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Covert communication setup

KEY (k)
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A code C = (f, g) of length n for message set M and key set K consists of an encoder
f: MxK—R" (m k) x" and a decoder g: R" x K — M, (y", k) — m.

Covertness constraint
For some given A > 0,

D(Pyn||Pzn) < A.
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Fundamental limit of covert communication

® The framework of covert communication was introduced by [Bash, Goeckel, and
Towsley, 2012].

® [Wang, Wornell, and Zheng, 2016], [Bloch, 2016]: fundamental asymptotic limits
for discrete memoryless channels and memoryless Gaussian channels.

Square-root law I

It is not possible to achieve a positive rate of communication.

The maximum amount of information that can be transmitted reliably and covertly
over n channel uses scales like \/n.
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Covert communication scaling constant
Given € > 0, we denote by A,(A,€) the maximum of In | M| for which there exists a
random code C of length n that satisfies the covertness condition, and whose average
probability of decoding error is at most €.

L 2 lim lim A (A’G) I
€l0 n—oo vn

Theorem [Wang, Wornell, and Zheng, 2016]

For AWGN channels, L = 14/nat irrespectively of the noise variance.

Theorem [Bouette, Luzzi, and Wang, 2023]

For Gaussian channels with memory, L = 1+/nat irrespectively of the noise covariance.
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Motivation and main contributions

Motivation: in many scenarios, the noise is not Gaussian. In particular, in networks
with interference, it can be heavy-tailed [Clavier et al., 2021].

Characterize L for memoryless additive channels with general noise distributions. I

® Under mild integrability assumptions on the noise PDF, we show that the I
square-root scaling constant is upper-bounded by a simple expression.

® Under some additional assumptions, the upper bound is tight.

® \We provide upper bounds on the key length.
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A general upper bound on L

We suppose the noise is i.i.d. with PDF pz, and assume there exists ¢ € (0,1) s.t

/R p2(2) (n(p2(2)))* dz < o0 ]

/ pz(2)%dz < oo I
R

/R p2(2)° (n(pz(2)))* dz < .

Under the previous integrability conditions, L < v/2+/Var [In(pz(Z
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Sketch of the converse proof 1/4
Idea: Characterize the distribution Py that maximizes h(Y) for a given D(Py||Pz).

Consider the random variable Z with density

pz(2) = apz(2)'™  where a = (/R PZ(Z)l_/\dZ) _1-

Then for any random variable Y

D(Py||Pz) < D(P;||Pz) = h(Y) < h(Z)

with equality if and only if Y follows the same distribution as Z.
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Sketch of the converse proof 2/4

® There exists a sequence {~,} such that

lim v, =0

n—oo

and the random variables {Z,} with PDFs defined as

-1
pz (2) = an- pz(2)'m, where o, = (/ pz(z)l_v"dz> I
R

satisfy
B(P,IP2) = =

® Using Taylor expansions we find

" \/ Var [1n(2PZ(Z))] \E* ° (ff) |
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Sketch of the converse proof 3/4

® Take any covert random code C of length n.

® Let Py denote the average output distribution over all possible keys, a uniformly
drawn message, and the n channel uses.
From the covertness constraint, using the chain rule and convexity of KL
divergence, I

A

D(Pyl[Pz) <— = D(Py,[Pz).

® [emma 1 implies .
h (\7) < h(Z,).
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Sketch of the converse proof 4/4

® |et ¢, be the average error probability over the random codebook.
® By averaging over the random code and using Fano's inequality:

1Mwﬂu—fg—1gnKXqunuﬂvy—mzngn(mzy—mzﬂ.
e Knowing ~y,, we find

1

h(Z,) — h(Z) = v/2y/Var [1n(pz(z))]\/§ +o <> .

NG
An(A,
e Recalling L 2 lim lim A8, )

€0 n—oo nA

L <v2y/Var[In(pz(Z))].

and taking n — 4o0:
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Tightness of the upper bound

® p7 is bounded,

® 7z pz(z)In(pz(z)) is uniformly continuous,
® 3¢ € (0,1) such that, for all v € [0,&), there exists a random variable X I
independent of Z ~ pz such that the PDF of X + Z is p5 given by Lemma 1. I

Theorem: achievability

Under the previous integrability conditions and Assumption 1:

L = v2+v/Var[In(pz(2))]
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Sketch of the achievability proof 1/3

® Fix y € (1, %) For each n, let Z, have the PDF in Lemma 1, with the choice

e \/ Var [1H(2PZ(Z))] (A - 1)

The existence of X, s.t. X, +2Z = 2,, is guaranteed by Assumption 1.
We generate a random codebook C by picking every codeword i.i.d. ~ Px,.

We check that the covertness constraint is satisfied:
Ec[D(Pynic||Pzn)] = Ec [D (PY”ICHPZX:)] +D ('DZXnn

Pzn) .

