.

Depends on Si and W1:K\i.

Rate-distortion function: for every distribution Q over W × (Z⊗n ×W)⊗K ,

RDi(Q, ϵ) := inf
P
Ŵi|Si,W1:K\i

I
(
Si; Ŵ i|W1:K\i

)
s.t. E

[
gen(Si,W )− gen(Si, Ŵ i)

]
≤ ε
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Advantages of Distributed Learning over Centralized Learning

Elements of proof (3/3)

Block-coding: we use the previously introduced compression scheme to extend the centralized learning
generalization bound to our distributed learning setup.
Doing the compression of the hypothesis Wi of client #i in a lower-dimensional space using the
Johnson-Lindenstrauss transformation gives the following.

Lemma

For every m ∈ N∗ and every non-negative triplet (c1, c2, ν), it holds that

RDi(Q, ϵ) ≤ m log((c2 + ν)/ν)

where ϵ depends on m, c1, c2 and ν.
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Advantages of Distributed Learning over Centralized Learning

Experiments: Results

(a) n = 100

(b) n = 300

Figure: Theoretical bound (left plots) and generalization error (right plots) for

distributed and centralized learning settings versus K.

Experimental setup

Dataset: MNIST, 2 classes

Model: SVM with Gaussian kernel, SGD
training

Hyperparameters:

Initial learning rate: 0.01
Regularization parameter: 0.00001
Kernel parameter: 0.01
Kernel feature space’s dimension:
2000

Interpretation

1 Generalization error of DSVM is smaller
than for centralized SVM, for any K!.

2 In-expectation bound follows the
behavior of the generalization error.
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Advantages of Distributed Learning over Centralized Learning

Distributed Learning: Problem Setup (recall)

K clients, each with a (local) dataset of size n.
Datasets: for a distribution µ on Z,

Input data Z ∼ µ.

Client #i: n i.i.d. samples Si = {Zi,j}nj=1 ∼ µ⊗n.

Notation: S = S1:K := ∪K
i=1Si.

(Local) learning algorithms: mapping A from Si ∈ Z⊗n

to Wi ∈ W. For client #i, induces a distribution PWi|Si
.

Central server/Fusion center: aggregates the models
W1:K := (Wi)

K
i=1 according to

PS,W1:K ,W
:= PW |W1:K

∏
i∈[K]

PSi,Wi
.

Population risk:

L(w) := EZ∼µ[ℓ(Z,w)]

Empirical risk:

L̂(S,w) :=
1

nK

∑K

i=1

∑n

j=1
ℓ(Zi,j , w)

Generalization error

gen(S,w) := L(w)− L̂(S,w)
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Advantages of Distributed Learning over Centralized Learning

Generalization Error of Distributed Learning Algorithms

Theorem [SCZ22]

If the loss is σ-subgaussian, then ∀ϵ ∈ R,

E
[
gen(S1:K ,W )

]
≤

√
2σ2

n
max
i∈[K]

RDi(PSi,W1:K ,W , ϵ) + ϵ.

where RDi(PSi,W1:K ,W , ϵ) is the rate-distortion function, measuring the fundamental local algorithm com-

pressibility of client i within ϵ distortion, conditioned on other Wj , j ̸= i.

Intuitively, each Wi has effect of 1/K on W ; hence with Lipschitz loss, separate compression allows for local
distortion of order Kϵ.

Bound reduces to mutual-information based bounds for ϵ = 0 (Xu and Raginsky, 2017).

Multiple extensions and similar tail bounds.
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Advantages of Distributed Learning over Centralized Learning

Summary

Problem: Generalization error of distributed stochastic learning algorithms.

Results

1 General tail bounds and in-expectation bounds on the generalization error.

Improves over the prior arts [YDP20, BDP22].

2 Generalization error bound decreases as number of clients increases, for

Distributed SVM
Federated SGLD
Locally deterministic algorithms with Lipschitz loss

3 Experimentally verified the findings.

Approach: Rate-distortion theoretic framework, adapted for algorithm compressibility

Intuition: Distributed algorithms reduce the variance of the model!

