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Covert communication setup
key (k)

sender encoder (f) decoder (g) receiver

Zn eavesdropper

m Xn Y n m̂

A code C = (f , g) of length n for message set M and key set K consists of an encoder
f : M×K → Rn, (m, k) 7→ xn and a decoder g : Rn ×K → M, (yn, k) 7→ m̂.

Covertness constraint
For some given ∆ > 0,

D(PY n ||PZn) ≤ ∆.
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Fundamental limit of covert communication

• The framework of covert communication was introduced by [Bash, Goeckel, and
Towsley, 2012].

• [Wang, Wornell, and Zheng, 2016], [Bloch, 2016]: fundamental asymptotic limits
for discrete memoryless channels and memoryless Gaussian channels.

Square-root law
It is not possible to achieve a positive rate of communication.

The maximum amount of information that can be transmitted reliably and covertly
over n channel uses scales like

√
n.
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Covert communication scaling constant
Given ε > 0, we denote by An(∆, ε) the maximum of ln |M| for which there exists a
random code C of length n that satisfies the covertness condition, and whose average
probability of decoding error is at most ε.

L , lim
ε↓0

lim
n→∞

An(∆, ε)√
n∆

.

Theorem [Wang, Wornell, and Zheng, 2016]
For AWGN channels, L = 1

√
nat irrespectively of the noise variance.

Theorem [Bouette, Luzzi, and Wang, 2023]
For Gaussian channels with memory, L = 1

√
nat irrespectively of the noise covariance.
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Motivation and main contributions
Motivation: in many scenarios, the noise is not Gaussian. In particular, in networks
with interference, it can be heavy-tailed [Clavier et al., 2021].

Goal
Characterize L for memoryless additive channels with general noise distributions.

• Under mild integrability assumptions on the noise PDF, we show that the
square-root scaling constant is upper-bounded by a simple expression.

• Under some additional assumptions, the upper bound is tight.

• We provide upper bounds on the key length.
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A general upper bound on L
Integrability assumptions
We suppose the noise is i.i.d. with PDF pZ , and assume there exists ζ ∈ (0, 1) s.t.∫

R
pZ (z) (ln(pZ (z)))4 dz <∞∫

R
pZ (z)ζdz <∞∫

R
pZ (z)ζ (ln(pZ (z)))4 dz <∞.

Theorem: converse
Under the previous integrability conditions, L ≤

√
2
√

Var [ln(pZ (Z ))].
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Sketch of the converse proof 1/4
Idea: Characterize the distribution PY that maximizes h(Y ) for a given D(PY ||PZ ).

Lemma 1
Consider the random variable Z̃ with density

pZ̃ (z) = αpZ (z)1−λ where α =

(∫
R

pZ (z)1−λdz
)−1

.

Then for any random variable Y :

D(PY ||PZ ) ≤ D(PZ̃ ||PZ ) =⇒ h(Y ) ≤ h(Z̃ )

with equality if and only if Y follows the same distribution as Z̃ .
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Sketch of the converse proof 2/4
• There exists a sequence {γn} such that

lim
n→∞

γn = 0

and the random variables {Z̃n} with PDFs defined as

pZ̃n
(z̃) = αn · pZ (z̃)1−γn , where αn =

(∫
R

pZ (z)1−γndz
)−1

satisfy
D(PZ̃n

‖PZ ) =
∆

n .
• Using Taylor expansions we find

γn =

√
2

Var [ln(pZ (Z ))]

√
∆

n + o
(

1√
n

)
.
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Sketch of the converse proof 3/4
• Take any covert random code C of length n.

• Let PȲ denote the average output distribution over all possible keys, a uniformly
drawn message, and the n channel uses.
From the covertness constraint, using the chain rule and convexity of KL
divergence,

D (PȲ ‖PZ ) ≤
∆

n = D(PZ̃n
‖PZ ).

• Lemma 1 implies
h
(
Ȳ
)
≤ h(Z̃n).
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Sketch of the converse proof 4/4
• Let εn be the average error probability over the random codebook.
• By averaging over the random code and using Fano’s inequality:

ln |M| (1− εn)− 1 ≤ nI(X̄ ; Ȳ ) = n
(
h
(
Ȳ
)
− h (Z )

)
≤ n

(
h(Z̃n)− h (Z )

)
.

• Knowing γn, we find

h(Z̃n)− h(Z ) =
√
2
√

Var [ln(pZ (Z ))]

√
∆

n + o
(

1√
n

)
.

• Recalling L , lim
ε↓0

lim
n→∞

An(∆, ε)√
n∆

and taking n → +∞:

L ≤
√
2
√

Var [ln(pZ (Z ))].
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Tightness of the upper bound

Assumption 1
• pZ is bounded,
• z 7→ pZ (z) ln (pZ (z)) is uniformly continuous,
• ∃ξ ∈ (0, 1) such that, for all γ ∈ [0, ξ), there exists a random variable X

independent of Z ∼ pZ such that the PDF of X + Z is pZ̃ given by Lemma 1.

Theorem: achievability
Under the previous integrability conditions and Assumption 1:

L =
√
2
√

Var [ln(pZ (Z ))].
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Sketch of the achievability proof 1/3
• Fix χ ∈

(
1, 32

)
. For each n, let Z̃n have the PDF in Lemma 1, with the choice

γn =

√
2

Var [ln(pZ (Z ))]

(
∆

n − 1

nχ

)
.

• The existence of Xn s.t. Xn + Z = Z̃n is guaranteed by Assumption 1.
• We generate a random codebook C by picking every codeword i.i.d. ∼ PXn .
• We check that the covertness constraint is satisfied:

EC[D(PY n|C‖PZn)] = EC

[
D
(

PY n|C

∥∥∥P×n
Z̃n

)]
+ D

(
P×n

Z̃n

∥∥∥PZn

)
.