_EC@%Pwmwgg]+A—nkx+O<;%>SA

® \We assume the key is sufficiently long to have Ec []D) ('DY"|CHPZX">} close to 0.
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Sketch of the achievability proof 2/3

Consider pz satisfying the integrability conditions and Assumption 1.

Then P5 converges weakly to Pz, and Px, converges weakly to the Dirac distribution.

For any bounded continuous function f on R: I

£ [#(20)] - BIF(2)]| < 1l [ [p2,(2) - p2(2)]dz < ey /2D (P, P2) — 0.

® Weak convergence of Py, towards the Dirac distribution follows by Lévy's
convergence theorem.
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Sketch of the achievability proof 3/3
® From [Verdd and Han, 1994], we know there exists a sequence of codes with
vanishing error probabilities such that:
H n n
lim In | M| > P- liminf—lxn’yn(x Y )
n—o0 \ﬁ n—=00 \ﬁ I

® With Lemma 2, we show var (\%I‘Xn yn (X", Y”)) — 0. I
n-=o n——4o00
® Using Chebyshev's inequality, we prove

| 1 (X" Yy"
lim n M| >P-liminf —=ixn yn (X", Y") = lim u
n—o00 ﬁ n—oo ﬁ n—o0 \ﬁ

® Since P5 maximizes the entropy, we have the desired result of achievability:

L = V2+/Var[ln(pz(2))]

France PhD Inf Theory Workshop 06/2024 14/20

C.Bouette




Setup A general upper bound on L Tightness of the upper bound Example Bounds on the key length Conclusion Ongoing and future work References
0000 00000 0000 ©00 0o o

Example 1/3: exponential noise

PDF of Exponential distribution

pz(z) = Ae 2, A>0. —— A=0.5
We have A=1
121 —— A=15
5 1
= (z)=(1— n A —(1=vn)AZ = O . 1.0 4
b, (2) = (1—7)he - =
Assumption 1 holds [Verdd, 1996]: 06
Px, (x) = Yn(1=7n) Ae™ 1M (1—7,) 8 (%),

L _ \/5 0.0

Finally ] \
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Example 2/3: generalized Gaussian noise

. Cp el Generalized Gaussian density function for 6=1
[Nadarajah, 2005]: pz(z) = —e 27, z€R,
. p 0.4 4
where ¢, = ——5——, and p,0 >0,
2% T(3)

with T'(+) denoting the gamma function.

[Dytso et al., 2017]: Assumption 1 holds for
p € (0,1] or p =2 then

2
[Bouette, Luzzi, and Wang, 2023]: L < \/;,

with equality if p € (0,1] or p = 2.
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Example 3/3: generalized gamma noise

[Stacy 1962]' r ﬁ c>0 PDF of generalized gamma distribution for o=1
1 . ) ?

z\B 1.0
pz<Z) = Wzﬁrilei(g) zc RJr,

0.8

where T'(-) denotes the gamma function.

0.6 4

L<\f\/ r—— 1)(r)—r+g, 0

S

B
with ©)(1)(.) denoting the first derivative of )
the digamma function. 0o
Remark: L does not depend on o. 0 i 2 3 a > o
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Bounds on the key length
Motivation: Up to now, we have assumed that an arbitrarily long key is shared
between Alice and Bob. We now show that a finite key is sufficient.

Proposition 1

If p7 satisfies the integrability conditions as well as Assumption 1, then there exists a I

sequence of codes that asymptotically achieves the optimal scaling factor L of

Theorem 2 with key lengths satisfying I
In || = O(n).

Proposition 2
For Pz being a Gaussian or exponential distribution, it can be strengthened to

In |K| = o(v/n).
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Sketch of proof

® We consider the previous random codebook. The covertness condition requires

Ec[D(Pysicl|Pz)] = Ec [D (Pyuc|[P5)] +D (P57 P2) < &

We characterize a sufficient key length such that Ec {ID) (PY"‘CHPZM)} — 0.
¢ Channel resolvability bound of [Hayashi and Matsumoto, 2016]: for p € (0, 1],

1
xn - —pIn|K|—pln|M|+n¥(p|Py x,Px)
Ec []D) (Pyn‘CHPZn )} < P In (1 +e vix:Px ) ’

whem\DQﬂwa,PX)::hlcE[<pT;j83;0>p]>.

® We show that
® U is bounded.
® for Gaussian and Exponential noise: n¥(p|Py/x, Px) = pln| M|+ o (v/n).
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Conclusions and open problems

® Under integrability conditions on the noise PDF
L < V2y/Var[In(pz(Z
with equality for many noise distributions.

¢ A sufficient key length is In|/C| = O(n) and can be reduced to In || = o(y/n)
when the noise is Gaussian or Exponential.

Open problems
® cases where the legitimate receiver and eavesdropper have different channels.

® more general additive channels with memory.
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