[YDP20] Information-theoretic bounds on the generalization error and privacy leakage in federated learning. Yagli S., Dytso A., Poor H.V., 2020

[BDP22] Improved Information Theoretic Generalization Bounds for Distributed and Federated Learning. Barnes L.P., Dytso A., and Poor H.V., 2022
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Federated Learning & Communication

From “one-shot” to multi-round Federated Learning

For a model w = w(R),
Empirical risk:

L̂(S,w) =
1

nK

∑
k∈[K]

∑
i∈[n]

ℓ(Zk,i, w)

Population risk:

L(w) = EZ [ℓ(Z,w)]

Generalization error:

gen(S,w) = L(w)− L̂(S,w)

R-rounds FL algorithm

K clients, each equipped with a dataset Sk = {Zk,i}ni=1 ∼ µ⊗n.

1 Round r = 0: every client k ∈ [K] initializes its model W
(0)
k

with some W
(0)

= W0.

2 Rounds r ∈ [1;R]: every client k ∈ [K] learns a local model

W
(r)
k with their algorithm Ak, using samples S

(r)
k and

initialization W
(r−1)

:

W
(r)
k

:= Ak(S
(r)
k ,W

(r−1)
)

Local models {W (r)
k }k∈[K] are sent to the server.

3 Server aggregates local models as W
(r)

and send this global
model back to the clients.

Final global model (after R rounds): W
(R)

Technical problem

What is the effect of the # of
communication rounds R in

Federated Learning?

Practical value

Saving in # of communication
rounds R would translate into

bandwidth savings!
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Federated Learning & Communication

What do we know about this problem?

Result 1: Empirical risk of LocalSGD

When Ak = SGD, ∀k ∈ [K] and w is the arithmetic average of

clients’ local models, empirical risk L̂(S,w) decreases with #
of communication rounds R. [McMahan+17]
=⇒ More communication with the parameter server helps for
optimization in Federated Learning (FL).

Technical Problem

As previously said, empirical risk does not reflect the true
performance of the model w.

What matters is how the population risk or the
generalization error evolve w.r.t. R!

Result 2

In some cases, it was observed experimentally that LocalSGD
with R < n has smaller population risk than ParallelSGD
(R = n).

[McMahan+17] Communication-efficient Learning of Deep Networks from Decentralized Data.
McMahan B.H. et al., 2017

[GLHA23] Why (and When) Does LocalSGD Generalize Better Than SGD? Gu X. et al., 2023

[McMa-
han+17]

[GLHA23]
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Federated Learning & Communication

Only a few theoretical results on generalization error in FL

Prior art

Rate-distortion theoretic bounds for “one-shot” FL algorithms (previous section) [SCZ22]

Centralized learning: all datasets collected at one point i.e., ∪K
k=1Sk = S to train a model W ,

ES,W [gen(S,W )] = O(1/
√
nK)

One-shot FL: ES,W [gen(S,W )] = O(1/
√
nK2)

=⇒ More clients = smaller generalization error than centralized setting!

For multi-round FL:

Bound on a proxy to generalization error. [BDP22]
Bound for generalization error for specific loss functions and learning algorithms, suggesting that
generalization error increases with R. [CSZ23]

(In more general settings) Does generalization error increases with the number of communication rounds R in FL?

[CSZ23] More Communication Does Not Result in Smaller Generalization Error in Federated Learning. Chor R., Sefidgaran M. and Zaidi A., 2023
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Federated Learning & Communication

What can we expect?

Intuition

FL helps to make individual models extract features that are in other
clients’ data when R is larger.

Works as if every client “sees” more data locally i.e., “virtually” larger
training dataset.

Generalization error is shown to decrease with the dataset size n
[XR2017]: for a model W trained on S,

| gen(S,W )| ≤

√
2σ2

n
I(S;W )

=⇒ Generalization error of FL should decrease with R.

[XR17] Information-theoretic analysis of generalization capability of learning algorithms. Xu A. and Raginsky M., 2017
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Federated Learning & Communication

Generalization error of Federated SVM (FSVM)

Theorem [SCZW24]

For FSVM optimized using (K,R, n, e, b)-FL-SGD withW = Bd(1), X =
Bd(B) and θ ∈ R+, under some assumptions and for some constants qe,b
and α,

E
[
genθ

(
S,W

(R)
)]

= O


√

B2 log(nK
√
K)
∑

r∈[R] Lr

nK2θ2

,

where Lr ≤ q
2(R−r)
e,b logmax

(
Kθ

Bq
(R−r)
e,b

, 2

)
.

1 Explicit bound that depends on # of communication rounds R, # of
clients K and local dataset size n.

2 Bound increases with R, for fixed (n,K) =⇒ More communication
may hurts for generalization!

[SCZW24] Lessons from Generalization Error Analysis of Federated Learning : You May Communicate Less Often!.
Sefidgaran M., Chor R., Zaidi. A and Wan Y., 2024
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Federated Learning & Communication

Towards optimal communication?