= EC

[
D
(

PY n|C

∥∥∥P×n
Z̃n

)]
+∆− n1−χ + O

(
1√
n

)
≤ ∆

• We assume the key is sufficiently long to have EC

[
D
(

PY n|C

∥∥∥P×n
Z̃n

)]
close to 0.
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Sketch of the achievability proof 2/3
Lemma 2
Consider pZ satisfying the integrability conditions and Assumption 1.

Then PZ̃n
converges weakly to PZ , and PXn converges weakly to the Dirac distribution.

Proof idea of Lemma 2
For any bounded continuous function f on R:∣∣∣E [

f (Z̃n)
]
− E[f (Z )]

∣∣∣ ≤ ‖f ‖∞
∫
R

∣∣∣pZ̃n
(z)− pZ (z)

∣∣∣ dz ≤ ‖f ‖∞
√
2D

(
PZ̃n

‖PZ

)
→ 0.

• Weak convergence of PXn towards the Dirac distribution follows by Lévy’s
convergence theorem.
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Sketch of the achievability proof 3/3
• From [Verdú and Han, 1994], we know there exists a sequence of codes with

vanishing error probabilities such that:

lim
n→∞

ln |M|√
n

≥ P- lim inf
n→∞

iXn,Y n(Xn,Y n)√
n

.

• With Lemma 2, we show var
(

1√
n iXn,Y n(Xn,Y n)

)
−−−−→
n→+∞

0.
• Using Chebyshev’s inequality, we prove

lim
n→∞

ln |M|√
n

≥P- lim inf
n→∞

1√
n

iXn,Y n(Xn,Y n) = lim
n→∞

I(Xn;Y n)√
n

.

• Since PZ̃ maximizes the entropy, we have the desired result of achievability:

L =
√
2
√

Var[ln(pZ (Z ))].
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Example 1/3: exponential noise

pZ (z) = λe−λz , λ > 0.

We have

pZ̃n
(z̃) = (1−γn)λe−(1−γn)λz̃ , γn = O

(
1√
n

)
.

Assumption 1 holds [Verdú, 1996]:

pXn(x) = γn(1−γn)λe−(1−γn)λx+(1−γn)δ0(x),

Finally
L =

√
2.
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Example 2/3: generalized Gaussian noise

[Nadarajah, 2005]: pZ (z) =
cp
σ

e−
|z|p
2σp , z ∈ R,

where cp =
p

2
p+1

p Γ( 1p )
, and p, σ > 0,

with Γ(·) denoting the gamma function.

[Dytso et al., 2017]: Assumption 1 holds for
p ∈ (0, 1] or p = 2 then

[Bouette, Luzzi, and Wang, 2023]: L ≤
√

2

p ,

with equality if p ∈ (0, 1] or p = 2.

C.Bouette France PhD Inf Theory Workshop 06/2024 16/20



Setup A general upper bound on L Tightness of the upper bound Example Bounds on the key length Conclusion Ongoing and future work References

Example 3/3: generalized gamma noise

[Stacy, 1962]: r , β, σ > 0

pZ (z) =
β

Γ(r)σβr zβr−1e−
( z
σ

)β
z ∈ R+,

where Γ(·) denotes the gamma function.

L ≤
√
2

√(
r − 1

β

)2

ψ(1)(r)− r + 2

β
,

with ψ(1)(·) denoting the first derivative of
the digamma function.
Remark: L does not depend on σ.
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Bounds on the key length
Motivation: Up to now, we have assumed that an arbitrarily long key is shared
between Alice and Bob. We now show that a finite key is sufficient.

Proposition 1
If pZ satisfies the integrability conditions as well as Assumption 1, then there exists a
sequence of codes that asymptotically achieves the optimal scaling factor L of
Theorem 2 with key lengths satisfying

ln |K| = O(n).

Proposition 2
For PZ being a Gaussian or exponential distribution, it can be strengthened to

ln |K| = o(
√

n).

C.Bouette France PhD Inf Theory Workshop 06/2024 18/20



Setup A general upper bound on L Tightness of the upper bound Example Bounds on the key length Conclusion Ongoing and future work References

Sketch of proof
• We consider the previous random codebook. The covertness condition requires

EC[D(PY n|C‖PZn)] = EC

[
D
(

PY n|C

∥∥∥P×n
Z̃n

)]
+ D

(
P×n

Z̃n

∥∥∥PZn

)
≤ ∆.

We characterize a sufficient key length such that EC

[
D
(

PY n|C

∥∥∥P×n
Z̃n

)]
→ 0.

• Channel resolvability bound of [Hayashi and Matsumoto, 2016]: for ρ ∈ (0, 1],

EC

[
D
(

PY n|C‖P×n
Z̃n

)]
≤ 1

ρ
ln

(
1 + e−ρ ln|K|−ρ ln|M|+nΨ(ρ|PY |X ,PX )

)
,

where Ψ(ρ|PY |X ,PX ) = ln
(
E
[(pY |X (Y |X )

pY (Y )

)ρ])
.

• We show that
• Ψ is bounded.
• for Gaussian and Exponential noise: nΨ(ρ|PY |X ,PX ) = ρ ln |M|+ o

(√
n
)
.
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Conclusions and open problems
• Under integrability conditions on the noise PDF

L ≤
√
2
√

Var [ln(pZ (Z ))],

with equality for many noise distributions.

• A sufficient key length is ln |K| = O(n) and can be reduced to ln |K| = o(
√

n)
when the noise is Gaussian or Exponential.

Open problems
• cases where the legitimate receiver and eavesdropper have different channels.
• more general additive channels with memory.
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