Recall that generalization error is given by

gen(S,w) := L(w)− L̂(S,w)

with empirical risk L̂(S,w) and population risk L(w).

1 Population risk = Empirical risk + Generalization Error.

2 Empirical risk decreases with R.

3 Generalization error increases with R (previous results).

Consequences

=⇒ Population risk may have a minimum for R∗ < Rmax!
=⇒ Less communication can be beneficial for the true performance
of an FL algorithm.

Implications

Choice of # of communication rounds
directly related to the required system
bandwidth!

Should be designed on the true system
performance indicators, not the empirical
risk (often considered for simplicity).
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Federated Learning & Communication

Experiments: FSVM

Experimental setup

Dataset: MNIST, 2 classes,
n = 100

Model: SVM with Gaussian kernel,
SGD training

Learning rate 0.01, batch size 1, #
of epochs 40

Interpretation

(a) Generalization error increases with
R for different fixed K. Similar
results for other values of n.

(b) In-expectation bound follows the
behavior of the generalization error.

(c) Empirical risk decreases with R.

(d) Population risk quickly converges
to a value

(a) Generalization error (b) Bound

(a) Empirical risk (b) Population risk
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Federated Learning & Communication

Generalization error of FL for general algorithms & models (1/2)

Theorem [SCZW24]

For any (PW|S,K,R, n)-FL model with distributed dataset S ∼ PS, if the loss ℓ(Zk, w) is σ-subgaussian
for every w ∈ W and any k ∈ [K], then for every ϵ ∈ R it holds that

ES,W∼PS,W

[
gen(S,W

(R)
)
]
≤
√

2σ2
∑

k∈[K],r∈[R]
RD(PS,W, k, r, ϵk,r)/(nK) + ϵ.

for any set of parameters {ϵk,r}k∈[K],r∈[R] ⊂ R which satisfy 1
KR

∑
k∈[K]

∑
r∈[R] ϵk,r ≤ ϵ.

Captures “contribution” of each client’s local model during each round to the global model through
rate-distortion functions.

Same observation in high probability with a tail bound.
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Federated Learning & Communication

Generalization error of FL for general algorithms & models (2/2)

Theorem [SCZW23]

Assume that ℓ(Zk, w) is σ-subgaussian for every w ∈ W and any k ∈ [K]. Denote as
W a concatenation of all local and global models at every round,
For every k ∈ [K] and r ∈ [R], Pk,r a conditional prior on W

(r)
k given W

(r−1)

Then, with probability at least (1− δ) over S, for all PW|S, EW∼PW|S

[
gen(S,W

(R)
)
]
is bounded by√√√√√√ 1

KR

∑
k∈[K],r∈[R] EW

(r−1)∼P
W (r−1)|S[r−1]

[K]

[
DKL

(
P
W

(r)
k

|S(r)
k

,W
(r−1)∥Pk,r

)]
+ log( 2n

Rδ
)

(2n/R− 1)/(4σ2)
.

Accounts explicitly for the effect of the number of rounds R + number of participating clients K and size of
local datasets n.

Captures “contribution” of each client’s local model during each round to the global model: KL divergence
terms.

Same observations with a tail bound and bounds for lossy compression case.

Romain Chor Distributed Learning 26 / 42



Federated Learning & Communication

Generalization error of FL for general algorithms & models (2/2)

Theorem [SCZW23]

Assume that ℓ(Zk, w) is σ-subgaussian for every w ∈ W and any k ∈ [K]. Denote as
W a concatenation of all local and global models at every round,
For every k ∈ [K] and r ∈ [R], Pk,r a conditional prior on W

(r)
k given W

(r−1)

Then, with probability at least (1− δ) over S, for all PW|S, EW∼PW|S

[
gen(S,W

(R)
)
]
is bounded by√√√√√√ 1

KR

∑
k∈[K],r∈[R] EW

(r−1)∼P
W (r−1)|S[r−1]

[K]

[
DKL

(
P
W

(r)
k

|S(r)
k

,W
(r−1)∥Pk,r

)]
+ log( 2n

Rδ
)

(2n/R− 1)/(4σ2)
.

Accounts explicitly for the effect of the number of rounds R + number of participating clients K and size of
local datasets n.

Captures “contribution” of each client’s local model during each round to the global model: KL divergence
terms.

Same observations with a tail bound and bounds for lossy compression case.

Romain Chor Distributed Learning 26 / 42



Federated Learning & Communication

Experiments: Ordinary Least Squares

Experimental setup

Dataset: synthetic dataset with dimension d = 10,
n = 500, K = 10

Model: Ordinary Least Squares with SGD training.

Hyperparameters:

Learning rate: 0.01
Client batch size: 1

Interpretation

Generalization error increases with R, as in FSVM
experiments.

Note: the shown bound is theoretically derived in
[CSZ23].

See [CSZ23]

Figure: Generalization error vs. R
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Federated Learning & Communication

Experiments: CNNs

Experimental setup

Dataset: CIFAR-10 (50000 training images,
10000 test images) with K = 16.

Model: ResNet-56 with SGD training

Hyperpararamers:

Client batch size: 128
Learning rate: 1.0
Epochs: 100

Interpretation

1 As in FSVM experiments, similar observations
for generalization error and empirical risk.

2 Explicit “U-shape” of the population risk;
minimizer R∗ ≃ 100.

3 R∗ << Rmax = 3600 hence huge savings in
communication rounds are possible!

See [SCZW24]

(a) Generalization error vs. R

(b) Empirical and population risks vs. R
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Federated Learning & Communication

Computation of Generalization Bounds for FL (1/2)

Corollary

Let Ŵ = W and p
Ŵ

(r)
k

|S(r)
k

,W
(r−1) = P

W
(r)
k

|S(r)
k

,W
(r−1) . Then, the rate distortion function for ϵ = 0

can be upper bounded as

ES,W∼PS,W

[
gen(S,W

(R)
)
]
≤

√√√√2σ2
∑

k∈[K],r∈[R] I(S
(r)
k ;W

(r)
k |W (r−1)

)

nK
.

CMI term I(S
(r)
k ;W

(r)
k |W (r−1)

) has no closed-form expression.

Only access to a single instance of (S,W,W ) ≡ (S
(r)
k ,W

(r)
k ,W

(r−1)
).

Can we compute the CMI generalization bound in a “one-shot” manner?

[SCZ24] On the Effect of Communication on the Generalization Error in Federated Learning. Sefidgaran M., Chor R., Zaidi. A, 2024
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Federated Learning & Communication

Computation of Generalization Bounds for FL (2/2)

CMI reformulation:

I(S;W |W ) = EP
S,W

[
DKL

(
PW |S,W ∥PW |W

)]
= min

P
W |W

EP
S,W

[
DKL

(
PW |S,W ∥PW |W

)]
, (1)

where the minimum is achieved whenever the prior PW |W equals the marginal distribution

P ∗ := PW |W := EPS
[PW |S,W ]. Such a prior is often called “oracle”.

Assume that PW |W = N (µW ,ΣW ) and PW |S,W = N (αS,W , CS,W ). Then,

I(S;W |W ) ∝ EP
S,W

[(α− µ)⊤Σ−1(α− µ)] = EP
S,W

[α⊤Σ−1α]− EP
W

[µ⊤Σ−1µ],

3 estimation steps

1 Oracle prior (inverse) covariance matrix Σ−1: Use a bootstrap technique over the dataset distribution PS .

2 Posterior and prior means α and µ for given W and S.

3 Expectation over PS,W : Monte-Carlo estimation methods naturally come to mind, but they rely on the

generation of many i.i.d. samples from PS,W = PSPW , which is not an option.

Romain Chor Distributed Learning 30 / 42



Federated Learning & Communication

Experiments: Estimation of Generalization Error Bound for FL (1/2)

Experimental setup

Dataset: CIFAR-10 with K = 16.

Model: ResNet-56 with Adam optimizer

Hyperpararamers:

Client batch size: 128
Learning rate: 1e-3
Epochs: 100

Interpretation

Computed (estimated) bound follows the behavior
of the generalization error.

Figure: Generalization error & Computed bound vs. R
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Federated Learning & Communication

Experiments: Estimation of Generalization Error Bound for FL (2/2)

Experimental setup 2 (Fig. (b))

Dataset: MNIST with K = 16.

Model: 2-layer MLP (784-256-10) with Adam
optimizer

Hyperpararamers:

Client batch size: 128
Learning rate: 0.1
Epochs: 100

Interpretation

Computed (estimated) bound follows the behavior
of the generalization error.

See []

Figure: Generalization error & Computed bound vs. R
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Federated Learning & Communication

Summary

Problem: Generalization error of Federated Learning algorithms, beyond
the one-shot case.

Results

1 General tail bounds and in-expectation bounds on generalization error:

Novel in their kind.
Depend explicitly on number of communication rounds R, number of
clients K and local datasets size n.
Bounds decrease as number of communication rounds increases for
Federated SVM.
Two different proof frameworks: PAC-Bayes and rate-distortion
theory.
Method for estimating one generalization bound.

2 Experimental observations:

Verification of theoretical findings for Federated SVM.
Similar observations for Convolutional Neural Networks (ResNet).
Observed that population risk has a minimizer R∗ much smaller than
the maximum number of communication rounds.

Implications

Less bandwidth usage

Better learning performance

Smaller complexity
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Backup: Preliminaries on Statistical Learning

Statistical Learning through Examples

Statistical learning aims at solving a variety of problems using collected data.

E.g.

1 Predict whether a patient, hospitalized due to a heart attack, will have a second heart attack (and/or when
this might happen). The prediction is to be based on demographic, diet and clinical measurements for that
patient.

2 Identify a handwritten number from a digitized image. This needs considering each pixel of the image.

3 Classify an email as a spam based e.g. on the occurrence of specific keywords in the email body.

Such problems are said to be supervised because there is a target variable Y , linked to some variables X called
features.

Y = f(X) + ε

where f is the target mapping, ε is some noise.
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Backup: Preliminaries on Statistical Learning

Why Estimate f?

Determine statistical correlations between the features.

Determine statistical correlations between X and Y i.e., understand which components of X are helpful to
explain Y .

Accurately predict values of Y given any features values X.
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Backup: Preliminaries on Statistical Learning

Statistical Models

f can be any mapping from X into Y, which renders the estimation unaffordable. Statistical models restrict the
considered mappings to a certain hypothesis class H.

Statistical model: (Z,H) where Z = (X ,Y) is the data space and H = {g : X → Y} is the hypothesis
class/space.

Parametric model: When the hypothesis functions of the family H are entirely determined by parameters
W ∈ W i.e. H = {g ≡ gW : X → Y| W ∈ W}.
Example (Linear regression): X = Rd,Y = R, and H is the class of linear functions i.e.
∀w ∈ W, gw(x) = wT x, x ∈ X .

In the following, we will consider only parametric models for ease of presentation. The parameters W will be
referred as hypothesis and W as hypothesis space.
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Backup: Preliminaries on Statistical Learning

Model Evaluation

Once a model has been chosen, one needs to compute a hypothesis W , using X, which results in a good
estimation of the target Y .

Loss function: A function ℓ : Z ×W → R+ measuring how well a hypothesis w ∈ W predicts the target y
based on features x. Example (least squares regression): ∀z = (x, y) ∈ Z, ∀w ∈ W, ℓ(z, w) = (wT x− y)2

Population risk: For a given hypothesis w ∈ W,

L(w) := EZ∼µ[ℓ(Z,w)].

Objective: Find the hypothesis w⋆ ∈ W such that

w⋆ ∈ argmin
w∈W

L(w).

Problem

Data distribution µ unknown hence L(w) can not be computed!
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Data distribution µ unknown hence L(w) can not be computed!
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Empirical Risk Minimization (ERM)

Training dataset: Let S = {Z1, . . . , Zn} be n independent random variables distributed according to µ, and
independent of Z = (X,Y ).

Learning algorithm: A (possibly stochastic) mapping A : Zn → W that inputs a training dataset S and picks
a hypothesis W .

S is used by A to estimate the target function f by finding the hypothesis w minimizing the empirical risk:

L̂(s, w) :=
1

n

n∑
i=1

ℓ(zi, w).

It is an estimator of the population risk.

Problem: How to measure the quality of the estimation?
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Summary of the Statistical Learning Framework

Figure: Illustration of statistical learning framework
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Generalization of a hypothesis

Difference of performance of a given hypothesis W for predicting any target value Y given X, that is
generated by the distribution µ (“ground truth” performance), as compared to the performance on a training
dataset (empirical performance).

Generalization Error: Most common way to evaluate the generalization of a hypothesis,

gen(s, w) := L(w)− L̂(s, w)

Overfitting can happen i.e. the hypothesis is really performant on S but has poor accuracy on new data
Zn+1, Zn+2, · · · ∼ µ, resulting in large generalization error.

Problem with generalization error

Exact analysis out of reach - resort to bounds:

Tail bounds

In-expectation bounds
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